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CONCENTRATION OF MEASURE PRINCIPLE
AND ENTROPY-INEQUALITIES

PAUL-MARIE SAMSON

Abstract. The concentration measure principle is presented in an abstract
way to encompass and unify different concentration properties. We give a gen-
eral overview of the links between concentration properties, transport-entropy
inequalities, and logarithmic Sobolev inequalities for some specific transport
costs. By giving few examples, we emphasize optimal weak transport costs as
an efficient tool to establish new transport inequality and new concentration
principles for discrete measures (the binomial law, the Poisson measure, the
uniform law on the symmetric group).

1. Introduction

Of isoperimetric inspiration, the concentration of measure phenomenon has been
pushed forward by V. Milman in the 70’s in the study of the asymptotic geome-
try of Banach spaces and then in-depth studied by many authors including Gromov
[GM83, Gro99], Talagrand [Tal95], Maurey [Mau91], Ledoux [Led97, BL97], Bobkov
[Bob97, BL00]. This principle has applications in numerous fields of mathematics.
The book by M. Ledoux [Led01] is devoted to this subject. It presents numerous
examples and probabilistic, analytical and geometrical technics related to this no-
tion. We also refer to the monographs [BLM13, Mas07] for more applications of
this principle in statistics and probability theory. We also warmly recommend the
surveys [GL10, Goz15] by Gozlan and Léonard about transport-entropy inequali-
ties. The main purpose of this paper is to complement these surveys in view of the
recent developments.

In the present paper, the concentration of measure principle is formalized in an
abstract way to encompass and unify different concentration properties investigated
in the literature. The definition of this principle with enlargements of sets takes
its origin from the papers by M. Talagrand [Tal95, Tal96b, Tal96a]. We propose
a functional formulation of the concentration principle, rigorously introduced in
[GRST14b]. We emphasize three types of cost functions that provide most of
the enlargements of sets considered in the literature, the usual cost functions, the
barycentric cost functions and the universal cost functions.
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The concentration properties associated to usual cost functions and its related
functional inequalities have been widely studied these last years. Now, it is a chal-
lenge to develop new concentration inequalities that could capture precise dimen-
sional concentration behavior for particular classes of functions, especially in dis-
crete setting. In this document, we present some concentration results for discrete
measures associated to the above weak transport costs. In the spirit of the early
works by Talagrand [Tal95, Tal96b, Tal96a], we believe that entropy-functional in-
equalities associated to new weak transport costs could be adapted to understand
some concentration challenging problems.

The third section of this paper put forward the transport-entropy inequality
(also called transport inequality) associated to the above different costs functions,
as a fondamental tool in the study of concentration properties in product spaces.
This entropy-inequality is an alternative to the logarithmic Sobolev inequality and
its variants, to establish concentration properties in product spaces. The main
feature of these two inequalities is for each, a tensorization property, that provides
concentration results in high dimension spaces. We will briefly recall the links
between these two kinds of entropy-inequalities and the concentration of measure
principle.

Section 4 is focussed on the concentration properties and transport inequalities
related to the so-called barycentric costs. These transport costs, weaker than the
usual one, are adapted to derive new transport inequalities for discrete measures
(see Section 4.2). Indeed, let us recall that the Talagrand’s transport inequality
T2 is never satisfied by discrete measures. Recently, in the context of the study of
curvature notion in discrete spaces, other transport inequalities have been proposed,
mainly in the works by Erbar-Maas [Maa11, EM12]. However, due to the very
abstract definition of the optimal transport costs, the associated concentration of
measure phenomenon remains difficult to interpret.

Barycentric optimal transport costs can be expressed using optimal transport
costs by considering the notion of convex order on probability measures (see Propo-
sition 4.1). Moreover, most of the results with usual transport costs can be adapted
for barycentric transport costs. First, barycentric transport inequalities are equiv-
alent to logarithmic Sobolev inequalities restricted to a class of convex or concave
functions (see Section 4.1). In an other direction, on the real line, as for usual
transport costs, for any optimal barycentric transport cost, there exists an optimal
coupling which is independent of the convex function involved in the barycentric
cost (see Section 4.3). This independence property allows to characterize the prob-
ability measures satisfying a barycentric transport inequality on the real line. As
a byproduct of this characterization, the “convex” Poincaré inequality on the real
line is equivalent to a barycentric transport inequality with some specific convex
cost function (see Section 4.4).

Section 5 is devoted to examples of universal transport inequalities such as the
so-called Csizár-Kullback-Pinsker inequality. The most emblematic universal trans-
port inequality of this document is the Marton’s transport inequality with its weak
cost ‹T2 [Mar96b]. In the papers [Sam03, Sam07], the Marton’s cost has been im-
proved to reach optimal Bernstein bounds for suprema of empirical bounded inde-
pendent processes (see Section 5.1). This method is an alternative to the so-called
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Herbst’s method, first used by Ledoux to get deviation bounds for suprema of
empirical processes [Led97]. In Section 5.2, we recall the results of [Sam00] and
[Pau14] that extends Marton’s inequality to any measure on a product space, with
weak dependences of its marginals.

The last Section 5.3 concerns recent transport inequalities obtained for the uni-
form probability measure on the symmetric group. Theses inequalities are obtained
from the Csizár-Kullback-Pinsker inequality or the Marton’s inequality ‹T2, by using
other tensorization arguments. The proofs are inspired by the work by Talagrand
on the symmetric group [Tal95].

The works presented in this survey could be extended in different directions.

A first challenge is to define other costs functions that may capture new concen-
tration’s properties, as for the uniform measure on the symmetric group, for Gibbs
measure or for other non-product measures under dependence properties. The new
costs functions presented in this survey are of particular interest in discrete setting
(discrete cube, binomial law, Poisson measure) and we may use it in other discrete
framework such as Poisson processes.

Another direction is to develop the multimarginal transport inequalities in dis-
crete and continuous setting. We wonder whether this multimarginal approach
allows to reach superconcentration-properties. In this field, the works by Dembo
[Dem97] and Talagrand [Tal96a] are also a guideline.

These last years, the concept of curvature in discrete setting has emerged [Oll09,
OV12, EM12, EMT15, Hil14] by analogy of the concept of lower bounded curvature
in continuous setting in metric spaces [Vil09, AGS14, AGS15]. These notions could
be revisited by relating the notion of curvatures to different cost functions, the
paper [GRST14a] is a first attempt in that direction.

Acknowledgements. The author would like to thank Nathael Gozlan and an
anonymous referee for their carefull reading of the manuscript.
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2. A general concentration of measure principle

Let (X , d) be a Polish metric space (separable, complete), with Borel σ-field
B(X ). We denote by P(A) the set of probability measures on a subset A ∈ B(X ),
and for q ≥ 1, we denote by Pq(A) the set of probability measures p on A such that∫
d(x0, y)qdp(y) < +∞ for a point x0.

We assume that a notion of pseudo-distance from a point x ∈ X to a subset
A ⊂ X is given, denoted by c(x,A) ∈ [0,+∞], and such that c(x,A) ≥ 0 and
c(x,A) = 0 if x ∈ A. The usual example is

c(x,A) = d(x,A) = inf
y∈A

d(x, y).

One could also choose c(x,A) = α(d(x,A)), where α : R+ → [0,+∞] is such that
α(0) = 0.

For r ≥ 0, the enlargement of A associated to this pseudo-distance is defined by
Ar,c = {x ∈ X , c(x,A) ≤ r}.

Definition 2.1. Let β : R+ → [0,+∞] be an increasing function with β(0) = 0. A
probability measure µ satisfies a concentration principle with profile β and cost c,
if there exist a1, a2 > 0 such that for all subsets A ∈ B(X ) and for all r ≥ 0,

µ(A)a1µ(X \Ar,c)a2 ≤ e−β(r).

If µ satisfies a concentration principle with profile β, then for all A ∈ B(X ) with
measure µ(A) ≥ 1/2, one has

µ(X \Ar,c) ≤ 2a1/a2e−β(r)/a2 = e−β̃(r), ∀r ≥ 0.
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This last property is the classical formulation of a concentration of measure prin-
ciple. Actually, these two formulations are equivalent, up to constants, as soon
as

A ⊂ X \ (X \Ar,c)r, ∀r ≥ 0, ∀A ∈ B(X ),
(see Lemma 5.6 [GRST14b]). This inclusion depends of the kind of enlargement
and is not satisfied for some enlargements.

In all this document, the pseudo-distance c(x,A) is defined from a cost function.

Definition 2.2. A cost function is a function

c : X × P(X )→ [0,+∞],

such that the function p 7→ c(x, p) is convex, and c(x, δx) = 0 for all x ∈ X (δx
denotes the Dirac measure at point x). Then we define the pseudo-distance c by

c(x,A) = inf
p∈P(A)

c(x, p), x ∈ X , A ∈ B(X ).

Here, for the sake of simplicity, the same notation c is used for the pseudo-distance
and the cost function c.

In this document, we consider three kinds of cost functions with following defi-
nitions.

The usual cost functions. Usually, the transport cost is a function defined on
X × X rather than X × P(X ).

Definition 2.3. A cost function c : X × P(X ) → [0,+∞] is called usual if there
exists a measurable function ω : X × X → [0,+∞] such that for all x ∈ X and all
p ∈ P(X ), ω(x, x) = 0 and

c(x, p) =
∫
ω(x, y)dp(y).

In that case, p 7→ c(x, p) is an affine function. The pseudo-distance infp∈P(A) c(x, p)
is reached at Dirac measures, the extremal points of the convex set P(A), therefore

c(x,A) = inf
y∈A

ω(x, y).

By the way, the pseudo-distance is exactly the classical one associated to the cost
ω. The most studied cost functions ω are ω(x, y) = d(x, y)q, q > 0 or ω(x, y) =
α(d(x, y)), with α : R+ → R+.

In the case ω(x, y) = d(x, y) one has c(x,A) = d(x,A) and we simply denote by
Ar the enlargement Ar,c.

The universal cost functions. These cost functions have been introduced by
Talagrand [Tal96b] and Marton [Mar96b] in order to solve different types of concen-
tration’s problems, for example the deviations of suprema of empirical processes, of
the largest increasing subsequence, the bin-packing problem, etc ... These transport
costs are the main tools of the so-called “convex hull” method of [Tal96b, Tal96a]
and in the papers [Mar97, Sam00, Sam03, Sam07, Pau14].
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We denote by 1x 6=y the Hamming distance between two points x and y in X ,
defined by 1x6=y = γ(d(x, y)), where γ : R+ → R+ is the function defined by
γ(h) = 1 if h 6= 0 and γ(0) = 0.

Definition 2.4. Let α : R+ → [0,+∞] be a lower semi-continuous convex function
and let µ0 be a probability measure on X . We define two classes of universal cost
functions.

• A cost function c : X × P(X )→ [0,+∞] is called universal and associated
to the function α, if

c(x, p) = α

Å∫
1x 6=y dp(y)

ã
,

for all x ∈ X and for all p ∈ P(X ).
• A cost function c : X × P(X ) → [0,+∞] is called universal, associated to

the function α and to the measure µ0, if

c(x, p) =
∫
α

Å
1x 6=y

dp

dµ0
(y)
ã
dµ0(y),

for all (x, p) ∈ X × P(X ) such that p is absolutely continuous with respect
to µ0 on the set X \ {x}, and c(x, p) = +∞ otherwise.

These universal cost functions are independent of the distance d on X , and
therefore of the geometry of the space X .

The barycentric cost functions. The so-called barycentric costs are defined
on X = Rn equipped with the Euclidean distance, d(x, y) = |x − y|, x, y ∈ Rn.
They have been introduced in the paper [GRST14b] to reach optimal concentration
properties for discrete measures (see Section 4.2). As explained in [GRST14b], they
are also related to the convex (τ)-property by Maurey [Mau91].

Definition 2.5. A cost function c : X × P1(X ) → [0,+∞] is called barycentric if
there exists a lower semi-continuous convex function θ : Rn → [0,+∞] such that
for all x ∈ Rn and all p ∈ P1(Rn),

c(x, p) = θ

Å
x−

∫
y dp(y)

ã
.

Let us observe that the concentration property associated to this cost function
is weaker than the one associated to the usual cost function with ω(x, y) = θ(x −
y), x, y ∈ X , since by Jensen’s inequality

c(x, p) ≤
∫
θ(x− y)dp(y).

A functional formulation of the concentration principle of Definition 2.1 is pre-
sented in [GRST14b]. This second definition is associated to the following type of
infimum-convolution operator, introduced in [Sam07, GRST14b]: for any mesurable
function ϕ : X → R ∪ {∞} bounded from below

Rcϕ(x) = inf
p∈P(X )

ß∫
ϕdp+ c(x, p)

™
, x ∈ X .(1)

Since c(x, δx) = 0, one has Rcϕ(x) ≤ ϕ(x).
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For a usual cost function, c(x, p) =
∫
ω(x, y)dp(y), since the function p 7→

∫
ϕdp+

c(x, p) is affine, the operator Rcϕ is the classical infimum-convolution operator
associated to the cost function ω,

Rcϕ(x) = inf
y∈X
{ϕ(y) + ω(x, y)} = Qωϕ(x).

The functional formulation of the concentration principle is given by the following
result.

Proposition 2.1. Let a1, a2 > 0 and β : R+ → [0,+∞] be a function. The
following properties are equivalent.

(i) For all A ∈ B(X ), and all r ≥ 0,

µ(A)a1µ(X \Ar,c)a2 ≤ e−β(r).

(ii) For all measurable functions ϕ : X → R ∪ {∞} bounded from below,

µ(ϕ ≤ m)a1µ(Rcϕ > m+ r)a2 ≤ e−β(r) ∀m ∈ R, ∀r ≥ 0.

Proof. Given A ∈ B(X ), let iA be the zero function on A and equal to +∞ on
X \A. By applying (ii) with the function ϕ = iA and with m = 0, we get (i) since
{ϕ ≤ 0} = A and RciA(x) = c(x,A), x ∈ X .

Conversely, given a function ϕ, we apply (1) with A = {ϕ ≤ m}. Then, (2)
follows from the fact that {Rcϕ > m + r} ⊂ (X \ Ar,c). Indeed, if x ∈ Ar,c, then
for all ε > 0, there exists pε ∈ P(A) such that c(x, pε) ≤ r + ε. Since

Rcϕ(x) ≤
∫
ϕdpε + c(x, pε) ≤ m+ r + ε,

when ε goes to 0, we get x ∈ {Rcϕ ≤ m + r}. As a consequence Ar,c ⊂ {Rcϕ ≤
m+ r} and µ(Rcϕ > m+ r) ≤ µ(X \Ar,c). �

For a usual cost function of type c(x, p) =
∫
α(d(x, y))dp(y), x ∈ X , p ∈ P(X ),

where α : R+ → R+ is one-to-one, the common way to write the concentration
principle is to use the classical enlargement At = {x ∈ X , d(x,A) ≤ t}. Since
Ar,c = At for r = α(t), (i) can be rewritten as follows: for all A ∈ B(X ) and all
t ≥ 0,

µ(A)a1µ(X \At)a2 ≤ e−β(α(t)).

In that case, going back to early P. Lévy’s ideas, we may formalize the concentration
property by using the class of 1-Lipschitz functions f (cf. [Led01]). As in the
previous proof, by choosing A = {f ≤ m}, m ∈ R, we show that At ⊂ {f ≤ m+ t},
t ≥ 0. This provides the following equivalent functional formulation : for all 1-
Lipschitz functions f : X → R,

µ(f ≤ m)a1µ(f > m+ t)a2 ≤ e−β(α(t)), ∀m ∈ R, ∀t ≥ 0.(2)

Let us assume moreover that α is convex. The inequality (2) can be also derived
from (ii) applied to the fonction ϕ = λf , λ > 0, assuming first that f is bounded
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from below. Since f is 1-Lipschitz, Rcϕ is close to ϕ and its closeness is controled
by λ. More precisely, one has for any x ∈ X

Rcϕ(x) = inf
y∈X
{ϕ(y) + α(d(x, y))}

≥ ϕ(x)− sup
y∈X
{λd(x, y)− α(d(x, y))} ≥ ϕ(x)− α∗(λ),

with α∗(λ) = supv≥0{λv − α(v)}. Therefore, by replacing m by λm, (ii) provides:
for all 1-Lipschitz function f , bounded from below, and for all λ ≥ 0,

µ(f ≤ m)a1µ(λf > λm+ r + α∗(λ))a2 ≤ e−β(r), ∀m ∈ R, ∀r ≥ 0.

Since α : R+ → R+ is one to one convex and α(0) = 0, α is increasing and for all
t > 0, ∂α(t) ⊂ (0,+∞), where ∂α(t) denotes the subdifferential of α at point t. As
a consequence, the last inequality implies property (2) for all 1-Lipschitz functions
bounded from below by choosing by choosing r = α(t) and λ ∈ ∂α(t) such that
λt = α(t) + α∗(λ). Then, by monotone convergence, the property (2) extends to
all 1-Lipschitz functions.

Finally, the property (2) implies the classical concentration property for 1-
Lipschitz functions f around their medianmf (see [Led01], Chapter 1). By applying
(2) to f or to −f , and by choosing m = mf or m = −mf , we get

µ(|f −mf | > t) ≤ 2.2a1/a2e−β(α(t))/a2 , ∀t ≥ 0.

3. Transport-entropy inequalities

This section emphasizes the transport-entropy inequalities in the study of concen-
tration of measure phenomenon on product spaces. As for the logarithmic Sobolev
inequalities, the tensorization properties of the transport inequalities make it an
effective tool to prove concentration properties in product spaces. The last part of
this section briefly recalls the links between the transport-entropy inequalities and
the logarithmic Sobolev inequalities.

Let us first recall the original links between isoperimetric properties and concen-
tration of measure properties. Let µ be a measure on a metric space (X , d). For
any Borel set A, the surface measure of A is defined by

µ+(∂A) = lim inf
t→0+

µ(At)− µ(A)
t

.

The isoperimetric problem is to determine the smaller surface measure µ+(∂A)
among all Borel set A of fixed measure µ(A). Namely, we want to find the largest
function, denoted by Iµ : R+ → R+ such that for all A ∈ B(X ),

µ+(∂A) ≥ Iµ(µ(A)).(3)

The function Iµ is called isoperimetric profile of the measure µ.

If Iµ ≥ v′ ◦ v−1, where v : R → [0, µ(X)] is an increasing smooth function, the
isoperimetric inequality (3) provides a lower estimate of the measure of At (see
Proposition 2.1 [Led01]): for all t ≥ 0,

µ(At) ≥ v(v−1(µ(A)) + t).(4)
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Therefore, if µ is a probability measure, we get the following concentration property,
for all A ∈ B(X ) with µ(A) ≥ 1/2,

µ(X \At) ≤ 1− v(v−1(1/2) + t), ∀t ≥ 0.

When (X, d) = (Rn, | · |) is the Euclidean space and µ is the Lesbegue measure, or
when X = Sn is the unit Euclidean sphere of Rn+1 with its geodesic distance d and
µ = σn is the uniform law on Sn, the isoperimetric profile is given by Iµ = v′ ◦ v−1

where for all r ≥ 0, v(r) is the measure of a ball of radius r (see [Lév51]). As a
consequence, if µ(A) = µ(B) = v(r) where B is a ball of X , then

v(v−1(µ(A)) + t) = v(r + t) = µ(Bt).

Therefore the property (4) implies that the balls are extremal sets with following
meaning: for all Borel sets A and for all balls B with measure µ(B) = µ(A),

µ(At) ≥ µ(Bt),

for all t ≥ 0. Actually, this property is equivalent to the isoperimetric inequality
since it implies,

µ+(∂A) = lim inf
t→0+

µ(At)− µ(A)
t

≥ lim inf
t→0+

µ(Bt)− µ(B)
t

= Iµ(µ(A)),

by using µ(A) = µ(B).

In this way, the concentration profile of σn is given by the estimate of the mea-
sures of the spherical balls: for all A ∈ B(Sn) with σn(A) ≥ 1/2,

σn(X \At) ≤ 1− σn(Bt) = v(v−1(1/2) + t) ≤ e−(n−1)t2/2, ∀t ≥ 0,(5)

where B is a half-sphere, σn(B) = 1/2. The proof of the estimate given by the last
inequality is given after Corollary 2.2 in [Led01].

By volume expansion, since the uniform law of the sphere of Rn+1 of radius
√
n

goes to the canonical Gaussian measure on RN, we get the isoperimetric profile of
the Gaussian measure (cf. [Led93, Led01]). Half hyperplanes are extremal sets for
the standard Gaussian measure γn on Rn and one has

Iγn(s) = ϕ ◦ Φ−1(s) ∼
0+
s

…
2 log 1

s
,

with Φ(r) = 1√
2π

∫ r
−∞ e−u

2/2du, r ∈ R, and ϕ = Φ′, Φ is the cumulative distribution
function of the standard Gaussian law on R. It provides the following concentration
property: for all A ∈ B(Rn) such that γn(A) ≥ 1/2,

γn(Rn \At) ≤ 1− Φ(t) ≤ e−t
2/2, t ≥ 0.(6)

On the discrete cube, X = {0, 1}n, equipped with the uniform probability mea-
sure µn and the Hamming distance defined by

d(x, y) =
n∑
i=1

1xi 6=yi , x, y ∈ {0, 1}n,

the extremal sets A minimizing µn(At) for µn(A) ≥ 1/2, have been identified
(see [Har66, WW77]). This provides the following concentration property: for any
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subset A ⊂ {0, 1}n such that µn(A) ≥ 1/2,

µn(X \At) ≤ e−2t2/n, t ≥ 0.(7)

In the last three basics examples, the sphere (5), the Gaussian space (6) and
the discrete cube (7), we observe that in high dimension, n >> 1, dimension is a
crucial parameter that quantifies the measure concentration phenomenon.

In high dimension, isoperimetric problems are often hard to establish and few
of them are solved. Therefore, we need other methods to prove concentration
properties. Moreover, it is well known that the concentration property do not
tensorize properly. For that purpose, “entropic” methods are efficient alternative
tools. They enable to enlarge considerably the class of examples of concentration
properties on high dimensional spaces, thanks to the tensorization properties of the
entropy.

For concentration, the main two useful entropic methods are the one associated
to the logarithmic Sobolev inequality with the so-called “Herbst’s argument” (cf.
chapter 5. [Led01]), and the one based on transport inequalities with the so-called
“Marton’s argument” (cf. chapter 6. [Led01]). This paper mainly concerns this
second one. For example, the concentration result (6) for the Gaussian measure on
Rn , or (7) for the uniform law on the discrete cube, are easy consequences of the
tensorization property of the transport inequalities.

3.1. Transport inequalities and concentration properties. Let Π(µ, ν) de-
note the set of probability measures on the product space X×X , with first marginal
µ and second marginal ν. The probability space P(X ) is endowed with the σ-field
generated by the applications

P(X ) → ([0, 1],B)
ν 7→ ν(A), .

where A is any Borel set of X and B is the Borel σ-field on [0, 1].

Since X is a Polish space, any measure π ∈ Π(µ, ν) can be decomposed as follows

dπ(x, y) = dµ(x)dpx(y),

where p : x ∈ X 7→ px ∈ P(X ) is a measurable map µ-almost-surely uniquely
determined; p is a probability kernel satisfying

µp(A) =
∫
px(A)dµ(x) = ν(A), ∀A ∈ B(X ).

The cost function c defines the following optimal transport cost Tc, introduced
in [GRST14b].

Definition 3.1. The optimal transport cost between to probability measures µ and
ν on X , associated to c : X × P(X )→ [0,+∞], is the quantity

Tc(ν|µ) = inf
π∈Π(µ,ν)

∫
c(x, px)dµ(x),

where, given π ∈ Π(µ, ν), the kernel p = (px)x∈X is such that dπ(x, y) = dµ(x)dpx(y).
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At first sight, Tc(ν|µ) is not a symmetric quantity of µ and ν. As example, for
a usual cost,

c(x, px) =
∫
ω(x, y)dpx(y), x ∈ X ,

the optimal cost Tc(ν|µ) corresponds to the usual optimal transport cost linked to
the cost function ω,

Tω(µ, ν) = inf
π∈Π(µ,ν)

∫∫
ω(x, y)dπ(x, y) = inf

π∈Π(µ,ν)

∫
c(x, px)dµ(x) = Tc(ν|µ).

If the function ω is symmetric, ω(x, y) = ω(y, x) for all x, y ∈ X , then Tω and
therefore Tc is symmetric, Tω(µ, ν) = Tω(ν, µ).

Let us present transport inequalities associated to the optimal transport costs
Tc(ν|µ). We emphasize a general version that exactly provides the concentration
of measure property of Definition 2.1 by the Marton’s argument.

Definition 3.2. Let a1, a2 > 0 and let β : R+ → R+ be a non-decreasing function.
The probability measure µ ∈ P(X ) satisfies the transport inequality Tc,β(a1, a2) if

Tc,β(a1, a2) : β (Tc(ν1|ν2)) ≤ a1H(ν1|µ) + a2H(ν2|µ), ∀ν1, ν2 ∈ P(X ),

where H(ν1|µ) is the relative entropy of ν1 with respect to µ defined by

H(ν1|µ) =
∫

log dν1

dµ
dν1,

if ν1 is absolutely continuous with respect to µ (ν1 << µ), and H(ν1|µ) = +∞
otherwise.

In most cases, the inequality Tc,β(a1, a2) is called weak transport inequality,
and for some particular costs c : X × ×P(X ) → [0,+∞], with inequality is called
barycentric transport inequality (see Section 4), or universal transport inequality
(see Section 5).

Generally, the transport inequalities Tc,β(0, a2) or Tc,β(a1, 0) do not make sense.
Indeed, they should imply β(Tc(ν1|µ)) = 0,∀ν1 ∈ P(X ), or even β(Tc(µ|ν2)) =
0,∀ν2 ∈ P(X ), which are never satisfied, except in degenerated cases (for example
c = 0 or β = 0). However, with the convention 0.∞ = 0, the transport inequality
Tc,β(b,∞) corresponds to the common transport inequality

T+
c,β(b) : β (Tc(ν|µ)) ≤ bH(ν|µ), ∀ν ∈ P(X ),

and Tc,β(∞, b) corresponds to the common transport inequality

T−c,β(b) : β (Tc(µ|ν)) ≤ bH(ν|µ), ∀ν ∈ P(X ).

These two inequalities are identical for symmetric optimal transport costs. When β
is the identity, we simply denote by Tc(a1, a2), T+

c (b) and T−c (b) the last transport
inequalities.

Let us recall the Marton’s argument. Given A ∈ B(X ), if ν1 is the renormalized
restriction of µ to A and ν2 the renormalized restriction of µ to B = X \Ar,c, r ≥ 0,

dν1

dµ
= 1A
µ(A) and dν2

dµ
= 1B
µ(B) ,
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then H(ν1|µ) = − logµ(A), H(ν2|µ) = − logµ(B), and Tc(ν1|ν2) ≥ r (sice for all
x ∈ X \Ar,c and all p ∈ P(A), c(x.p) ≥ r). Consequently, since β is non-decreasing,
the transport inequality Tc,β(a1, a2) provides

β(r) ≤ log
(
µ(A)−a1

)
+ log

(
µ(B)−a2

)
, ∀r ≥ 0.

which is the concentration property of Definition 2.1.

For a better comprehension, let us illustrate Definition 3.2 by few examples of
transport inequalities.

If c is the usual cost function c(x, p) =
∫
d(x, y)qp(dy), q ≥ 1, then Tc(ν|µ) =

Tc(µ|ν) is associated to the Wasserstein distance Wq of order q,

Tc(ν|µ) = W q
q (µ, ν) = inf

π∈Π(µ,ν)

∫∫
d(x, y)qπ(dx, dy).

The transport inequality T2(b), first considered by Talagrand [Tal96c], and satisfied
by the standard Gaussian measure µ = γn on Rn for b = 2, corresponds to the
transport inequalities T+

c (b) or T−c (b) with q = 2,
T2(b) : W 2

2 (µ, ν) ≤ bH(ν|µ), ∀ν ∈ P(X ).
A special feature of the inequality T2(b) is its equivalence to the familly of transport
inequalities Tc(b/t, b/(1 − t)), for t ∈ (0, 1). Indeed, if µ satisfies T2(b), then by
the triangular inequality for the Wasserstein metric,

W 2
2 (ν1, ν2) ≤ (W2(ν1, µ) +W2(µ, ν2))2 ≤ b

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
.

From the identity (
√
u+
√
v)2 = inft∈(0,1)

¶
u
t + v

1−t

©
, we get that for all t ∈ (0, 1),

µ satisfies Tc(b/t, b/(1− t)),

W 2
2 (ν1, ν2) ≤ b

t
H(ν1|µ) + b

1− tH(ν2|µ), ∀ν1, ν2 ∈ P(X ).

Conversely if µ verifies Tc(b/t, b/(1− t)) for all t ∈ (0, 1), then by choosing ν2 = µ
and then when t goes to 1, we recover the transport inequality T2(b).

More generally, assume that c is a usual cost of type c(x, p) =
∫
α(d(x, y))p(dy),

where α : R+ → R is a convex function. In that case we note Tα(µ, ν) = Tc(ν|µ) =
Tc(µ|ν). If moreover α is increasing, α(0) = α′(0) = 0 and α satisfies the following
∆2-condition, [RR91]: there exists a positive constant C such that

α(2h) ≤ Cα(h), ∀h ≥ 0,(8)
then, we may use the following change of metric Lemma given in [GRS13].

Lemma 3.1. With the above conditions, setting pα = suph>0
hα′+(h)
α(h) , the function

h 7→ α1/pα(h) is sub-additive, namely
α1/pα(h+ k) ≤ α1/pα(h) + α1/pα(k), ∀h, k ∈ R+.

As a consequence, dα(x, y) = α1/pα(d(x, y)), x, y ∈ X is a distance on X .

This Lemma together with the triangular inequality gives for all ν1, ν2 ∈ P(X ),
Tα(ν1, ν2) = W pα

pα (ν1, ν2)

≤ (Wpα(ν1, µ) +Wpα(µ, ν2))pα =
Ä
T 1/pα
α (ν1, µ) + T 1/pα

α (µ, ν2)
äpα

,
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where the Wasserstein distance Wpα is understood with respect to the distance dα
of Lemma 3.1 Then, observing that pα > 1 when the function α is not linear, and
using the identityÄ

u1/p + v1/p
äp

= inf
t∈(0,1)

ß
u

tp−1 + v

(1− t)p−1

™
, p > 1,

we get that µ satisfies the usual transport inequality
Tα(µ, ν) ≤ H(ν|µ), ∀ν ∈ P(X ),

if and only if µ satisfies the following transport inequalities: for all t ∈ (0, 1),

Tα(ν1, ν2) ≤ H(ν1|µ)
tpα−1 + H(ν2|µ)

(1− t)pα−1 , ∀ν1, ν2 ∈ P(X ).(9)

Here is another example of transport inequality. When c(x, p) = 2
∫

1x 6=ydp(y),
the universal optimal transport cost Tc(ν|µ) is in fact the total variation distance
between the measures µ and ν

Tc(ν|µ) = ‖µ− ν‖TV = 2 sup
A⊂X

|µ(A)− ν(A)|.

The Csizár-Kullback-Pinsker inequality [Pin64, Csi67, Kul67] that holds for any
(reference) probability measure µ,

‖µ− ν‖2TV ≤ 2H(ν|µ), ∀ν ∈ P(X ).
corresponds to the transport inequalities T+

c,β(b) or T−c,β(b) with β(r) = r2/2, r ≥ 0.
Here again, this inequality is equivalent to Tc,β(b/t, b/(1 − t)) for all t ∈ (0, 1).
This inequality and its improvements are known for their numerous applications in
probability, in analysis and in information theory (cf. [Vil09], page 636).

As a last example, let us consider the universal cost function

c(x, p) =
Å∫

1x 6=ydp(y)
ã2
, x ∈ X , p ∈ P(X ).

Then, the transport inequalities T+
c (2) and T−c (2) correspond to the weak transport

inequalities introduced by Marton [Mar96b]. As for the Csizár-Kullback-Pinsker
inequality, T+

c (2) and T−c (2) hold for any (reference) probability measure µ. In
that case, T+

c (b) and T−c (b) are equivalent to the family of transport inequalities
Tc(b/t, b/(1 − t)) for t ∈ (0, 1), since the weak-transport cost Tc, also denoted by‹T2, satisfies the following triangular inequality [Mar97],»‹T2(ν1|ν2) ≤

»‹T2(ν1|µ) +
»‹T2(µ|ν2), ∀µ, ν1, ν2 ∈ P(X ).(10)

3.2. Functional formulation of transport inequality, the dual Kantorovich
Theorem. The dual functional formulation of usual transport inequalities has been
obtained by Bobkov and Götze [BG99] and then expanded in the paper [GL10].

This dual form is based on the duality between the relative entropy and the
log-Laplace transform. Namely, for any continuous bounded function g : X → R,

log
∫
egdµ = sup

ν∈P(X )

ß∫
gdµ−H(ν|µ)

™
.(11)

A simple proof of this identity is given in [GL10] and one more general in [GRS11a].
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The second argument is the dual Kantorovich Theorem. This theorem is well-
known for usual lower semi-continuous cost functions ω : X × X → (−∞,+∞]
(cf.[Vil09])

Tω(ν1, ν2) = sup
ϕ∈Cb(X )

ß∫
Qωϕdν2 −

∫
ϕdν1

™
, ν1, ν2 ∈ P(X ),(12)

where Cb(X ) is the set of continuous bounded functions on X and

Qωϕ(y) = inf
x∈X
{ϕ(x) + ω(x, y)} , y ∈ X .

In the paper [GRST14b], as the function p ∈ P(X )→ c(x, p) is convex, this result is
extended to weak transport costs Tc, under weak regularity additional assumptions
on the cost c : X × P(X ) → [0,+∞] (see Theorem 3.5, [GRST14b]). Overall, the
result is the following,

Tc(ν1|ν2) = sup
ϕ∈Cb(X )

ß∫
Rcϕdν2 −

∫
ϕdν1

™
, ν1, ν2 ∈ P(X ),(13)

where Rcϕ is the infimum-convolution operator (1) previously defined,

Rcϕ(x) = inf
p∈P(X )

ß∫
ϕdp+ c(x, p)

™
.

To be precise, we should slightly modify the sets Cb(X ) and P(X ), depending on
the type of involved cost function c (see [GRST14b]).

The two duality identities (11) and (13) provide the following functional formu-
lation of the transport-entropy inequality Tc,β(a1, a2).

Proposition 3.1. Let µ ∈ P(X ) and β : R+→ [0,+∞] be a lower semi-continuous
convex function such that β(0) = 0. The following statements are equivalent.

(1) The probability measure µ satisfies Tc,β(a1, a2).
(2) For all functions ϕ ∈ Cb(X ) and for all λ ≥ 0,Å∫

e
λRcϕ
a2 dµ

ãa2 Å∫
e−

λϕ
a1 dµ

ãa1

≤ eβ
∗(λ),

with β∗(λ) = supt≥0 {λt− β(t)}.

Point (2) generalizes the infimum-convolution view point of transport inequalities
introduced by Maurey [Mau91], the so-called (τ)-property.

Idea of the proof (1)⇒ (2). One has β(t) = supλ≥0 {λt− β∗(λ)}, ∀t ≥ 0. If µ
satisfies Tc,β(a1, a2), then the general dual Kantorovich identity (13) implies that
for all ϕ ∈ Cb(X ) and all λ ≥ 0,

λ

Å∫
Rcϕdν2 −

∫
ϕdν1

ã
− β∗(λ) ≤ a2H(ν2|µ) + a1H(ν1|µ), ∀ν1, ν2 ∈ P(X ).

Point (2) follows by reordering the terms of this inequality, by optimizing over all
probability measures ν1 and ν2, and then by applying the dual formula (11), with
the function g = λRcϕ/a2 and with the function g = −λϕ/a1. �
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By density of the set of the bounded continuous functions in L1(µ), and then
by monotone convergence, (2) also holds for all measurable functions ϕ : X →
(−∞,+∞] bounded from below.

Given A ∈ B(X ), let us consider the function iA equal to 0 on A, and to +∞
on its complement. Applying (2) to the function ϕ = iA, since RciA(x) = c(x,A),
x ∈ X , the transport inequality Tc,β(a1, a2) provides the Talagrand’s formulation
of concentration properties (cf. [Tal95, Tal96a, Tal96b]):∫

e
λc(x,A)
a2 dµ ≤ eβ

∗(λ)/a2

µ(A)a1/a2
, ∀λ ≥ 0, ∀A ∈ B(X ).

When the function β is the identity, one has β∗ = i(−∞,1] and Proposition 3.1 is
writing as follows.

Proposition 3.2. [GRST14b] The following statements are equivalent.

(1) The probability µ satisfies Tc(a1, a2).
(2) For all function ϕ ∈ Cb(X ),Å∫

e
Rcϕ
a2 dµ

ãa2 Å∫
e−

ϕ
a1 dµ

ãa1

≤ 1.

3.3. Tensorization - Characterization by dimension-free concentration
properties. The transport entropy inequalities tensorize, and this provides con-
centration results in high dimension.

Proposition 3.3. Let X1 and X2 be Polish spaces. Let β1 : R+ → R+, β2 : R+ →
R+ be convex functions and let β : R+ → R+ be defined by

β(t) = β1�β2(t) = inf{β1(t1) + β2(t2), t = t1 + t2}, t ≥ 0.

If µ1 ∈ P(X1) and µ2 ∈ P(X2) satisfy respectively the transport inequalities Tc1,β1(a1, a2)
and Tc2,β2(a1, a2), then µ1 ⊗ µ2 ∈ P(X1 × X2) satisfies the transport inequality
Tc,β(a1, a2) with for all x = (x1, x2) ∈ X1 × X2, and all p ∈ P(X1 × X2) with
marginals p1 ∈ P(X1) and p2 ∈ P(X2)

c(x, p) = c1 ⊕ c2(x, p) = c1(x1, p1) + c2(x2, p2).

The proof of this proposition exactly follows the one of Theorem 4.11 [GRST14b]
for which β1(t) = β2(t) = β(t) = t, t ≥ 0. We could also follow the tensorization
proof given in [Sam07] on the dual functional form of such transport inequalities.

This tensorization property is a consequence of the tensorization properties of the
relative entropy and of the optimal transport cost: for any measure ν ∈ P(X1×X2)
with decomposition dν(x1, x2) = dν1(x1)dνx1

2 (x2), one has

H(ν|µ) = H(ν1|µ1) +
∫
H(νx1

2 |µ2)dν1(x1),

and for any other measure ν′ ∈ P(X1 × X2) with decomposition dν′(x′1, x′2) =
dν1(x′1)dνx

′
1

2 (x′2), for all ε ≥ 0, there exists πε1 ∈ Π(ν1, ν
′
1) such that

Tc(ν|ν′) ≤ Tc1(ν1|ν′1) +
∫∫

Tc2(νx1
2 |ν

′x′1
2 ) dπε1(x1, x

′
1) + ε,
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where c = c1 ⊕ c2. The error term ε can be chosen equal to 0 when X1 and X2 are
compact spaces.

Therefore, if µ ∈ P(X ) satisfies the transport inequality Tc,β(a1, a2), then µn =
µ⊗· · ·⊗µ ∈ P(Xn) satisfies Tcn,β�n(a1, a2), with for all p ∈ P(Xn), with marginals
pi ∈ P(X ), i ∈ {1, . . . , n},

cn(x, p) = c⊕n(x, p) := c(x1, p1) + · · ·+ c(xn, pn), x = (x1, . . . , xn) ∈ Xn,

and since β is convex,

β�n(t) := β� · · ·�β(t) = nβ(t/n), t ≥ 0.

From the transport inequality Tcn,β�n(a1, a2), we get that µn satisfies the following
concentration property, for all A ∈ B(Xn),

µn(A)a1µn(X \Ar,cn)a2 ≤ e−nβ(r/n), ∀r ≥ 0.

The concentration profile in the right-hand side is independent of n if and only
if β is linear. In that case, we say that µ satisfies a dimension-free concentration
property.

Definition 3.3. A measure µ ∈ P(X ) satisfies a dimension-free concentration
property associated to a cost function c : X × P(X ), if for all n ≥ 1, and for all
A ∈ B(Xn),

µn(A)a1µn(X \Ar,cn)a2 ≤ e−r, ∀r ≥ 0.

Actually, Gozlan has proved that for usual enlargements associated to the cost
function ω(x, y) = α(d(x, y)), this dimension-free concentration property is equiv-
alent to a transport inequality (see [Goz09]). Its proof is based on large deviation
technics. In the paper [GRST14b], a simpler approach, starting from the dual for-
mulation of transport inequalities, allows to extend Gozlan’s result to any transport
inequality Tc(a1, a2).

Proposition 3.4. [GRST14b] The following statements are equivalent.

(i) µ satisfies Tc(a1, a2): for all functions ψ ∈ Cb(X ),Å∫
e
Rcψ
a2 dµ

ãa2 Å∫
e−

ψ
a1 dµ

ãa1

≤ 1.

(ii) For all integers n ≥ 1 and for all functions ϕ ∈ Cb(Xn),

(14) µn(ϕ ≤ m)a1µn(Rcnϕ > m+ r)a2 ≤ e−r, ∀m ∈ R, ∀r ≥ 0.

Idea of the proof. As already explained, (i)⇒ (ii) is a consequence of the tensoriza-
tion properties of the inequality Tc(a1, a2).

In order to get (ii) ⇒ (i), we estimate the product of exponential moments of
Rc⊕nϕ and −ϕ using the tail distribution estimates given by (ii). More precisely,
(ii) provides: for all ε > 0,Å∫

e
Rcnϕ

(1+ε)a2 dµn
ãa2 Å∫

e
− ϕ

(1−ε)a1 dµn
ãa1

≤ K(ε, a1, a2),



CONCENTRATION PRINCIPLE AND ENTROPY-INEQUALITIES 17

where K(ε, a1, a2) is a constant independent of n. We want to “tighten” this in-
equality by replacing this constant by 1. For that purpose, let us choose ϕ(x) =
ψ(x1) + · · ·+ ψ(xn), x = (x1, . . . , xn) ∈ Xn, for which

Rcnϕ(x) = Rcψ(x1) + · · ·+Rcψ(xn).
By independence, the last inequality can be rewritten as followsÅ∫

e
Rcψ

(1+ε)a2 dµ

ãa2 Å∫
e
− ψ

(1−ε)a1 dµ

ãa1

≤ K(ε, a1, a2)1/n.

The result follows from this inequality as n goes to +∞ and then ε goes to 0. �

3.4. Connections with logarithmic Sobolev inequalities. In this section, we
assume that the closed balls of the Polish metric space (X , d) are compact. In this
part, the transport costs are associated to usual cost functions on a metric space
(X , d):

c(x, p) =
∫
α(d(x, y))dp(y), x ∈ X , p ∈ P(X ),

where α : R+ → R+ is a convex fonction such that α(0) = α′(0) = 0 satisfying the
∆2-condition (8). In this case, we note Tα(µ, ν) = Tc(µ|ν) and Tα(b) the transport
inequality T+

c (b) that coincides with T−c (b).

For any locally Lipschitz function f : X → R, the gradient norms of f at a
non-isolated point x ∈ X are defined by

|∇+f |(x) = lim sup
y→x

[f(y)− f(x)]+
d(x, y) , or |∇−f |(x) = lim sup

y→x

[f(y)− f(x)]−
d(x, y) ,

and |∇+f |(x) = |∇−f |(x) = 0 if x is an isolated point. If X is a Riemannian
manifold and f is smooth, |∇+f |(x) and |∇−f |(x) are the norm of ∇f(x) in the
tangent space TxX at point x.

Definition 3.4. A measure µ ∈ P(X ) satisfies the modified logarithmic Sobolev
inequality LogSob+

α (b), b ≥ 0, associated to the cost α, if for any locally Lipschitz
function f : X → R, one has

LogSob+
α (b) : Entµ(ef ) ≤ b

∫
α∗(|∇+f |)efdµ,

where α∗(h) = supt≥0{ht− α(t)} and for any function g : X → R+,

Entµ(g) =
∫
g log g dµ−

∫
g dµ log

∫
gdµ.

In the same way, we define the logarithmic Sobolev inequality LogSob−α (b)
by replacing |∇+f | by |∇−f |. If X is a Riemannian manifold, we simply note
LogSobα(b). When α is quadratic, α(t) = t2, t ≥ 0, α∗(h) = h2/4, h ≥ 0, the
logarithmic Sobolev inequalities are denoted by LogSob+

2 (b) or LogSob−2 (b).

As a first result, the well-known Otto-Villani Theorem asserts that the Tala-
grand’s transport inequality is a consequence of the logarithmic Sobolev inequality.

Theorem 3.1. [OV00] Let X be a Riemannian manifold. If µ ∈ P2(X ) satisfies the
logarithmic Sobolev inequality LogSob2(b) then µ satisfies the Talagrand’s transport
inequality T2(b).
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In the heuristic part of [OV00], Otto and Villani give the idea of their proof
of this result by interpreting the Wasserstein space (P2(X),W2) as a Riemannian
manifold and by considering the gradient flow of the relative entropy ν 7→ H(ν|µ).
Bobkov, Gentil and Ledoux [BGL01] give another proof based on the Hopf-Lax
formula for the solutions of the Hamilton-Jacobi equation. More precisely, on a
Riemannian manifold X , the infimum-convolution operator

v(x, t) = Qtf(x) = inf
y∈X

ß
f(y) + 1

2td(x, y)2
™
, x ∈ X , t > 0,

is a semi-group, solution of the Hamilton-Jacobi equation
∂v

∂t
= −1

2 |∇v|
2, avec v(x, 0) = f(x), ∀x ∈ X .

A counter example, showing that Otto-Villani’s Theorem can not be reversed in
full generality, has been given by Cattiaux and Guillin [CG06] (see also [Goz07]).

Then Otto-Villani’s result has been complemented by Gozlan and al. in a series
of papers [GRS11b, GRS13, GRS14]. Following the Hamilton-Jacobi approach by
Bobkov-Gentil-Ledoux, the modified logarithmic Sobolev inequality LogSob−α (b) is
characterized in terms of hypercontractivity property of the operator Qtf defined
by

Qtf(x) = inf
y∈X

ß
f(y) + tα

Å
d(x, y)
t

ã™
, x ∈ X ,

for all bounded function f : X → R.

Theorem 3.2. [GRS14] Assume that α satisfies the ∆2-condition (8). Then the
exponents rα ≤ pα defined by

rα = inf
x>0

xα′−(x)
α(x) ≥ 1 and 1 < pα = sup

x>0

xα′+(x)
α(x)

are both finite. Moreover, the measure µ satisfies LogSob−α (b) if and only if for all
t > 0, for all to ≤ b(pα − 1) and for all bounded continuous functions f : X → R,∥∥∥eQtf∥∥∥

k(t)
≤
∥∥∥ef∥∥∥

k(0)
,

with

k(t) =


(

1 + b−1(t−to)
pα−1

)pα−1
1t≤to +

(
1 + b−1(t−to)

rα−1

)rα−1
1t>to if rα > 1

min
Å

1;
(

1 + b−1(t−to)
pα−1

)pα−1ã
if rα = 1

,

where ‖g‖k =
(∫
|g|kdµ

)1/k for k 6= 0 and ‖g‖0 = exp
(∫

log g dµ
)
.

By choosing to = b(pα − 1) and after some easy computations this theorem
implies the following Otto-Villani Theorem, extended to any metric space and for
any cost function α satisfying the ∆2-condition.

Theorem 3.3. [GRS14] Suppose that α verifies the ∆2-condition (8). If µ verifies
LogSob−α (b), then it verifies Tα(B), with

B = max
(
((pα − 1)b)rα−1; ((pα − 1)b)pα−1) ,

where the numbers rα, pα are defined in Theorem 3.2.
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This result exactly recovers Otto-Villani Theorem 3.1 since pα = rα = 2 for
α(h) = h2, h ≥ 0.

Popular functions α appearing as cost functions in the literature are the functions
α = αp1,p2 , with p1 ≥ 2 and p2 ≥ 1 defined by

αp1,p2(h) =
ß
hp1 if 0 ≤ h ≤ 1,
p1
p2
hp2 + 1− p1

p2
if h ≥ 1.

Any such function satisfies the ∆2-condition with rα = min(p1, p2) and pα =
max(p1, p2).

As examples, the best known measures on Rn satisfying the logarithmic Sobolev
inequality LogSobα2,p(b) for some b > 0 are the standard Gaussian measure for
p = 2 [Gro75], the exponential measure for p = 1 [BL97], and more generally the
probability measures dµp = e−|t|

p

/Zpdt, for p ≥ 1 (see [GGM07, BR08, Goz07]).
For these measures, Theorem 3.2 provides the related transport inequalities ob-
tained in different papers [Tal91, BK08, GGM05].

To end the comparisons between logarithmic Sobolev inequalities and transport
inequalities, let us recall the reversed Otto-Villani’s Theorem obtained in the papers
[GRS11b, GRS13, GRS14]. It characterizes the transport inequalities in terms of
modified logarithmic Sobolev inequalities restricted to a class of K − α-convex
functions. By definition, a function f : X → R is K − α-convex if there exists a
function h : X → R such that

f(x) = sup
y∈X
{h(y)−Kα(d(x, y))} = PKα h(x), ∀x ∈ X .

On the Euclidean space, if α(h) = h2, h ≥ 0, then a smooth K−α-convex function
is exactly a function with Hessian bounded from below.

Let us summarize the results of Theorem 1.12 [GRS11b], Theorem 5.1 [GRS13]
when (X , d) is a geodesic space: for any x, y ∈ X , there exists a path (γt)t∈[0,1] in
X , such that γ0 = x, γ1 = y and d(γs, γt) = |t− s|d(x, y), for all s, t ∈ [0, 1].

Theorem 3.4. [GRS11b, GRS13] Let (X , d) be a geodesic space and α : R+ → R+

be a convex function satisfying the ∆2-condition (8) and such that α(0) = α′(0) = 0.
The following properties are equivalent.

(1) There exists C1 > 0, such that µ satisfies the transport inequality Tα(C1).
(2) There exist C2 > 0 and λ > 0, such that µ satisfies the following (τ)-log-

Sobolev inequality: for all locally Lipschitz functions f : X → R,

(τ)− LogSobα(C2, λ) Entµ(ef ) ≤ C2

∫
(f −Qλαf)efdµ,

where Qλαf(x) := infy∈X {f(y) + λα(d(x, y))}, x ∈ X .
(3) There exist C3 > 0 and λ > 0,such that µ satisfies the following restricted

modified logarithmic Sobolev inequality: for all K − α-convex functions f :
X → R, with 0 ≤ K < λ

r− LogSobα(C3, λ) Entµ(ef ) ≤ C3

∫
α∗(|∇+f |)efdµ.
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The logarithmic Sobolev inequality at point (2) is called (τ)−LogSobα(C2, λ),
as a reference to the (τ)-property by Maurey [Mau91] for which the infimum-
convolution operator also occurs.

A main application of this characterization is the following perturbation result.

Corollary 3.1. (Theorem 1.9 [GRS11b]) Let (X , d) be a geodesic space and α :
R+ → R+ be a convex function satisfying the ∆2-condition (8) and such that α(0) =
α′(0) = 0. Let µ ∈ P(X ) and µ̃ ∈ P(X ) with density eφ with respect to µ, φ : X →
R. If µ satisfies Tα(C) then µ̃ satisfies Tα

(
8CeOscφ) with Oscφ = supφ− inf φ.

This type of perturbation’s result has been established by Holley and Stroock
[HS87] for usual logarithmic Sobolev inequalities. This corollary follows by applying
their arguments to logarithmic Sobolev inequalities restricted to a class of functions.

4. Some results around “barycentric” costs

In all this part, c is a barycentric cost function,

c(x, p) = θ

Å
x−

∫
y dp(y)

ã
, x ∈ Rn, p ∈ P1(Rn),

where θ : Rn → R+ is a convex function. Most of the results of this section extend
to lower semi-continuous convex functions θ : Rn → [0,+∞].

In that case, the optimal transport cost Tc(ν|µ) between µ and ν in P(Rn) is
denoted by T θ(ν|µ). The following specific Kantorovich dual expression of T θ(ν|µ)
has been obtained in [GRST14b] (see Theorem 2.11)

(15) T θ(ν|µ)

= sup
ß∫

Qϕdµ−
∫
ϕdν ; ϕ convex, Lipschitz, bounded from below

™
.

In the supremum, Qϕ is the usual infimum-convolution operator,

Qϕ(x) = inf
y∈Rn

{ϕ(y) + θ(x− y)} , x ∈ Rn.

Therefore, by a restriction to convex functions, the operator Qϕ replaces the oper-
ator Rcϕ in the dual formula (13).

Let γ and ν be two probability measures on Rn. By definition, the measure γ is
dominated by ν in the convex order, and we note γ � ν, if for all convex functions
f : Rn → R, ∫

fdγ ≤
∫
fdν.

The following Strassen’s Theorem provides an alternative definition of the convex
order.

Theorem 4.1. [Str65] Let γ and ν be two probability measures on Rn, then γ � ν
if and only if there exists a martingale (X,Y ) for which X has law γ and Y has
law ν. Namely, if π is the law of the couple (X,Y ), with decomposition dπ(x, y) =
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dγ(x)dpx(y), where p is a Markov Kernel such that γp = ν, then one has for γ-
almost every x, ∫

y dpx(y) = x.

Idea of the proof. A simple proof follows from the dual Kantorovich expression of
the optimal barycentric cost:

T 1(ν|γ) = inf
π∈Π(µ,ν)

∫ ∣∣∣∣x− ∫ y dpx(y)
∣∣∣∣ dγ(x)

= sup
ß∫

f dγ −
∫
f dν ; f convex, 1-lipschitz, lower bounded

™
,

(see Proposition 3.2. [GRST14b]). Therefore, if dπ∗(x, y) = dγ(x)dp∗x(y) is the law
of (X,Y ), with marginals γ and ν, then

0 ≤ T 1(ν|γ) ≤
∫ ∣∣∣∣x− ∫ y dp∗x(y)

∣∣∣∣ dγ(x) = 0.

It follows that T 1(ν|γ) = 0 and the dual expression of T 1(ν|γ) gives∫
fdγ ≤

∫
fdν,

for every convex, 1-Lipschitz, lower bounded function f . This inequality extends
to any lower bounded convex function and then to any convex function by mono-
tone convergence, which means that ν � γ. One way to prove this is to use the
fact that if f is convex lower-bounded then the classical infimum convolution op-
erator Qtf(x) := infy∈Rn

{
f(y) + 1

t |x− y|
}

is convex 1/t-Lipschitz and Qtf(x) is
increasing to f(x) as t goes to 0 for all x ∈ Rn. �

Let µ ∈ P(Rn) be such that for any γ ∈ P(Rn), there exists an optimal transport
map S∗ : Rn → Rn such that S∗#µ = γ and

Tθ(γ, µ) = inf
π∈Π(µ,ν)

∫
θ(x− y)dπ(x, y) =

∫
θ(x− S∗(x))dµ(x).

This assumption is satisfied for example when µ is absolutely continuous with re-
spect to the Lebesgue measure and θ is smooth and strictly convex (see e.g. [Vil09],
Theorem 9.4, Theorem 10.28). Then the optimal barycentric transport cost T θ can
be expressed in terms of the usual transport cost Tθ as follows.

Proposition 4.1. Under the above conditions on the probability measure µ ∈
P(Rn), for any probability measure ν such that T θ(ν|µ) <∞,

T θ(ν|µ) = inf
γ∈P(Rn),γ�ν

Tθ(γ, µ).

Proof. Let γ � ν. From the previous Strassen’s Theorem, there exists a kernel p∗
such that γp∗ = ν and x =

∫
y dp∗x(y) γ-almost surely. Furthermore, by hypotheses,

there exists a transport map S∗ : Rn → Rn such that S∗#µ = γ and

Tθ(γ, µ) =
∫
θ(x− S∗(x))dµ(x).
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Let us consider the kernel defined by px(dy) = p∗S∗(x)(dy). We may simply check
that µp = ν and for µ-almost every x,

∫
y dpx(y) =

∫
y dp∗S∗(x)(y) = S∗(x). There-

fore, Tθ(γ, µ) =
∫
θ
(
x−

∫
y dpx(y)

)
dµ(x) ≥ T θ(ν|µ), and by optimizing over all

probability measures γ, with γ � ν, we get
inf

γ∈P(Rn),γ�ν
Tθ(γ, µ) ≥ T θ(ν|µ).

To prove the reverse inequality, let us consider a kernel p such that µp = ν and∫
θ

Å
x−

∫
y dpx(y)

ã
dµ(x) <∞.

Let S : Rn → Rn be the measurable map defined by S(x) =
∫
y dpx(y), for µ-almost

every x. Let γ be the push forward measure of µ by the map S, γ = S#µ. Then,
one has γ � ν, since by Jensen’s inequality, for all convex functions f : Rn → R,∫

f dγ =
∫
f

Å∫
y dpx(y)

ã
dµ(x) ≤

∫∫
f(y) dpx(y)dµ(x) =

∫
f dν;

and moreover∫
θ

Å
x−

∫
y dpx(y)

ã
dµ(x) =

∫
(x− S(x)) dµ(x) ≥ Tθ(γ, µ) ≥ inf

γ∈P(Rn),γ�ν
Tθ(γ, µ).

We get the expected inequality by optimizing this inequality over all kernels p such
that µp = ν. �

4.1. Barycentric transport inequality and logarithmic Sobolev inequali-
ties. As for the usual transport costs, connections have been established between
barycentric transport inequalities and logarithmic Sobolev inequalities restricted to
a class of functions (see [GRST14b, AS15]). To simplify, in this section we only
consider the case θ(h) = ‖h‖2 where ‖ · ‖ is a fixed norm on Rn. In that case we
note T θ = T 2.

The next results have been obtained by Gozlan and al. [GRST14b] thanks to
the Kantorovich dual expression (15) of T 2, and by applying the technics linked to
the Hamilton-Jacobi equation satisfied by the semi-group Qtϕ,

Qtϕ(x) = inf
y∈Rn

ß
ϕ(y) + 1

t
‖x− y‖2

™
, x ∈ Rn.

From the non-symmetry of the optimal transport cost T 2(ν|µ), they establish two
different results one corresponding to the transport inequality T+

c (C) and the other
associated to T−c (C).

Theorem 4.2. (see Theorem 8.15 [GRST14b]) Let µ ∈ P1(Rn). The following
properties are equivalent.

(1) There exists C1 > 0 such that µ satisfies
T 2(ν|µ) ≤ C1H(ν|µ), ∀ν ∈ P1(Rn).

(2) There exists C2 > 0 such that for all convex Lipschitz functions ϕ : Rn → R
bounded from below,∫

e−ϕ/C2dµ ≤ e−
∫
Q1ϕ/C2 dµ.



CONCENTRATION PRINCIPLE AND ENTROPY-INEQUALITIES 23

(3) There exist C3 > 0 and λ > 0, such that for all concave Lipschitz functions
ψ : Rn → R, bounded from below and λ‖ · ‖2-convex,

Entµ(eψ) ≤ C3

∫
‖∇ψ‖2∗eψdµ,

where ‖ · ‖∗ is the dual norm ‖ · ‖ on Rn.

Recall that if ‖ · ‖ = | · | is the Euclidean norm, a function ψ is λ‖ · ‖2-convex if
and only if its Hessian is bounded from below by −2λI (in the sense of quadratic
forms).

Let us observe that in Theorem 4.2, point (1) is equivalent to point (2) with the
same constant C1 = C2.

Theorem 4.3. (see Theorem 8.8 [GRST14b]) Let µ ∈ P1(Rn). The following
properties are equivalent.

(1) There exists C1 > 0 such that µ satisfies

T 2(µ|ν) ≤ C1H(ν|µ), ∀ν ∈ P1(Rn).

(2) There exists C2 > 0 such that for all Lipschitz convex functions ϕ : Rn → R,
bounded from below,∫

eQ1ϕ/C2dµ ≤ e
∫
ϕ/C2 dµ.

(3) There exists C3 > 0 such that for all Lipschitz convex functions ϕ : Rn → R,
bounded from below,

Entµ(eϕ) ≤ C3

∫
‖∇ϕ‖2∗eϕdµ,

where ‖ · ‖∗ is the dual norm of ‖ · ‖ on Rn.
(4) There exists C4 > 0 such that for all Lipschitz convex functions ϕ : Rn → R,

bounded from below,∥∥eQtϕ∥∥
a+t/(2C4),(µ) ≤ ‖e

ϕ‖a,(µ) , ∀t > 0,

where for all h : Rn → R, p ≥ 0, ‖h‖p,(µ) =
(∫
|h|pdµ

)1/p.

Let us observe that in this theorem, point (1) is equivalent to point (2) with
the same constant C1 = C2, and point (3) is equivalent to point (4) with the same
constant C3 = C4. The other links between the constants in the two last theorems
are given in [GRST14b].

The logarithmic Sobolev inequality restricted to the class of convex functions of
point (3) has been investigated in [Ada05, AS15], where sufficient conditions on the
probability measure µ are given for such an inequality to hold.

4.2. Barycentric transport inequalities for the binomial law and the Pois-
son measure. Discrete probability measures do not generally satisfy the Tala-
grand’s transport inequality T2. To be convinced, it suffices to consider µρ, a
convex combinaison of two Dirac measures at two distinct points a and b, µρ =
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ρδa + (1− ρ)δb, ρ ∈ (0, 1). The measure µρ satisfies T2(C), C > 0 if and only if for
all q ∈ [0, 1]

W 2
2 (µρ, µq) = T2(µρ, µq) = |a−b|2|q−ρ| ≤ CH(µq|µρ) = q log q

ρ
+(1−q) log 1− q

1− ρ .

We get a contradiction as q goes to ρ by observing that H(µq|µρ) = o(|q − ρ|).

However the measure µρ satisfies the transport inequality

W 2
1 (µρ, ν) ≤ d(a, b)2

2 H(ν, µρ), ∀ν << µρ.

To get other transport inequalities, one strategy is to replace the usual transport
cost by a barycentric cost. To simplify, let µρ be the Bernoulli measure of parameter
ρ ∈ (0, 1) (a = 0 and b = 1). In [Sam03] and [GRST14b] (see Proposition 7.1), the
barycentric transport inequality Tc(1/(1− t), 1/t) , t ∈ (0, 1) with cost

c(x, p) = θρ,t

Å
x−

∫
y dp(y)

ã
, x ∈ R, p ∈ P(R),

is established for the Bernoulli measure µρ, with an optimal cost function θρ,t : one
has,

T θρ,t(ν1|ν2) ≤ 1
1− tH(ν1|µρ) + 1

t
H(ν2|µρ), ∀ν1, ν2 << µρ.

By tensorization, it provides a barycentric transport inequality for the product
measure µnρ = µρ ⊗ · · · ⊗ µρ associated to the cost

cn(x, p) = c(x1, p1) + · · ·+ c(xn, pn), x = (x1, . . . , xn) ∈ Rn, p ∈ P1(Rn).

By projection, and observing that by convexity

cn(x, p) ≥ n c
Å∑n

i xi
n

,

∑n
i pi
n

ã
,

a barycentric transport inequality follows for the binomial law µn,ρ with parameters
n and ρ (see [GRST14b], Corollary 7.7),

T θρ,t,n(ν1|ν2) ≤ 1
1− tH(ν1|µn,ρ) + 1

t
H(ν2|µn,ρ), ∀ν1, ν2 << µn,ρ,

where θρ,t,n(h) = nθρ,t(h/n), h ∈ R. Finally, by the weak convergence of the mea-
sure µn,ρn towards the Poisson measure pλ with parameter λ > 0 when ρn = λ/n,
an optimal barycentric transport inequality is obtained for the Poisson measure

T cλ,t(ν1|ν2) ≤ 1
1− tH(ν1|pλ) + 1

t
H(ν2|pλ), ∀ν1, ν2 << pλ,

with cλ,t(h) = limn→∞ nθρn,t(h/n), h ∈ R. One specific feature of the cost func-
tion cλ,t is to be zero for h ≥ 0. For more details, we refer to Proposition 7.11
[GRST14b].

One other famous strategy to establish transport inequalities in discrete setting
is coming from the notion of curvature on discrete spaces introduced by Maas
[Maa11]. Transport inequalities for invariant reversible measures of Markov chains
are obtained from curvature type conditions (see also [EM12, EM14, EMT15]). The
optimal transport cost is defined by an abstract Benamou-Brenier type formula
which is not associated to a transport cost function. This optimal cost is not
comparable to a barycentric cost.
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In an other direction, transport inequalities for Poisson processes of different
types are proposed by Ma and al. in [MSWW11].

4.3. Optimal transport coupling for barycentric costs on R. This part
concerns the construction of an optimal coupling π∗ that optimizes the optimal
barycentric cost on the real line (in dimension one).

The cost function θ : R→ R is assumed to be even (we believe that this condition
can be removed). For any probability measure µ, we denote by Fµ its cumulative
distribution function, Fµ(x) = µ(−∞, x], and by F−1

µ its general inverse

F−1
µ (u) = inf{x ∈ R, Fµ(x) ≥ u}, u ∈ [0, 1].

Let µ and γ be two probability measures on R. Assume that µ has no atoms, then
it is well-known that for all convex cost functions θ, the usual optimal transport
cost Tθ(µ, γ) is reached for the optimal deterministic coupling measure

dπ∗(x, y) = dµ(x)dδS∗(x)(y),
where S∗ is the monotone transport map defined by S∗(x) = F−1

γ ◦ Fµ(x), x ∈ R.
In other words, there exists a monotone transport map S∗, independent of θ and
such that

Tθ(µ, γ) =
∫
θ(x− S∗(x)) dµ(x).

We want the same kind of result of independence of the function θ for an optimal
coupling of the barycentric cost T θ(ν|µ). For that purpose, we will use the following
preliminary result of [GRS+15] (Theorem 1.3).

Theorem 4.4. Let µ, ν ∈ P1(R). There exists γ̂ ∈ P1(R) such that γ̂ � ν and for
any even convex function θ, one has

T θ(ν|µ) = Tθ(γ̂, µ).

This result is still available when µ has atoms and it seems that the even condition
on θ can be removed.

Based on the facts set out above, if µ has no atoms,

T θ(ν|µ) = Tθ(γ̂, µ) =
∫
θ(x− S∗(x)) dµ(x), with S∗ = F−1

γ̂ ◦ Fµ,

and since γ̂ � ν, according to Strassen’s Theorem 4.1, there exists a kernel p∗ such
that γ̂p∗ = ν and γ̂-almost surely

∫
y dp∗x(y) = x. Since γ̂ is independent of θ, le

kernel p∗ is also independent of θ. Moreover, since S∗#µ = γ̂, we get for µ-almost
every x, ∫

y dp∗S∗(x)(y) = S∗(x),

and it finally gives

T θ(ν|µ) =
∫
θ

Å
x−

∫
y dp∗S∗(x)(y)

ã
dµ(x).

This shows that if µ has no atoms, then the optimal barycentric cost T θ(ν|µ) is
reached for the optimal coupling

π∗(dx, dy) = µ(dx)p∗S∗(x)(dy),
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which is independent of the even convex function θ.

4.4. Characterization of probability measures satisfying a barycentric
transport inequality on R. We know how to characterize the probability mea-
sures on R satisfying different functional inequalities as the Poincaré inequality
[Muc72], the logarithmic Sobolev inequality [BG99, BR03] (see also chapter 6,
[ABC+00]), the usual transport inequalities [Goz12]. In each of these cases, the
characterization can be given by criteria of Hardy type, on the tails of distribution
and on the densities of the involved measures. This section concerns the characteri-
zation of the barycentric transport inequalities. The approach is the one introduced
by Gozlan [Goz12].

Let τ be the exponential law on R, with density e−|x|/2. For any µ ∈ P(R), let
us note Uµ the unique left-continuous monotone transport map from the measure
τ to the measure µ, Uµ = F−1

µ ◦ Fτ , namely,

Uµ(x) =
ß
F−1
µ

(
1− 1

2e
−|x|) if x ≥ 0,

F−1
µ

( 1
2e
−|x|) if x ≤ 0.

Here is one of the main result of [Goz12]: a probability measure µ satisfies
the transport inequality T2(C) with C > 0 if and only if it satisfies the Poincaré
inequality and the following condition: there exists b ≥ 0 such that

sup
x∈R

(Uµ(x+ u)− Uµ(x)) ≤ b
√

1 + u, ∀u ≥ 0,

that enforces a particular behavior of the tails of distribution of the measure µ.

In [GRS+15], an analogous result is obtained for the barycentric transport in-
equality with costs T θ. Let us note θa(t) = θ(at), t ∈ R, for any a > 0.

Theorem 4.5. (Theorem 1.2, [GRS+15]) Let θ be an even convex function such
that θ(t) = t2 for all |t| ≤ t0, t0 > 0. A probability measure µ satisfies the barycen-
tric transport cost inequalities

T−θa : T θa(µ|ν) ≤ H(ν|µ), ∀ν ∈ P1(R),
and

T+
θa : T θa(ν|µ) ≤ H(ν|µ), ∀ν ∈ P1(R),

for some positive constant a if and only if there exists b ≥ 0 such that
sup
x

(Uµ(x+ u)− Uµ(x)) ≤ b θ−1 (u+ t2o
)

∀u ≥ 0.(16)

Measures satisfying a barycentric transport inequality do not necessarily verify
a Poincaré inequality since there support is not necessarily connected (for example
the Bernoulli and the binomial laws as explained in Section 4.2). However, the
condition (16) of the above theorem implies for u = 1: there exists h > 0 such that

sup
x∈R

(Uµ(x+ 1)− Uµ(x)) ≤ h.(17)

Bobkov and Götze [BG99] have proved that this condition is equivalent to the
existence of a Poincaré inequality restricted to convex functions satisfied by the
measure µ. Therefore, probability measures satisfying (16) necessarily satisfy a so-
called “convex” Poincaré inequality. More precisely, the following result has been
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established by Feldheim and al. [FMNW15], and also independently by Gozlan an
al. [GRS+15], as an intermediate key result of their proof of Theorem 4.5.

Theorem 4.6. Let µ be a probability measure on R. The condition (17) is equiva-
lent to each of the following properties.

(a) There exists C > 0 such that for all convex functions f on R,

Varµ(f) ≤ C
∫

R
f ′2 dµ.

(b) There exist a, t0 > 0 such that

T−θa1 : T θa1 (µ|ν) ≤ H(ν|µ), ∀ν ∈ P1(R),

and
T+
θa1

: T θa1 (ν|µ) ≤ H(ν|µ), ∀ν ∈ P1(R),

where the function θ1 is defined by θ1(t) =
ß
t2 if |t| ≤ t0,
2|t|t0 − t20 if |t| > t0.

5. Universal transport inequalities

We call universal any transport inequality that holds for any (reference) proba-
bility measure µ on X .

The most popular and commonly used universal transport inequality, mentioned
in Section 3.1, is the Csizár-Kullback-Pinsker inequality [Csi67, Kul67, Pin64],

1
2‖µ− ν‖

2
TV ≤ H(ν|µ), ∀µ, ν ∈ P(X ),(18)

where ‖µ− ν‖TV is the total variation distance between µ and ν,

‖µ− ν‖TV = 2 inf
π∈Π(µ,ν)

∫∫
1x 6=y dπ(x, y).

The functional dual formulation of the Csizár-Kullback-Pinsker inequality is the fol-
lowing exponential inequality, for any function f : X → R such that supx,y∈X |f(x)−
f(y)| ≤ c, ∫

etfdµ ≤ et
∫
f dµ+t2c2/8

, t ≥ 0.

This inequality, commonly used, gives the Hoeffding inequality by applying Markov’s
inequality,

µ

Å
f ≥

∫
f dµ+ t

ã
≤ e−2t2/c2 t ≥ 0.

The Csizár-Kullback-Pinsker inequality (18) can be improved in different ways.
We may change the function of the total variation distance on the left-hand side
(see [FHT03, Gil10]), or we may replace the total variation distance by a compa-
rable optimal weak transport cost of Definition 2.4. More precisely, given a convex
function α : R+ → [0,+∞], and µ, ν1, ν2 ∈ P(X ), we note‹Tα(ν1|ν2) = inf

π∈Π(ν2,ν1)

ß∫
c(x, px)dν2(x), dπ(x, y) = dν2(x)dpx(y)

™
,
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when c(x, p) = α

Å∫
1x 6=ydp(y)

ã
, x ∈ X , p ∈ P(X ), and“Tα(ν1|ν2) = inf

π∈Π(ν2,ν1)

ß∫
c(x, px)dν2(x), dπ(x, y) = dν2(x)dpx(y)

™
,

when
c(x, p) =

∫
α

Å
1x 6=y

dp

dµ
(y)
ã
dµ(y),

if (x, p) is such that p is absolutely continuous with respect to µ on X \ {x},
and c(x, p) = +∞ otherwise. In [Sam07], Theorem 1.1 and 1.2 give the following
variants of the Csizár-Kullback-Pinsker inequality.

Theorem 5.1. [Sam07, GRST14b] Let X be a compact metric space, µ ∈ P(X )
and t ∈ (0, 1).

(a) For any probability measures ν1 and ν2 on X , one has‹Tαt(ν1|ν2) ≤ 1
1− tH(ν1|µ) + 1

t
H(ν2|µ),

where the convex cost function αt : R+ → [0,+∞] is defined by

αt(u) = t(1− u) log(1− u)− (1− tu) log(1− tu)
t(1− t) , 0 ≤ u ≤ 1,

and αt(u) = +∞ if u > 1.
As t goes to 0, it implies‹Tα0(ν1|µ) ≤ H(ν1|µ),

with α0(u) = (1−u) log(1−u) +u if 0 ≤ u ≤ 1, and α0(u) = +∞ if u > 1.
As t goes to 1, it implies‹Tα1(µ|ν2) ≤ H(ν2|µ),

with α1(u) = − log(1− u)− u, if 0 ≤ u < 1 and α0(u) = +∞ if u ≥ 1.
(b) For any probability measures ν1 and ν2 on X , one has“Tβt(ν1|ν2) ≤ 1

1− tH(ν1|µ) + 1
t
H(ν2|µ),

where the convex cost function βt : R+ → [0,+∞] is defined by

βt(u) := sup
s∈R+

{su− β∗t (s)} , u ∈ R+,

with

β∗t (s) = te(1−t)s + (1− t)e−ts − 1
t(1− t) , s ∈ R+.

When t goes to 0 this implies“Tβ0(ν1|µ) ≤ H(ν1|µ),(19)

with β0(u) = (1 + u) log(1 + u)− u, u ≥ 0, and when t goes to 1, it implies“Tβ1(µ|ν2) ≤ H(ν2|µ),

with β1(u) = (1− u) log(1− u) + u, if u ≤ 1 and β1(u) = +∞ if u > 1.
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By using the estimate , αt(u) ≥ u2/2 = α(u), for all t ∈ [0, 1], u ≥ 0, the trans-
port inequalities of point (a) provide the Marton’s transport inequalities [Mar96b]
associated to the quadratic cost function α:‹T2(ν1|µ) ≤ 2H(ν1|µ), ‹T2(µ|ν2) ≤ 2H(ν2|µ),(20)

or even for every t ∈ (0, 1),
1
2
‹T2(ν1|ν2) ≤ 1

1− tH(ν1|µ) + 1
t
H(ν2|µ).

By optimizing in t, this inequality can be rewritten
1
2
‹T2(ν1|ν2) ≤

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
.

As explained in Section 3.3, these transport inequalities can be tensorised on
product spaces, and provide concentration results for product measures, or even
weakly dependent measures. The concentration principle related to this kind of n-
dimensional costs have been introduced by Talagrand [Tal96a, Tal96c], especially to
prove deviations inequalities for suprema of empirical processes of Bernstein type.

The optimal deviation results for suprema of empirical processes that follow
from Theorem 5.1 are briefly recalled in Section 5.1 below. Then in Section 5.2,
we summarise results obtained in a weak dependence framework concerning the
Marton’s transport inequalities (20) in [Sam00] and [Pau14]. Finally, in Section
5.3, we suggest a different way to tensorize the Csizár-Kullback-Pinsker inequality
or the Marton’s inequality. It provides new weak transport inequalities for the
uniform law on the symmetric group (see [Sam15]). These results are guided by
the concentration results by Talagrand [Tal95].

5.1. Bernstein’s type of deviation inequalities for suprema of indepen-
dent empirical processes. The first Bernstein’s type of deviation inequalities
for suprema of independent empirical processes have been obtained by Talagrand
[Tal96b, Tal96a] with the so-called “convex hull” method. These inequalities are of
particular interest in statistics [Mas00b, Mas07].

Ledoux [Led97] has proposed an “entropic” method that allows to simply recover
the results by Talagrand. This approach is based on the tensorization property of
the entropy and the so called Herbst’s argument. Then, it has been widely devel-
oped, mainly to reach optimal deviation bounds for the suprema of independent
empirical processes [Mas00a, BLM00, Rio01, BLM03, Rio02, Bou03, KR05, Rio12,
Rio13, BLM13].

In the continuation of the works by Talagrand, Marton [Mar96a, Mar96b], Dembo
[Dem97] and Maurey [Mau91], the transport-entropy method has been developped
in [Sam07] as an alternative approach to achieve the best constants in the deviation
inequalities of suprema of empirical processes.

Another approach has been proposed by Panchenko, based on symmetrization
technics [Pan01, Pan02, Pan03]. Finally, to complete the picture, Stein’s methods
have been pushed forward by Chatterjee to reach similar concentration properties to
the one by Talagrand [Cha05, Cha07, CD10, Pau14]. The main interest of this last
method is that it extends to dependence cases, under Dobrushin type of conditions.



30 P.-M. SAMSON

Let us present some concentration results for suprema of empirical processes that
follow from the transport inequalities of Theorem 5.1 after tensorization. Let F be
a countable set and let (X1,t)t∈F , . . . , (Xn,t)t∈F be n independent processes. We
are interested by the deviations of the random variable

Z = sup
t∈F

n∑
i=1

Xi,t.

Let us note

V = sup
t∈F

n∑
i=1

E
[
[Xi,t −X ′i,t]2+

∣∣Xi,t

]
,

where (X ′i,t)t∈F is an independent copy of Xi = (Xi,t)t∈F and E[ · |Xi,t] denotes the
conditional expectation, given Xi,t. In the following theorem, for all t ∈ F and all
i ∈ {1, . . . , n}, Mi,t and mi,t are numerical constants limiting the random variables
Xi,t.

Theorem 5.2. (a) Assume that Xi,t ≤ Mi,t, and E
[
(Mi,t −Xi,t)2] ≤ 1, for

all i and all t, then for all u ≥ 0,

P(Z ≥ E[Z] + u) ≤ exp

− u

2
Ä
1 + ε

Ä
u

E[V ]

ää log
Å

1 + u

E[V ]

ã
≤ exp

ï
− u2

2E[V ] + 2u

ò
,

with ε(u) = β0(u)
(1+u) log(1+u) and β0(u) := (1 + u) log(1 + u)− u.

(b) Assume that mi,t ≤ Xi,t ≤ Mi,t, with Mi,t −mi,t = 1 for all i and all t,
then for all u ≥ 0,

P(Z ≤ E[Z]− u) ≤ exp
ï
−E[V ]β0

Å
u

E[V ]

ãò
≤ exp

ñ
− u2

2E[V ] + 2
3 u

ô
,

with β0(u) = (1 + u) log(1 + u)− u.

The optimality of these results is discussed in [Sam07]. Recall that by usual
symmetrization’s technics ([LT91], Lemma 6.3 and Theorem 4.12), the variance
term E[V ] can be estimated as follows

E[V ] ≤ sup
t∈F

n∑
i=1

Var(Xi,t) + 16 E

[
sup
t∈F

∣∣∣∣∣ n∑
i=1

(Xi,t − E[Xi,t])
∣∣∣∣∣
]
.

In [Ada08], by using Hoffman-Jørgensen’s inequality and some other results
by Talagrand, Adamczak extends the concentration properties to suprema of un-
bounded random variables, by truncation arguments of the random variables.

Idea of the proof. We only present one elementary proof of (b) to show the links
between the transport inequality with cost “Tβt and the deviations of a function
around its mean.

Let µi denote the law of the process Xi = (Xi,t)t∈F . Point (b) simply follows
from the dual form of the tensorized transport inequality (19): X = RF , for any
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function g : Xn → R, ∫
e−gdµ ≤ exp

Å
−
∫ “Qg dµã ,(21)

where µ = µ1 ⊗ · · · ⊗ µn and for all x = (x1, . . . , xn) ∈ Xn“Qg(x) = inf
p∈P(Xn)

{∫
g(y) dp(y) +

n∑
i=1

∫
β0

Å
1xi 6=yi

dpi
dµi

(yi)
ã
dµi(yi)

}
,

the probability measures pi are the marginals of p. Let us choose g = λf with
λ ≥ 0 and

f(x) = sup
t∈F

n∑
i=1

xi,t, x = (x1, . . . , xn) ∈ Xn.

To simplify, we assume that for all x ∈ Xn, the supremum is reached at a single
point τ(x) ∈ F :

sup
t∈F

n∑
i=1

xi,t =
n∑
i=1

xi,τ(x).

Then for all x, y ∈ Xn

f(y) ≥ f(x) +
n∑
i=1

(yi,τ(x) − xi,τ(x)) = f(x) +
n∑
i=1

(yi,τ(x) − xi,τ(x))1xi 6=yi .

as a consequence, for all x,“Qg(x)

≥ λf(x)− sup
p

{∫ n∑
i=1

λ(xi,τ(x) − yi,τ(x))1xi 6=yidp(y)−
n∑
i=1

∫
β0

Å
1xi 6=yi

dpi
dµi

(yi)
ã
dµi(yi)

}

= λf(x)−
n∑
i=1

sup
pi∈P(X )

ß∫
λ(xi,τ(x) − yi,τ(x))1xi 6=yi

dpi
dµi

(yi)dµi(yi)−
∫
β0

Å
1xi 6=yi

dpi
dµi

(yi)
ã
dµi(yi)

™
≥ λf(x)−

n∑
i=1

∫
sup
h≥0

{
λ(xi,τ(x) − yi,τ(x))h− β0(h)

}
dµi(yi)

= λf(x)−
n∑
i=1

∫
β∗0
(
λ[xi,τ(x) − yi,τ(x)]+

)
dµi(yi)

≥ λf(x)− β∗0(λ)
n∑
i=1

∫
[xi,τ(x) − yi,τ(x)]2+dµi(yi)

≥ λf(x)− β∗0(λ) sup
t∈F

n∑
i=1

∫
[xi,t − yi,t]2+dµi(yi),

where β∗0(s) = es − s− 1, s ≥ 0. The second last inequality is a consequence of the
fact that [xi,τ(x)− yi,τ(x)]+ ≤Mi,t−mi,t ≤ 1 and β∗0(λu) ≤ u2β∗0(λ) for 0 ≤ u ≤ 1.
By inserting the previous estimate of “Qg(x) in the transport inequality (21), we get
for all λ ≥ 0,

E
[
e−λZ

]
≤ e−λE[Z]+E[V ]β∗0 (λ).

The deviation inequality of (b) directly follows by the Markov inequality, optimizing
over all λ ≥ 0. �



32 P.-M. SAMSON

5.2. Marton’s transport inequality for weakly dependent random vari-
ables. The paper [Sam00] presents a tensorization scheme of the Marton’s inequal-
ity (20) when µ is a probability measure on the product space Xn, whose marginals
are weakly dependent of each other, more precisely if µ is the law the n first random
variables X1, . . . , Xn of a Φ-mixing process. This tensorization scheme is based on
the construction of couplings similar to the one of [Mar03].

To simplify, one may assume that X is a finite set. Given a sequence of random
variables X1, . . . , Xn with values in X , for 1 ≤ i < j ≤ n, let us note

L(Xn
j |Xi−1

1 = xi−1
1 , Xi = xi)

the law of (Xj , . . . , Xn) knowing that X1 = x1, . . . , Xi−1 = xi−1, Xi = xi, and let
Γ = (γi,j)1≤i,j≤n be the upper triangular matrix defined by

γ2
ij = sup

xi−1
1 ,xi,yi

∥∥L(Xn
j |Xi−1

1 = xi−1
1 , Xi = xi)− L(Xn

j |Xi−1
1 = xi−1

1 , Xi = yi)
∥∥
TV

,

for i < j and γii = 1.

Theorem 5.3. [Sam00] According to the previous notations, for all probability
measures µ and ν on Xn, one has‹T2(ν|µ) ≤ 2‖Γ‖2H(ν|µ) and ‹T2(µ|ν) ≤ 2‖Γ‖2H(ν|µ),

where ‖Γ‖ denotes the operator norm of the matrix Γ from (Rn, | · |) to (Rn, | · |).

Note that since the Marton’s cost ‹T2 in dimension n also satisfies the triangular
inequality (10), the two weak transport inequalities of this theorem are equivalent
to the following family of transport inequalities, for all t ∈ (0, 1), for all µ, ν1, ν2 ∈
P(Xn),

1
2‖Γ‖2

‹T2(ν1|ν2) ≤ 1
1− tH(ν1|µ) + 1

t
H(ν2|µ),

or equivalently, applying Theorem 3.1 for all functions g : Xn → R bounded from
below, Å∫

etQ̃gdµ

ã1/t Å∫
e−(1−t)gdµ

ã1/(1−t)
≤ 1,

where ‹Qg(x) = inf
p∈P(Xn)

{∫
gdp+ 1

2‖Γ‖2
n∑
i=1

Å∫
1xi 6=yidp(y)

ã2
}
.

In particular, applying this inequality to the function g = iA, with A ⊂ Xn, we get
the Talagrand’s concentration result extended to any measure µ ∈ P(Xn): for all
subsets A ⊂ Xn, for all t ∈ (0, 1),∫

e
t

2‖Γ‖2
D2
T (x,A)

dµ(x) ≤ 1
µ(A)t/(1−t)

,(22)
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where DT (x,A) is the Talagrand’s convex distance defined by

D2
T (x,A) =

(
sup

α∈Rn,|α|≤1
inf
y∈A

n∑
i=1

αi1xi 6=yi

)2

=
(

sup
α∈Rn,|α|≤1

inf
p∈P(A)

n∑
i=1

αi

∫
1xi 6=yidp(y)

)2

=
(

inf
p∈P(A)

sup
α∈Rn,|α|≤1

n∑
i=1

αi

∫
1xi 6=yidp(y)

)2

= inf
p∈P(A)

n∑
i=1

Å∫
1xi 6=yidp(y)

ã2
= ‹QiA(x).

The second equality follows from the linearity of the expression in p and from the
fact that Dirac measures are the extremal points of the convex set P(A). The
third equality is a consequence of Sion’s minimax Theorem [Sio58, Kom88] since
the expression is linear in p and α, and therefore convex in p and concave in α.

When µ is the law of some independent random variables, the property (22)
exactly recovers Talagrand’s concentration results [Tal95] since ‖Γ‖ = ‖Id‖ = 1.

Theorem 5.3 complements the results by Marton for contracting Markov chains
[Mar96b, Mar97]. More generally, assume that the sequence (Xk)k≥1 is a Doeblin
recurrent Markov chain with kernel K; in other words, there exists a probability
measure m, an integer r and a real ρ ∈ (0, 1) such that for all x ∈ X and all subsets
A ⊂ X

Kr(x,A) ≥ ρm(A).

Then the coefficient ‖Γ‖ is bounded independently of n,

‖Γ‖ ≤
√

2
1− ρ1/2r .

In any case, if (Φk)k≥1 represents the sequence of Φ-mixing coefficients of the
sequence of random variables X1, . . . , Xn (see [Sam00], [Dou94]), then one has

‖Γ‖ ≤
n∑
k=1

√
Φk.

After this result, many authors have obtained transport inequalities under weak
different dependence assumptions, for example under Dobrushin type conditions
[DGW04, Mar04, Mar10, Wu06, Kon12, Pau12, WW14, Wan14, Pau14].

Among these results, we want to emphasize a result by Paulin [Pau14] that
exactly concerns the Talagrand’s concentration property (22) obtained by using
Stein’s methods, following Chatterjee’s approach [Cha07].

For 1 ≤ i ≤ n, let us note X−i the random vector defined by

X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn).
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The Dobrushin’s interdependence matrix D = (dij) is a matrix of non-negative
entries such that for every i ∈ {1, . . . , n}, for every x, y ∈ Xn,

‖L(Xi|X−i = x−i)− L(Xi|X−i = y−i)‖TV ≤
∑
j,j 6=i

dij1xj 6=yj .

Theorem 5.4. (Theorem 3.3,[Pau14]) Let ‖D‖1 = max1≤j≤n
∑n
i=1 dij and ‖D‖∞ =

max1≤i≤n
∑n
j=1 dij. If ‖D‖1 < 1 and ‖D‖∞ ≤ 1, then for all subsets A ⊂ Xn, one

has ∫
e

1−‖D‖1
26.1 D2

T (x,A)dµ(x) ≤ 1
µ(A) .

Examples of applications of this concentration result are presented in [Pau14]
(the stochastic travelling salesman problem, Steiner trees).

5.3. Transport inequalities for the uniform law on the symmetric group.
In this section we present transport inequalities for the uniform law on the sym-
metric group Sn, that provide concentration results obtained by Maurey [Mau79]
and Talagrand [Tal95].

Let µ be the uniform law on Sn, µ(σ) = 1
n! , σ ∈ Sn.

Theorem 5.5. [Mau79] Let d be the Hamming distance on the symmetric group,
for all σ, τ ∈ Sn,

d(σ, τ) =
n∑
i=1

1σ(i)6=τ(i).

Then for any subset A ⊂ Sn such that µ(A) ≥ 1/2, and for all t ≥ 0, one has

µ(At) ≥ 1− 2e− t2
64n ,

where At = {y ∈ Sn, d(x,A) ≤ t}.

This result has been generalized by Milman and Schechtman, to some groups
whose distance is invariant by translation [MS86]. Talagrand has obtained another
concentration property, stronger in terms of the dependence in n, obtained by the
so-called “convex-hull” method. Here is the Talagrand’s property with slightly
modified notations. This property implies the one of the previous theorem up to
constant.

Theorem 5.6. [Tal95] For any subset A ⊂ Sn,∫
Sn

ef(A,σ)/16dµ(σ) ≤ 1
µ(A) ,

where the quantity f(A, σ) measures the distance from σ to A as follows

f(A, σ) = inf
p∈P(A)

n∑
i=1

Å∫
1σ(i)6=τ(i)dp(τ)

ã2
.

This result has been first generalized to product of symmetric groups by McDi-
armid [McD02], and then further by Luczak and McDiarmid, to cover more general
permutation groups which act suitably “locally” [LM03].

Theorems 5.5 and 5.6 are consequences of the following transport inequalities.
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Theorem 5.7. [Sam15] Let µ be the uniform law on the symmetric group.

(a) For all probability measures ν1 and ν2 on Sn,
1

2(n− 1)W
2
1 (ν2, ν1) ≤

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
,

where W1(ν1, ν2) = inf
π∈Π(ν2,ν1)

∫∫
d(σ, τ)dπ(σ, τ).

(b) For all probability measures ν1 and ν2 on Sn,
1
8
ÙT2(ν1|ν2) ≤

(»
H(ν1|µ) +

»
H(ν2|µ)

)2
,

where ÙT2(ν1|ν2) = inf
π∈Π(ν2,ν1)

∫ n∑
i=1

Å∫
1σ(i)6=τ(i)dpσ(τ)

ã2
dν2(σ),

with π(σ, τ) = ν2(σ)pσ(τ).

The proof of (b), inspired from the Talagrand’s results, is given in the preprint
[Sam15]. We present a simpler proof of (a) of the same nature at the end of this
section. In fact, the dual formulation of the transport inequality of (a) is more
popular: for all 1-Lipschitz functions f : Sn → R (with respect to the Hamming
distance d), ∫

efdµ ≤ e
∫
f dµ+(n−1)t2/2

, ∀t ≥ 0.

This exponential inequality is a consequence of Hoeffding inequalities for bounded
martingales. It is widely commented and a proof is given in the paper [BHT06].

Point (b) implies the following useful concentration property.
Theorem 5.8. [Sam15] Let µ be the uniform law on the symmetric group Sn. Let
g : Sn → R and αk : Sn → R+, k ∈ {1, . . . , n} be functions such that for all
τ, σ ∈ Sn,

g(τ)− g(σ) ≤
n∑
k=1

αk(τ)1τ(k)6=σ(k).

Then, for all t ≥ 0, one has

µ

Å
g ≤

∫
g dµ− t

ã
≤ exp

Ç
− t2

8
∫
|α|2dµ

å
,

and
µ

Å
g ≥

∫
g dµ+ t

ã
≤ exp

Å
− t2

8 supσ∈Sn |α(σ)|2

ã
,

with |α(σ)|2 =
n∑
k=1

α2
k(σ), σ ∈ Sn.

By applying this result to the particular function g(σ) = ϕ(xσ) where ϕ :
[0, 1]n → R is a Lipschitz convex function and given (x1, . . . , xn) ∈ [0, 1]n, xσ =
(xσ(1), . . . , xσ(n)), we recover the deviation inequality by Adamczak, Chafäı and
Wolff [ACW14] (Theorem 3.1) obtained from Theorem 5.6 by Talagrand. This con-
centration property plays a key role in their approach, to study the convergence of
the empirical spectral measure of random matrices with exchangeable entries, when
the size of these matrices is increasing.
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Proof of point (a) in Theorem 5.7. Since the distance W1 satisfies a triangular in-
equality, it suffices to prove that for all probability measures ν1 on Sn,

1
2(n− 1)W

2
1 (ν1, µ) ≤ H(ν1|µ).

According to Proposition 3.1, the dual formulation of this inequality is the following,
for all function ϕ on Sn and all λ ≥ 0,∫

eλQϕdµ ≤ e
∫
λϕdµ+(n−1)λ2/2

,(23)

with

Qϕ(σ) = inf
p∈P(Sn)

ß∫
ϕdp+

∫
d(σ, τ) dp(τ)

™
= inf
p∈P(Sn)

{∫
ϕdp+

n∑
k=1

∫
1σ(k)6=τ(k) dp(τ)

}
.

We will prove the inequality (23) by induction on n.

When n = 2, Sn is the two point space

Qϕ(σ) = inf
p∈P(Sn)

ß∫
ϕdp+ 2

∫
1σ 6=τ dp(τ)

™
.

The inequality (23) corresponds exactly to the dual form of the Csizár-Kullback-
Pinsker inequality given by Proposition 3.1: for any probability measure ν on a
separable metric space X , for any measurable function f : X → R,∫

eλRfdν ≤ eλ
∫
f dν+λ2/2

, ∀λ ≥ 0,(24)

with Rf(x) = inf
p∈P(X )

ß∫
fdp+ 2

∫
1x 6=ydp(y)

™
, x ∈ X .

The induction step is also a consequence of the dual form (24) of the Csizár-
Kullback-Pinsker inequality. Let (Hi)1≤i≤n be the partition of Sn defined by,

Hi = {σ ∈ Sn, σ(i) = n}

If p is a probability measure on Sn, it admits a unique decomposition defined by

p =
n∑
i=1

p̂(i)pi, with pi ∈ P(Hi) and p̂(i) = p(Hi).

Thus, we define a probability measure p̂ on {1, . . . , n}. In particular, for the uniform
law µ on Sn, one has

µ = 1
n

n∑
i=1

µi,

where µi is the uniform law on Hi, µi(σ) = 1
(n−1)! , for any σ ∈ Hi. Therefore, one

has ∫
eλQϕdµ = 1

n

n∑
i=1

∫
eλQϕ(σ)dµi(σ).

For any function f : Hi → R, let us note

QHif(σ) = inf
p∈P(Hi)


∫
f dp+

∑
k 6=i

∫
1σ(k)6=τ(k)dp(τ)

 .
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We denote by τij the transposition that exchanges the indices i and j. The appli-
cation from Hi to Hn defined by τ 7→ ττin is one to one, and therefore by a change
of index in the sum, we get

QHif(σ) = inf
p∈P(Hi)


∫
f(τ) dp(τ) +

∑
k 6=n

∫
1στin(k) 6=ττin(k)dp(τ)


= inf
q∈P(Hn)


∫
f(ττin) dq(τ) +

∑
k 6=n

∫
1στin(k)6=τ(k)dq(τ)

 = QHnf
τin(στin).

where fτin(τ) = f(ττin) for all τ ∈ Hn. Consequently, by induction, one has for all
function f : Hi → R, for all λ ≥ 0,∫

eλQHifdµi =
∫
eλQHnf

τin (στin)dµi(σ) =
∫
eλQHnf

τin
dµn

≤ exp
ï
λ

∫
fτindµn + (n− 2)λ

2

2

ò
= exp

ï
λ

∫
fdµi + (n− 2)λ

2

2

ò
.

Then the proof relies on the following Lemma.

Lemma 5.1. For any function ϕ : Hi → R and any σ ∈ Hi, one has

Qϕ(σ) ≤ inf
p̂∈P({1,...,n})

{
n∑
l=1

QHiϕ
τil p̂(l) + 2

n∑
l=1

1l 6=ip̂(l)
}
.

The proof of this lemma is by decomposition of the probability measures p on
the Hj ’s, we get that if σ ∈ Hi then

Qϕ(σ) = inf
p̂∈P({1,...,n})

inf
p1∈P(H1),...,pn∈P(Hn)

n∑
l=1

∫ ϕdpl +
∑

k/∈{l,i}

∫
1σ(k)6=ττil(k)dpl(τ)

 p̂(l) + 2
n∑
l=1

1l 6=ip̂(l)

 .

The proof of (a) continues by applying consecutively this lemma, the Hölder
inequality, and the induction hypotheses, this gives∫

eλQϕ(σ)dµi(σ) ≤ inf
p̂∈P({1,...,n})

{
n∏
l=1

Å∫
eλQHiϕ

τil
dµi

ãp̂(l)
e2λ
∑n

l=1 1l6=ip̂(l)

}

≤ exp
[

inf
p̂∈P({1,...,n})

{
λ

n∑
l=1

Å∫
ϕτildµi

ã
p̂(l) + (n− 2)λ

2

2 + 2λ
n∑
l=1

1l 6=ip̂(l)
}]

= exp
[
λ inf
p̂∈P({1,...,n})

{
n∑
l=1

ϕ̂(l)p̂(l) + 2
n∑
l=1

1l 6=ip̂(l)
}

+ (n− 2)λ
2

2

]
,

where ϕ̂(l) =
∫
ϕτildµi =

∫
ϕdµl. Let us consider again the above infimum-

convolution Rϕ̂ defined on the space X = {1, . . . , n}, one has

Rϕ̂(i) = inf
p̂∈P({1,...,n})

{
n∑
l=1

ϕ̂(l)p̂(l) + 2
n∑
l=1

1l 6=ip̂(l)
}
.
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As a consequence, by applying (24) with the uniform law ν on {1, . . . , n}, the
previous inequality gives∫

eλQϕdµ = 1
n

n∑
i=1

∫
eλQϕ(σ)dµi(σ) ≤

(
1
n

n∑
i=1

eλRϕ̂(i)

)
e(n−2)λ2/2

≤ exp
[
λ

n

n∑
i=1

ϕ̂(i) + λ2

2 + (n− 2)λ
2

2

]
= exp

ï
λ

∫
ϕdµ+ (n− 1)λ

2

2

ò
.

�
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and Riemannian Ricci curvature bounds. Ann. Probab., 43(1):339–404, 2015.

[AS15] R. Adamczak and M. Strzelecki. Modified log-Sobolev inequalities for convex func-
tions on the real line. Sufficient conditions. ArXiv e-prints, May 2015.

[BG99] S.G. Bobkov and F. Götze. Exponential integrability and transportation cost related
to logarithmic Sobolev inequalities. J. Funct. Anal., 163(1):1–28, 1999.

[BGL01] S.G. Bobkov, I. Gentil, and M. Ledoux. Hypercontractivity of Hamilton-Jacobi equa-
tions. J. Math. Pures Appl. (9), 80(7):669–696, 2001.
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[Wu06] L. Wu. Poincaré and transportation inequalities for Gibbs measures under the Do-
brushin uniqueness condition. Ann. Probab., 34(5):1960–1989, 2006.

[WW77] D. L. Wang and P. Wang. Extremal configurations on a discrete torus and a gener-
alization of the generalized Macaulay theorem. SIAM. J. Appl. Math., 33(1):55–59,
1977.

[WW14] N.-Y. Wang and L. Wu. Convergence rate and concentration inequalities for Gibbs
sampling in high dimension. Bernoulli, 20(4):1698–1716, 2014.
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