Supporting information to the article in Colloid and Polymer Science

Photoluminescent polysaccharide-coated germanium (IV) oxide nanoparticles.

V. Lobaz^{1,}, M. Rabyk¹, J. Pánek¹, E. Doris², F. Nallet³, P. Štěpánek¹, M. Hrubý¹* Corresponding Author * e-mail: <u>lobaz@imc.cas.cz</u>

¹Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 1888/2, 162 06 Prague 6, Czech Republic

1. The amount of polysaccharide for the synthesis of GeO_2 nanoparticles in aqueous environment was estimated for 10 monolayers on 100 nm GeO_2 particles from the following assumptions: the surface area of 0.1g of germanium oxide, taking every particle as a sphere is 1.41 m². The hydrodynamic diameter of polysaccharide molecules was measured by dynamic light scattering (Figure S1). The area, occupied by polysaccharide molecule is estimated, as a projection of the sphere with hydrodynamic diameter of polysaccharide molecule on a flat surface. The number of polysaccharide molecules in theoretical monolayer was found by division of the total area of particles with the projection area of polysaccharide molecule.

Table S1. Colloidal characteristics and quantities of polysaccharides, used in the synthesis of GeO_2 nanoparticles in aqueous acidic environment.

polysaccharide	d _h , nm	projection area, m ²	number of moles	Molecula r weight	mass for 10 layers, g
inulin	2.50±0.20	$1.97*10^{-17}$	$1.20*10^{-7}$	3600	0.0043
chitosan	2.00±0.17	$1.26*10^{-17}$	$1.86*10^{-7}$	5000	0.0093
dextrin	4.00±0.22	5.10*10 ⁻¹⁷	$4.60*10^{-8}$	10000	0.0046
dextran MW 6000 Da	3.50±0.17	$3.84*10^{-17}$	6.14×10^{-8}	6000	0.0037
dextran MW 450-650000 Da	14.00 ± 0.20	6.15*10 ⁻¹⁶	3.81*10-9	450000	0.0175

2. Image analysis of GeO₂ nanoparticles, synthesized in aqueous environment.

The particle size range was divided into 16 equal intervals and the relative number of particles within each interval was counted. The cumulative particle size distributions were plotted and differentiated with Origin 9 (Microcal) The differential particle size distribution were fitted as a superposition of 1 to 3 Gaussian functions, $f(L) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(L-L_m)^2}{2\sigma^2}}$ each representing the population of a particles with mean dimension $L_m \pm \sigma$ (Figure S1-S11), where σ is the standard deviation. The average particle dimension L_a was obtained as a weighted ($0 \le p \le 1$ is normalized area under Gaussian function) sum of means and used for theoretical prediction of the surface area (m^2/g), the standard deviation of L_a was calculated according to: $\sigma =$

$$\sqrt{\sum p_i(\sigma_i^2+L_i^2)-(\sum p_iL_i)^2}.$$

Figure S1 GeO₂ particles without polysaccharide, $L_a = 884 \pm 613$ nm, $A = 1.61 m^2/g$

Figure S2 GeO₂ particles with chitosan, 0.0093 g to 0.1g of GeO₂ L_a = 343±233 nm, A = 4.14 m²/g

Figure S3 GeO₂ particles with dextrin, 0.0046 g to 0.1g of GeO₂ $L_a = 316\pm210$ nm, A = 4.49 m²/g

Figure S4 GeO₂ particles dextran 6000 Da, 0.0037 g to 0.1g of GeO₂ L_a = 392±265 nm, A =3.62 m²/g

Figure S5 GeO_2 particles with dextran 450 000 Da, 0.0175 g to 0.1g of GeO_2 $L_a=474\pm274nm,\,A=2.99\ m^2/g$

Figure S6 GeO₂ particles with inulin, 0.0043 g to 0.1g of GeO₂, $L_a = 539 \pm 417$ A = 2.63 m²/g

SEM MAG: 15.00 kx
DET: SE Detector
L
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
<

Figure S9 GeO₂ particles with dextrin 0.1 g to 0.1g of GeO₂ $L_a = 429 \pm 180$ nm, A = 3.31 m²/g

Figure S10 GeO_2 particles with chitosan, 0.1 g to 0.1g of GeO_2 L_a = 317±242 nm, A =4.48 m^2/g

Figure S11 GeO₂ particles with dextran 6000 Da, 0.1 g to 0.1g of GeO₂ L_a = 433±271 nm, A = 3.28 m²/g

Carbon		Carbon Amount	Number -	Number-average		Surface		Adsorption			Surface area per molecule			Waight
Poly- in	in poly-	of poly- average sacch. dimen-	average dimen-	fits)	fits), nm		Carbon content in		$m\alpha/m^2$	$mole/m^2$	evn	theor ¹	ζ potential	loss
succharac	(theor.) %	per 1g of GeO ₂	sion (SEM),	1 st mode	2 nd mode	m^2/g	GeO ₂ ,%	%, weight	(BET)	*10 ⁷	nm^2	nm ²	mV	400°C %
	_	_	884	665+357	969+768	_			n/a				~0	0.34
chitosan	41	0.0093	343	270±209	492±206	-	0.58±0.30	1,41±0.73	3.45^2	4.16	24	13	+18.1	0.30
	41	1	317	239±123	328±316	6.62	0.76±0.30	1,85±0.73	2,85	5,69	29		+26.4	0.58
dextrin 44	44	0.0046	316	270±193	452±158	4.18	0.55±0.30	1,25±0,68	3,03	3,03	55	- 51	-30.5	0.40
	44	1	429	395±187	505±135	3.42	0.63±0.30	1,43±0,68	4,24	4,24	39		-30.7	0.42
inulin	/1	0.0043	539	539=	±417	1.82	0.44 ± 0.30	1,07±0.73	5,94	16,51	10	- 20	-38.3	0.35
mum	+1	1	437	353±278	450±181	1.50	0.47 ± 0.30	1,15±0.73	7,76	21,54	8		-29.7	0.47
dextran 450 000 44	0.0175	506	316±229	514±200	3.40	0.71±0.30	1,61±0,68	4,81	0,11	1553	615	-37.9	0.31	
		1	474	372±209	577±479	2.54	0.44 ± 0.30	$1,00\pm0,68$	3,98	0,09	1880	015	-31.7	0.61
dextran	11	0.0037	392	289±180	428±357	1.97	0.56 ± 0.30	$1,27\pm0,68$	6,53	10,88	15	38	-22.6	0.30
6000 44	44	1	433	356±232	611±229	3.12	0.47 ± 0.30	1,07±0,68	3,47	5,78	29	50	-35.3	0.16

Table S2 Colloidal properties of GeO₂ nanoparticles, synthesized in aqueous solutions of polysaccharides

1 – theoretical area per one polysaccharide molecule is estimated as a projection of a sphere with hydrodynamic diameter of polysaccharide molecule on a flat surface (Table S1)

2 - calculated from the average dimension, obtained by SEM

3 Size distributions (DLS) and TEM images of GeO₂ nanoparticles.

Table S3 Concentrations of Ge(IV) in samples, synthesized in ethanol and size of GeO_2 nanoparticles

Synt. N	Volume of the reaction mixture, ml	Number of moles of Ge(IV)	Conc. of Ge(IV) in reaction mixture	Volume of the purified sample, ml	Conc. of Ge(IV) in purified sample, M ¹	Diameter of GeO ₂ particles (DLS), nm
1	4.0					74±18
2		0.0024				78±18
3					1.6	74±18
4^{2}		0.0024	1.5			aggregated
6						498±151 ⁵
7						97±23
8		0.0017			1.13	498 ± 99^{5}
9			0.43			67±15
10^{3}		0.0006		1	0.6	dissolved
114						227±51

- 1 theoretical for 100% yield
- 2 synthesized in acetonitrile
- 3 with 0.03g polyvinylpyrrolidone
- 4 with 0.03g poly(ethylene glycol)
- 5-aggregation

Particle size distributions (PSD), measured by DLS, were fitted with unimodal lognormal function $f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(lnx-\mu)^2}{2\sigma^2}}$ and the number average particle diameter was represented by median value d±SDv, where d=e^{μ}, and standard deviation SDv = $\sqrt{e^{2\mu+\sigma^2}(e^{\sigma^2}-1)}$: Figure S12-S25

Figure S12 Synthesis N1, TEM image of particles, aged for 30 days

Figure S13 Synthesis N2. TEM image of particles, aged for 30 days

Figure S14 Synthesis N3. TEM image of particles, aged for 1 hour.

Figure S15 Synthesis N4, in acetonitrile. TEM image of particles, aged for 1 hour.

Figure S16 Synthesis N7. TEM image of particles, aged for 10 days

Figure S17 Synthesis N9. TEM image of particles, aged for 3 days.

Figure S18 Synthesis N11. TEM image of particles, aged for 3 days.

Table S4.Concentrations of Ge(IV) and Si(IV) in coating of the GeO_2 nanoparticles with SiO_2 shell. Colloidal properties of GeO_2 and $GeO_2@SiO_2$ nanoparticles

Synt. N*	Volume of reaction mixture, ml	Aliquot of purified GeO ₂ , ml	Number of moles of Ge(IV),	Number of moles of TEOS,	Volume of ammonium hydroxide, 0.5M, ml	Volume of the purified sample, ml	Conc. of Ge(IV) in purified sample, M	Size of initial GeO ₂ (DLS), nm	Diameter of coated GeO ₂ @SiO ₂ , (DLS), nm
1-1	0.052			4.48*10 ⁻⁷	0.002 ¹				aggregated
1-2	0.059			8.96*10-7	0.005			74+18	65±15
1-3	0.066		_	$1.34*10^{-6}$	0.010	0.5	0.16	/4±18	80±20
1-4	0.073	0.05	8*10 ⁻⁵	$1.79*10^{-6}$	0.015				75±18
3-2	0.059			8.96*10 ⁻⁷	0.005			78±18	79±19
3-3	0.066			$1.34*10^{-6}$	0.010				90±23
3-4	0.073			$1.79*10^{-6}$	0.015				93±24
$6-1^2$	0.713		8*10 ⁻⁴	$\frac{1.40*10^{-5}}{2.24*10^{-4}}$	0.15		0.8	498±151	256±76
$7-1^2$	0.66	0.5			0.1			07+23	115±16
7-2	0.6								122±31
$7-3^{2}$	1.4	1.0	1.6*10 ⁻³		0.2		1.6	97±23	151±41
$7-4^{3}$	17	1.0	1.0.10		0.5		1.0		aggregated
8-1 ³	1./			8 06*10 ⁻⁴	0.5	1			aggregated
8-2 ²	1.5	0.5	5 7*10 ⁻⁴	8.90 10	0.34	1	0.57	408+00	aggregated
8-3	1 25	0.5	5.710				0.57	490±99	aggregated
$8-4^2$	1.23								336±82
9-1					0.05 ⁵				211±81
9-2	1	0.2	$1,2*10^{-4}$	$2.24*10^{-4}$			0.12	67±15	112±32
9-3	9-3								356±130

1 - of pure water; 2 - dosage of ammonium hydroxide with 10 equal aliquots during 120 min; 3 - dosage of ammonium hydroxide with increasing aliquots (10; 20; 40; 80; 150; 200 microliters); 4 - 1.3 M ammonium hydroxide; 5 - 6.5 M ammonium hydroxide.

*The numbering of the syntheses X-Y, where X – number of GeO_2 sample (Table S3), Y - the sequence number of coating reaction.

4. Size distributions (DLS) and TEM images of GeO₂@SiO₂ nanoparticles.

Figure S19 Synthesis 1-2

Figure S20 Synthesis 1-3

Figure S21 Synthesis 1-4

Figure S22 Synthesis 3-2

Figure S23 Synthesis 3-3

Figure S24 Synthesis 3-4

115±16*nm*

150

200

Figure S25 Synthesis 7-1

5. FTIR and FT-Raman spectroscopy

Figure S26 FTIR spectra of GeO_2 nanoparticles, synthesized in the aqueous solutions of polysaccharides

Figure S27 FT-Raman spectra of GeO_2 synthesized in the aqueous solutions of polysaccharides

The FTIR spectra of coated $GeO_2@SiO_2$ nanoparticles (Figure 5 c) were plotted in wavelength range 650-1200 cm⁻¹ and fitted as a superposition of five Gaussian lines, having two of them fixed at 850 cm⁻¹ and 1045 cm⁻¹. From the fits the ratio of the areas under the peak at 850 and 1045 cm⁻¹ was calculated and used for estimation of the composition of coated $GeO_2@SiO_2$ nanoparticles. Black solid line – experimental spectrum; dashed lines - Gaussian fits; yellow solid line – sum of fitted peaks.

Figure S28 FTIR spectrum. Initial molar ratio $GeO_2/TEOS - 1/0.0168$. Ratio from Gaussian fit 1/0.0156

Figure S29 FTIR spectrum. Initial molar ratio $GeO_2/TEOS - 1/0.0224$. Ratio from Gaussian fit: 1/0.0069

Figure S30 FTIR spectrum. Initial molar ratio $GeO_2/TEOS - 1/1.54$. Ratio from Gaussian fit: 1/0.0533

6. Calculation of the crystalline size

Table S. X-ray diffraction characterization of GeO2 nanoparticles

Sample	Cryst. plane	(100)	(101)	(110)	(102)	(111)	(200)	(112)
	q, Å ⁻¹	1,45	1,84	2,53	2,67	2,77	2,93	3,37
	20	21	27	37	39	41	43	50
water	FWHM, rad	0,0015	0,0016	0,0020	0,0022	0,0027	0,0024	0,0038
	$\sin \theta$	0,181	0,230	0,317	0,334	0,346	0,366	0,421
	d, nm	504	379	220	186	147	158	87
ethanol	q, Å ⁻¹	-	1,83	2,53	2,66	2,75	2,91	3,37
	20	-	26	37	39	40	43	50
	FWHM	-	0,229	0,317	0,332	0,344	0,364	0,421
	$\sin \theta$	-	0,0839	0,1533	0,0879	0,1226	0,1185	0,0833
	d, nm	-	59	23	39	27	26	32

7. Thermogravimetry:

Figure S31 Thermogravimetry of GeO_2 nanoparticles, synthesized in aqueous solutions of polysaccharides

Figure S32 Thermogravimetry of GeO_2 nanoparticles, synthesized in aqueous solutions of polysaccharides

The amount of grafted polysaccharides was calculated from the sharp weight loss in temperature range 250-350°C.

Figure S 33 TGA of GeO₂@SiO₂ particles with labelled polysaccharides: Dy-615-GG (1); FITC-GG (2); TRITC-dextran (3)