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BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES

TAOUFIK HMIDI AND JOAN MATEU

Abstract. In this paper we prove the existence of countable branches of rotating patches bifur-
cating from the ellipses at some implicit angular velocities.

1. Introduction

In this paper we deal with the vortex motion for incompressible Euler equations in two-dimensional
space. The formulations velocity-vorticity is given by the nonlinear transport equation

(1)


∂tω + v · ∇ω = 0,
v = ∇⊥∆−1ω,
ω|t=0 = ω0,

where ω denotes the vorticity of the velocity field v = (v1, v2) and it is given by ω = ∂1v
2 − ∂2v

1.
The second equation in (1) is nothing but the Biot-Savart law which can be written with a singular
operator as follows: by identifying v = (v1, v2) with v1 + iv2, we write

(2) v(t, z) =
i

2π

ˆ
C

ω(t, ξ)

z − ξ
dA(ξ), z ∈ C,

with dA being the planar Lebesgue measure. Global existence of classical solutions is a consequence
of the transport structure of the vorticity equation, for more details about this subject we refer to
[1, 7]. For less regular initial data Yudovich proved in [31] that the system (1) admits a unique
global solution in the weak sense when the initial vorticity ω0 lies in L1 ∩ L∞. This allows to
deal rigorously with the vortex patches which are the characteristic function of bounded domains.
Therefore, it follows that when ω0 = χD0 with D0 a bounded domain then the solution of (1)
preserves this structure and ω(t) = χDt , with Dt = ψ(t,D0) being the image of D0 by the flow. In
the special case where D0 is the open unit disc the vorticity is radial and thus we get a steady flow.
Another remarkable exact solution was discovered by Kirchhoff [20] who proved that an ellipse D0

performs a steady rotation about its center. More precisely, if the center is assumed to be the
origin then Dt = eitΩD0, where the angular velocity Ω is determined by the semi-axes a and b of
the ellipse through the formula Ω = ab/(a + b)2. These ellipses are often referred in the literature
as Kirchhoff vortices. For a proof, see for instance [1, p.304] and [21, p.232].
The existence of general class of rotating patches, called also V-states, was discovered numerically
by Deem and Zabusky [9]. Later on, Burbea gave an analytical proof and showed the existence
of the m-fold symmetric V-states for each integer m ≥ 2 and in this countable family the case
m = 2 corresponds to the known Kirchhoff’s ellipses. Burbea’s approach consists in using some
complex analysis tools combined with the bifurcation theory. Notice that in this framework, the
rotating patches appear as a countable collection of curves bifurcating from Rankine vortices (trivial
solution) at the discrete angular velocities set

{
m−1
2m ,m ≥ 2

}
. It is extremely interesting to look at

the pictures of the limiting V-states done in [30], which are the end points of each branch. The
boundary develops corners at right angles. Recently, the authors studied in [15] the boundary
regularity of the V-states close to the disc and proved that the boundaries are in fact of class C∞
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and convex. More recently, Castro, Córdoba and Gómez-Serrano proved in [5] the analyticity of
the V-states close to the disc. Notice that the existence and the regularity of the V-states for more
singular nonlinear transport equations arising in geophysical flows as the surface quasi-geostrophic
equations has been studied recently in [4, 5, 13].
Another connected subject which has been investigated very recently in a series of paper [12, 14,
17, 16] is the existence of doubly connected V-states (patches with one hole).
The main goal of this paper is to study the second bifurcation of rotating patches from Kirchhoff
ellipses corresponding to m = 2. This subject was first examined by Kamm in [19], who gave
numerical evidence of the existence of some branches bifurcating from the ellipses, see also [27].
We mention that the first bifurcation occurs at the aspect ratio 3 corresponding to the transition
regime from stability to instability. In the paper [23] of Luzzatto-Fegiz and Williamson one can
find more details about the diagram for the first bifurcations and some illustrations of the limiting
V-states. Another central problem which has been studied since the work of Love [22] is the linear
and nonlinear stability of the ellipses. For instance, we mention the following papers [18, 28]. As to
the linear stability of the m-folds symmetric V-states, it was conducted by Burbea and Landau in
[3]. However the nonlinear stability of these structures in a small neighborhood of Rankine vortices
was done by Wan in [29]. For further numerical discussions, see also [6, 11, 25].
In the current paper we intend to give an analytical proof of the bifurcation from the ellipses. Our
result reads as follows.

Theorem 1. Consider the family of the ellipses E : Q ∈ (0, 1) 7→ EQ given by the parametrization

EQ =
{
w +

Q

w
,w ∈ T

}
.

Let

S ,
{
Q ∈ (0, 1), ∃ m ≥ 3, 1 +Qm − 1−Q2

2
m = 0

}
.

Then for each Q ∈ S there exists a nontrivial curve of rotating vortex patches bifurcating from the
curve E at the ellipse EQ. Moreover the boundary of these V-states are C1+α, ∀α ∈ (0, 1).

Before giving some details about the proof, we shall give first some remarks.

Remark. In a very recent paper [5], Castro, Córdoba and Gómez-Serrano proved the analyticity of
the V-states close to the ellipses. Our approach seems to be easier but not so deep and cannot lead
to the analyticity of the V-states. Notice that what one could expect from iterating our method
is to get the regularity Cn+α for each n ∈ N but the proof does not guarantee a uniform existence
interval with respect to the parameter n.

Remark. In contrast to the bifurcation from the disc where we get a collection of m folds, the
V-states of Theorem 1 are in general one or two-folds. For m even we can show from the proof that
the V-states are symmetric with respect to the origin.

Now we shall sketch the proof of Theorem 1 which is mainly based upon the bifurcation theory
via Crandall-Rabinowitz theorem. We shall look for a parametrization of the boundary ∂D of the
rotating patches as a small perturbation of a given ellipse. This parametrization takes the form
Φ : T→ ∂D, with T is the unit circle and

Φ(w) = w +Qw +
∑
n≥2

anw
n, Q ∈ (0, 1), an ∈ R.

Observe that when all the coefficients an vanish then this parametrization corresponds to an ellipse,
where Q = a−b

a+b , with a and b being the major axis and the minor axis, respectively. As we shall
see in the next section, the function Φ satisfies the nonlinear equation

G(Ω,Φ(w)) , Im

{(
2Ω Φ(w) +

 
T

Φ(ξ)− Φ(w)

Φ(ξ)− Φ(w)
Φ′(ξ)dξ

)
wΦ′(w)

}
= 0, ∀w ∈ T.
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Setting αQ(w) = w +Qw then we retrieve the Kirchhoff solutions, meaning that,

G(
1−Q2

4
, αQ(w)) = 0, ∀w ∈ T.

Now we introduce the function

F (Q, f(w)) = Im
{
G
(

1−Q2

4
, αQ(w) + f(w)

)}
.

Then by this transformation the ellipses lead to a family of trivial solutions: F (Q, 0) = 0, ∀Q ∈
(0, 1). Therefore it is legitimate at this stage to look for non trivial solutions by using the bifurcation
techniques in the spirit of Burbea’s work [2]. As we shall see, the computations of the linearized

operator LQ , ∂fF (Q, 0) are a little bit more involved that the radial case but they can still be done
in an explicit way. We shall see from this part that the dispersion set S introduced in Theorem 1
corresponds in fact to the values of Q such that the kernel of the operator LQ is one -dimensional.
We shall also check that all the assumptions of Crandall-Rabinowitz theorem are satisfied and
therefore the proof of the main result will follow immediately.
Notation. We need to fix some notation that will be frequently used along this paper. We denote
by C any positive constant that may change from line to line. We denote by D the unit disc and
its boundary, the unit circle, is denoted by T. Let f : T → C be a continuous function, we define
its mean value by,  

T
f(τ)dτ ,

1

2iπ

ˆ
T
f(τ)dτ,

where dτ stands for the complex integration.
Let X and Y be two normed spaces. We denote by L(X,Y ) the space of all continuous linear maps
T : X → Y endowed with its usual strong topology. We shall denote by N(T ) and R(T ) the kernel
and the range of T , respectively. Finally, if F is a subspace of Y , then Y/F denotes the quotient
space.

2. Formulation of the problem

Following [16, 17] one can see that the boundary of any smooth V-states χDt , with Dt = eitΩD is
subject to the equation

(3) Re

{(
2Ω z +

1

2πi

ˆ
∂D0

ζ − z
ζ − z

dζ

)
z′

}
= 0, ∀z ∈ ∂D.

Recall that a curve γ of the complex plane C is said a regular Jordan curve if it admits a parametriza-
tion Φ : T → γ which is simple and of class C1 such that Φ′(w) 6= 0, ∀w ∈ T. Note that in this
case the curve γ encloses a simply connected domain. Now to solve the equation (3) we shall restrict
ourselves to domains whose boundaries are parametrized by a regular Jordan curve Φ : T→ C. A
tangent vector to the boundary at the point Φ(w) is determined by z′ = iwΦ′(w) and therefore (3)
becomes

(4) Im

{(
2Ω Φ(w) +

 
T

Φ(ξ)− Φ(w)

Φ(ξ)− Φ(w)
Φ′(ξ)dξ

)
wΦ′(w)

}
= 0, ∀w ∈ T.

We shall define the object G by

(5) G(Ω,Φ(w)) ,

(
2Ω Φ(w) +

 
T

Φ(ξ)− Φ(w)

Φ(ξ)− Φ(w)
Φ′(ξ)dξ

)
wΦ′(w).

It is easily seen that the equation (4) is invariant by rotation and dilation. Moreover, one can
deduce from this formulation Kirchhoff’s result which states that an ellipse of the semi-axes a and
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b rotates with the angular velocity Ω = ab
(a+b)2

. Indeed, note that in this case the ellipse may be

parametrized by the conformal parametrization,

Φ(w) =
a+ b

2

(
w +

Q

w

)
, Q =

a− b
a+ b

·

In the sequel we shall use the notation

αQ(w) , w +
Q

w
, w ∈ T.

By straightforward computations we get

αQ(w)wα′Q(w) = 1−Q2 +Q(w2 − w2).

Using residue theorem and taking r > 1 we get 
T

αQ(ξ)− αQ(w)

αQ(ξ)− αQ(w)
α′Q(ξ)dξ = Q

 
rT

ξ

αQ(ξ)− αQ(w)
α′Q(ξ)dξ − αQ(w)

= QαQ(w)− αQ(w)

=
Q2 − 1

w
·

It follows that ( 2

a+ b

)2
G(Ω, αQ(w)) = 2ΩQ(w2 − w2) + (Q2 − 1)

(
1− 2Ω−Qw2

)
.

Thus ( 2

a+ b

)2
Im{G(Ω, αQ(w))} = Q

(
4Ω +Q2 − 1

)
Im(w2)

and consequently (4) is satisfied provided that

Ω =
1−Q2

4
=

ab

(a+ b)2
·

This can be written in the form

(6) Im
{
G
(

1−Q2

4
, αQ(w)

)}
= 0, ∀w ∈ T.

Now we shall introduce the function

(7) F (Q, f(w)) = Im
{
G
(

1−Q2

4
, αQ(w) + f(w)

)}
.

From the preceding discussion we readily get

(8) F (Q, 0) = 0, ∀Q ∈ (0, 1).

To prove Theorem 1 we need to show the existence of nontrivial solutions of the equation defining
the V-states :

F (Q, f(w)) = 0, ∀w ∈ T.

It will be done using the bifurcation theory through Crandall-Rabinowitz theorem [8]. For the
completeness of the paper we recall this basic theorem and it will be sometimes referred to as C-R
theorem.

Theorem 2. Let X,Y be two Banach spaces, V a neighborhood of 0 in X and let F : R× V → Y
with the following properties:

(1) F (λ, 0) = 0 for any λ ∈ R.
(2) F is C1 and Fλx exists and are continuous.
(3) N(L0) and Y/R(L0) are one-dimensional.
(4) Transversality assumption: Fλx(0, 0)x0 6∈ R(L0), where

N(L0) = span{x0}, L0 , ∂xF (0, 0).
4



If Z is any complement of N(L0) in X, then there is a neighborhood U of (0, 0) in R × X, an
interval (−a, a) and continuous functions ϕ : (−a, a) → R, ψ : (−a, a) → Z such that ϕ(0) = 0,
ψ(0) = 0 and

F−1(0) ∩ U =
{(
ϕ(ε), εx0 + ξψ(ε)

)
; |ε| < a

}
∪
{

(λ, 0) ; (λ, 0) ∈ U
}
.

Now we shall give a precise statement of Theorem 1. For this purpose we should fix the spaces X
and Y used in C-R theorem. They are given by,

(9) X =
{
h ∈ C1+α(T), h(w) =

∑
n≥2

anw
n, an ∈ R

}
and

(10) Y =
{
g ∈ Cα(T), g(w) =

∑
n≥1

gn en, gn ∈ R, w ∈ T
}
, en(w) , Im(wn).

Theorem 3. Consider the family of ellipses E : Q ∈ (0, 1) 7→ EQ given by the parametrization

EQ =
{
w +

Q

w
,w ∈ T

}
.

Let

S ,
{
Q ∈ (0, 1), ∃ m ≥ 3, 1 +Qm − 1−Q2

2
m = 0

}
.

Then for each Q = Qm ∈ S there exists a nontrivial curve of rotating vortex patches bifurcating
from the curve E at the ellipse EQ. Moreover the boundary of these V-states are C1+α.

More precisely, let Zm be any complement of the vector vm = wm+1

1−Qw2 in the space X. Then there

exist a > 0 and continuous functions Q : (−a, a) → R, ψ : (−a, a) → Zm satisfying Q(0) = Qm,
ψ(0) = 0, such that the bifurcating curve at this point is described by,

F (Q(ε), ε
wm+1

1−Qw2
+ εψ(ε)) = 0.

In particular the boundary of the V-states rotating is described by

γε : T→ C, γε(w) = w +
Q(ε)

w
+ ε

wm+1

1−Qw2
+ εψ(ε).

The proof consists in checking all the assumptions of Theorem 2. This will be done in details in
the next sections.

3. Regularity of the functional

This section is devoted to the study of the regularity assumptions stated in C-R theorem. We shall
study the nonlinear functional F defining the V-states already seen in (7). It is given through the
functional G as follows,

G(Ω,Φ(w)) =

(
2Ω Φ(w) +

 
T

Φ(ξ)− Φ(w)

Φ(ξ)− Φ(w)
Φ′(ξ)dξ

)
wΦ′(w)

and

F (Q, f(w)) = Im
{
G
(

1−Q2

4
, αQ(w) + f(w)

)}
.

For r ∈ (0, 1) we denote by Br the open ball of X (this space was introduced in (9)) with center 0
and radius r,

Br =
{
f ∈ X, ‖f‖C1+α < r

}
.

We shall make use at several stages of the following lemma, for more details see [24, p. 419].
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Lemma 1. Let T be a singular operator defined by

Tφ(w) =

ˆ
T
K(ξ, w)φ(ξ)dξ.

Assume that the kernel of the operator T satisfies

(1) K is measurable on T× T and

|K(ξ, w)| ≤ C0, ∀ ξ, w ∈ T.

(2) For each ξ ∈ T, w 7→ K(ξ, w) is differentiable in T\{ξ} and

|∂wK(ξ, w)| ≤ C0

|w − ξ|
, ∀w ∈ T\{ξ}.

Then for every 0 < α < 1

‖Tφ‖α ≤ C0‖φ‖L∞ .

The main result of this section reads as follows.

Proposition 1. Let ε ∈ (0, 1) and rε = 1−ε
2 , then the following holds true.

(1) The function F : (0, ε)×Brε → Y is of class C1.
(2) The partial derivative ∂Q∂fF : (0, ε)×Brε → Y is continuous.

Proof. (1) To get this result it suffices to prove that ∂QF, ∂fF :]0, ε[×Brε → Y exist and are
continuous. We shall first compute ∂fF (Q, f). This will be done by showing first the existence of
the Gâteaux derivative and second its continuity in the strong topology. Before dealing with this
problem we should first show that the functional F is well-defined. For this purpose it suffices to
show that the functional G sends X into Cα(T) and the Fourier coefficients of G((1−Q2)/4, αQ+f))
are real when f belongs to X. As to the second claim we follow the Arxiv version of the paper [15]
and for the sake of simplicity we shall skip the details and sketch just the basic ideas of the proof.
First, we write

G((1−Q2)/4, αQ(w) + f(w)) =
1−Q2

2

[
1 +Qw2 + wf(w)

][
1−Qw2 + f ′(w)

]
+ wΦ′f (w)

 
T

Φf (ξ)− Φf (w)

Φf (ξ)− Φf (w)
Φ′f (ξ)dξ

, G1(Q, f(w)) + wΦ′f (w)G2(Q, f)(11)

with the notation Φf = αQ + f. It is clear that G1 is polynomial in the variable Q and bilinear on
f and f ′. Therefore using the algebra structure of Cα(T) one gets

‖G1(Q, f))‖α ≤ C‖Φf‖α‖Φf‖1+α.

This implies in particular that G1 : (0, 1) × X → Y is of class C∞. Now we shall focus on the
second part G2. Fix Q ∈ (0, ε) and put rε = 1−ε

2 , then for f ∈ Brε we get

(12)
1− ε

2
|w − ξ| ≤

∣∣αQ(w) + f(w)− αQ(ξ)− f(ξ)
∣∣, ∀ ξ, w ∈ T.

Indeed, ∣∣αQ(w)− αQ(ξ)
∣∣ = |w − ξ| |1− Q

wξ
|

≥ (1−Q)|ξ − w|
≥ (1− ε)|ξ − w|.
6



We combine this with the mean-value theorem applied to f which is holomorphic inside the unit
disc

|f(w)− f(ξ)| ≤ ‖f ′‖L∞ |w − ξ|

≤ 1− ε
2
|w − ξ|.

Now using Lemma 1 we get that G2(Q, f) ∈ Cα(T). This concludes the fact that F is well-defined.
Next, we shall prove that for f ∈ X with ‖f‖1+α < rε the Gâteaux derivative ∂fG2 exists and is
continuous. Straightforward computations show that this derivative is given by: for h ∈ X,

(13) ∂fG2(Q, f)h(w) =

3∑
j=1

Ij(Q, f)h(w),

with

I1(Q, f)h(w) =

 
T

Φf (ξ)− Φf (w)

Φf (ξ)− Φf (w)
h′(ξ)dξ

=

 
T
K1(ξ, w)h′(ξ)dξ,

I2(Q, f)h(w) =

 
T

h(ξ)− h(w)

Φf (ξ)− Φf (w)
Φ′f (ξ)dξ

=

 
T
K2(ξ, w)Φ′f (ξ)dξ

and

I3(Q, f)h(w) = −
 

T

(
Φf (ξ)− Φf (w)

)
(h(ξ)− h(w))(

Φf (ξ)− Φf (w)
)2 Φ′f (ξ)dξ

=

 
T
K3(ξ, w)Φ′f (ξ)dξ.

Notice that we have used the fact that the Fourier coefficients of Φf are real and therefore Φf (w) =
Φf (w). It is easy to check according to (12) that

|K1(ξ, w)| = 1, |∂wK(ξ, w)| ≤ C0|w − ξ|−1

and thus we deduce from Lemma 1 that

‖I1(Q, f)h‖α . ‖h′‖L∞ . ‖h‖1+α.

For the second term I2 we have the following estimates for the kernel

|K2(ξ, w)| =
|h(ξ)− h(w)|
|Φf (ξ)− Φf (w)|

≤ 2

1− ε
‖h′‖L∞

|∂wK2(ξ, w)| ≤ C0‖h′‖L∞ |w − ξ|−1.

Once again from Lemma 1 one gets,

‖I2(Q, f)h‖α . ‖h′‖L∞‖Φ′f‖L∞ . ‖h‖1+α.

The last term can be estimated similarly to the previous one and we get

‖I3(Q, f)h‖α . ‖h′‖L∞‖Φ′f‖L∞ . ‖h‖1+α.
7



Putting together the preceding estimates we get

‖∂fG2(Q, f)h‖α ≤ C‖h‖1+α.

This shows the existence of Gâteaux derivative and now we intend to prove the continuity of the
map f 7→ ∂fG2(Q, f) from X to L(X,Y ). This is a consequence of the following estimate that we
shall prove now: for f, g ∈ Brε , one has

(14) ‖∂fG2(Q, f)h− ∂fG2(Q, g)h‖α ≤ C‖f − g‖1+α‖h‖1+α.

First we write

I1(Q, f)h(w)− I1(Q, g)h(w) =

 
T

(
Φf (ξ)− Φf (w)

)(
(g − f)(ξ)− (g − f)(w)

)
(Φf (ξ)− Φf (w))(Φg(ξ)− Φg(w))

h′(ξ)dξ

+

 
T

(f − g)(ξ)− (f − g)(w)

Φg(ξ)− Φg(w)
h′(ξ)dξ

,
 

T
K4(ξ, w)h′(ξ)dξ.

By the mean value theorem we may check that

|K4(ξ, w)| ≤ C‖f ′ − g′‖L∞

and

|∂wK4(ξ, w)| ≤ C‖f ′ − g′‖L∞‖ξ − w|−1.

Thus we obtain by using Lemma 1

‖I1(Q, f)h− I1(Q, g)h‖α ≤ C0‖f ′ − g′‖L∞‖h′‖L∞
≤ C‖f − g‖1+α‖h‖1+α.

To estimate I2(Q, f)h− I2(Q, g)h we shall use the identity

Φ′f (ξ)

Φf (ξ)− Φf (w)
−

Φ′g(ξ)

Φg(ξ)− Φg(w)
=

f ′(ξ)− g′(ξ)
Φf (ξ)− Φf (w)

− Φ′g(ξ)
(f − g)(ξ)− (f − g)(w)

)
(Φf (ξ)− Φf (w))(Φg(ξ)− Φg(w))

and thus

I2(Q, f)h(w)− I2(Q, g)h(w) =

 
T

h(ξ)− h(w)

Φf (ξ)− Φf (w)
(f ′(ξ)− g′(ξ))dξ

−
 

T

(
h(ξ)− h(w)

)(
(f − g)(ξ)− (f − g)(w)

)
(Φf (ξ)− Φf (w))(Φg(ξ)− Φg(w))

Φ′g(ξ)dξ

,
 

T
K5(ξ, w)(f ′(ξ)− g′(ξ))dξ −

 
T
K6(ξ, w)Φ′g(ξ)dξ.

The kernels can be estimated as follows

|K5(ξ, w)| ≤ C‖h′‖L∞ , |∂wK5(ξ, w)| ≤ C‖h′‖L∞ |w − ξ|−1

and

|K6(ξ, w)| ≤ C0‖h′‖L∞‖f ′ − g′‖L∞ , |∂wK6(ξ, w)| ≤ C0‖h′‖L∞‖f ′ − g′‖L∞ |w − ξ|−1.

So Lemma 1 implies that

‖I2(Q, f)h− I2(Q, g)h‖α ≤ C0‖f ′ − g′‖L∞‖h′‖L∞
≤ C0‖f − g‖1+α‖h‖1+α.
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It remains to check the continuity of I3. We write

I3(Q, f)h(w) − I3(Q, g)h(w) = −
 

T

(
Φf (ξ)− Φf (w)

)
(h(ξ)− h(w))(

Φf (ξ)− Φf (w)
)2 (f − g)′(ξ)dξ

−
 

T

[
(f − g)(ξ)− (f − g)(w)

]
(h(ξ)− h(w))(

Φf (ξ)− Φf (w)
)2 Φ′g(ξ)dξ

+

 
T
K7(ξ, w)Φ′g(ξ)dξ

,
3∑
j=1

Ij3(f, g)(h)(w)

with

K7(ξ, w) =

(
Φg(ξ)− Φg(w)

)(
{Φg(ξ)− Φg(w)}+ {Φf (ξ)− Φf (w)}

)
(
Φf (ξ)− Φf (w)

)2(
Φg(ξ)− Φg(w)

)2
×

(
h(ξ)− h(w)

)[
(f − g)(ξ)− (f − g)w)

]
.

The first term can be written in the form

I1
3 (f, g)(w) =

 
T
K8(ξ, w)(f − g)′(ξ)dξ

where the kernel K8 satisfies

|K8(ξ, w)| ≤ C‖h′‖L∞ and |∂wK8(ξ, w)| ≤ C‖h′‖L∞ |ξ − w|−1.

This yields in view of Lemma 1

‖I1
3 (f, g)‖α ≤ C‖h′‖L∞‖f ′ − g′‖L∞

≤ C‖h‖1+α‖f − g‖1+α.

The second term can written under the form

I1
3 (f, g)(w) =

 
T
K9(ξ, w)Φ′g(ξ)dξ

and the kernel K9 satisfies

|K9(ξ, w)| ≤ C0‖f ′ − g′‖L∞‖h′‖L∞ and |∂wK8(ξ, w)| ≤ C0‖f ′ − g′‖L∞‖h′‖L∞
1

|ξ − w|
which yields in view of Lemma 1

‖I2
3 (f, g)‖α ≤ C‖h′‖L∞‖f ′ − g′‖L∞‖Φ′g‖L∞

≤ C‖h‖1+α‖f − g‖1+α.

For the third term we can check that the kernel K7 satisfies

|K7(ξ, w)| ≤ C‖f ′ − g′‖L∞‖h′‖L∞ and |∂wK7(ξ, w)| ≤ C‖f ′ − g′‖L∞‖h′‖L∞
1

|ξ − w|
which gives according to Lemma 1

‖I3
3 (f, g)‖α ≤ C‖h′‖L∞‖f ′ − g′‖L∞‖Φ′g‖L∞

≤ C‖h‖1+α‖f − g‖1+α.

Putting together the preceding estimates we get

‖I3(Q, f)h− I3(Q, g)h‖α ≤ C‖h‖1+α‖f − g‖1+α.
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This achieves the proof of (14) and therefore the Gâteaux derivative is Lipschitz and thus it is
continuous on the variable f . Therefore we conclude at this stage that the Fréchet derivative exists
and coincides with Gâteaux derivative. See [10] for more information.
We shall now study the regularity of G2 with respect to Q. This reduces to studying the regularity
of Q 7→ G2(Q, f) given by

G2(Q, f) =

 
T

{αQ(ξ))− αQ(w)}+ f(ξ̄)− f(w̄)

{αQ(ξ))− αQ(w)}+ f(ξ)− f(w)

(
α′Q(ξ) + f ′(ξ)

)
dξ.

Easy computations yields

∂QG2(Q, f) =

 
T

ξ − w
Φf (ξ)− Φf (w)

(
α′Q(ξ) + f ′(ξ)

)
dξ

−
 

T

Φf (ξ)− Φf (w)

Φf (ξ)− Φf (w)

1

ξ2
dξ

−
 

T

(
Φf (ξ)− Φf (w)

)
(ξ − w)(

Φf (ξ)− Φf (w)
)2

(
α′Q(ξ) + f ′(ξ)

)
dξ.

As before, using Lemma 1 we get for (Q, f) ∈ (0, ε)×Brε
‖∂QG2(Q, f)‖α ≤ Cε.

Reproducing the same analysis we get for any k ∈ N

‖∂kQG2(Q, f)‖α ≤ Ck,ε.

Similarly we obtain that ∂QG2 : (0, ε)×Brε → Cα(T) exists and is continuous. Using that ∂fG2 is
continuous we deduce that G2 : (0, ε)×Brε → Cα(T) is C1 and it follows that F : (0, ε)×Brε → Y
is also C1. By induction one can show that G2 : (0, ε)×Brε → Cα(T) is in fact C∞.

(2) We shall check that ∂Q∂fG2 : (0, ε)×Brε → Cα(T) is continuous. According to (13) we obtain

∂Q∂fG2(Q, f)h(w) =
3∑
j=1

∂QIj(Q, f)h(w).

• Estimate of ∂QI1(Q, f)h. From its expression we write

∂QI1(Q, f)h(w) =

 
T
∂QK1(ξ, w)h′(ξ)dξ.

Straightforward computations yield

∂QI1(Q, f)h(w) =

 
T

ξ − w
Φf (ξ)− Φf (w)

h′(ξ)dξ

−
 

T

(
Φf (ξ)− Φf (w)

)
(ξ − w)(

Φf (ξ)− Φf (w)
)2 h′(ξ)dξ.

Using Lemma 1 we get

‖∂QI1(Q, f)h‖α ≤ C‖h′‖L∞
≤ C‖h‖1+α.

• Estimate of ∂QI2(Q, f)h. One may write
10



∂QI2(Q, f)h(w) = −
 

T

h(ξ)− h(w)

Φf (ξ)− Φf (w)

1

ξ2
dξ

−
 

T

(ξ̄ − w̄)
(
h(ξ)− h(w)

)(
Φf (ξ)− Φf (w)

)2 Φ′f (ξ)dξ.

Using again Lemma 1 we find

‖∂QI2(Q, f)h‖α ≤ C‖h′‖L∞
≤ C‖h‖1+α.

• Estimate of ∂QI3(Q, f)h. We have

∂QI3(Q, f)h(w) =

 
T

(
Φf (ξ)− Φf (w)

)
(h(ξ)− h(w))(

Φf (ξ)− Φf (w)
)2 1

ξ2
dξ

−
 

T

(
ξ − w

)
(h(ξ)− h(w))(

Φf (ξ)− Φf (w)
)2 Φ′f (ξ)dξ

+ 2

 
T

(
ξ − w

)(
Φf (ξ)− Φf (w)

)
(h(ξ)− h(w))(

Φf (ξ)− Φf (w)
)3 Φ′f (ξ)dξ

=

 
T
K9(ξ, w)

1

ξ2
dξ +

 
T
K10(ξ, w)Φ′f (ξ)dξ.

We can check that

|K9(ξ, w)|+ |K10(ξ, w)| ≤ C‖h′‖L∞ and |∂wK9(ξ, w)|+ |∂wK10(ξ, w)| ≤ C‖h′‖L∞
1

|w − ξ|

and therefore we get by Lemma 1,

‖∂QI3(Q, f)h‖α ≤ C‖h‖1+α.

Finally we obtain

‖∂QIj(Q, f)h‖α ≤ C‖h‖1+α.

Reproducing the same analysis we get for any k ∈ N

‖∂kQIj(Q, f)h‖α ≤ C(k)‖h‖1+α

and consequently

(15) ‖∂kQ∂fG2(Q, f)h‖α ≤ C‖h‖1+α.

On the other hand the same analysis used for proving (14) shows that

∀Q ∈ (0, ε), f, g ∈ Brε , ‖∂QIj(Q, f)h− ∂QIj(Q, g)h‖α ≤ C‖h‖1+α‖f − g‖1+α

and thus

(16)
∥∥∂Q∂fG2(Q, f)h− ∂Q∂fG2(Q, g)h

∥∥
α
≤ C‖h‖1+α‖f − g‖1+α.

Combining (15) for the case k = 1 with (16) we conclude that ∂Q∂fG2 : (0, ε) × Brε → Cα(T) is
continuous. This achieves the proof of the proposition. �
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4. Study of the linearized equation

The main goal of this section is to study some spectral properties of the linearized operator of the
functional f ∈ X 7→ F (Q, f) in a neighborhood of zero. This operator is defined by

LQh(w) ,
d

dt
F (Q, t h(w))|t=0, h ∈ X,

where F was defined in (7) and the space X in (9).
Now we introduce the following set

S ,
{
Q ∈ (0, 1), ∃m ≥ 3, 1 +Qm − 1−Q2

2
m = 0

}
.

For given m ≥ 3 the function fm : Q ∈ (0, 1) 7→ 1 +Qm− 1−Q2

2 m is strictly increasing and satisfies

fm(0) = 1− m

2
< 0, fm(1) = 2.

Consequently, there is only one Qm ∈ (0, 1) with fm(Qm) = 0. This allows to construct a function
m 7→ Qm. As the map n 7→ fn(Q) is strictly decreasing then one can readily prove that the sequence
m 7→ Qm is strictly increasing. Moreover, it is not difficult to prove the asymptotic behavior

Qm ≈ 1− α

m
, m→∞

where α is the unique solution of

1 + e−α − α = 0.

Now we shall establish the following properties for LQ which yields immediately Theorem 1 and
Theorem 3 according to Crandall-Rabinowitz theorem.

Proposition 2. The following assertions hold true.

(1) Let h(w) =
∑

n≥2 anw
n ∈ X, then

LQh =
∑
n≥1

gn+1en; en(w) = Im(wn),

with

g2 = −1

2
(1 +Q)2a2,

g3 = −2Q2a3,

gn+1 =
(1−Q2

2
n− 1−Qn

)(
an+1 −Qan−1

)
, ∀n ≥ 3.

(2) The kernel of LQ is nontrivial if and only if Q = Qm ∈ S and it is a one-dimensional vector
space generated by

vm(w) =
wm+1

1−Qw2
·

(3) The range of LQ is of co-dimension one in Y and it is given by

R(LQ) =
{
g ∈ Cα(T), g =

∑
n≥1
n 6=m

gn+1en, gn ∈ R
}
.

(4) Transversality assumption: for any Q = Qm ∈ S,

∂QLQvm /∈ R(LQ).
12



Proof. (1)− (2) We shall first slightly transform the expression of G seen in (5). We may write

G(Ω,Φ(w)) = (2Ω− 1)Φ(w)wΦ′(w) + wΦ′(w)

 
T

Φ(ξ)Φ′(ξ)

Φ(ξ)− Φ(w)
dξ.

Notice that the last integral and all the singular integrals that will appear later in this proof are
understood as the limit from the interior in the following sense: For f : T→ C a continuous function
and w ∈ T, we denote by  

T

f(ξ)

Φ(ξ)− Φ(w)
dξ = lim

z∈D?

z 7→w

 
T

f(ξ)

Φ(ξ)− Φ(z)
dξ,

with D? being the interior of D. This definition is justified by the fact that the points in the unit
disc which are located close to the boundary T are sent by the map Φ inside the domain enclosed
by the Jordan curve Φ(T), since Φ is as small perturbation of the outside conformal map of the

ellipse αQ. Recall also that Ω = 1−Q2

4 . Now we shall compute

Lh(w) ,
d

dt
G(Ω, αQ(w) + th(w))|t=0.

The relation with LQ is given by LQh = Im Lh. For simplicity set α := αQ then performing
straightforward calculations one can check that

−Lh(w) = I1(w)−
5∑
j=2

Ij(w),

with

I1(w) =
1 +Q2

2

(
(1 +Qw2)h′(w) + (w −Qw)h(w)

)
,

I2(w) = wh′(w)

 
T

α(ξ)

α(ξ)− α(w)
α′(ξ)dξ,

I3(w) = wα′(w)

 
T

α′(ξ)

α(ξ)− α(w)
h(ξ)dξ,

I4(w) = wα′(w)

 
T

α(ξ)

α(ξ)− α(w)
h′(ξ)dξ

and

I5(w) = −wα′(w)

 
T
α(ξ)

h(ξ)− h(w)(
α(ξ)− α(w)

)2α′(ξ)dξ.
• Computation of I2. Let z ∈ D being in a very small tubular neighborhood of T (such that
Q/z ∈ D) then by residue theorem we get 

T

α(ξ)

α(ξ)− α(z)
α′(ξ)dξ =

 
T

(1 +Qξ2)(ξ2 −Q)

ξ2(ξ − z)(ξ − Q
z )

dξ

=

 
T

ξ2 −Q
ξ2(ξ − z)(ξ − Q

z )
dξ +Q

 
T

ξ2

(ξ − z)(ξ − Q
z )
dξ

= Q

 
T

ξ2

(ξ − z)(ξ − Q
z )
dξ

= Q
( z2

z − Q
z

+
Q2

z2

Q
z − z

)
= Q

(
z +

Q

z

)
.
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Therefore letting z go to w we find

(17) I2(w) = Qw
(
w +

Q

w

)
h′(w).

• Computation of I3. From the explicit formula of α we get 
T

α′(ξ)

α(ξ)− α(z)
h(ξ)dξ =

 
T

ξ2 −Q
ξ(ξ − z)

(
ξ − Q

z

)h(ξ)dξ.

Since h is analytic outside the open unit disc and is at least of order two in 1
ξ at infinity then by

residue theorem (always with z ∈ D such that Q/z ∈ D)
 

T

α′(ξ)

α(ξ)− α(z)
h(ξ)dξ =

 
T

ξ2 −Q
ξ(ξ − z)

(
ξ − Q

z

)h(ξ)dξ

= 0.

Consequently we find

(18) I3(w) = 0.

• Computation of I4. Let z ∈ D with Q/z ∈ D, since h′ is holomorphic inside the unit disc then we
deduce by residue theorem 

T

α(ξ)

α(ξ)− α(z)
h′(ξ)dξ =

 
T

1 +Qξ2

(ξ − z)(ξ − Q
z )
h′(ξ)dξ

=
1 +Qz2

z − Q
z

h′(z) +
1 + Q3

z2

Q
z − z

h′
(Q
z

)
.

Thus we obtain

(19) I4(w) = (1 +Qw2)h′(w)−
(
1 +Q3w2

)
h′
(
Qw
)
.

• Computation of I5. Using residue theorem as in the preceding cases we find 
T
α(ξ)

h(ξ)− h(w)(
α(ξ)− α(w)

)2α′(ξ)dξ =

 
T

(1 +Qξ2)(ξ2 −Q)

ξ(ξ − w)2
(
ξ − Q

w

)2 (h(ξ)− h(w)
)
dξ

= −h(w)

 
T

(1 +Qξ2)(ξ2 −Q)

ξ(ξ − w)2
(
ξ − Q

w

)2dξ
+

 
T

(1 +Qξ2)(ξ2 −Q)

(ξ − w)2
(
ξ − Q

w

)2 h(ξ)

ξ
dξ

= −Qh(w) + J (w),

with

J (w) ,
 

T

(1 +Qξ2)(ξ2 −Q)

(ξ − w)2
(
ξ − Q

w

)2 h(ξ)

ξ
dξ.

Set

F1(ξ) =
(1 +Qξ2)(ξ2 −Q)(

ξ − Q
w

)2 h(ξ)

ξ
, K1(ξ)

h(ξ)

ξ
,

and

F2(ξ) =
(1 +Qξ2)(ξ2 −Q)(

ξ − w
)2 h(ξ)

ξ
, K2(ξ)

h(ξ)

ξ
·
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Then we get successively,

K ′1(w) =
2Qw2

w − Q
w

K ′2
(Q
w

)
=

2Q3

w2

Q
w − w

which give in turn

F ′1(w) =
1

w − Q
w

{
(Qw − 1

w
)h(w) + (1 +Qw2)h′(w)

}
F ′2(

Q

w
) =

1
Q
w − w

{(Q2

w
− w

Q

)
h(
Q

w
) +

(
1 +

Q3

w2
Q
)
h′
(Q
w

)}
.

Applying once again residue theorem we obtain

J (w) = F ′1(w) + F ′2(Qw).

It follows that

I5(w) = (1−Q2)wh(w)− (1 +Qw2)h′(w) +
(
Q2w − w

Q

)
h(Qw) +

(
1 +Q3w2

)
h′
(
Qw
)
.(20)

Putting together the identities (17), (18), (19) and (20) one gets

5∑
j=2

Ij(w) = (1−Q2)wh(w) +Q(Q+ w2)h′(w) +
(
Q2w − w

Q

)
h(Qw)

and consequently,

−Lh(w) =
1 +Q2

2

{
(1 +Qw2)h′(w) + (w −Qw)h(w)

}
+ (Q2 − 1)wh(w)

− Q(w2 +Q)h′(w) +
(w
Q
−Q2w

)
h
(
Qw
)
.

This can also be written in the form

−Lh(w) =
[1−Q2

2
+Q

Q2 − 1

2
w2
]
h′(w) + (Q2 − 1)wh(w)

+
1 +Q2

2

(
w −Qw

)
h(w) +

(w
Q
−Q2w

)
h
(
Qw
)

, L1h(w) + L2h(w) + L3h(w) + L4h(w).

It is easy to check that

L1h(w) =
1−Q2

2
(1−Qw2)

∑
n≥2

nanw
n−1

=
1−Q2

2

(
2a2w + 3a3w

2
)

+
∑
n≥3

cnw
n,

with

cn =
1−Q2

2

(
(n+ 1)an+1 −Q(n− 1)an−1

)
, ∀n ≥ 3.

The computation of L2h is obvious,

L2h(w) = (Q2 − 1)
∑
n≥2

anw
n−1

= (Q2 − 1)
(
a2w + a3w

2
)

+ (Q2 − 1)
∑
n≥3

an+1w
n.
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Therefore we get

L1h(w) + L2h(w) =
1−Q2

2
a3w

2 +
∑
n≥3

dnw
n,(21)

with

(22) dn =
1−Q2

2
(n− 1)

(
an+1 −Qan−1

)
, ∀n ≥ 3.

As to the third term, we easily find

L3h(w) =
1 +Q2

2

(
w −Qw

)∑
n≥2

an
wn

=
1 +Q2

2

(a2

w
+
a3

w2

)
+

1 +Q2

2

∑
n≥3

an+1 −Qan−1

wn
·

Performing the same analysis yields

L4h(w) =
(w
Q
− Q2

w

)∑
n≥2

anQ
n

wn

=
∑
n≥2

anQ
n−1

wn−1
−Q

∑
n≥2

anQ
n+1

wn+1

=
Qa2

w
+
Q2a3

w2
+
∑
n≥3

Qn
(
an+1 −Qan−1

)
wn

·

Consequently,

L3h(w) + L4h(w) =
(1 +Q)2

2

a2

w
+

1 + 3Q2

2

a3

w2
(23)

+
∑
n≥3

d̂n
wn

,

with

d̂n =
(1 +Q2

2
+Qn

)(
an+1 −Qan−1

)
.(24)

According to (21) and (23) we get

−LQh(w) = ImLh(w)

= −(1 +Q)2

2
a2e1(w)− 2Q2a3e2(w)

+
∑
n≥3

(dn − d̂n)en(w).

with the notation en(w) = Im(wn). It follows that

−LQh(w) = −1

2
(1 +Q)2a2 e1(w)− 2Q2a3 e2(w)

+
∑
n≥3

(dn − d̂n) en(w).(25)

Combining (22) and (24) we obtain

(26) dn − d̂n =
(1−Q2

2
n− 1−Qn

)(
an+1 −Qan−1

)
.
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Therefore the equation ImLh(w) = 0 is equivalent to the linear system

(1 +Q)2a2 = 0

Q2a3 = 0(1−Q2

2
n− 1−Qn

)(
an+1 −Qan−1

)
= 0, ∀n ≥ 3.

Since Q ∈ (0, 1) then necessarily

a2 = a3 = 0.

The last equation is equivalent to

(27)
(

1 +Qn − 1−Q2

2
n
)(
an+1 −Qan−1

)
= 0, ∀n ≥ 3.

Let m ≥ 3, then we know from the beginning of this section the existence of only one solution
Q = Qm ∈ (0, 1) of the equation

1 +Qm − 1−Q2

2
m = 0.

Moreover, the left part of this equality defines a strictly decreasing function in m implying that

1 +Qn − 1−Q2

2
n 6= 0, ∀n 6= m.

Thus (27) is equivalent to

an+1 = Qan−1, ∀n ≥ 3, n 6= m.

Thus the dynamical system (27) combined with the vanishing two first values admits the following
solutions

∀n ≥ 0, am+1+2n = Qnam+1 and 0 otherwise

This means that the associated kernel is one dimensional generated by the eigenfunction

vm(w) =
∑
n≥0

Qnwm+1+2n =
wm+1

1−Qw2
·

Note that vm is holomorphic in the open ball B(0, 1
Q) and since Q ∈ (0, 1) we deduce that vm ∈ X.

(3) Let Q ∈ S and m being the frequency such that Q = Qm. We will show that the range R(LQm)
coincides with the closed subspace

Y ,
{
g ∈ Cα(T); g =

∑
n≥1
n 6=m

gn+1 en, gn ∈ R
}
.

From (25) and (26) one sees that the range of LQ is contained in Y. Conversely, let g ∈ Y we shall
look for h(w) =

∑
n≥2 anw

n ∈ C1+α(T) such that LQh = g. Once again from (25) this is equivalent
to

−1

2
(1 +Q)2a2 = g2,

−2Q2a3 = g3,(1−Q2

2
n− 1−Qn

)(
an+1 −Qan−1

)
= gn+1, ∀n ≥ 3, n 6= m.

This determines uniquely the sequence (an)2≤n≤m and for n ≥ m+ 1 one has the recursive formula

an+1 −Qan−1 =
gn+1

1−Q2

2 n− 1−Qn
, ∀n ≥ m+ 1.
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The only free coefficient is am+1 and therefore the solutions of the above system form one-
dimensional affine space. To prove that any pre-image h belongs to C1+α(T) it suffices to show it
for the function H(w) =

∑
n≥m+2 anw

n. Set

G(w) =
∑

n≥m+1

gn+1

1−Q2

2 n− 1−Qn
wn, Rm(w) =

∑
n≥m+1

gn+1w
n.

Then

H(w) = w
∑

n≥m+1

an+1w
n

= wQ
∑

n≥m+1

an−1w
n +

∑
n≥m+1

gn+1

1−Q2

2 n− 1−Qn
wn+1

= w2Q
∑
n≥m

anw
n + wG(w)

= w2QH(w) + w2Q(amw
m + am+1w

m+1) + wG(w).

Therefore

H(w) =
1

1−Qw2

(
w2Q(amw

m + am+1w
m+1) + wG(w)

)
.

The problem reduces then to check that G ∈ C1+α(T). We split G into two terms as follows

G(w) =
∑

n≥m+1

gn+1

1−Q2

2 n− 1
wn +

∑
n≥m+1

Qngn+1

(1−Q2

2 n− 1)(1−Q2

2 n− 1−Qn)
wn

= G1 +G2.

Since the sequence (gn) is bounded then for large n one gets

Qn|gn+1|
(1−Q2

2 n− 1)(1−Q2

2 n− 1−Qn)
≤ C Qn

(1−Q2)2
.

This shows that G2 ∈ Ck(T) for all k ∈ N. Let us now prove that G1 ∈ C1+α(T). First from the
embedding Cα(T) ↪→ L∞(T) ↪→ L2(T) one obtains∑

n

|gn+1|2 . ‖g‖2Cα .

Therefore by Cauchy-Schwarz

‖G1‖L∞ .
∑

n≥m+1

|gn+1|
n

.
( ∑
n≥m+1

|gn+1|2
) 1

2

. ‖g‖Cα .
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It remains to prove that G′1 ∈ Cα(T). Differentiating term by term the series we get

G′1 =
∑

n≥m+1

n gn+1

1−Q2

2 n− 1
wn−1

=
2

1−Q2

∑
n≥m+1

gn+1w
n−1 +

2

1−Q2

∑
n≥m+1

gn+1

1−Q2

2 n− 1
wn−1

=
2

1−Q2

1

w
Rm(w) +

4

(1−Q2)2

∑
n≥m+1

gn+1

n
wn−1

+
4

(1−Q2)2

∑
n≥m+1

gn+1

n(1−Q2

2 n− 1)
wn−1

, G3(w) +G4(w) +G5(w).

The function G3 is clearly in Cα(T) according to the assumption g ∈ Cα. The function G4 belongs
to L∞(T) and G′4 ∈ Cα(T). Indeed,

‖G4‖L∞ .
∑
n≥p+1

|gn+1|
n

.
( ∑
n≥m+1

|gn+1|2
) 1

2

. ‖G‖L∞ .

Moreover

(wG4)′ =
4

(1−Q2)2

∑
n≥m+1

gn+1w
n−1 =

4

(1−Q2)2

1

w
Rm(w).

This gives (wG4)′ ∈ Cα(T) and thus G4 ∈ C1+α(T). On the other hand

wG′5(w) =
4

(1−Q2)2

∑
n≥m+1

gn+1

1−Q2

2 n− 1
wn−1.

Arguing as before we see that wG′5 ∈ L∞(T) and belongs also to Cα(T). This shows thatG′1 ∈ Cα(T)
which gives that G1 ∈ C1+α(T). This shows finally that any pre-image of g belongs to the space X.
(4) Let m ≥ 3 be an integer and Q = Qm the associated element in the set S. We have seen that
the kernel is one-dimensional generated by

vm(w) =
wm+1

1−Qw2
=
∑
n≥0

Qnwm+1+2n.

We shall compute ∂Q∂fF (Qm, 0)vm which coincides with
{
∂QLQvm

}
Q=Qm

. The transversality

condition that we shall check is {
∂QLQvm

}
Q=Qm

/∈ R(LQm).

From the structure of the range of L this is equivalent to prove that the coefficient of em in the
decomposition

{
∂QLQvm

}
Q=Qm

is not zero. From (25) and (26) this coefficient is given by

{∂Q(dm − d̂m)}Q=Qm = −m(Qm +Qm−1
m )(am+1 −Qmam−1) + (

1−Q2
m

2
m− 1−Qmm)am−1

= −m(Qm +Qm−1
m ) + 0

6= 0.
19



We have used the fact that am+1 = 1 and am−1 = 0. This achieves the transversality assumption
and therefore the proof of Proposition 2 is complete. �
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[10] J. Dieudonné. Foundations of Modern Analysis, Academic Press, New York, (1960).
[11] D. G. Dritschel. The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech. 172

(1986), 157–182.
[12] G. R. Flierl, L. M. Polvani. Generalized Kirchhoff vortices, Phys. Fluids 29 (1986) 2376–2379.
[13] Z. Hassainia, T. Hmidi. On the V-States for the generalized quasi-geostrophic equations. Comm. Math. Phys. 337

(2015), no. 1, 321–377.
[14] Z. Hassainia, T. Hmidi, F. de la Hoz. Doubly connected V-states for the generalized surface quasi-geostrophic

equations. Preprint arXiv:1412.4587.
[15] T. Hmidi, J. Mateu, J. Verdera. Boundary Regularity of Rotating Vortex Patches. Arch. Ration. Mech. Anal.

209 (2013), no. 1, 171–208.
[16] T. Hmidi, J. Mateu, J. Verdera. On rotating doubly connected vortices. J. Differential Equations 258 (2015), no.

4, 1395–1429.
[17] T. Hmidi, F. de la Hoz, J. Mateu, J. Verdera. Doubly connected V-states for the planar Euler equations. Preprint

arXiv:1409.7096.
[18] Y. Guo, C. Hallstrom, and D. Spirn. Dynamics near an unstable Kirchhoff ellipse. Comm. Math. Phys.,

245(2):297–354, 2004.
[19] J. R. Kamm. Shape and stability of two-dimensional uniform vorticity regions. PhD thesis, California Institute

of Technology, 1987.
[20] G. Kirchhoff. Vorlesungen uber mathematische Physik (Leipzig, 1874).
[21] H. Lamb. Hydrodynamics, Dover Publications, New York, (1945).
[22] A. E. H. Love. On the Stability of certain Vortex Motions. Proc. London Math. Soc., 25(1)18–42, 1893.
[23] P. Luzzatto-Fegiz, C. H. K. Williamson. Stability of elliptical vortices from ”Imperfect-Velocity-Impulse” dia-

grams. Theor. Comput. Fluid Dyn. 24 (2010), no. 1-4, 181–188.
[24] J. Mateu, J. Orobitg and J. Verdera. Extra cancellation of even Calderón-Zygmund operators and quasiconformal

mappings, J. Math. Pures Appl. 91 (4)(2009), 402–431.
[25] T. B. Mitchell and L. F. Rossi. The evolution of Kirchhoff elliptic vortices. Physics of Fluids, 20(5), 2008.
[26] E. A. II Overman. Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting

V-states. SIAM J. Appl. Math. 46 (1986), no. 5, 765–800.
[27] P. G. Saffman. Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge

University Press, New York, 1992.
[28] Y. Tang. Nonlinear stability of vortex patches. Trans. Amer. Math. Soc., 304(2)617–638, 1987.
[29] Y. H. Wan. The stability of rotating vortex patches. Comm. Math. Phys., 107(1) 1–20, 1986.

20



[30] H. M. Wu, E. A. Overman II and N. J. Zabusky. Steady-state solutions of the Euler equations in two dimensions:
rotating and translating V-states with limiting cases I. Algorithms ans results, J. Comput. Phys. 53 (1984),
42–71.

[31] V. I. Yudovich. Non-stationnary flows of an ideal incompressible fluid. Zhurnal Vych Matematika, 3, pages
1032–106, 1963.
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