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Introduction

During the last few decades an intensive research activity has been dedicated to the study in fluid dynamics of relative equilibria, sometimes called steady states or V-states. These vortical structures have the common feature to keep their shape without deformation during the motion and they seem to play a central role in the emergence of coherent structures in turbulent flows at large scales, see for instance [START_REF] Dritschel | The nonlinear evolution of rotating configurations of uniform vorticity[END_REF][START_REF] Kamm | Shape and stability of two-dimensional uniform vorticity regions[END_REF][START_REF] Luzzatto-Fegiz | Stability of elliptical vortices from "Imperfect-Velocity-Impuls" diagrams[END_REF][START_REF] Ii Overman | Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting V-states[END_REF][START_REF] Saffman | Vortex dynamics[END_REF] and the references therein. Notice that from experimental standpoint, their existence has been revealed in different geophysical phenomena such as the aerodynamic trailing-vortex problem, the two-dimensional shear layers, Saturn's hexagon, the Kármán vortex street, and so on.. Several numerical and analytical investigations have been carried out in various configurations depending on the topological structure of the vortices: single simply or multiply connected vortices, dipolar or multipolar, see for instance [START_REF] Castro | Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations[END_REF][START_REF] Castro | Uniformly rotating analytic global patch solutions for active scalars[END_REF][START_REF] Deem | Vortex waves : Stationary "V-states", Interactions, Recurrence, and Breaking[END_REF][START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF][START_REF] De La Hoz | Doubly connected V-states for the generalized surface quasigeostrophic equations[END_REF][START_REF] Flierl | Generalized Kirchhoff vortices[END_REF][START_REF] Hassainia | On the V -states for the generalized quasi-geostrophic equations[END_REF][START_REF] Hmidi | Boundary Regularity of Rotating Vortex Patches[END_REF][START_REF] Hmidi | On rotating doubly-connected vortices[END_REF][START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF][START_REF] Hmidi | Bifurcation of rotating patches from Kirchhoff vortices[END_REF]. In this paper we shall be concerned with some refined global structure of the doubly connected rotating patches for the two-dimensional incompressible Euler equations. These equations describe the motion of an ideal fluid and take the form, (1.1)

   ∂ t ω + v • ∇ω = 0, (t, x) ∈ R + × R 2 , v = -∇ ⊥ (-∆) -1 ω, ω |t=0 = ω 0
where v = (v 1 , v 2 ) refers to the velocity fields and ω being its vorticity which is defined by the scalar ω = ∂ 1 v 2 -∂ 2 v 1 . Note that one can recover the velocity from the vorticity distribution according to the Biot-Savart law,

v(x) = 1 2π ˆR2 (x -y) ⊥ |x -y| 2 ω(y)dy.
The global existence and uniqueness of solutions with initial vorticity lying in the space L 1 ∩ L ∞ is a very classical fact established many years ago by Yudovich [START_REF] Yudovich | Nonstationary flow of an ideal incompressible liquid[END_REF]. This result has the advantage to allow discontinuous vortices taking the form of vortex patches, that is ω 0 (x) = χ D the characteristic function of a bounded domain D. The time evolution of this specific structure is preserved and the vorticity ω(t) is uniformly distributed in bounded domain D t , which is nothing but the image by the flow mapping of the initial domain. The regularity of this domain is not an easy task and was solved by Chemin in [START_REF] Chemin | Perfect incompressible Fluids[END_REF] who proved that a C 1+ -boundary keeps this regularity globally in time without any loss. In general the dynamics of the boundary is hard to track and is subject to the nonlinear effects created by the induced velocity. Nonetheless, some special family of rotating patches characterized by uniform rotation without changing the shape are known in the literature and a lot of implicit examples have been discovered in the last few decades. Note that in this setting we have explicitly D t = R 0,Ωt D where R 0,Ωt is a planar rotation centered at the origin and with angle Ωt; for the sake of simplicity we have assumed that the center of rotation is the origin of the frame and the parameter Ω denotes the angular velocity of the rotating domains. The first example was discovered very earlier by Kirchhoff in [START_REF] Kirchhoff | Vorlesungen uber mathematische Physik[END_REF] who showed that an ellipse of semi-axes a and b rotates about its center uniformly with the angular velocity Ω = ab (a 2 +b 2 ) . Later, Deem and Zabusky gave in [START_REF] Deem | Vortex waves : Stationary "V-states", Interactions, Recurrence, and Breaking[END_REF] numerical evidence of the existence of the V-states with m-fold symmetry for the integers m ∈ {3, 4, 5}. Few years after, Burbea gave in [START_REF] Burbea | Motions of vortex patches[END_REF] an analytical proof of the existence using complex analysis formulation and bifurcation theory. The regularity of the V-states close to Rankine vortices was discussed quite recently in [START_REF] Castro | Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations[END_REF][START_REF] Hmidi | Boundary Regularity of Rotating Vortex Patches[END_REF]. We point out that the bifurcation from the ellipses was studied numerically and analytically in [START_REF] Castro | Uniformly rotating analytic global patch solutions for active scalars[END_REF][START_REF] Hmidi | Bifurcation of rotating patches from Kirchhoff vortices[END_REF][START_REF] Kamm | Shape and stability of two-dimensional uniform vorticity regions[END_REF]. All these results are restricted to simply connected domains and the analytical investigation of doubly connected V-states has been initiated with the works [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF][START_REF] Hmidi | On rotating doubly-connected vortices[END_REF]. To fix the terminology, a domain D is said doubly connected if it takes the form D = D 1 \ D 2 with D 1 and D 2 being two simply connected bounded domains satisfying D 2 ⊂ D 1 . The main result of [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF] which is deeply connected to the aim of this paper deals with the bifurcation from the annular patches where D = A b ≡ {z; b < |z| < 1}. For the clarity of the discussion we shall recall the main result of [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF].

Theorem 1.1. Given b ∈ (0, 1) and let m ≥ 3 be a positive integer such that,

(1.2) 1 + b m - (1 -b 2 ) 2 m < 0.
Then there exist two curves of doubly connected rotating patches with m-fold symmetry bifurcating from the annulus A b at the angular velocities,

Ω ± m = 1 -b 2 4 ± 1 2m ∆ m with ∆ m = 1 -b 2 2 m -1 2 -b 2m .
We emphasize that the condition (1.2) is required by the transversality assumption, otherwise the eigenvalues Ω ± m are double and thus the classical theorems in the bifurcation theory such as Crandall-Rabinowitz theorem [START_REF] Crandall | Bifurcation from simple eigenvalues[END_REF] are out of use. The analysis of the degenerate case corresponding to vanishing discriminant ( in which case Ω + m = Ω - m ) has been explored very recently in [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF]. They proved in particular that for m ≥ 3 and b ∈ (0, 1) such that ∆ m = 0 there is no bifurcation to m-fold V-states. However for b ∈ (0, 1)\S two-fold V-states still bifurcate from the annulus A b where S = {b * m , m ≥ 3} and b * m being the unique solution in the interval (0, 1) of the equation

(1.3) 1 + b m - (1 -b 2 ) 2 m = 0.
The proof of this result is by no means non trivial and based on the local structure of the reduced bifurcation equation obtained through the use of Lyapunov-Schmidt reduction. Note that according to the numerical experiments done in [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF] two different scenarios for global bifurcation are conjectured. The first one when the eigenvalues Ω - m and Ω + m are far enough in which case each branch ends with a singular V-state and the singularity is a corner of angle π 2 . For more details about the structure of the limiting V-states we refer the reader to the Section 9.3 in [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF]. Nevertheless, in the second scenario where the eigenvalues are close enough there is no singularity formation on the boundary and it seems quite evident that there is no spectral gap and the V-states can be constructed for any Ω ∈ [Ω - m , Ω + m ], see Fig. 1 taken from [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF]. Moreover, drawing the second Fourier coefficient of each conformal mapping that parametrize each boundary as done in Fig. 2 we get a small loop passing through the trivial solution at Ω - m and Ω + m . This suggests that the bifurcation curve starting from Ω + m will return back to the trivial solution (annulus) at Ω - m . Our main purpose in this paper is to go further in this study by checking analytically the second scenario and provide for m ≥ 3 the global structure of the bifurcation curves near the degenerate case. Our result reads as follows. Now, we are going to outline the main steps of the proof. Roughly speaking we start with writing down the equations governing the boundary ∂D 1 ∪ ∂D 2 of the rotating patches and attempt to follow the approach developed in [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF]. For j ∈ {1, 2}, let Φ j : D c → D c j be the conformal mapping which enjoys the following structure, We have denoted by D c the complement of the open unit disc D and we have also assumed that the Fourier coefficients of the conformal mappings are real which means that we look for V-states which have at least one axis of symmetry that can be chosen to be the real axis. It is also important to mention that the domain D is implicitly assumed to be smooth enough, more than C 1 as we shall see in the proof, and therefore each conformal mapping can be extended up to the boundary. According to the subsection 2.2 the conformal mappings satisfy the coupled equations: for j ∈ {1, 2}

(1.4) ∀ |z| ≥ 1, Φ j (z) = b j z + n∈N a j,n z n , a j,n ∈ R, b 1 = 1 and b 2 = b.
G j (λ, f 1 , f 2 )(w) Im (1 -λ)Φ j (w) + I(Φ j (w)) wΦ j (w) = 0 , ∀w ∈ T where λ = 1 -2Ω, Φ j (w) = b j w + f j (w)
and

I(z) = 1 2iπ ˆT z -Φ 1 (ξ) z -Φ 1 (ξ) Φ 1 (ξ)dξ - 1 2iπ ˆT z -Φ 2 (ξ) z -Φ 2 (ξ) Φ 2 (ξ)dξ.
Here dξ denotes the complex integration over the unit circle T. The linearized operator around the annulus defined through

L λ,b (h) ∂ f G(λ, 0)h = d dt [G(λ, th)] |t=0
plays a significant role in the proof and according to [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF] it acts as a matrix Fourier multiplier. Actually, for h = (h 1 , h 2 ) chosen in suitable Banach space with

h j (w) = n≥1 a j,n w nm-1 , a j,n ∈ R
we have the expression

L λ,b (h) = n≥1 M nm (λ) a 1,n a 2,n e nm with e n (w) = Im(w n )
where for n ≥ 1 the matrix M n is given by

M n (λ) = nλ -1 -nb 2 b n+1 -b n b(nλ -n + 1) .
It is known from [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF] that for given m ≥ 3 the values of b such that M m (λ) is singular, for suitable values of λ = λ ± m , belong to the interval (0, b * m ) where b * m has been introduced in (1.3). It is also shown in that paper that the assumptions of Crandall-Rabinowitz theorem are satisfied, especially the transversality assumption which reduces the bifurcation study to some properties of the linearized operator. This latter property is no longer true for b = b * m and we have double eigenvalues

λ ± m = 1+b * m 2
. This is a degenerate case and we know from [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF] that there is no bifurcation. It seems that the approach implemented in this situation can be carried out for b ∈ (0, b * m ) but close enough to b * m . In fact, using Lyapunov-Schmidt reduction (through appropriate projections) we transform the infinite-dimensional problem into a two dimensional one. Therefore the V-states equation reduces to the resolution of an equation of the type F 2 (λ, t) = 0 with F 2 : R 2 → R, with F 2 being a smooth function and note that when b = b * m the point (λ ± m , 0) is a critical point for F 2 and for that reason one should expand F 2 to the second order around this point in order to understand the resolvability of the reduced equation. At the order two F 2 is strictly convex and therefore locally the critical point is the only solution for F 2 . Reproducing this approach in the current setting and after long and involved computations we find that for (λ, t) close enough, for example, to the solution (λ + m , 0) As we can easily check from the preceding facts, the zeros of the associated quadratic form of F 2 is a small ellipse. Therefore by perturbation arguments, we may show that the solutions of F 2 are actually a perturbation in a strong topology of the ellipse. Consequently the solutions of F 2 around the point (λ + m , 0) can be parametrized by a smooth Jordan curve. We remark that in addition to the known trivial solution (λ + m , 0) one can find a second one, of course different from the preceding one, in the form (λ m , 0), corresponding geometrically to the same annulus A b . Around this point (λ m , 0) the obtained curve describes a bifurcating curve of V-states with exactly m-fold symmetry and therefore from the local description of the bifurcation diagram stated in Theorem 1.1 we deduce that λ m = λ - m . This means the formation of loops as stated in our main theorem. The paper is organized as follows. In Section 2 we shall introduce some tools, formulate the V-states equations and write down the reduced bifurcation equation using Lyapunov-Schmidt reduction. Section 3 is devoted to Taylor expansion at order two of the reduced bifurcation equation and the complete proof of Theorem 1.2 will be given in the last section.

F 2 (λ, t) = a m (b)(λ -λ + m ) + c m (b)(λ -λ + m ) 2 + d m (b)t 2 + (λ -λ + m ) 2 + t 2 ε(λ, t) with lim (λ,t)→(λ + m ,0) ε(λ, t) = 0.

Reminder and preliminaries

We shall recall in this section some tools that we shall frequently use throughout the paper and write down the reduced bifurcation equation which is the first step towards the proof of Theorem 1.2. But before that we will fix some notations. The unit disc and its boundary will be denoted respectively by D and T. and D r is the planar disc of radius r and centered at the origin. Given a continuous function f : T → C we define its mean value by,

T f (τ )dτ 1 2iπ ˆT f (τ )dτ,
where dτ stands for the complex integration.

2.1. Hölder spaces. Now we shall introduce Hölder spaces on the unit circle T. Let 0 < γ < 1 we denote by C γ (T) the space of continuous functions f such that

f C γ (T) f L ∞ (T) + sup τ =w∈T |f (τ ) -f (w)| |τ -w| α < ∞.
For any integer n, the space C n+γ (T) stands for the set of functions f of class C n whose n-th order derivatives are Hölder continuous with exponent γ. It is equipped with the usual norm,

f C n+γ (T) f L ∞ (T) + d n f dw n C γ (T) .
Recall that for n ∈ N, the space C n (T) is the set of functions f of class C n such that,

f C n (T) n k=0 f (k) L ∞ (T) < ∞.
2.2. Boundary equations. Let D 2 D 1 be two simply connected domains and D = D 1 \ D 2 be a doubly connected domains. The boundary of D j will be denoted by Γ j . Then according to [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF][START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF] we find that that the exterior conformal mappings Φ 1 and Φ 2 associated to D 1 and D 2 satisfy the coupled nonlinear equations. For j ∈ {1, 2},

G j (λ, Φ 1 , Φ 2 )(w) = 0, ∀ w ∈ T, with (2.1) G j (λ, Φ 1 , Φ 2 )(w) Im (1 -λ)Φ j (w) + I(Φ j (w)) wΦ j (w) .
Note that we have introduced λ 1 -2Ω because it is more convenient for the computations and

I(z) = T z -Φ 1 (ξ) z -Φ 1 (ξ) Φ 1 (ξ)dξ - T z -Φ 2 (ξ) z -Φ 2 (ξ) Φ 2 (ξ)dξ.
The integrals are defined in the complex sense and we shall focus on V-states which are small perturbation of the annulus

A b = z, b ≤ |z| ≤ 1 with b ∈ (0, 1)
. The conformal mappings Φ j with j ∈ {1, 2} admit the expansions,

∀|z| ≥ 1, Φ j (z) = b j z + f j (z) = z + +∞ n=1 a j,n z n with b 1 = 1, b 2 = b. Define (2.2) G j (λ, f 1 , f 2 ) G j (λ, Φ 1 , Φ 2 )
then the equations of the V-states become,

∀w ∈ T, G(λ, f 1 , f 2 )(w) = 0 with G = (G 1 , G 2
). Note that the annulus is a solution for any angular velocity, that is, G(λ, 0, 0) = 0 and the set {(λ, 0, 0)|λ ∈ R} will be called the set of trivial solutions.

Reduced bifurcation equation.

For any integer m ≥ 3, the existence of V-states was proved in [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF] provided b ∈ (0, b * m ) that guarantee the transversality assumption. The idea is to check that the functional G has non trivial zeros using bifurcation arguments. However, and as we have mentioned before in the Introduction, the knowledge of the linearized operator around the trivial solution is not enough to understand the structure of the bifurcating curves near the degenerate case corresponding to double eigenvalues. To circumvent this difficulty we make an expansion at order two of the reduced bifurcation equation in the spirit of [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF], and this will be the subject of the current task. Let us first introduce Banach spaces that we shall use and recall the algebraic structure of the linearize operator. For α ∈ (0, 1), we set

X m = f = (f 1 , f 2 ) ∈ (C 1+α (T)) 2 , f (w) = +∞ n=1 A n w nm-1 , A n ∈ R 2 .
and

Y m = G = (G 1 , G 2 ) ∈ (C α (T)) 2 , G = +∞ n=1 B n e nm , B n ∈ R 2 , e n (w) = Im(w n ).
Note that the domains D j whose conformal mappings Φ j associated to the perturbations f j lying in X m are actually m-fold symmetric. Recall from the subsection 2.2 that the equation of m-fold symmetric V-states is given by

(2.3) G(λ, f ) = 0, f = (f 1 , f 2 ) ∈ B m r × B m r ⊂ X m where B m
r is the ball given by

B m r = f ∈ C 1+α (T), f (w) = ∞ n=1 a n w nm-1 , a n ∈ R, f C 1+α ≤ r .
We mention that we are looking for solutions close to the trivial solutions and therefore the radius r will be taken small enough. The linearized operator around zero is defined by

∂ f G(λ, 0)h = d dt [G(λ, th)] |t=0 .
As it is proved in [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF], for h = (h 1 , h 2 ) ∈ X m taking the expansions

h j (w) = n≥1 a j,n w nm-1 ,
we get the expression

(2.4) ∂ f G(λ, 0)h = n≥1 M nm (λ) a 1,n a 2,n e nm ,
where for n ≥ 1 the matrix M n is given by

M n (λ) = nλ -1 -nb 2 b n+1 -b n b(nλ -n + 1)
.

We say throughout this paper that λ is an eigenvalue if for some n the matrix M n (λ) is not invertible. Since

det(M n (λ)) = (nλ -1 -nb 2 )b(nλ -n + 1) + b 2n+1
is a polynomial of second order on the variable λ, the roots are real if and only if its discriminant is positive. From [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF] we remind that the roots take the form,

λ ± n = 1 + b 2 2 ± 1 n ∆ n (b) with the constraint ∆ n (b) = 1 -b 2 2 n -1 2 -b 2n ≥ 0.
According to [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF] this condition is equivalent for n ≥ 3 to

(2.5) n 1 -b 2 2 -1 ≥ b n .
In addition, it is also proved that for any integer m ≥ 3 there exists a unique b * m ∈ (0, 1)

such that ∆ m (b * m ) = 0 and ∆ m (b) > 0 for all b ∈ [0, b * m ). Moreover, Ker(∂ f G(λ ± m , 0)) = v m with v m (w) = mλ ± m -m+1 b m-1 1 w m-1 v 1,m v 2,m w m-1 .
In order to be rigorous we could write v ± m but for the sake of simple notations we note simply v m . Now we shall introduce a complement X m of the subspace v m in the space X m ,

X m = h ∈ (C 1+α (T)) 2 , h(w) = +∞ n=2 A n w nm-1 + α 1 0 w m-1 , A n ∈ R 2 , α ∈ R .
It is easy to prove that the subspace is closed and

X m = v m ⊕ X m .
In addition the range

Y m of ∂ f G(λ ± m , 0) in Y m is given by Y m = K ∈ (C α (T)) 2 , K = +∞ n=2 B n e nm + β b m mλ ± m -m + 1 e m , B n ∈ R 2 , β ∈ R .
The subspace Y m is of co-dimension one and its complement is a line generated by

W m = 1 (mλ ± m -m + 1) 2 + b 2m mλ ± m -m + 1 -b m e m W m e m .
Thus we have

Y m = W m ⊕ Y m .

Lyapunov-Schmidt reduction relies on two projections

P : X m → v m , Q : Y m → W m .
For a future use we need the explicit expression of the projection Q. The Euclidian scalar product of R 2 is denoted by , and for h ∈ Y m we have

h = +∞ n=1 B n e nm , Qh(w) = B 1 , W m W m .
Moreover, by the definition of Q one has, (2.6) Q∂ f G(λ ± m , 0) = 0. Unlike the degenerate case, the transversality assumption holds true

∂ λ ∂ f G(λ ± m , 0)v m / ∈ Im(∂ f G(λ ± m , 0)) and therefore (2.7) Q∂ λ ∂ f G(λ ± m , 0)v m = 0. For f ∈ X m we use the decomposition f = g + k with g = P f and k = (Id -P )f.
Then the V-state equation is equivalent to the system

F 1 (λ, g, k) (Id -Q)G(λ, g + k) = 0 and QG(λ, g + k) = 0. Note that F 1 : R × v m × X m → Y m
is well-defined and smooth. Thus using (2.6) we can check the identity,

D k F 1 (λ ± m , 0, 0) = (Id -Q)∂ f G(λ ± m , 0) = ∂ f G(λ ± m , 0). Consequently D k F 1 (λ ± m , 0, 0) : X m → Y m is invertible.
The inverse is explicit and is given by the formula

(2.8) ∂ f G(λ ± m , 0)h = K ⇐⇒ ∀n ≥ 2, A n = M -1 nm B n and α = - β b m (mλ ± m -m + 1)
• Thus using the implicit function theorem, the solutions of the equation F 1 (λ, g, k) = 0 are locally described around the point (λ ± m , 0) by the parametrization k = ϕ(λ, g) with

ϕ : R × v m → X m .
being a smooth function. Remark that in principle ϕ is locally defined but it can be extended globally to a smooth function still denoted by ϕ. Moreover, the resolution of the V-state equation near to (λ ± m , 0) is equivalent to (2.9) QG λ, tv m + ϕ(λ, tv m ) = 0.

As G(λ, 0) = 0, ∀λ it follows

(2.10) ϕ(λ, 0) = 0, ∀λ ∈ V(λ ± m ), where V(λ ± m ) is a small neighborhood of λ ± m .
Using Taylor expansion at order 1 on the variable t the V-states equation (2.9) is equivalent to the reduced bifurcation equation,

(2.11) F 2 (λ, t) ˆ1 0 Q∂ f G(λ, stv m + ϕ(λ, stv m ))(v m + ∂ g ϕ(λ, stv m )v m )ds = 0.
In addition, using (2.6) we remark that

F 2 (λ ± m , 0) = 0.

Taylor expansion

The goal of this section is to compute Taylor expansion of F 2 at the second order. This quadratic form will answer about the local structure of the solutions of the equation (2.11).

3.1. General formulae. The aim of this paragraph is to provide some general results concerning the first and second derivatives of ϕ and F 2 . First notice that the transversality assumption required for Crandall-Rabinowitz theorem is given by

∂ λ F 2 (λ ± m , 0) = Q∂ λ ∂ f G(λ ± m , 0)v m = 0.
Thus applying the implicit function theorem to F 2 , we get in a small neighborhood of (λ ± m , 0) a unique curve of solutions t ∈ [-ε 0 , ε 0 ] → (λ(t), t) . We shall prove that for b close enough to b * m this curve a smooth Jordan curve and for this aim we need to know the full structure of the quadratic form associated to F 2 . The following identities were proved in [18, p 13-14].

(3.1) ∂ λ ϕ(λ ± m , 0) = ∂ g ϕ(λ ± m , 0)v m = 0. and (3.2) ∂ λλ ϕ(λ ± m , 0) = 0.
Now, we give the expressions of the coefficients of the quadratic form associated to F 2 around the point (λ ± m , 0). For the proof see [18, Proposition 2]. Proposition 3.1. The following assertions hold true.

(1) First derivatives:

∂ λ F 2 (λ ± m , 0) = Q∂ λ ∂ f G(λ ± m , 0)(v m ) and ∂ t F 2 (λ ± m , 0) = 1 2 Q∂ f f G(λ ± m , 0)[v m , v m ] = 1 2 
d 2 dt 2 [QG(λ ± m , tv m )] |t=0 .
(

) Expression of ∂ λλ F 2 (λ ± m , 0): ∂ λλ F 2 (, 0) = -2Q∂ λ ∂ f G(λ ± m , 0)[∂ f G(λ ± m , 0)] -1 (Id -Q)∂ λ ∂ f G(λ ± m , 0)v m (3) Expression of ∂ tt F 2 (λ ± m , 0): ∂ tt F 2 (λ ± m , 0) = 1 2 
d 3 dt 3 [QG(λ ± m , tv m )] |t=0 + Q∂ f f G(λ ± m , 0)[v m , v m ] with v m d 2 dt 2 ϕ(λ ± m , tv m ) t=0 = -[∂ f G(λ ± m , 0)] -1 d 2 dt 2 [(Id -Q)G(λ ± m , tv m )] |t=0 and Q∂ f f G(λ ± m , 0)[v m , v m ] = ∂ t ∂ s [QG(λ ± m , tv m + s v m )] |t=0,s=0 . (4) Expression of ∂ λ ∂ t F 2 (λ ± m , 0): ∂ λ ∂ t F 2 (λ ± m , 0) = 1 2 Q∂ λ ∂ f f G(λ ± m , 0)[v m , v m ] + 1 2 Q∂ λ ∂ f G(λ ± m , 0)( v m ) + Q∂ f f G(λ ± m , 0)[v m , ∂ λ ∂ g ϕ(λ ± m , 0)v m ] with ∂ λ ∂ g ϕ(λ ± m , 0)v m = -[∂ f G(λ ± m , 0)] -1 (Id -Q)∂ λ ∂ f G(λ ± m , 0)v m 3.2. 3 
Explicit formula for the quadratic form. In this section we want to explicit the terms in the Taylor expansion of F 2 at the second order. The main result reads as follows. 

(1) Expression of ∂ t F 2 (λ ± m , 0). ∂ t F 2 (λ ± m , 0) = 0. (2) Expression of ∂ λ F 2 (λ ± m , 0). ∂ λ F 2 (λ ± m , 0) = m[(mλ ± m -m + 1) 2 -b 2m ] b m-1 [(mλ ± m -m + 1) 2 + b 2m ] 1 2 W m . (3) Expression of ∂ λλ F 2 (λ ± m , 0). ∂ λλ F 2 (λ ± m , 0) = 4m 2 b 1-m (mλ ± m -m + 1) 3 [(mλ ± m -m + 1) 2 + b 2m ] 3 2 W m . ( 4 
) Expression of ∂ tt F 2 (λ ± m , 0). ∂ tt F 2 (λ ± m , 0) = -m(m -1)b 3-3m (b 2m-2 -(mλ ± m -m + 1) 2 ) 2 ([mλ ± m -m + 1] 2 + b 2m ) 1 2 W m + β m K m W m with K m b 1-m (mλ ± m -1)(mλ ± m -m + 1) 2 + (1 -2m)(mλ ± m -m + 1)b m+1 + mb 3m-1 [(mλ ± m -m + 1) 2 + b 2m ] 1 2
× (2λ ± m m -2m + 1) and

β m = - 2bm b m -b 2-m (mλ ± m -m + 1) 2 det(M 2m (λ ± m ))
.

(

) Expression of ∂ λ ∂ t F 2 (λ ± m , 0). ∂ λ ∂ t F 2 (λ ± m , 0) = 0. Remark 3.3. 5 
In [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF], all the preceding quantities were computed in the limit case b = b * m and our expressions lead to the same thing when we take b → b * m . This can be checked using the identity

mλ ± m -m + 1 = -b 2m + ∆ m ± ∆ m and when b = b * m the discriminant ∆ m vanishes.
In what follows we shall establish the formulae of Proposition 3.2. As we can observe from Proposition 3.1 that most of them are based on the quantities

d k dt k [G(λ ± m , tv m )] |t=0 for k ∈ {2, 3}.
We introduce some notations which will be very useful to obtain explicit expressions. We begin with:

Φ j (t, w) = b j-1 w + tv j,m w m-1 wich leads to G j (λ ± m , tv m ) = Im [(1 -λ ± m )Φ j (t, w) + I(Φ j (t, w))]w b j-1 + t(1 -m)v j,m w m
with:

I(Φ j (t, w)) = I 1 (Φ j (t, w)) -I 2 (Φ j (t, w))
where:

I i (Φ j (t, w)) = T Φ j (t, w) -Φ i (t, τ ) Φ j (t, w) -Φ i (t, τ ) Φ i (t, τ )dτ. 3.2.1. Computation of ∂ t F 2 (λ ± m , 0
). We shall sketch the proof because most of the computations were done in [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF]. Note that

∂ t F 2 (λ ± m , 0) = 1 2 Q∂ f f G(λ ± m , 0)[v m , v m ] = 1 2 Q d 2 dt 2 [G j (λ ± m , tv m )] |t=0 .
To lighten the notations we introduce

I i (Φ j (t, w)) = T A + tB A + tB (b i-1 + tC)dτ with A = b j-1 w -b i-1 τ , B = v j,m w m-1 -v i,m τ m-1 and C = v i,m (1 -m)τ m .
We can easily find that

d 2 dt 2 [G j (λ ± m , tv m )] |t=0 = Im b j-1 w d 2 dt 2 I(Φ j (t, w)) |t=0 + 2(1 -λ ± m )(1 -m)v 2 j,m +2(1 -m)v j,m d dt I(Φ j (t, w)) |t=0 w m-1 = Im b j-1 w d 2 dt 2 I(Φ j (t, w)) |t=0 + 2(1 -m)v j,m d dt I(Φ j (t, w)) |t=0 w m-1 .
Recall from [18, p. 823] that

d dt [I i (Φ j (t, w))] |t=0 = A A 2 (AC -b i-1 B)dτ + b i-1 B A dτ.
Moreover, for any i, j ∈ {1, 2}, there exist real numbers µ i,j , γ i,j such that

B A dτ = µ i,j w m-1 and A A 2 (AC -b i-1 B)dτ = γ i,j w m+1 . Hence, d dt [I i (Φ j (t, w))] |t=0 = γ i,j w m+1 + b i-1 µ i,j w m-1 with γ i,j v i,m (1 -m) b j-1 -b i-1 τ b j-1 -b i-1 τ τ m dτ -b i-1 b j-1 -b i-1 τ (b j-1 -b i-1 τ ) 2 (v j,m -v i,m τ m-1 )dτ.
We also get from (39) of [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF], γ 1,2 = 0.

For γ 2,1 by writing

γ 2,1 = v 2,m (1 -m) 1 -bτ 1 -bτ τ m dτ -b 1 -bτ (1 -bτ ) 2 (v 1,m -v 2,m τ m-1 )dτ.
combined with the following identities: for any m ∈ N *

(3.3) T τ m (1 -bτ ) dτ = T τ m-1 τ -b dτ = b m-1 and (3.4) T τ m (1 -bτ ) 2 dτ = T τ m (τ -b) 2 dτ = mb m-1 .
We obtain

γ 2,1 = v 2,m (1 -m)[b m-1 -b m+1 ] + bv 2,m [(m -1)b m-2 -mb m ] + b 2 v 1,m = -v 2,m b m+1 + b 2 v 1,m .
For γ i,i we recall that

γ i,i = v i,m (1 -m) 1 -τ 1 -τ τ m dτ -v i,m 1 -τ (1 -τ ) 2 (1 -τ m-1 )dτ.
Thus using the residue theorem at ∞ we deduce,

γ i,i = 0.
Finally we get, 

(3.5) d dt [I(Φ 1 (t, w))] |t=0 = (µ 1,1 -bµ 2,1 )w m-1 + [v 2,m b m+1 -b 2 v 1,
[I i (Φ j (t, w))] |t=0 = 2 T [AB -AB] A 3 [AC -b i-1 B]dτ. Moreover T B A 2 [AC -b i-1 B]dτ = µ i,j w and - T AB A 3 [AC -b i-1 B]dτ = η i,j w 2m+1 .
Then we have

d 2 dt 2 [I i (Φ j (t, w))] |t=0 = 2 µ i,j w + 2η i,j w 2m+1 with µ i,j = v i,m (1 -m) T (v j,m -v i,m τ m-1 ) (b j-1 -b i-1 τ ) τ m dτ + T (v j,m -v i,m τ m-1 ) (b j-1 -b i-1 τ ) 2 b i-1 [v i,m τ m-1 -v j,m ]dτ and η i,j = T (b j-1 -b i-1 τ )(v j,m -v i,m τ m-1 ) (b j-1 -b i-1 τ ) 2 v i,m (m -1)τ m dτ + b i-1 T (b j-1 -b i-1 τ )(v j,m -v i,m τ m-1 ) 2 (b j-1 -b i-1 τ ) 3 dτ.
For the diagonal terms we get

µ i,i = v 2 i,m b i-1 (1 -m) T (1 -τ m-1 ) (1 -τ ) τ m dτ + v 2 i,m b i-1 T (1 -τ m-1 ) (1 -τ ) 2 [τ m-1 -1]dτ = (m -1) v 2 i,m b i-1
As to the term µ 1,2 , we may write

µ 1,2 = v 1,m (1 -m) T (v 2,m -v 1,m τ m-1 ) (b -τ ) τ m dτ + v 1,m T (v 2,m -v 1,m τ m-1 ) (b -τ ) 2 τ m-1 dτ -v 2,m T (v 2,m -v 1,m τ m-1 ) (b -τ ) 2 dτ.
The first and the second integrals vanish using the residue theorem at ∞. Thus we find

µ 1,2 = (m -1)v 2,m v 1,m b m-2 .
Concerning the term µ 2,1 given by

µ 2,1 = v 2,m (1 -m) T (v 1,m -v 2,m τ m-1 ) (1 -bτ ) τ m dτ + T (v 1,m -v 2,m τ m-1 ) (1 -bτ ) 2 b[v 2,m τ m-1 -v 1,m ]dτ
it can be computed using (3.3) and (3.4)

µ 2,1 = v 2,m (1 -m)[v 1,m b m-1 -v 2,m ] + bv 2,m v 1,m (m -1)b m-2 + b T (-v 2 2,m -v 2 1,m + v 2,m v 1,m τ m-1 ) (1 -bτ ) 2 dτ.
The last term vanishes thanks to the residue theorem. Finally we have:

µ 2,1 = v 2 2,m (m -1
). Now we shall move to the calculation of η i,j for i, j ∈ {1, 2}. We start with the term,

η 1,2 = v 1,m (m -1) T (b -τ )(v 2,m -v 1,m τ m-1 ) (b -τ ) 2 τ m dτ + T (b -τ )(v 2,m -v 1,m τ m-1 ) 2 (b -τ ) 3 dτ.
Using the residue theorem at ∞ we get η 1,2 = 0. Now we focus on the term η 2,1 given by

η 2,1 = v 2,m (m -1) T (1 -bτ )(v 1,m -v 2,m τ m-1 ) (1 -bτ ) 2 τ m dτ + b T (1 -bτ )(v 1,m -v 2,m τ m-1 ) 2 (1 -bτ ) 3 dτ.
According to (3.3) and (3.4) we get

T (1 -bτ )(v 1,m -v 2,m τ m-1 ) (1 -bτ ) 2 τ m dτ = v 1,m mb m-1 -(m + 1)b m+1 + v 2,m 2mb 2m -(2m -1)b 2m-2 .
Applying the residue theorem, we can easily prove for any m ∈ N * , (3.7)

T τ m (1 -bτ ) 3 dτ = T τ m+1 (τ -b) 3 dτ = m(m + 1) 2 b m-1 .
Thus,

T (1 -bτ )(v 1,m -v 2,m τ m-1 ) 2 (1 -bτ ) 3 dτ = v 1,m v 2,m m (m + 1)b m -(m -1)b m-2 -bv 2 1,m + v 2 2,m (2m -1) (m -1)b 2m-3 -mb 2m-1 . It follows that η 2,1 = -v 2 2,m mb 2m -b 2 v 2 1,m + v 1,m v 2,m (m + 1)b m+1 .
For the diagonal term we write

η i,i = v 2 i,m b i-1 (m -1) T (1 -τ )(1 -τ m-1 ) (1 -τ ) 2 τ m dτ + v 2 i,m b i-1 T (1 -τ )(1 -τ m-1 ) 2 (1 -τ ) 3 dτ.
By the residue theorem we get η i,i = 0. Putting together the preceding estimates yields

d 2 dt 2 [I(Φ 1 (t, w))] |t=0 = 2 v 2 2,m mb 2m + b 2 v 2 1,m -v 1,m v 2,m (m + 1)b m+1 w 2m+1 + 2(m -1) v 2 1,m -v 2 2,m w and d 2 dt 2 [I(Φ 2 (t, w))] |t=0 = 2(m -1)v 2,m v 1,m b m-2 - v 2,m b w.
Combining these estimates with (3.5) and (3.6) we find successively,

d 2 dt 2 [G 1 (λ ± m , tv m )] |t=0 = Im w d 2 dt 2 I(Φ 1 (t, w)) |t=0 + 2(1 -m)v 1,m d dt I(Φ 1 (t, w)) |t=0 w m-1 = 2m v 2,m b m -bv 1,m 2 e 2m and d 2 dt 2 [G 2 (λ ± m , tv m )] |t=0 = Im bw d 2 dt 2 I(Φ 2 (t, w)) |t=0 + 2(1 -m)v 2,m d dt I(Φ 2 (t, w)) |t=0 w m-1 = 0.
This can be written in the form,

d 2 dt 2 [G(λ ± m , tv m )] |t=0 = 2m(v 2,m b m -bv 1,m ) 2 0 e 2m .
From the structure of the projector Q we get

∂ t F 2 (λ ± m , 0) = 1 2 Q∂ f f G(λ ± m , 0)[v m , v m ] = 1 2 Q d 2 dt 2 [G(λ ± m , tv m )] |t=0 = 0.
Hence the first point of the Proposition 3.2 is proved.

3.2.2. Computation of ∂ λ F 2 (λ ± m , 0). From the explicit expression of ∂ f G(λ ± m , 0) it is easy to verify that (3.8) ∂ λ ∂ f G(λ ± m , 0)(v m ) = m v 1,m bv 2,m e m .
Thus we have,

∂ λ F 2 (λ ± m , 0) = Q∂ λ ∂ f G(λ ± m , 0)(v m ) = m v 1,m bv 2,m , W m W m .
Straightforward computations lead to

(3.9) ∂ λ F 2 (λ ± m , 0) = m[(mλ ± m -m + 1) 2 -b 2m ] b m-1 [(mλ ± m -m + 1) 2 + b 2m ] mλ ± m -m + 1 -b m e m .
Thus the second point of the Proposition 3.2 follows.

3.2.3.

Computation of ∂ λλ F 2 (λ ± m , 0). Using (3.8) and(3.9) we obtain

(Id -Q)∂ λ ∂ f G(λ ± m , 0)v m = 2mb(mλ ± m -m + 1) (mλ ± m -m + 1) 2 + b 2m b m mλ ± m -m + 1 e m = κ b m mλ ± m -m + 1 e m with κ 2mb(mλ ± m -m + 1) (mλ ± m -m + 1) 2 + b 2m • Then by (2.

8) and the expression of

∂ λ ∂ g ϕ(λ ± m , 0) detailed in Proposition 3.1 one gets ∂ λ ∂ g ϕ(λ ± m , 0) = -[∂ f G(λ ± m , 0)] -1 (Id -Q)∂ λ ∂ f G(λ ± m , 0)v m = -κ[∂ f G(λ ± m , 0)] -1 b m mλ ± m -m + 1 e m = 2mb 1-m (mλ ± m -m + 1) 2 mλ ± m -m + 1 2 + b 2m 1 0 w m-1 . (3.10)
Consequently,

∂ λ ∂ f G(λ ± m , 0)[∂ λ ∂ g ϕ(λ ± m , 0)v m ] = 2m 2 (mλ ± m -m + 1) 2 (mλ ± m -m + 1) 2 + b 2m 1 0 e m .
Straightforward computations lead to

Q∂ λ ∂ f G(λ ± m , 0)[∂ λ ∂ g ϕ(λ ± m , 0)v m ] = 2m 2 b 1-m (mλ ± m -m + 1) 3 [(mλ ± m -m + 1) 2 + b 2m ] 2 mλ ± m -m + 1 -b m e m .
Finally we obtain the following expression

∂ λλ F 2 (λ ± m , 0) = 4m 2 b 1-m (mλ ± m -m + 1) 3 [(mλ ± m -m + 1) 2 + b 2m ] 3 2 W m . 3.2.4. Computation of ∂ tt F 2 (λ ± m , 0
). We mention that most of the computations were done in [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF] and so we shall just outline the basic steps. Looking to the formula given in Proposition 3.1 we need first to compute

d 3 dt 3 [G(λ ± m , tv m )] |t=0 .
From the identity (60) of [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF] we recall that

d 3 dt 3 G j (λ ± m , tv m ) |t=0 = Im b j-1 w d 3 dt 3 [I(Φ j (t, w))] |t=0 + 3(1 -m)v j,m w m-1 [ d 2 dt 2 (I(Φ j (t, w)))] |t=0 .
It is also shown in [18, p. 835] that

d 3 dt 3 [I i (Φ j (t, w))] |t=0 = -6 T [BA -AB] A 4 B[AC -b i-1 B]dτ.
One can find real numbers η i,j such that 1 6

d 3 dt 3 [I i (Φ j (t, w))] |t=0 = (m -1)J i,j w m+1 + b i-1 K i,j w m+1 + η i,j w 3m+1 where J i,j = v i,m T (v j,m -v i,m τ m-1 )(v j,m -v i,m τ m-1 ) (b j-1 -b i-1 τ ) 2 τ m dτ and K i,j = T (v j,m -v i,m τ m-1 ) 2 (v j,m -v i,m τ m-1 ) (b j-1 -b i-1 τ ) 3 dτ.
To start, we compute J i,j . The same proof of (61) of [START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF] gives

J 1,2 = 0.
For J 2,1 we use (3.4),

J 2,1 = v 2,m T (v 1,m -v 2,m τ m-1 )(v 1,m -v 2,m τ m-1 ) (1 -bτ ) 2 τ m dτ = v 2,m [v 2 1,m + v 2 2,m ]mb m-1 + v 1,m v 2 2,m [(1 -2m)b 2m-2 -1].
As to J i,i we easily get

J i,i = v 3 i,m b 2(i-1) T (1 -τ m-1 )(1 -τ m-1 ) (1 -τ ) 2 τ m dτ = 0.
For K 1,2 we write

K 1,2 = T v 3 2,m + v 2 1,m v 2,m τ 2m-2 -2v 2 2,m v 1,m τ m-1 -v 3 1,m τ m-1 + 2v 2 1,m v 2,m (b -τ ) 3 dτ -v 1,m v 2 2,m T τ m-1 (b -τ ) 3 dτ.
Using the residue theorem at ∞, we can see that all the terms vanish except the last one that can computed also with the residue theorem.

K 1,2 = v 1,m v 2 2,m (m -1)(m -2) 2 b m-3 .
For K 2,1 given by

K 2,1 = T v 3 1,m -v 2 1,m v 2,m τ m-1 + 2v 1,m v 2 2,m + v 1,m v 2 2,m τ 2m-2 -v 3 2,m τ m-1 -2v 2 1,m v 2,m τ m-1 (1 -bτ ) 3 dτ.
we may use the residue theorem combined with (3.7)

K 2,1 = T v 1,m v 2 2,m τ 2m-2 -v 3 2,m τ m-1 -2v 2 1,m v 2,m τ m-1 (1 -bτ ) 3 dτ = (2v 2 1,m + v 2 2,m )v 2,m m(1 -m) 2 b m-2 + v 1,m v 2 2,m (m -1)(2m -1)b 2m-3 .
As to the diagonal terms K i,i we use residue theorem leading to

K i,i = v 3 i,m b 3(i-1) T (1 -τ m-1 ) 2 (1 -τ m-1 ) (1 -τ ) 3 dτ = v 3 i,m b 3(i-1)
(m -1)(m -2) 2 Summing up we find 1 6

d 3 dt 3 [I(Φ 1 (t, w))] |t=0 = (m -1) v 2 2,m v 1,m -v 3 2,m m 2 b m-1 + v 3 1,m m -2 2 w m+1 + ( η 1,1 -η 2,1 )w 3m+1
and 1 6

d 3 dt 3 [I(Φ 2 (t, w))] |t=0 = v 2 2,m (m -1)(m -2) 2 v 1,m b m-3 - v 2,m b 2 w m+1 + ( η 1,2 -η 2,2 )w 3m+1 .
This leads to

d 3 dt 3 [G 1 (λ ± m , tv m )] |t=0 = Im 6(m -1) v 2 2,m v 1,m -v 3 2,m m 2 b m-1 + v 3 1,m m -2 2 w m . + 6( η 1,1 -η 2,1 )w 3m + 6(1 -m)v 1,m (m -1) v 2 1,m -v 2 2,m w m + 6(1 -m)v 1,m v 2 2,m mb 2m + b 2 v 2 1,m -v 1,m v 2,m (m + 1)b m+1 w 3m = 3m(m -1) 2v 2 2,m v 1,m -v 3 2,m b m-1 -v 3 1,m e m + γ 1 e 3m and d 3 dt 3 [G 2 (λ ± m , 0)] |t=0 = Im 3v 2 2,m (m -1)(m -2) v 1,m b m-2 - v 2,m b w m + b( η 1,2 -η 2,2 )w 3m +6(1 -m)v 2 2,m (m -1) v 1,m b m-2 - v 2,m b w m = 3v 2 2,m (m -1)m v 2,m b -v 1,m b m-2 e m + γ 2 e 3m
with γ j ∈ R. In summary,

d 3 dt 3 [G(λ ± m , 0)] |t=0 = 3m(m -1) 2v 2 2,m v 1,m -v 3 2,m b m-1 -v 3 1,m v 2 2,m v 2,m b -v 1,m b m-2 e m + γ 1 γ 2 e 3m .
Using the structure of the projector Q we deduce after algebraic cancellations 1 3

d 3 dt 3 [QG(λ ± m , tv m )] |t=0 = -m(m -1)b 3-3m (b 2m-2 -(mλ ± m -m + 1) 2 ) 2 ([mλ ± m -m + 1] 2 + b 2m ) 1 2 W m .
Now we shall compute the term,

Q∂ f f G(λ ± m , 0)[v m , v m ] = Q∂ t ∂ s [G(λ ± m , tv m + s v m )] |t=0,s=0 .
To find an expression of v m , we recall that

d 2 dt 2 [G(λ ± m , tv m )] |t=0 = α 0 e 2m with α = 2m(v 2,m b m -bv 1,m ) 2 .
Thus,

v m = -[∂ f G(λ ± m , 0)] -1 α 0 e 2m (3.11) = -M -1 2m α 0 w 2m-1 = v 1,m v 2,m w 2m-1 with v 1,m = - b α(2mλ ± m -2m + 1) det(M 2m (λ ± m )) and v 2,m = - b 2m α det(M 2m (λ ± m )) • Finally we can write, v m = β m ṽm with (3.12) β m = - b α det(M 2m (λ ± m )) ṽm = 2mλ ± m -2m + 1 b 2m-1 w 2m-1 β 1 β 2 w 2m-1 .
It follows that

Q∂ t ∂ s [G(λ ± m , tv m + s v m )] |t=0,s=0 = βm Q∂ t ∂ s [G(λ ± m , tv m + sṽ m )] |t=0,s=0 .
We shall introduce the functions

ϕ j (t, s, w) = b j-1 w + tv j,m w 1-m + sβ j w 1-2m
and hence

G j (t, s, w) G j (λ, tv m + sṽ m ) = Im (1 -λ ± m )ϕ j (t, s, w) + I(ϕ j (t, s, w)) w∂ w ϕ j (t, s, w) .
The following equality can be easily check :

∂ t ∂ s [G j (t, s, w)] |t=0,s=0 = Im (1 -λ ± m )β j v j,m (1 -m)w m + (1 -2m)w m + Im wb j-1 d 2 dtds [I(ϕ j (t, s, w))] |t=0,s=0 + Im β j (1 -2m)∂ t [I(ϕ j (t, s, w))] |t=0,s=0 w 2m-1 + Im (1 -m)v j,m w m-1 ∂ s [I(ϕ j (t, s, w))] |t=0,s=0 .
We write

I i (ϕ j (t, s, w)) = T ϕ j (t, s, w) -ϕ i (t, s, τ ) ϕ j (t, s, w) -ϕ i (t, s, τ ) b i-1 + t(1 -m)v i,m τ m + sβ i (1 -2m)τ 2m dτ = T A + tB + sC A + tB + sC b i-1 + t D + s E dτ with A = b j-1 w -b i-1 τ , B = v j,m w m-1 -v i,m τ m-1 , C = β j w 2m-1 -β i τ 2m-1 D = (1 -m)v i,m τ m and E = (1 -2m)β i τ 2m .
Straightforward computations lead to

∂ t [I i (ϕ j (t, s, w)] |t=0,s=0 = b i-1 T AB -AB A 2 dτ + T AD A dτ = Ji,j w m-1 + θ i,j w m+1 with θ i,j ∈ R and Ji,j = b i-1 T (v j,m -v i,m τ m-1 ) (b j-1 -b i-1 τ ) dτ.
For the diagonal tens one has

Ji,i = v i,m T (1 -τ m-1 ) (1 -τ ) dτ = 0
On the other hand

J1,2 = T (v 2,m -v 1,m τ m-1 ) (b -τ ) dτ = v 1,m b m-1 -v 2,m .
Using again the residue theorem it is easy to see that,

J2,1 = b T (v 1,m -v 2,m τ m-1 ) (1 -bτ ) dτ = 0.
Summing up we obtain,

∂ t [I(ϕ 1 (t, s, w))] |t=0,s=0 = (θ 1,1 -θ 2,1 )w m+1 and ∂ t [I(ϕ 2 (t, s, w))] |t=0,s=0 = (θ 1,2 -θ 2,2 )w m+1 + (v 1,m b m-1 -v 2,m )w m-1 .
For the derivative with respect to s we may write

∂ s [I i (ϕ j (t, s, w))] |t=0,s=0 = b i-1 T AC -AC A 2 dτ + T AE A dτ = J i,j w 2m-1 + θ i,j w 2m+1
where

J i,j = b i-1 T (β j -β i τ 2m-1 ) (b j-1 -b i-1 τ ) dτ and θ i,j = T (b j-1 -b i-1 τ ) (b j-1 -b i-1 τ ) (1 -2m)β i τ 2m dτ -b i-1 T (b j-1 -b i-1 τ )(β j -β i τ 2m-1 ) (b j-1 -b i-1 τ ) 2 dτ.
It is easy to check that θ i,j ∈ R, ∀i, j ∈ {1, 2}. Now, we get

J i,i = β i T (1 -τ 2m-1 ) (1 -τ ) dτ = 0.
Using the residue theorem we find

J 1,2 = T (β 2 -β 1 τ 2m-1 ) (b -τ ) dτ = -β 2 + β 1 b 2m-1 .
and

J 2,1 = b T (β 1 -β 2 τ 2m-1 ) (1 -bτ ) dτ = 0.
To summarize,

∂ s [I(ϕ 1 (t, s, w))] |t=0,s=0 = ( θ 1,1 -θ 2,1 )w 2m+1 and ∂ s [I(ϕ 2 (t, s, w))] |t=0,s=0 = (β 1 b 2m-1 -β 2 )w 2m-1 + ( θ 1,2 -θ 2,2 )w 2m+1 .
Now we shall move to the second derivative with respect to t and s,

d 2 dsdt [I i (ϕ j (t, s, w))] |t=0,s=0 = -b i-1 T BC A 2 dτ + T BE A dτ -b i-1 T CB A 2 dτ + T CD A dτ + 2b i-1 T BCA A 3 dτ - T BEA A 2 dτ - T DCA A 2 dτ. By homogeneity, there exist ε i,j ∈ R such that, d 2 dsdt [I i (ϕ j (t, s, w)]) |t=0,s=0 = ε i,j w 3m+1 -b i-1 I i,j 1 w m-1 -b i-1 I i,j 2 w m+1 + I i,j 3 w m+1 + I i,j 4 w m-1 with I i,j 1 = T (v j,m -v i,m τ m-1 )(β j -β i τ 2m-1 ) (b j-1 -b i-1 τ ) 2 dτ, I i,j 2 = T (v j,m -v i,m τ m-1 )(β j -β i τ 2m-1 ) (b j-1 -b i-1 τ ) 2 dτ, I i,j 3 = (1 -2m)β i T (v j,m -v i,m τ m-1 ) (b j-1 -b i-1 τ ) τ 2m dτ and 
I i,j 4 = (1 -m)v i,m T (β j -β i τ 2m-1 ) (b j-1 -b i-1 τ ) τ m dτ.
We intend to compute all these terms. For the diagonal terms we write

I i,i 1 = v i,m β i b 2(i-1) T (1 -τ m-1 )(1 -τ 2m-1 ) (1 -τ ) 2 dτ = (1 -m) v i,m β i b 2(i-1) •
As to the term I 1,2 1 we have

I 1,2 1 = T v 2,m β 2 (b -τ ) 2 dτ - T v 1,m β 2 τ m-1 (b -τ ) 2 dτ - T v 2,m β 1 τ 2m-1 (b -τ ) 2 dτ + T v 1,m β 1 τ m ) (b -τ ) 2 dτ.
By the residue theorem we get

I 1,2 1 = v 2,m β 1 (1 -2m)b 2m-2 + mβ 1 v 1,m b m-1 .
Now we move to I 2,1 1 . Residue theorem combined with (3.4) implies 1) .

I 2,1 1 = T v 1,m β 1 (1 -bτ ) 2 dτ + T v 2,m β 2 τ m (1 -bτ ) 2 dτ - T v 1,m β 2 τ 2m-1 (1 -bτ ) 2 dτ - T v 2,m β 1 τ m-1 (1 -bτ ) 2 dτ = -v 2,m β 1 (m -1)b m-2 .

Moreover,

I i,i 2 = v i,m β i b 2(i-1) T (1 -τ m-1 )(1 -τ 2m-1 ) (1 -τ ) 2 dτ = (1 -m) v i,m β i b 2(i-
For I i,j 2 we use the change of variable τ → τ

I i,j 2 = T (v j,m -v i,m τ m-1 )(β j -β i τ 2m-1 ) (b j-1 -b i-1 τ ) 2 dτ = T (v j,m -v i,m τ m-1 )(β j -β i τ 2m-1 ) (b i-1 -b j-1 τ ) 2 dτ.
Therefore

I 1,2 2 = T (v 2,m -v 1,m τ m-1 )(β 2 -β 1 τ 2m-1 ) (1 -bτ ) 2 dτ.
Similarly to I 2,1 1 we find

I 1,2 2 = -v 1,m β 2 (m -1)b m-2 .
For the term I 2,1 2 we write

I 2,1 2 = T (v 1,m -v 2,m τ m-1 )(β 1 -β 2 τ 2m-1 ) (b -τ ) 2 dτ.
The same computations for I 1,2 1 yield

I 2,1 2 = v 1,m β 2 (1 -2m)b 2m-2 + mβ 2 v 2,m b m-1
. For the diagonal term I i,i 3 we easily get

I i,i 3 = (1 -2m) v i,m β i b i-1 T (1 -τ m-1 ) (1 -τ ) τ 2m dτ = 0.
Moreover,

I 1,2 3 = (1 -2m)β i T (v 2,m -v 1,m τ m-1 ) (b -τ ) τ 2m dτ = 0.
On the other hand, using (3.3) we find

I 2,1 3 = (1 -2m)β 2 T (v 1,m -v 2,m τ m-1 ) (1 -bτ ) τ 2m dτ = (1 -2m)β 2 v 1,m b 2m-1 -v 2,m b m .
Now we move to the last terms I i,j 4 . Concerning the diagonal terms, we may write

I i,i 4 = (1 -m) v i,m β i b i-1 T (1 -τ 2m-1 ) (1 -τ ) τ m dτ = (1 -m) v i,m β i b i-1 .
For I 1,2 4 we obtain according to the residue theorem

I 1,2 4 = (1 -m)v 1,m T β 2 τ m (b -τ ) dτ -(1 -m)v 1,m T β 1 τ m-1 (b -τ ) dτ = (1 -m)v 1,m β 1 b m-1 .
For the last term, we use (3.3) in order to get

I 2,1 4 = (1 -m)v 2,m T (β 1 -β 2 τ 2m-1 ) (1 -bτ ) τ m dτ = (1 -m)v 2,m β 1 b m-1 .
Putting together the preceding identities we deduce

d 2 dsdt [I(ϕ 1 (t, s, w))] |t=0,s=0 = (ε 1,1 -ε 2,1 )w 3m+1 + (m -1) v 1,m β 1 -β 2 v 2,m b m w m+1 and d 2 dsdt [I(ϕ 2 (t, s, w))] |t=0,s=0 = (ε 1,2 -ε 2,2 )w 3m+1 + (1 -2m)β 1 v 1,m b m-1 -v 2,m b 2m-2 w m-1 + (m -1)β 2 v 1,m b m-2 - v 2m b w m+1 .
Finally we get,

d 2 dtds [G 1 (t, s, w)] |t=0,s=0 = Im (ε 1,1 -ε 2,1 )w 3m + (m -1)[v 1,m β 1 -β 2 v 2,m b m ]w m + β 1 (1 -2m)(θ 1,1 -θ 2,1 )w 3m + Im (λ ± m -1)mβ 1 v 1,m w m ] + (1 -m)v 1,m ( θ 1,1 -θ 2,1 )w 3m = (mλ ± m -1)v 1,m β 1 + (1 -m)β 2 v 2,m b m e m + γ1 e 3m = (mλ ± m -1)(mλ ± m -m + 1)(2mλ ± m -2m + 1)b 1-m + (1 -m)b 3m-1 e m + γ1 e 3m and d 2 dtds [G 2 (t, s, w)] |t=0,s=0 = Im b(ε 1,2 -ε 2,2 )w 3m + (1 -2m)β 1 [v 1,m b m -v 2,m b 2m-1 ]w m + Im (m -1)β 2 [v 1,m b m-1 -v 2m ]w m + β 2 (1 -2m)(θ 1,2 -θ 2,2 )w 3m + (1 -λ ± m )β 2 v 2,m [(1 -m)w m + (1 -2m)w m ] + (1 -m)v 2,m (β 1 b 2m-1 -β 2 )w m + Im β 2 (1 -2m)(v 1,m b m-1 -v 2,m )w m + (1 -m)v 2,m ( θ 1,2 -θ 2,2 )w 3m = [(mλ ± m -m + 1)β 2 -mβ 1 b 2m-1 ]v 2,m + v 1,m b m-1 [bβ 1 (2m -1) -mβ 2 ] e m + γ2 e 3m = (1 -m)(mλ ± m -m + 1) -m(2λ ± m m -2m + 1) b 2m-1 + (mλ ± m -m + 1)b(2mλ ± m -2m + 1)(2m -1) e m + γ2 e 3m .
Using the definition of the projector Q, we deduce after some computations

Q d 2 dtds G(t, s, w) |t=0,s=0 = K m W m with K m (2λ ± m m-2m+1) b 1-m (mλ ± m -1)(mλ ± m -m + 1) 2 + (1 -2m)(mλ ± m -m + 1)b m+1 + mb 3m-1 [(mλ ± m -m + 1) 2 + b 2m ] 1 2

Proof of the main theorem

This section is devoted to the proof of Theorem 1.2. To begin, we choose a small neighborhood of (λ + m , 0) in the strong topology of R × X m such that the equation

F 1 (λ, tv m , k) = 0, k ∈ X m
admits locally a unique surface of solutions parametrized by (λ, t) ∈ (λ + m -0 , λ + m + 0 ) × (-0 , 0 ) → k = ϕ(λ, tv m ) ∈ X m , with 0 > 0 and ϕ being a C 1 function and actually it is of class C k for any k ∈ N. This follows from the fact that the functionals defining the V-states are better than C 1 and it could be proved that they are in fact of class C k . Note also that ϕ(λ + m , 0) = 0. For more details we refer to the subsection 2.3. We recall from that subsection that the V-states equation is equivalent to, 

4.2) E b (λ, t) ∈ (λ + m -ε, λ + m + ε) × (-ε, ε), F 2 (λ, t) = 0 is a C 1 -
Jordan curve in the complex plane. Taylor expansion of F 2 around the point (λ + m , 0) at the order two is given by, . Thus taking b close enough to b * m one can guarantee that this ellipse is contained in the box (-0 , 0 ) 2 for which the solutions of the equation F 1 still parametrized by ϕ. By small perturbation we expect to get a curve of solutions to F 2 which is a small perturbation of the ellipse. To prove rigorously this expectation we start with the change of variable,

F 2 (λ, t) = ∂ λ F 2 (λ + m , 0)(λ -λ + m ) + ∂ t F 2 (λ + m , 0)t + 1 2 ∂ λλ F 2 (λ + m , 0)(λ -λ + m ) 2 + 1 2 ∂ tt F 2 (λ + m , 0)t 2 + ((λ -λ + m ) 2 + t 2 ) (λ, t) where lim (λ,t)→(λ + m ,0) 4c m (b) + (s -x 0 (b)) 2 + t 2 ψ(s, t) = 0
t = x 0 (b) c m (b) d m (b)
x and s = x 0 (b)y.

Consequently, the equation (4.3) becomes

(4.4) G(b, x, y) x 2 + y 2 -1 + 1 c m (b) (y -1) 2 + c m (b) 2 d m (b) x 2 ψ x 0 (b), x, y = 0 with ψ(µ, x, y) µ y + λ + m -µ, µ c m (b) d m (b)
x .

Now we shall characterize the geometric structure of the planar set Proof. We shall look for a curve of solutions lying in the set E b and that can be parametrized through polar coordinates as follows θ ∈ [0, 2π] → (x, y) = R(θ)e iθ . Now we fix b and introduce the function

E b (x, y) ∈ R 2 ; G(b, x, y) = 0 .
F(µ, R(θ)) R 2 (θ) -1 - 1 c m (b) [R(θ) sin θ -1] 2 + c m (b) 2 d m (b) R 2 (θ) cos 2 θ ψ µ, R(θ) cos θ, R(θ) sin θ .
Then according to (4.4) it is enough to solve Recall that the function is defined in the box (λ, t) ∈ (λ + m -η, λ + m + η) × (-η, η) for some given real number η > 0. Thus it is not hard to find an implicit value µ 0 > such that F : (-µ 0 , µ 0 ) × B → C 1 (T) is well-defined and is of class C 1 , with B being the open set of C 1 (T) defined by

B = R ∈ C 1 (T); 1 -R ∞ + R ∞ < 1 2 .
In addition F(0, 1) = 0 and ∂ R F(0, 1)h = 2h, ∀h ∈ C 1 (T).

Thus ∂ R F(0, 1) is an isomorphism and by the implicit function theorem we deduce the existence of µ 1 > 0 such that for any µ ∈ (-µ 1 , µ 1 ) there exists a unique R µ ∈ B such that (µ, R µ ) is a solution for F(µ, R µ ) = 0. It is worthy to point out that µ 1 can be chosen independent where E b , has been defined in (4.2). As the relationship between the sets E b and E b is given through a non degenerate affine transformations then the set E b is also a C 1 -Jordan curve.

In addition the point (λ + m -am(b) 2cm(b) , 0) is located inside the curve and recall also that the point (λ + m , 0) belongs to E b . This fact implies that the curve intersects necessary the real axis on another point (λ m , 0) = (λ + m , 0). By virtue of (2.10) the conformal mappings at those two points coincide which implies in turn that the bifurcation curve bifurcates also from the trivial solution at the point (λ m , 0). Note that looking from the side (λ m , 0) this curve represents V-states with exactly m-fold symmetry and not with more symmetry; to be convinced see the structure of Φ. However from the local bifurcation diagram close to the trivial solution which was studied in [START_REF] De La Hoz | Doubly connected V-states for the planar Euler equations[END_REF] we know that the only V-states bifurcating from the trivial solutions with m-fold symmetry bifurcate from the points (λ + m , 0) and (λ - m , 0). Consequently we get λ m = λ - m and this shows that the bifurcation curves of the m-fold V-states merge and form a small loop. The last point to prove concerns the symmetry of the curve E b with respect to the λ axis. This reduces to check that for (λ, t) ∈ E b then (λ, -t) ∈ E b . Indeed, if D = D 1 \ D 2 is an m-fold doubly-connected V-state, its boundaries are parametrized by the conformal mappings Φ j (w) = w b j + a j,1 w m + n≥2 a j,n w mn , a j,n ∈ R Hence we find that the vectorial conform mapping Φ admits the decomposition

Φ(w) = 1 b w + a 1,1 a 2,1 w m-1 + Ψ(w), Ψ ∈ X m
Observe that we have a unique t such that This shows that (λ, -t) belongs to the curve E b and this concludes the desired result.

Theorem 1 . 2 .

 12 Let m ≥ 3 and b * m be the unique solution in (0, 1) of the equation (1.3). Then there exists b m ∈ (0, b * m ) such that for any b in (b m , b * m ) the two curves of m-fold V-states given by Theorem 1.1 merge and form a loop.
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 11112 Figure 1. Family of 4-fold V -states, for b = 0.63 and different Ω. We observe that there is no singularity formation in the boundary.

  Notice that a m (b * m ) = 0, c m (b * m ) > 0, d m (b * m ) > 0 and moreover for b belonging to a small interval (b m , b * m ) we get a m (b) > 0.

Proposition 3 . 2 .

 32 Let m ≥ 3 and b ∈ (0, b * m ). Then the following assertions hold true.

(4. 1 )

 1 F 2 (λ, t) = 0 with (λ, t) being in the neighborhood of (λ + m , 0) in R 2 and F 2 : R 2 → W m . We intend to prove the following assertion: there exists b m ∈ (0, b * m ) such that for any b ∈ (b m , b * m ) there exists ε > 0 such that the set

(

  

2 √

 2 and lim (s,t)→(x 0 (b),0) ψ(s, t) = 0. Note that if we remove ψ from the second term of this equation we get the equation of a small ellipse centered at (0, 0) and of semi-axes am(b) 2cm(b) and am(b) dm(b)cm(b)

Lemma 4 . 1 .

 41 There exists b m ∈ (0, b * m ) such that for any b ∈ (b m , b * m ) the set E b contains a C 1 -Jordan curve and the point (0, 0) is located inside. In addition, this curve is a smooth perturbation of the unit circle T.

(4. 5 )

 5 F(µ, R(θ)) = 0 and µ = x 0 (b).

and 3 2 .

 2 of b ∈ [b m , b * m ] because the coefficients 1 cm(b) and dm(b) cm(b) that appear in the nonlinear contribution of F are bounded. Now since lim b→b * m x 0 (b) = 0 then we deduce the existence of b m ∈ (0, b * m ) such that for any b ∈ (b m , b * m ) the set of solutions for (4.5) is described around the trivial solution R = 1 (the circle) by the curve θ∈ [0, 2π] → R x 0 (b) (θ)e iθ .On the other hand from the definition of B we deduce that this curve of solutions is contained in the annulus centered at the origin and of radii1 2 It should be also non selfintersecting C 1 loop according to the regularity of the polar parametrization. This achieves the proof of the lemma.Now let us see how to useLemma 4.1 to end the proof of Theorem 1.2. We have already seen in the subsection 2.3 that the vectorial conformal mapping Φ Φ 1 Φ 2 that describes the bifurcation curve from (λ + m , 0) is decomposed as follows Φ(w) = 1 b w + tv m + ϕ(λ, tv m ) with (t, λ) ∈ E b ,

w m- 1 =

 1 tv m (w) + Ψ 1 (w), Ψ 1 ∈ X m Now we consider D = e iπ m D, the rotation of D with the angle π m . Then the new domain is also a V-state with a m-fold symmetry rotating with the same angular velocity. Thus it should be associated to a point (λ, t) ∈ E b . Now the conformal parametrization of D is given by Φ j (w) = e -iπ m Φ j (e iπ m w) = w b j + n≥1(-1) n a j,n w mn , a j,n ∈ R. tv m (w) + Ψ 1 (w), Ψ 1 (w) -Ψ 1 + Ψ ∈ X m

Acknowledgements. The authors are partially supported by the ANR project Dyficolti ANR-13-BS01-0003-01.