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Abstract: An arbitrary Lagrangian–Eulerian (ALE) approach is used to model the orthogonal metal

cutting in a steady state situation. The thermomechanical model includes the effects of elasticity,

plasticity, strain rate, large strains and friction with heat generated between the tool and the chip.

The ALE formulation can combine the advantages of both the Eulerian and Lagrangian approaches

in a single description. Particularly, problems linked to the free surface in a Eulerian description and

those linked to severe mesh distortions in a Lagrangian one can be solved by this formulation. The

ALE governing equations are briefly reviewed in this paper; finite element and finite volume methods

are used for the discretization of the conservation equations and an explicit time integration is

adopted. Only the steady state solution is required; the ALE formulation is exploited to update the

free and the contact surfaces. The model predicts the thermomechanical quantities, the chip geometry

and the cutting forces from the cutting data and the material and friction parameters.

Cutting experiments were performed with 42CD4 steel and comparisons of experimental tool forces

and chip geometry with the numerical results are presented.

Keywords: metal cutting, arbitrary Lagrangian–Eulerian, finite element, finite volume, explicit

integration, free surface

ė strain rate tensorNOTATION

j
i

arbitrary coordinates

r material densitya
c

depth of cut
s Cauchy stress tensorA

i(i=e,w,n,s)
surface of one side of the finite volume

s
0

flow stressmesh

c specific heat

C convective velocity
1 INTRODUCTIONC

f
frictional coefficient

e specific internal energy
Experimental observations of the flow pattern in metal-f specific volume force
cutting processes show the complexities of the phen-F

f
frictional force

omena associated with this process. The work materialK constitutive tensor
is subjected to high strains, high strain rates and elevatedn

i
normal vector on the surface A

i temperatures. The interaction between the cutting toolq heat flux density
and the workpiece is also highly complex; the friction inq heat flux vector
the ‘tool–chip’ interface can create excessive tempera-T* non-dimensional temperature ( K)
tures and stresses. These complexities are the source of=(T−T

ref
)/(T
melt
−T
ref

) where
different sorts of non-linear aspects in governing equa-T

melt
=1793 K, T

ref
=300 K

tions. Therefore, most analytical and numerical investi-V material velocity
gations of metal-cutting processes are relative toV

c
cutting speed

orthogonal cutting (the shear plane problem). A reviewW grid velocity
of analytical works is given by Strenkowski and Carrollx

i
Eulerian coordinates

[1] and by Oxley [2]. Generally, these analytical models

are based on the slip line theory or the energy method,

and predict tool forces, chip geometry and mean

temperature.



In the past two decades, finite element methods have materials; extrusion and rolling problems are treated to

illustrate the strategy. In the context of metal cutting,been progressively applied to simulate the metal-cutting

process. The numerical simulations are more accurate Strenkowski and Moon [9] have used a similar approach

to obtain a steady state solution. An iterative scheme isand supply more detailed information, such as stresses,

plastic strains, strain rates, temperatures and residual introduced to obtain the steady free surfaces; a require-

ment of the steady state solution is that the final velocitystress distributions. The existing numerical models for

metal cutting are usually based on updated Lagrangian is tangential to the free surface. Compared to an updated

Lagrangian approach, the problems associated withor Eulerian formulations. Strenkowski and Carroll give

an updated Lagrangian method in reference [1], in which mesh distortions and separation criterion of the chip

from the workpiece are avoided in a Eulerianboth the workpiece and the tool are discretized with a

finite element mesh. The model can simulate the transi- formulation.

In the past few years, the arbitrary Lagrangian–ent chip formation and the steady state situation. This

fact gives a certain advantage to the Lagrangian Eulerian (ALE) formulation for simulating fluid/

structure interactions and forming processes has beenapproach; in addition, the free surfaces are obtained in

a direct way. However, a significant limitation of this used by several authors [10–12 ] in order to overcome

problems met when using purely Eulerian or purelyformulation is encountered when the solid deformations

become large, as in the metal-cutting case; the severe Lagrangian formulations. In this paper, the ALE formu-

lation is used to model orthogonal metal cutting with adistortions of the finite element mesh affect the accuracy

of the solution. The authors propose a chip separation continuous chip. This approach can combine the advan-

tages of both the classical approaches in a single descrip-criterion at the tool tip; to allow for separation of the

chip from the workpiece, the model employs a material tion and can be considered as a method with automatic

and continuous rezoning. The model is ALE until theparting criterion based on the effective plastic strain in

the tool tip region of the work chip. Results from the steady state conditions are reached. This permits free

and contact surfaces especially to be updated. Then, oncemodel indicate that varying the separation criteria has

little effect on the resulting chip geometry and tool these conditions are obtained, this model is equivalent

to a Eulerian one. In a previous work [13], this methodforces. However, variations of the criteria over the

range 0.25–1.0 significantly affect the stress field and was used to predict the thermomechanical variables only

in the workpiece. In this study, the heat generationthe residual stresses in the workpiece. An updated

Lagrangian method is also used by Childs and Maekawa due to the friction in the tool–chip interface is taken

into account. The thermomechanical model takes into[3 ] to predict the chip flow and stresses, tool tempera-

tures and wear in metal turning; an initial guess is account an elastoplastic constitutive law for the work

material and a Coulomb friction law with heat gener-required of the shape of the chip. A similar approach is

used by Komvopoulos and Erpenbeck [4] to analyse the ation in the tool–chip interface. Hence, the temperatures,

the stress and strain fields in the workpiece, the tooleffects of certain singularities like a built-up edge and

crater on the tool. More recently, Shi and Yang [5] have forces and the temperature in the tool can be predicted;

no empirical data such as separation criterion, measuredused the updated Lagrangian formulation for a thermo-

mechanical cutting model. An element separation cri- contact length or geometrical data chip are required to

obtain these parameters. In addition, the model is usedterion, which is based on the distance between the tool

tip and the nodal point ahead of the tool, is adopted. A to analyse the influence of wear at the rake face of the

tool. Cutting experiments were also performed withmesh rezoning technique is applied to cope with the

severe mesh distortions. Different physical variables, 42CD4 steel and comparisons of experimental cutting

forces and chip geometry with numerical results weresuch as strains, stresses, temperatures and residual

stresses are analysed. The numerical predictions of the effected.

distributions of residual stresses show good agreement

of the trend, as compared with X-ray measurements.

A Lagrangian approach is also used by Shekon and
2 GOVERNING ALE EQUATIONSChenot [6 ] and Marusich and Ortiz [7] for the ortho-

gonal metal-cutting modelling. Continuous remeshing

and adaptative meshing are the principal tools which the In the ALE finite element or finite volume mesh, the

grid points are not constrained to remain fixed inauthors employ for side-stepping the difficulties associ-

ated with the deformation-induced element distortion. space (Eulerian) or to move with material points

(Lagrangian). This provides more freedom in for-Another approach for developing finite element mod-

elling of cutting processes is to use a Eulerian formu- mulating the mathematical model.

The material motion is defined by the classical relationlation. Generally, this approach is suitable to simulate

a steady state process, particularly when the flow geo- x=Q(X, t) [or x
i
=Q
i
(X
j
, t)], where x denotes the pos-

ition occupied by the particle at time t and X its positionmetry is known. A formulation of this type is presen-

ted by Zienkiewicz and co-workers [8] for viscoplastic at initial time. The material velocity V is obtained by



the material time derivative In neglecting the radiation effects in the energy equa-

tion, the local ALE forms of the conservation laws are

then given byV= ẋ=
qx

qt K
X r̊+CVr+r div V=0 (mass) (2)

The reference grid points are identified by a set of inde-
rV̊+rCVV=f+div s (momentum) (3)pendent coordinates j

i
; the grid motion is given by a

relation x=y(j, t) [or x
i
=y
i
(j
j
, t)] which gives the grid re̊+rCVe=s : ė−div q (energy) (4)

velocity
where r is the mass density, f are the body forces, s is

the Cauchy stress tensor, e is the specific internal energy,
W= x̊=

qx

qt K
j

ė is the strain rate tensor, q the heat flux vector and V

the Nabla operator.
In a numerical treatment, the physical quantities are

A constitutive relationship for thermal elastoplastic
computed at geometrical points x

i
occupied by the grid

materials is adopted in the model. The Cauchy stress
points at a time t. In the conservation laws, the material

tensor s is decomposed into its deviatoric part s and the
time derivative of a function G(x, t) is required. Hence,

hydrostatic pressure p, where both are given by the
the following relation between the material time deriva-

incremental objective ALE forms as follows:
tive (Ġ) and the referential time derivative (G̊) is applied

s̊+CVs=K : ė+Vs−sV (5)to the classical Eulerian forms [1]:

p̊+CVp=p(r, e) (equation of state) (6)Ġ=G̊+CVG (1)

where G̊ is the time derivative at a grid point that occu- Equation (5) is obtained by using the Jaumann deriva-

tive, where V is the spin tensor and K the constitutivepies the geometrical point x
i

at time t and C=V−W is

the so-called convective velocity. tensor. Total strain e and strain rate ė are decomposed

Fig. 1 Initial control volume with corresponding mesh and boundary conditions



Fig. 2 Schematic diagram of the experimental set-up for force

measurements: FS, free surfaces; CS, contact surface;

EB1 and EB2, Eulerian boundary (prescribed velocity,

material density and temperature on EB1); tool,

Lagrangian structure with zero displacement; adiabatic

conditions upon other boundaries except on CS; all

other nodes, ALE

Fig. 4 Steady state geometry with the corresponding stabil-

ized velocity field

|T t |�C
f
|T n |, where T n and T t are respectively the

normal and the tangential components of the surface

traction on the interface and C
f

is the frictional

coefficient. The heat generation in the slipping contact

surface is given by dQ
fric
=|T t | |V t | dt, where V t is the

tangential slip velocity. In the model, it is assumed that

the friction heat transmits in equal proportions between

the workpiece and the tool.

The finite element method (FEM) is adopted for the

discretization of the momentum equation (3). The weak

form associated is obtained by multiplying this equation

by a weighting function v*
i

over the spatial domain v(t)

with the boundary C(t). Employing the divergence

theorem to include the force vector F on the boundary

CF and using the Galerkin approach, the corresponding

matrix equation is obtained:
Fig. 3 Intermediate non-stabilized geometry of a chip with

MvV̊+F trm+F int+F ext−F hgr=0 (8)the corresponding velocity field

where Mv is the mass matrix, F trm the momentum trans-

port force vector, F int the internal stress vector and F ext

the external force vector including the friction. Detailsadditively into an elastic part and a plastic part. The

Johnson–Cook material law is adopted for the work- of the finite element formulation and calculation of the

different terms of equation (8) can be found in referencepiece; assuming a von Mises yield criterion and an iso-

tropic strain hardening rule, the flow rule is given by [12 ]. Four-node quadrilateral finite elements classically

with a reduced integration rule are used in the present[14 ]

study, in order to improve the efficiency of the element
s
0
=(A+Be:n)(1+C ln e:̇*)(1−T *m) (7)

in distorted situations and to reduce the computing cost;

hence, corresponding zero energy modes must be con-where A, B, C, m, n are the material parameters and

e:, e:̇*, T * are respectively the equivalent strain, the trolled. The formulation proposed by Kosloff and

Frazier [15] is adopted and F hgr represents the hourglassadimensional equivalent strain rates and the non-dimen-

sioned temperature. In the tool–chip interface, the force control.

The mass and energy equations are discretizedCoulomb friction law is assumed and the stick/slip con-

dition is given by [13] stick if |T t |<C
f
|T n | and slip if by a finite volume method (FVM) and the following



Fig. 5 Distribution of the von Mises stress (GPa) for the steady state solution

associated conservative forms are considered: From a geometric viewpoint, the finite volumes and finite

elements are identical; the compatibility between the

FEM and the FVM formulations is thereby ensured. InAP
v

r̊ dvB+ P
C

rc
i
n
i
dC=0 (9)

equations (11) and (12), V and A
i

are respectively the

volume and surfaces related to the finite volume cell; k
i

AP
v

re̊ dvB+ P
C

rec
i
n
i
dC is the value of the variable k at the point i (see Fig. 1).

The convective terms, which characterize the ALE or the

purely Eulerian formulations, imply difficulties linked to
= P
C

−q
i
n
i
dC+ P

v

s
ij
ė
ij

dv (10) the stability of the solution: in equations (11) and (12),

an upwind technique is used for the calculation of r
i
and

e
i
. Concerning the energy equation, the classic FourierUsing the notation of reference [16 ], the corresponding

discrete relations are given by law q=−kVT is adopted where k is the conduction

coefficient for an isotropic material and the specific
0= r̊

p
V+ ∑

i=e,w,n,s

A
i
r
i
CΩn
i

(11)
internal energy e is linked to the temperature T by the

classical relationship de=c dT, where c is the specific
(re̊
p
)V+ ∑

i=e,w,n,s

A
i
r
i
e
i
CΩn
i heat.

For the time integration of equations (5), (6), (8),
=V(s : ė)

p
− ∑
i=e,w,n,s

A
i
qΩn
i

(12)
(11) and (12), an explicit central difference scheme of



Fig. 6 Temperatures in the workpiece and the tool (K )

(Dt)3 order of accuracy is used; the time step Dt is 8. Go to step 2 if the steady state solution is not

obtained.subjected with respect to the Courant stability con-

dition [16 ]. For example, the calculation of the velocity
The computation is started with initial conditions onis given by

the boundaries where values are specified. The steady
V t+Dt/2=V t−Dt/2+V̊ t Dt (13) state solution is reached when the free surface condition

is verified and if the different variables are stationary. InThe flow chart of the explicit computing procedure is
addition, the practical implementation of an ALEas follows:
method requires an automatic mesh displacement pre-

1. Initialization (n=0); input initial conditions. scription algorithm. The algorithm proposed by Giuliani
2. Time-stepping loop. [17 ], which is used in the model, is based on geometric
3. Integration of the grid velocity to obtain the mesh criteria so as to minimize mesh distortions. The compo-

displacement and coordinates. nents of grid velocity at a typical ALE node I are com-
4. Calculate the incremental hydrostatic pressure, devi- puted at each step of the time integration procedure by

atoric stresses and internal force vector. the following relationship:
5. Compute acceleration.

6. Compute density, energy and temperature.
W t+Dt
I,i
=

1

N
∑
J

W t
J,i
+
a

Dt
∑
J

Lt
IJ
∑
J

ut
J
−ut
I

N2Lt
IJ

(14)
7. Integrate acceleration to obtain velocity.



Fig. 7 Evolution of nodal displacements (mm) on the free surface versus computing time (ms) (see Fig. 1 for

nodes localization)

Table 1 ALE and experimental values of cutting force (F
c
), feed force (F

a
) and chip thickness (CT). V

c
=cutting speed; a

c
=depth

of cut

a
c
=0.25 mm a

c
=0.5 mm

V
c
=1 m/s V

c
=2 m/s V

c
=4 m/s V

c
=1 m/s V

c
=2 m/s V

c
=4 m/s

F
c
(exp) (±20 N ) 590 N 560 N 560 N 1000 N 990 N 930 N

F
c
(ALE) 432 N 430 N 580 N 1050 N 1026 N 1020 N

F
a
(exp) (±20 N) 328 N 300 N 250 N 416 N 330 N 300 N

F
a
(ALE) 226 N 210 N 165 N 360 N 358 N 352 N

CT(exp) 0.51 mm 0.51 mm 0.49 mm 0.9 mm 0.84 mm 0.88 mm
CT(ALE) 0.71 mm 0.7 mm 0.7 mm 1.11 mm 1.09 mm 1 mm

where N indicates the number of nodes connected to problem is due to the fact that the chip geometry and

the contact length between the tool and the chip are notnode I via sides and diagonals, L
IJ

is the current distance

between the node I and the connected node J and u known in advance. The problem is treated from an initial

arbitrary control volume, and the ALE formulation per-represents the total node displacement.

mits free and contact surfaces to be updated and a reg-

ular grid calculation to be kept. One of the requirements

to obtain the solution is that the material velocity has a
3 THE ALE CUTTING MODEL zero normal component at the free surfaces. In the ALE

formulation, the nature of the nodes can be prescribed

at the input. Therefore, a Eulerian node has a zero gridThe model of orthogonal metal cutting presented in this

work is relative to the steady state situation. The primary velocity (W=0), while a Lagrangian node moves with



Fig. 8 Evolution of equivalent plastic strain in the vicinity of the contact surface versus computing time

(ms) [see Fig. 1 for elements (QUAD4) localization]

the material point (W=V ). Then, in the steady state The friction coefficient C
f
was obtained on an experimen-

tal basis by applying a normal force to the tool in contactsimulation, the following specifications are attributed to

the nodes upon the free and contact surfaces: Eulerian with the moving workpiece and by measuring the corre-

sponding tangential forces. The value of C
f
=0.32 isin the tangential direction and Lagrangian in the normal

direction. The objective is to keep a regular node repar- adopted for the numerical simulations.

tition along the free surface; then the normal displace-

ment permits the free surface to be updated. A part of

the initial arbitrary control volume is illustrated in Fig. 1.

This figure also contains the prescribed nature of the 4 EXPERIMENTAL PROCEDURES
nodes and the boundary conditions. Initially, only the

two nodes at the tip tool are in contact with the tool
A series of experimental cutting was performed to vali-

because the contact length is unknown. The material
date the ALE cutting model. The workpiece is a 42CD4

parameters for 42CD4 steel, given by reference [18], are
steel and machining tests were conducted on a lathe

the following:
under dry conditions. The work material composition is:

Fe(97.078%), C(0.443%), Si(0.282%), Mn(0.731%),E=210 GPa, v=0.3

P(2.4%), S(2×10−3%), Cr(1.022%), Mo(0.247%). The
A=595 MPa, B=580 MPa, C=0.023

experimental set-up used to conduct validation is pre-

sented in Fig. 2. A carbide tool with a positive rake anglem=13, n=0.1

of 6°, a flank angle of 6° and a bevelled edge of 0.07 mm
Specific heat c=358 J/kg K

was used. The specific heat and the thermal conductivity

of the tool are equal to 100 J/kg K and 25 W/m2 KConductivity k=38 W/m2 K



Fig. 9 Initial geometry for cutting with a cratered tool (depth of crater=35 mm, length of crater=0.45 mm)

respectively. The depths of cut were 0.25 and 0.5 mm, mation zone [2]. Figure 5 shows the distribution of the

and three cutting speeds were chosen (1, 2 and 4 m/s). von Mises stresses. The spatial variation of the von Mises

In view of the comparison with the ALE model stresses gives information on the orientation and the

predictions, cutting tool forces were measured with a importance of the primary shear zone and those of the

three-axis KISTLER dynamometer using piezoelectric secondary shear zone. It is seen that the maximum value

sensors. The experimental chip thickness was also mea- of about 1.030 GPa occurs in these regions. The location

sured by means of a microphotograph and compared and magnitude of these high stresses have an important

with the numerical values. effect on the incipience of the material fracture and the

subsequent discontinuous chip formation.

The contours of temperature during steady state cut-
5 NUMERICAL RESULTS AND EXPERIMENTAL ting are shown in Fig. 6. The zone with the highest tem-

COMPARISONS perature occurs in the vicinity of the contact surface

(secondary shear zone [2]). The maximum temperature

is approximately 1000 °C and the highest temperatureUnder conditions identical to the metal-cutting experi-
gradient is observed in the zone near the tool tip. Thements, the ALE method was used for the simulation of
distribution in the tool shows that a high-temperaturethe process for comparison. The results illustrated in
gradient is also observed in the vicinity of the tool tipFigs 3 to 10 are relative to a simulation for which V

c
=

and contact zone. These different phenomena were also4 m/s and a
c
=0.25 mm. A part of the initial control

observed in previous experimental works [2, 3, 9]. Tovolume with the finite element and finite volume meshes
verify the stability of the solution, the ‘time history’ canof the workpiece and the tool are shown in Fig. 1.
be plotted for different quantities. Figure 7 gives theFigure 3 is associated with a non-stabilized and non-
evolution of node displacements on the free surfacesteady intermediate result: the velocity has a non-zero
during the computing and Fig. 8 represents equivalentnormal component on the free surfaces. The steady state
plastic strain evolutions in the vicinity of the contactvelocity distribution and the corresponding geometry are

surface (see Fig. 1 for the localization of correspondinggiven in Fig. 4. The distribution of the velocity vectors

nodes and elements). Note that these evolutions cannotshows that the material is flowing upward at a fairly

be considered as a real transient solution becauseuniform speed. The velocity vectors change their direc-

tion and reduce speed in the so-called primary defor- the initial geometry is arbitrary; these curves must be



Fig. 10 Stabilized geometry and von Mises stresses for cutting with a cratered tool

interpreted as an evolution of variables during the free comparisons between the ALE model predictions and

the experimental measurements are given in Table 1. Insurface update procedure.

According to these different results, steady state con- this table, the maximum value is given of the experimen-

tal chip thickness [CT (exp)] when the chip is scalloped.ditions are practically achieved for chip geometry and

all mechanical quantities. The stationarity of the tem- It can be seen that correlation with a reasonable level

of agreement was found between the measured chipperature field in the chip and the workpiece is almost

attained because the advection transfer is dominant in thicknesses and those predicted by the ALE model over

the entire range of depths of cut and cutting speedsthese domains. However, for the tool, the heat transfer

is purely diffusive and temperatures are not stabilized tested. A similar agreement can also be observed for the

cutting forces and the feed forces. The authors considerbecause of the short duration of the cutting simulation.

Concerning the convergence, the accuracy of the finite that the discrepancies can be attributed to the validity

of the friction modelling and to the precision of materialelement technique depends on the size of the mesh; a

model with a more refined mesh in the contact and tip parameters. Both the experimental measurements and

numerical predictions show a similar trend when com-tool zones does not change the results appreciably (3 per

cent of variation for the maximum temperature between pared with results obtained by other investigators using

other materials (references [2], [4] and [9]).a ‘600 element’ model and a ‘640 element’ model ).

Finally, tool forces were computed by summing the Finally, Figs 9 and 10 are associated with a simulation

of the cutting process with a cratered tool. These figuresforces acting on the tool rake face and decomposing

them into the cutting and feed force components. The represent respectively the initial arbitrary geometry
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