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ABSTRACT
For social robots to be brought more into widespread use
in the fields of companionship, care taking and domestic
help, they must be capable of demonstrating social intelli-
gence. In order to be acceptable, they must exhibit socio-
communicative skills. Classic approaches to program HRI
from observed human-human interactions fails to capture
the subtlety of multimodal interactions as well as the key
structural differences between robots and humans. The for-
mer arises due to a difficulty in quantifying and coding mul-
timodal behaviours, while the latter due to a difference of
the degrees of liberty between a robot and a human. How-
ever, the notion of reverse engineering from multimodal HRI
traces to learn the underlying behavioral blueprint of the
robot given multimodal traces seems an option worth ex-
ploring. With this spirit, the entire HRI can be seen as a
sequence of exchanges of speech acts between the robot and
human, each act treated as an action, bearing in mind that
the entire sequence is goal-driven. Thus, this entire interac-
tion can be treated as a sequence of actions propelling the
interaction from its initial to goal state, also known as a
plan in the domain of AI planning. In the same domain,
this action sequence that stems from plan execution can be
represented as a trace. AI techniques, such as machine learn-
ing, can be used to learn behavioral models (also known as
symbolic action models in AI), intended to be reusable for
AI planning, from the aforementioned multimodal traces.
This article reviews recent machine learning techniques for
learning planning action models which can be applied to the
field of HRI with the intent of rendering robots as socio-
communicative.
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1. INTRODUCTION
With the near simultaneous advances in mechatronics on

the engineering side and ergonomics on the human factors
side, the field of social robotics has seen a significant spike
in interest in the recent years. Driven with the objective of
rendering robots as socio-communicative, there has been an
equally heightened interest towards researching techniques
to endow robots with cognitive, emotional and social skills.
The strategy to do so draws inspiration from study of human
behaviors. For robots, social and emotive qualities not only
lubricate the interface between humans and robots, but also
promote learning, decision making and so on. These quali-
ties strengthen the possibility of acceptability and emotional
attachment to the robot [5, 6]. This acceptance is only likely
if the robot fulfils a fundamental expectation that one being
has of the other: not only to do the right thing, but also at
the right time and in the right manner [5]. This social in-
telligence or ’commonsense’ of the robot is what eventually
determines its social acceptability in the long run.

Commonsense, however, is not that common. Robots can,
thus, only learn to be acceptable with experience. However,
teaching a humanoid the subtleties of a social interaction is
not evident. Even a standard dialogue exchange integrates
the widest possible panel of signs which intervene in the
communication and are difficult to codify (synchronization
between the expression of the body, the face, the tone of
the voice, etc.). In such a scenario, learning the behavioral
model of the robot is a promising approach.

Thus, another way of solving this problem is given a set
of HRI traces, to learn the interaction script or the behav-
ioral model of the robot which governs this interaction. This
learning can be conducted with the help of some fairly re-
cent and other ongoing advances in the field of AI. In the
field of AI planning for instance, this entire interaction can
be viewed as a series of actions (where each speech act is
treated as an action) which take the system from the initial
to the goal state, the goal being the successful termination
of the interaction [18]. In the literature, AI (or Automated)
planning has been used in HRI for robot action planning
and reasoning [1] . There has been little work done in us-
ing AI planning approaches to empower robots with socio-
communicative abilities.

In such domains, planners now leverage recent advance-
ments in machine learning (ML) to recreate the blueprint of
the actions applicable to the domain, but cannot be easily
identified or programmed, alongwith their signatures, pre-



conditions and effects. Several classical and recent ML tech-
niques can be leveraged to reproduce the underlying behav-
ioral model. This model, once learnt, can further render the
humanoid as autonomous and pioneer future HRI interac-
tions. This is a conscious and directed effort to decrease
laborious manual coding and increase quality. This article
briefly reviews recent machine learning techniques for learn-
ing planning action models for the field of HRI.

This article is organized as follows: we start by briefly in-
troducing and explaining the interplay between Automated
Planning (AP), Machine Learning (ML) and HRI to solve a
common problem. We then represent a classification of var-
ious techniques of learning action models, citing examples
of each. These examples are then detailed in the following
section. We then briefly discusses the persisting issues in the
field despite the advances, and terminate with a conclusion.

2. PROBLEM STATEMENT
Consider the case where Automated Planning (AP) were

to be used to construct the core behavioral model of a robot
to govern its multimodal interactions with humans. It is
very difficult, if not impossible, to fine tune such a model by
a domain expert to inculcate and account for subtle human
behaviours which arise and interplay even in the simplest di-
alog exchange. However, using ML techniques, it is possible
to learn this model from an actual HRI. As demonstrated
in the figure 1, the HRI can be viewed as a planning prob-
lem: in an initial run of the interaction, the robot speech
acts are governed by observation, imitation or demonstra-
tion techniques [2, 21]. One particular approach that seems
promising is that of ’beaming’ by human pilots [3]. Thanks
to this technique, a human operator can perceive, analyze,
act and interact with a remote person through robotic em-
bodiment. A human operator will solve both the scaling
and social problems by optimally exploiting the robots af-
fordances. The following speech act exchange sequence be-
tween the robot and human is treated as a sequence of ac-
tions which constitutes the trace set (also called the execu-
tion experience). This speech act exchange is what drives
the interaction from its initial to goal state. An initial state
or a goal is composed of a set of predicates. A predicate is
a set of constant symbols or variable symbols. It is a set
of constant symbols in case it is grounded, in which case it
evaluates to true or false. Thus, a single trace is constituted
of: initial state predicates, speech act sequence, and the final
state predicates.

These traces are then fed to the learner (see figure 2),
whose role is to learn the behavioral (action) model m that
serves as the ’blueprint’ of the actions. An action model
is defined by (a, Pre,Add,Del), where a is an action name
with zero or more variables (as parameters), Pre, Add and
Del being the precondition list, add list and delete list, re-
spectively. The precondition list is the set of conditions
(eventually a conjunction of predicates) which need to be
satisfied for the action to be triggered in a particular state.
The add and delete lists are the set of grounded predicates
which will be added or deleted respectively from the cur-
rent state, upon the application of the action to the current
state. This action application then produces the next state,
which upon successive action applications leads to the goal
state. In the field of AI planning, the model is represented
in a standard language called the Planning Domain Defini-
tion Language (PDDL). It has been the official language for

the representation of the problems and solutions in all of
the International Planning Competitions (IPC) which have
been held 1998 onwards [14].

Figure 1: Step 1 - Initial Run of HRI experiment by
beaming [3]

Figure 2: Step 2 - Learning the behavioral model
from collected traces

Figure 3: Domain Description and Schema for Op-
erator ’inform’ in an HRI domain

A sample action called ’inform’ in the PDDL language is
represented in the figure 3. The objective of this action is for
the agent (in this case the robot) to inform a human about
the presence of a telephone in the room. The preconditions
for this action: both the robot and human are in the room,
the robot believes in the presence of a telephone in the room,
and that the robot has seen the human; are represented
in the form of predicates. As an effect of this action, the
robot believes that the human believes in the presence of a



telephone in the room, signifying its successful execution of
the action ’inform’.

Figure 4: Step 3 - Autonomous re-run of HRI

The challenge lies scripting this action model with more
complex speech acts, relying solely on the expertise of a
domain expert who also in his own right, is likely to commit
errors while scripting.

The effort required by the domain expert to script this
subtle and delicate humanoid behavioral model can be di-
minished by ML. The work done in ML goes hand in hand
with the long history of planning, as ML is viewed as a po-
tentially powerful means of endowing an agent with greater
autonomy and flexibility. It often compensates for the de-
signer’s incomplete knowledge of the world that the agent
will face. The developed ML techniques could be applied
across a wide variety of domains to speed up planning. This
is done by learning the underlying behavioral model from
the experience accumulated during the planning and exe-
cution phases (refers to speech act exchanges). These em-
ployed learning techniques vary widely in terms of context
of application, technique of application, adopted learning
methodology and information learned.

Once the model m is learnt, it is fed to a planner (see
figure 4) along with an initial state s0 and goal state g.
Together, all three constitute a planning problem which is
defined by (s0, g,m). A solution to a planning problem is a
plan composed of an action sequence (a1, a2, an), where the
actions guide the transition of the system from the initial to
the goal state [28]. Thus, the learnt model can be re-usable
to plan future dialogue sequences between the robot and the
human, in such a way that the need of a ’teacher’ to govern
the robot behavior is suppressed, and the robot can interact
autonomously.

In summary, Machine Learning (ML) is increasingly being
used to resolve the aforementioned planning problem. This
article tries to classify various approaches based on several
criterion.

3. LEARNING PLANNING ACTION MOD-
ELS

The techniques for learning planning action models can
be classified as depicted in figure 5.

3.1 State Observability and Action Effects
The determination of the current state of the system after

the action execution may be flawed because of a faulty sensor
calibration. Thus, in the case of partial observability of a
system, it may be assumed to be in one of a set of ’belief
states’.

Similarly action effects may be probabilistic, which means
that in a real world scenario, it is not necessary that a uni-
tary action be applicable to a state. On the contrary, multi-
ple actions may be applied, each with a different execution

Figure 5: Learning Planning Action Models
(D=Deterministic, P=Probabilistic, FO=Fully Ob-
servable, PO=Partially Observable)

probability.
Keeping these variations of action effects and state observ-

ability in mind, we define four categories of implementations:

• Deterministic effects, full state observability: For ex-
ample, the EXPO [23, 12, 9] system.

• Deterministic effects, partial state observability: In
this family, the system may be in one of a set of ’belief
states’ after the execution of each action. For example,
ARMS (Action-Relation Modelling System) [25].

• Probabilistic effects, full state observability: For ex-
ample, PELA (Planning, Execution and Learning Ar-
chitecture)[11].

• Probabilistic Effects, Partial State Observability: Bar-
ring a few initial works in this area, this classification
remains as the most understudied one to date, with no
general approach in sight either (for example, Yoon et
al. [26]).

3.2 Learning Techniques
This section introduces some classic as well as recently

prominent learning techniques that have been successfully
used in learning action models. The following subsections
have not been conceptualized as learning families, but as
orthogonal (and sometimes overlapping) techniques.

3.2.1 Inductive and Analytical Learning

• Inductive learning: The learning system is confronted
with a hypothesis space H and a set of training exam-
ples D. The desired output is a hypothesis h from H
that is consistent with these training examples. Induc-
tive methods generate statistically justified hypotheses
[32]. The heart of the learning problem is generalizing



successfully from examples. In these cases, inductive
techniques that can identify patterns over many ex-
amples in the absence of a domain model can come
in handy. One prominent inductive learning technique
is that of decision tree and regression tree learning.
Regression trees offer the advantages of being able to
predict a continuous variable and the ability to model
noise in the data. A regression tree predicts a value
along the dependent dimension for all environmental
observations, in contrast to a decision tree, which en-
ables a prediction along a categorical variable (i.e.,
class).

• Analytic learning: The learning system is confronted
with the same hypothesis space and training examples
as for inductive learning. However, the learner has an
additional input: background knowledge B that can
explain observed training examples. The desired out-
put is a hypothesis h from H that is consistent with
both the training examples D and the background
knowledge B [32]. Analytic learning leans on the learner’s
background knowledge to analyze a given training in-
stance to identify the relevant features.

More details about classical techniques which have been
comprehensively used in operator learning can be found in
[32]. The current article sheds light on certain interesting
techniques which have more recently come to light and of-
fer interesting possibilities with respect to the task at hand,
which is that of learning operators.

3.2.2 Transfer Learning
Many machine learning methods work well only under a

common assumption: the training and test data are drawn
from the same feature space and the same distribution. When
the distribution changes, most statistical models need to be
rebuilt from scratch using newly collected training data. In
many real world applications, it is expensive or impossible
to re-collect the needed training data and rebuild the mod-
els. It would be nice to reduce the need and effort to re-
collect the training data. In such cases, knowledge transfer
or transfer learning between task domains would be desir-
able. Transfer learning [16], in contrast, allows the domains,
tasks, and distributions used in training and testing to be
different. In the real world, we observe many examples of
transfer learning. For example, we may find that learning
to recognize apples might help to recognize oranges. Trans-
fer learning aims to extract the knowledge from one or more
source tasks and applies the knowledge to a target task when
the latter has fewer high-quality training data [16].

The advantages of using transfer learning are centered
around the fact that a change of features, domains, tasks,
and distributions from the training to the testing phase does
not require the statistical model to be rebuilt. The disad-
vantages, however, are listed as follows:

• Many proposed transfer learning algorithms assume
that the source and target domains are related to each
other in some sense. However, if the assumption does
not hold, negative transfer may happen, which is worse
than no transfer at all (for example, an American tourist
learning to drive on the left side of the road in the UK
for the first time). In order to avoid negative transfer
learning, we need to first study transferability between

source domains and target domains. Based on suitable
transferability measures, we can then select relevant
source domains/tasks to extract knowledge for learn-
ing the target tasks.

• Most existing transfer learning algorithms so far have
focused on improving generalization across different
distributions between source and target domains or
tasks. In doing so, they assumed that the feature
spaces between the source and target domains are the
same. However, in many applications, we may wish
to transfer knowledge across domains or tasks that
have different feature spaces, and transfer from multi-
ple such source domains. This type of transfer learning
is referred to as heterogeneous transfer learning, which
is a persisting challenge.

• Has mainly been applied to small scale applications
[16].

One particular implementation is an algorithm called LAWS
(Learn Action models with transferring knowledge from a
related source domain via Web Search) [31].

3.2.3 Reinforcement Learning
Reinforcement learning (RL) [4] is a specific case of induc-

tive learning, and defined more clearly by characterizing a
learning problem instead of a learning technique. A general
reinforcement learning problem can be seen as composed of
just three elements: (1) goals an agent must achieve, (2) an
observable environment, and (3) actions an agent can take
to affect the environment. Through trial-and-error online
visitation of states in its environment, such a reinforcement
learning system seeks to find an optimal policy for achieving
the problem goals. The strength of reinforcement learning
lies in its ability to handle stochastic environments in which
the domain theory is either unknown or incomplete. With
respect to the planning-learning goal dimension, reinforce-
ment learning can be viewed as both ’improving plan quality’
(the process moves toward the optimal policy) and ’learning
the domain theory’ (begins without a model of transition
probability between states) [32]. However, one of the ma-
jor drawbacks of RL stems from the fact that in its bid to
achieve particular goals, it cannot gather general knowledge
of the system dynamics, leading to a problem of general-
ization. RL is particularly interesting for robotics, for this
approach often involves learning to achieve particular goals,
without gathering any general knowledge of the world dy-
namics. As a result, the robots can learn to do particular
tasks without having trouble generalizing to new ones [17].
For example, LOPE (Learning by Observation in Planning
Environments) [8].

3.2.4 Surprise-Based Learning(SBL)
In Surprise-Based Learning (SBL) [20] a surprise is pro-

duced if the latest prediction is noticeably different from the
latest observation. After performing an action, the world is
sensed via the perceptor module which extracts feature in-
formation from one or more sensors. If the algorithm had
made a prediction, the surprise analyzer will validate it. If
the prediction was incorrect, the model modifier will adjust
the world model accordingly. Based on the updated model
the action selector will perform the next action so as to re-
peat the learning cycle (see figure 6).



Figure 6: Overview of surprise based learning [20]

A series of approaches based on SBL have used Goal Driven
Autonomy (GDA). GDA is a conceptual model for creating
an autonomous agent that monitors a set of expectations
during plan execution, detects when discrepancies occur,
builds explanations for the cause of failures, and formulates
new goals to pursue when planning failures arise. In order
to identify when planning failures occur, a GDA agent re-
quires the planning component to generate an expectation
of world state after executing each action in the execution
environment. The GDA model thus provides a framework
for creating agents capable of responding to unanticipated
failures during plan execution in complex, dynamic environ-
ment [24]. For example, the system FOOLMETWICE [15].

3.3 Quality of traces
The execution traces may be classified into pure or adul-

terated as follows:

• Noisy: The traces can be adulterated because of sensor
miscalibration or faulty annotation by a domain ex-
pert. For instance, AMAN (Action-Model Acquisition
from Noisy plan traces) [28] belongs to this category.

• Ideal: There is no discrepancy between the ideal ac-
tion and the recorded action. For example, the system
OBSERVER [23] falls into this category.

3.4 Kind of traces
This refers to the elements (state information, action in-

formation) which constitute the traces. These can be di-
vided into the following:

• Action Sequences: Refers to the case where the exe-
cuted plan traces can be represented in the form of a
sequence of action executions. For example, Opmaker
[13].

• State-Action Interleavings: The case where the exe-
cuted plan traces can be represented in the form of a
sequence of alternate state-action representations. For
example, LAMP (Learning Action Models from Plan
traces) proposed by [30].

3.5 Availability of model in beginning
Before the learning phase begins, the action model may

exist in one of the following capacities:

Table 1: Representation Languages
Language Features Reference

PDDL
(Planning Domain
Description Language)

Machine-readable,
standardized syntax
for representing STRIPS
and other languages.
Has types, constants,
predicates and actions

[14]

STRIPS
(Stanford Research
Institute Problem
Solver)

Sublanguage of PDDL [7]

OCL
(Object Centered
Language)

High level language
with representation centered
around objects instead
of states

[13]

STRIPS+WS
STRIPS + functional terms,
leading to
higher expressiveness

[22]

• No Model: This refers to the fact that the no informa-
tion on the actions that constitute the model is avail-
able in the beginning, and the entire model must be
learnt from scratch. For example, OBSERVER [23].

• Partial Model: Some elements of the model are avail-
able to the learner in the beginning, and the model is
enriched with more knowledge at the end of the learn-
ing phase. For example, RIM (Refining Incomplete
planning domain Models through plan traces) [29].

3.6 Representation Language
The ideal language would be able to compactly model ev-

ery action effect the agent might encounter, and no others.
Choosing a good representation language provides a strong
bias for any algorithm that will learn models in that lan-
guage. Some languages and their features are summarized
in the table 1.

4. STATE OF THE ART
Brief descriptions of some key algorithms corresponding

to the aforementioned classification can be found in the fol-
lowing section. These algorithms are also summarized in the
table 2.

4.1 OBSERVER
OBSERVER [23] is a system that learns operator precon-

ditions by creating and updating both most specific repre-
sentation and a most general representation for the precon-
ditions, based on operator executions while solving practice
problems. It also learns operator effects by generalizing the
delta-state (the difference between post-state and pre-state)
from multiple observations.

4.2 RIM
RIM (Refining Incomplete planning domain Models through

plan traces) [29] constructs sets of soft and hard constraints
which are solved using a weighted MAX-SAT solver to ob-
tain sets of macro-operators and (refined) action models.

4.3 OpMaker



Opmaker [13] is a mixed initiative (where both the human
and the machine take initiative), graphical knowledge ac-
quisition tool for inducing parametrized, hierarchical (each
object may have relations and attributes inherited from dif-
ferent levels [13]) operator descriptions from example ac-
tion sequences and declarative domain knowledge, with the
minimum of user interaction. It is implemented inside of a
graphic tool called GIPO (Graphical Interface for Planning
with Objects), which facilitates domain knowledge capture
and domain modelling ([13, 10]), a perfect tool for novice
users to create plans and learn models with minimum effort.

4.4 LAMP
LAMP (Learning Action Models from Plan traces) [30]

learn action models with quantifiers and logical implications.
Firstly, the input plan traces (including observed states and
actions) are encoded into propositional formulas, which is a
conjunction of ground literals to store into a database as a
collection of facts. Secondly, candidate formulas are gener-
ated according to the predicate lists and domain constraints.
Thirdly, a Markov Logic Network (MLN) uses the formulas
generated in the above two steps to select the most likely
subset from the set of candidate formulas. Finally, this sub-
set is converted into the final action models.

4.5 AMAN
AMAN (Action-Model Acquisition from Noisy plan traces)

[28] finds a domain model that best explains the observed
noisy plan traces. First, a set of candidate domain models
is built by scanning each action in plan traces and substi-
tuting its instantiated parameters with their corresponding
variables. This is followed by a graphical model to capture
the relationship between the current state, correct action,
observed action and the domain model. Afterwards the pa-
rameters of the graphical model are learnt, following which
AMAN generates a set of action models according to the
learnt parameters.

4.6 EXPO
The EXPO ([23, 12, 9]) system refines incomplete plan-

ning operators by ORM (operator refinement method). EXPO
does this by generating plans and monitoring their execu-
tion to detect the differences between the state predicted
according to the internal action model and the observed
state. EXPO then constructs a set of specific hypotheses
to fix the detected differences. After being heuristically fil-
tered, each hypothesis is tested in turn with an experiment
and a plan is constructed to achieve the situation required
to carry out the experiment.

4.7 ARMS
The ARMS (Action-Relation Modelling System) [25] sys-

tem learns an action model in two phases. In phase one of
the algorithm, ARMS finds frequent action sets from plans
that share a common set of parameters. In addition, ARMS
finds some frequent relation-action pairs with the help of the
initial state and the goal state. These relation-action pairs
give us an initial guess on the preconditions, add lists and
delete lists of actions in this subset. These action subsets
and pairs are used to obtain a set of constraints that must
hold in order to make the plans correct. The constraints ex-
tracted from the plans are then transformed into a weighted
MAX-SAT representation, the solution to which produces

action models. The process iterates until all actions are
modelled.

4.8 PELA
PELA (Planning, Execution and Learning Architecture)

[11] performs the three functions suggested in its name. The
learning component allows PELA to generate probabilistic
rules about the execution of actions. PELA generates these
rules from the execution of plans and compiles them to up-
grade its deterministic planning model. This is done by per-
forming multiclass classification, which further consists of
finding the smallest decision tree that fits a given data set
following a Top-Down Induction of Decision Trees (TDIDT)
algorithm [19].

4.9 LAWS
LAWS (Learn Action models with transferring knowledge

from a related source domain via Web search) [31] makes
use of action-models already created beforehand in other
related domains, which are called source domains, to help
learn actions in a target domain. The target domain and a
related source domain are bridged by searching Web pages
related to the target domain and the source domain, and
then building a mapping between them by means of a sim-
ilarity function done by calculating the similarity between
their corresponding Web pages. The similarity is calculated
using the Kullback-Leibler (KL) divergence. Based on the
calculated similarity, a set of weighted constraints, called
web constraints, are built. Based any available example plan
traces in the target domain, other constraints such as state
constraints, action constraints and plan constraints, are also
built. All the above constraints are solved using a weighted
MAX-SAT solver, and target-domain action models are gen-
erated based on the solution to the constraint satisfaction
problem.

4.10 LOPE
LOPE (Learning by Observation in Planning Environ-

ments) [8] learns by sharing among multi agent systems.
Learning is performed by three integrated techniques: rote
learning of an experience (observation) by creating an op-
erator directly from it, heuristic generalization of incorrect
learned operators; and a global reinforcement strategy of
operators by rewarding and punishing them based on their
success in predicting the behavior of the environment. Rein-
forcement of an operator means punishment of similar ones,
so there is a global reinforcement of the same action. This
global reinforcement is done by means of a virtual general-
ized Q table [8].

4.11 FOOLMETWICE
FOOLMETWICE [15] is a goal-oriented (GDA-Goal

Driven Agent) algorithm which learns from surprises. It tries
to find inaccuracies in environment model M by attempt-
ing to explain all observations received. When a consistent
explanation cannot be found, it infers that some unknown
event E happened that is not represented in M . After de-
termining when unknown events occur, it creates a model of
their preconditions requires generalizing over the states that
trigger them.

5. OPEN ISSUES



Table 2: State Of The Art Planning Algorithms (D=Deterministic, P=Probabilistic, FO=Fully Observable,
PO=Partially Observable, PDL=Prodigy Description Language)

Algorithm/
Author

Input Output Language Technique Merits Demerits
Envi
ro
nment

Robust
to
Noise?

OBSE
RVER
([23])

Traces,
practice
problems and
description
language

Operators
STRIPS-
like

Conservative
specific-to-
general
inductive
generalization
process

(i) Can find out negated
preconditions,
conditional preconditions
and
conditional effects
(ii) Does not require
strong background
knowledge

Domain knowledge can be
incomplete or incorrect
in the following ways :
over-general preconditions,
over-specific preconditions,
incomplete effects,
extraneous effects,
and missing operators

D,
FO

N

RIM
([29])

Incomplete
action
models
and plan
traces

Macro-operators
and action models

STRIPS MAX-SAT
Increases accuracy of
incomplete operators

Cannot handle incorrect
partial initial models

D,
FO

Y

Opmaker
([13])

Partial Model,
Action
sequences

Operator Schema OCL

Operator
induction by
mixed
initiative

(i) Eases task of
operator encoding, fits well
into engineering environment
for planning domain
acquisition
and modeling
(ii) Useful for non-experts

Needs user input
for intermediate state
information

D,
FO

Y

LAMP
([30])

State-Action
Interleavings

Action Models PDDL
Markov
Logic
Network (MLN)

More expressive models-
inculcate quantifiers
and logical implications

Looses efficiency
with increasing
domain size

D,
FO

N

AMAN
([28])

Action
sequence

Operators STRIPS

Gradient
Descent,
Reinforcement
Learning

No background knowledge
needed

Model sampling
mechanism
unclear

D,
FO

Y

EXPO
([23])

Incomplete
operator
set,
traces of state
sequences

New preconditions,
effects,
conditional effects,
operators, attribute
values

PDL

Learning-by-
experimentation
for
Operator
Refinement

(i) Learns conditional effects
(ii) Methods are goal-directed
and learning is incremental

Rules learnt from general
to specific

D,
FO

N

ARMS
([25])

Action
sequence
with partial
traces

Action Models STRIPS

Builds a weighted
propositional
satisfiability problem
and solves it using
weighted MAX-SAT
solver

Can handle cases when
intermediate state
observations
are difficult to acquire

(i) Cannot learn action
models
with quantifiers
or implications
(ii) Cannot learn
complex
action models

D,
PO

N

PELA
([11])

Planning
problem,
STRIPS
action
model

Enriched action
model with
planning
possibilities in
probabilistic
domains

PDDL
TDIDT (Top Down
Induction
of Decision Trees)

Based on off-the-shelf
planning and
learning components

Assumes initial action
model of environment

P,
FO

N

LAWS
([31])

Action
schemas,
predicates,
plan traces
from target
domain,
action models
from source
domain

Action models
in target domain

STRIPS
Transfer Learning
,KL divergence

Web exploited
as knowledge source

Negative Transfer:
When source domain
and target
domain are
not related to each other,
brute-force transfer
may be unsuccessful

D,
FO

N

LOPE
([8])

Number of
execution
cycles,
possible
action set

Operators
Propos
itional
Logic

Reinforcement
Learning

Allows knowledge sharing
among agents,
increasing percentage
of successful plans

Differences in sensors
of agents causes
different ways of
perceiving the world,
and, therefore, different
biases towards
operator generation

D,
FO

N

FOOL
ME
TWICE
([15])

Initial state,
goal state,
model

Expectation,
discrepancies,
goals

PDDL+

Goal-oriented
model
based on surprise
and explanation
generation

Goal-oriented rather
than reward-driven,
thus allowing frequent
goal change without
requiring substantial policy
re-learning

Cannot acquire exogenous
event models with
continuous conditions

D,
PO

N



Despite the bright prospects that the aforementioned ap-
proaches offer, there persist some open issues and loopholes
which are discussed as follows:

• Learning with the time dimension: Time plays an im-
perative role most real life domains. For example,
each dialogue in a HRI is composed of an utterance
further accompanied by gestural, body and eye move-
ments, all of them interleaved in a narrow time frame.
These interactions may thus be represented by a time
sequence, with the intent of learning the underlying
action model. Barring some initial works in this area,
time remains an interesting aspect to explore [27].

• Direct re-applicability of learned model for dialogue
exchange: re-use of a learned model by a planner con-
tinues to remain a concern. A model that has been
learned by applying ML techniques is more often than
not incomplete, or more concretely inadept to be fed
to a planner to directly generate plans, or in the case
of HRI, to reproduce a multimodal dialogue which re-
spects social rules. It needs to be retouched and fine
tuned by a domain expert in order to be reusable. This
marks a stark incapability of the prominently used ma-
chine learning techniques to be and comprehensive,
and leaves scope for much more research.

• Extension of classical planning to a full scope domain:
The applicability of the aforementioned approaches,
most of which have been tested on highly simplified
toy domains and not in real scenarios, remains an issue
to be addressed. Classical planning refers to a world
model in which predicates are propositional: they do
not change unless the planning agent acts to change
them, all relevant attributes can be observed at any
time, the impact of executing an action on the envi-
ronment is known and deterministic, the effects of tak-
ing an action occurring instantly and so on. However,
the real world is laced with unpredictability: a pred-
icate might switch its value spontaneously, the world
may have hidden variables, the exact impact of actions
may be unpredictable, the actions may have durations
and so on [32].

6. CONCLUSION
This article argues for the usage of AI planning techniques

with the intent of endowing robots with socio-communicative
skills, thus augmenting their acceptability. It justifies the
notion of learning the underlying behavioral blueprint of the
robot from a set of multimodal HRI traces. This learning
is achieved by the usage of several state-of-the-art and clas-
sical Machine Learning (ML) techniques. The article tries
to classify various ML approaches based on several crite-
rion and conditions, along with the merits and demerits of
each approach. It then broadly highlights some persisting
open issues with the discussed approaches, concluding that a
significant number of prominent and interesting techniques
have been applied to highly controlled experimental setups,
and their application to a real world HRI scenario is a topic
of further research.
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