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Three-dimensional bonded-cell model for grain fragmentation

D. Cantor1,2· E. Azéma1,3 · P. Sornay2 · F. Radjai1,4

Abstract Wepresent a three-dimensional numericalmethod
for the simulation of particle crushing in 3D. This model is
capable of producing irregular angular fragments upon par-
ticle fragmentation while conserving the total volume. The
particle is modeled as a cluster of rigid polyhedral cells gen-
erated by a Voronoi tessellation. The cells are bonded along
their faces by a cohesive Tresca law with independent tensile
and shear strengths and simulated by the contact dynam-
ics method. Using this model, we analyze the mechanical
response of a single particle subjected to diametral compres-
sion for varying number of cells, their degree of disorder, and
intercell tensile and shear strength. In particular, we iden-
tify the functional dependence of particle strength on the
intercell strengths. We find that two different regimes can be
distinguished depending on whether intercell shear strength
is below or above its tensile strength. In both regimes, we
observe a power-law dependence of particle strength on both
intercell strengths but with different exponents. The strong
effect of intercell shear strength on the particle strength
reflects an interlocking effect between cells. In fact, even at
low tensile strength, the particle global strength can still con-
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siderably increase with intercell shear strength. We finally
show that the Weibull statistics describes well the particle
strength variability.

Keywords Bonded-cell model · Fragmentation · Discrete
element method · Contact dynamics method · Voronoi cell ·
Weibull statistics

1 Introduction

The fragmentation of particles is an important factor in every-
day use of granular materials and in processing industries
dealing with powders and grains. It modifies the grain size
distribution [9,21,33], packing fraction [15,25,29], shear
strength [30], yielding surface [34,50], and microstructure
of granular materials [31]. However, there is presently no
clear quantitative understanding of such effects in the rhe-
ology and processing of granular materials and, conversely,
the properties of the fragments such as their size, shape, and
strengths cannot be predicted from the process [23].

The effects of particle crushing can be investigated exper-
imentally but its origins are much more difficult to trace
back to the particle scale. In a similar vein, some continuum
mechanicsmodels are able to reproduce phenomenologically
the effects of particle fragmentation or degradation [8,13].
Suchmodels are, however,mostly basedon idealizeddescrip-
tion of grain failure. For these reasons, numerical simulations
based on the discrete element method (DEM) have been
extensively used for a better understanding of the fragmenta-
tion process and its impact on the macroscopic behavior. The
first DEM simulations of crushable particles were proposed
in the late 80s [62] and 90s [1,28,58]. Initially, these mod-
els were two-dimensional and involved simplified (circular)
shapes of fragments and their interactions (frictional con-
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2 BCM with contact dynamics

2.1 Voronoi meshing

We perform a three-dimensional meshing of polyhedral par-
ticles with the help of the package NEPER [43] and using
a centroidal Voronoi tessellation [18]. In general, a Voronoi
tessellation is a division of a spaceX inRN via a set of points
or generators {Pj }. The main property of this division is that
any point x belongs to a Voronoi cell Vi if a distance function
d(x, Pi ) is minimal between all the generators [42]. A com-
pact definition of a Voronoi cell may be written as follows:

Vi = {x ∈ X | d(x, Pi ) < d(x, Pj ) ∀ j �= i}. (1)

In three dimensions, the Voronoi tessellation produces
always convex polyhedra sharing common faces if the region
X is also convex.

Furthermore, a centroidal Voronoi tessellation has the
property that the generators are also the centroids of the cells.
The points {Pj } are usually located randomly and, as a conse-
quence, the locations of those points differ from those of the
corresponding cell centroids {c j }. One possible technique
to reduce the distances d(Pj , c j ) is known as the Lloyd’s
method. This iterative procedure may be described as fol-
lows:

1. Define the space X,
2. select points {Pj },
3. define the corresponding cells {Vj },
4. compute the centroid of each cell {c j },
5. replace points {Pj }with points {c j } and recompute {Vj },
6. repeat from step 4 until a convergence criterion is satis-

fied.

The convergence criterion that is used in this work may
be written as follows:

ncl∑

j=1
d(Pj , c j )

ncl∑

j=1
r j

≤ λ, (2)

where ncl is the number of cells, and r j is the average radius
of cell j . This ratio should be below or equal the tolerance λ

at which we stop the iterations. The quantity λ is actually a
quite interesting parameter because, as it is shown below, it
may be interpreted as a measure of disorder of the cell shapes
and their distributions.

Figures 1 and 2 display several examples of meshing of
a truncated icosahedron, a semiregular polyhedron with 60
vertices and 21 faces, forλ = 0.25 and two different numbers
of cells, and for ncl = 250 and two values of λ, respectively.
In general, values ofλ � 0 produce less elongated shapes and

tacts). 2D simulations are now capable of reproducing the 
evolution of cracks and complex geometries of fragments 
[39,40].

With increasing computational power, three-dimensional 
models have also been introduced recently. These models 
can be classified at least in two main groups. The first 
group, which we call Replacing Method, consists in substi-
tuting each broken particle when typically a load threshold 
is reached by a set of smaller particles [16,61]. However, 
a nonconservation of mass and volume may occur as the 
replacements are made and artificial overlapping between 
particles is sometimes allowed, producing local elastic over-
stresses.

The second group, which was coined Bonded-Cell Method 
(BCM) in Ref. [40], is based on the construction of parti-
cles by agglomerating a set of potential fragments. These 
small fragments are held together by diverse mechanisms 
that assign a bonding strength at each contact. The bonding of 
spheres is the most wide-spread model to simulate crushing 
in 3D. However, the spheres are obviously unable to repro-
duce the broad shape variability of fragments. Moreover, the 
apparent volume of a sphere agglomerate is considerably 
larger than those of its fragments. In order to circumvent these 
problems, some authors have used polygonal or polyhedral 
subparticles or cells generated by Voronoi tessellation [22]. 
These cells pave the whole volume of the particle so that 
the volume is conserved during particle fracture and frag-
mentation. Nevertheless, intercell contacts are modeled by a 
linear force law as that between spherical subparticles. This 
is clearly an unphysical approximation since the contacts 
extend along a surface between cells and a realistic model 
must account for the fact that the treatment of such contacts 
need at least three displacement variables at three indepen-
dent contact points.

In this paper, we introduce a three-dimensional BCM 
approach in the framework of the contact dynamics (CD) 
method. In 3D, each particle is composed of cells of irregular 
polyhedral shape. The framework of the CD method has the 
advantage of accounting for the correct kinematics of face–
face contacts between fragments [27,46]. Furthermore, the 
treatment of cells as rigid particles leads to numerically effi-
cient simulations in 3D. We also introduce a general cohesive 
law governing cell interactions before fracture. Using this 
approach, we investigate the fracture properties of a single 
particle subjected to diametral compression.

This paper is organized as follows: In Sect. 2.3, we  
present the 3D BCM as well as the treatment of intercell 
contacts within the CD method. In Sect. 3, numerical sim-
ulations of diametral compaction are introduced. In Sect. 
3.2, we investigate the effects of different geometrical and 
mechanical parameters on the particle strength. Finally, in 
Sect. 4, a brief summary and perspectives of this work are 
presented.



Fig. 1 Examples of icosahedral particles for λ = 0.25 and meshed by
a 5 and b 250 cells

Fig. 2 Examples of icosahedral particles composed of 250 Voronoi
cells and disorder parameters λ = 0.005 (a) and λ = 0.5 (b)

the cells are well distributed in the volume. As λ increases,
the dislocation of the centroids with respect to the generators
create disorder in the assembly of cells.

By construction, the sizes of the initial aggregates and
cells determine the upper and lower bounds of the fragment
size distributions during crushing simulations. In this sense,
for DEM simulations it is important to optimize the number
of cells per aggregate in order to ensure the representativ-
ity of the fragments sizes for a convenient computational
time.

2.2 Cell interactions

The contact between two polyhedral shapes can have three
different geometries: contact point, contact line, and contact
surface, as shown schematically in Fig. 3. The determination
of the contacts between two polyhedral cells is performed
in several steps. First, a “bounding box” method is used
to compute a list of neighboring pairs. Then, for each pair,
the overlaps are calculated through the so-called “common
plane” method introduced by Cundall [17]. This is an iter-
ative method based on the perturbation of the orientation
of the normal vector. The process is initialized by a first
guess based on the vector joining the centers of the two
polyhedra. This detection procedure is fairly rapid when
correctly optimized [37,38]. The interactions may include

Fig. 3 Examples of contact types that may occur between polyhedral
cells: a Point, b line, and c surface

vertex–vertex, vertex–edge, vertex–face, edge–edge, edge–
face, or face–face contacts. The contact line, such as that
produced by a edge–face interaction, can be represented by
two distinct points, whereas a surface (face–face) contact
can be replaced by three points since they involve an equiv-
alent number of geometrical unilateral constraints between
two faces. Note that vertex–vertex or vertex–edge contacts
are rare but, when they occur, the common plane method
is able to provide a normal direction based on geometrical
criteria.

In the Bonded-Cell Method, we assume that rigid cells
interact only via cohesive forces through face–face con-
tacts. The normal adhesion threshold f cn depends on the
area S of the contact. Since the contact plane is repre-
sented by three points, the tensile threshold for each contact
point is given by f cn = CnS/3, where Cn is the internal
cohesion of the material. In the same way, the shear thresh-
old for each contact point in the contact plane is given
by f ct = Ct S/3, where Ct is the contact shear strength.
Cn and Ct are assumed to be independent strength para-
meters of the material. Once either of the critical stresses
is reached, the intercell bond breaks irreversibly and the
interaction turns into a frictional contact with coefficient
of friction μcl . Note that, since the cells are rigid, a cohe-
sive face–face contact can not kinematically break until
the three points representing the interface do so, i.e., when
either of the two thresholds is reached for each of the three
points.

The normal force fn and normal velocity un at each con-
tact point satisfy the following relations [46]

{
un > 0 ⇒ fn = 0
un = 0 ⇒ fn + CnS/3 > 0

(3)

which simply expresses the unilateral nature of the contact
between the two cells at their contact points in the presence of
a cohesive force. In the same way, along the tangential direc-
tion, we have the following relation between the tangential
force ft and the tangential velocity ut :



Fig. 4 Complementarity relations along the normal and tangential
directions of the contact frame for cohesive contacts (a, b) and bro-
ken contacts (c, d) respectively

⎧
⎨

⎩

ut > 0 ⇒ ft = −Ct S/3
ut = 0 ⇒ −Ct S/3 ≤ ft ≤ Ct S/3
ut < 0 ⇒ ft = Ct S/3

. (4)

These “complementarity relations” are represented by two
graphs shown in Fig. 4a, b.

The above relations should be taken into account together
with the equations of motion in order to determine both
the velocities and forces at all contacts in the system.
We use the contact dynamics (CD) method, which, as
briefly discussed below, allows for exact prescription of
these relations based on an implicit time-stepping integra-
tion scheme. To use molecular dynamics (MD) or common
DEM, it is necessary to regularize the above relations
so that the classical explicit integration schemes can be
applied.

At each time step, the “critical” contact points,whereun >

0 (separation) or |ut | > 0 (sliding), break irreversibly and
the contact point turns into a cohesionless frictional contact
governed by the following relations:

(5)

⎧
⎨

⎩

ut > 0 ⇒ ft = −μcl fn
ut = 0 ⇒ −μcl fn ≤ ft ≤ μcl fn
ut < 0 ⇒ ft = μcl fn

. (6)

The graphs of these relations are shown in Fig. 4c, d.

2.3 Contact dynamics

The above complementarity relations were prescribed within
the CDmethod [27,35,46,59]. In this method, the rigid-body
equations of motion are integrated for all particles, which
are treated as undeformable bodies, by taking into account
the kinematic constraints resulting from the complementar-
ity relations. An iterative algorithm similar to Gauss–Seidel
iterations is used to determine the contact forces and particle
velocities simultaneously at all potential contacts. Since this
algorithm is implicit, the contact velocities un and ut enter-
ing the complementarity relations can represent the velocities
u+
n and u+

t at the end of a time step. This is equivalent to
the assumption that the coefficients en and et of normal and
tangential restitution are both zero. However, it is also possi-
ble to use the complementarity relations with the following
weighted means:

un = enu−
n + u+

n

1 + en
(7)

ut = etu
−
t + u+

t

1 + et
, (8)

where u−
n and u−

t are the normal and tangential contact veloc-
ities at the beginning of a time step. With complementary
relations involving these weighted velocities, it can be shown
that in a binary collision between two particles the postcol-
lisional velocities are indeed given by u+

n = −enu−
n and

u+
t = −etu

−
t . In this way the contact laws involve five inde-

pendent parameters: coefficient of friction μcl, coefficient
of normal restitution en , coefficient of tangential restitution
et , normal cohesive strength Cn , and tangential cohesive
strength Ct .

An implicit time-stepping scheme makes the CD method
unconditionally stable. In contrast to the molecular dynam-
ics method, in the CD method the tiny numerical overlaps
between particles are used for contact detection but they
do not represent an elastic deflection. For this reason, the
time step can be larger than that in the MD method or
DEM. The CD method has been extensively employed
for the simulation of granular materials in 2D and 3D
[2,4–7,12,19,36,41,44,45,48,49,51–54,56,57]. We imple-
mented the Bonded-Cell method in the software LMGC90
[20]. Video samples of diametral compression tests can be
found at www.cgp-gateway.org/ref035.

{ 
un > 0 ⇒ fn = 0 
un = 0 ⇒ fn > 0

and

www.cgp-gateway.org/ref035


Fig. 5 Schematic representation of diametral compression test on a
particle of average radius R

3 Diametral compression and particle strength

3.1 Diametral compression of an icosahedron

We consider icosahedral particles of mean radius R com-
pressed between two platens, as illustrated in Fig. 5. A
gradually increasing vertical force f a is applied on the top
platen. The platens directly touch two opposite hexagonal
faces of the icosahedron. Hence, the force fa is always
exerted on this supporting hexagonal surface belonging to the
periphery of the particle. This surfacemay be shared between
several cells depending on the number ncl of cells inside the
icosahedron. As fa is increased from zero, the contact forces
inside the particle increase proportionally to fa but, since
the particle is rigid, no fracture occurs until a threshold fc
is reached. At this point, an unstable failure of the particle
occurs and the particle breaks into several fragments. Several
snapshots of a particle at incipient crushing are shown in Fig.
6. The subsequent fragmentation is a dynamic process and
can be investigated under controlled displacement of the top
platen. Here we are interested in the initiation of failure and
the breaking force fc, which represents the particle strength.

The intercell breaking strengths Cn and Ct having the
dimensions of a stress, the particle strength should be
expressed as a stress threshold σc. However, the stress
field inside a particle subjected to diametral compression
is nonuniform [14,60]. The average vertical stress in the
largest section of the particle πR2 is fa/πR2. The high-
est tensile stress inside the particle can be much larger than
this stress. In our meshed particles, even with a large num-
ber of cells, the disordered configuration of the cells results
in a strongly inhomogeneous distribution of intercell forces.
Figure 7 shows an example of intercell forces in a particle
composed of 150 cells. We observe both compressive forces
along the vertical direction and tensile forces along the hori-
zontal direction. We can compute the average vertical stress
from the forces by applying the followingwell-knownmicro-
mechanical expression:

Fig. 6 Snapshots of a particle composed of 75 cells undergoing incip-
ient breakage under the action of a vertical force

σa = 1

V

∑

α∈V
f α
z �α

z , (9)

where V is the volume of the particle, α denotes the con-
tact labels between the cells, fz is the vertical component of
the intercell force, and �z is the vertical component of the
branch vector joining the centers of cells. This average stress
is proportional to fa/πR2 by a factor of 1.2 and it reaches its
maximum value for fc. Note that, to avoid inhomogeneities
induced by gravity, the latter is set to zero although its value
is by orders of magnitude below the breaking threshold fc.
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Fig. 8 Evolution of particle strength with the number of cells. Each
point represents an average value over 10 independent cell configura-
tions. The error bars represent minimum and maximum values
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Fig. 9 Evolution of particle strength as a function of the degree of
disorder

have nearly the same size. Such structures have less vari-
ability in the orientations of cell contacts and are thus able
to sustain large external loads through column-like arrange-
ments of cells. A degree of disorder λ = 0.25 was used in
the simulations reported below.

3.3 Effect of intercell strength parameters

Since the stresses and forces inside the particle scale with
the applied force, it is generally expected that the particle
strength is a linear function of the tensile strength Cn of
intercell contacts. However, we expect the shear strength Ct

to play a crucial role since an intercell contact fails at this
threshold (when sliding occurs) and both Cn and Ct vanish
upon failure. Generally, the shear strength Ct is a function of
Cn depending on the material [10,11,55]. However, in view
of exploring the respective roles of Ct and Cn , we varied
these parameters independently in the range between 0.25
and 8 MPa.

Figure 10 shows the evolution of the particle strength σc
as a function ofCn for different values ofCt . Each data point
is an average over 10 independent simulations. We observe

Fig. 7 Intercell forces in a particle composed of 150 cells subjected to 
diametral compression. Line thickness is proportional to the force. The 
compressive and tensile forces are in red and blue, respectively

3.2 Effects of meshing on the particle strength

We performed a series of simulations with a particle of con-
stant size but varying number ncl of cells and degree of 
disorder λ. In these simulations, the intercell strengths are 
kept constant and equal Cn = Ct . The intercell coefficient 
of friction, which becomes effective only when an intercell 
contact fails, is set to μcl = 0.4. Figure 8 shows the vertical 
strength σc, normalized by normal strength Cn , as a function 
of ncl. Each point represents the mean value for 10 simu-
lations performed with particles composed of cells with the 
same degree of disorder λ = 0.25 and the same strength, 
but independent Voronoi tessellations for the generation of 
the cells. The maximum and minimum values are shown by 
error bars.

Despite the large variability of the data, specially at small 
numbers of cells, we see that the particle strength increases on 
the average with ncl and it becomes independent of it beyond 
75 cells. We also observe that this steady value of the particle 
strength is nearly 1.25 times the intercell strength Cn . The  
high variability of the particle strength with low number of 
cells reflects the very high inhomogeneity of forces for such 
a low number of intercell contacts. The particle may break 
just as a result of the failure of a single intercell contact. For 
this reason, the average values in this range for 10 indepen-
dent simulations do not represent statistically well-defined 
averages.

In order to evaluate the effect of the degree of disorder in 
cell configurations, we used particles composed of 150 cells 
and an increasing degree of disorder λ. Figure 9 displays 
the normalized strength as a function of λ. We see that, as 
λ increases from zero, the particle strength rapidly declines. 
The particle strength is nearly constant beyond λ = 0.2. The 
transition between these two limits seems to be nonlinear. 
This variation can be explained by remarking that ordered 
cell structures are formed for λ close to zero where the cells
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Fig. 10 Evolution of particle strength as a function of intercell tensile
strengthCn for different values of intercell shear strengthCt .All stresses
are in MPa. The circles indicate the data points for Cn = Ct

Fig. 11 Evolution of particle strength normalized by the tensile inter-
cell strength as a function of the ratio of intercell shear to tensile strength.
The solid lines are power-law fits to the data

a nonlinear dependence of the particle strength on both cell
strength parameters. At low values of Cn , σc is rather low
but it varies by a factor of 20 as Ct increases to its largest
value. At largest values of Cn , on the other hand, σc can
take values as much as two times larger but varies by only a
factor of 4 as Ct increases in the same range. This shows that
the effect of Ct directly depends on the value of Cn . In the
samefigure,we also see that the particle strength forCn = Ct

increases nearly linearly with the latter with a proportionality
coefficient of 1.25.

The nonlinear trends observed in Fig. 10 are clearly a
consequence of the variation of failure mode in response to
the relative values of Ct and Cn . In particular, we expect
that at low values of Ct with respect to Cn , particle breakage
by intercell slip requires less energy dissipation and is thus
more likely to occur, whereas at high values ofCt with regard
to Cn , failure by tensile rupture should prevail. This picture
is consistent with the evolution of the normalized particle
strengthσc/Cn as a function of the ratioCt/Cn plotted in Fig.
11. First, we see that all data points from simulations nicely

collapse on a single curve. Secondly, the data are well fitted
by two straight lines of slopes α and β representing power
laws with exponents α and β for Ct < Cn and Ct > Cn ,
respectively, over nearly three decades. Hence, to a good
approximation, we have

σc

Cn
= 1.25 ×

⎧
⎨

⎩

(
Ct
Cn

)α

Ct ≤ Cn
(
Ct
Cn

)β

Ct > Cn

, (10)

where α � 0.5 and β � 0.8. Note how these two relations
are reduced to a linear function of Cn for Ct/Cn = 1 with
the same prefactor 1.25 as in Fig. 10.

Equation (10) with the values of the exponents α and β

can be written as σc = 1.25
√
CnCt in the range Ct ≤ Cn .

This form is a generalization of the observed linear rela-
tion in the case Cn = Ct . In the range Ct > Cn , we have
σc � 1.25C0.2

n C0.8
t . This relation implies that the particle

strength increases faster here with Ct than with Cn . The
exponent β is so close to 1 that, in practice, σc varies almost
linearly in response toCt . This seems to contrast the expected
picture that in this regime, where Ct is above Cn , tensile
debonding is more likely to occur, implying thus that the
particle strength should be mainly controlled by Cn . But
the larger values of the intercell shear strength compared
to tensile strength is a special condition in which the number
of possible configurations accommodating cell motions, and
hence failure, declines asCt increases. In otherwords, tensile
forces are activated to a lower extent since force balance over
cells is increasingly ensured by shear forces. Most of time,
a mechanically compatible displacement field of the cells at
incipient failure involves both tensile debonding and slip at a
subset of intercell contacts. This is very similar to the effect
of friction in granular materials. Extensive simulations indi-
cate that in packings of polyhedral particles, the friction force
mobilization and its anisotropy play a much more important
role for the shear strength than in a packing of spherical parti-
cles [7]. This effect is reminiscent of “frictional interlocking”
in analogy to “geometrical interlocking” of strongly noncon-
vex particles [26]. The values of the exponents in the above
two regimes reflect thus the discrete texture of the particle,
steric exclusions between rigid cells and frictional interlock-
ing.

3.4 Strength variability

The foregoing analysis of particle strength as a function of
intercell strength refers to the measured average values of
the particle strength for several independent cell configura-
tions. However, particle-to-particle fluctuations occur to a
large extent, and the particle can survive under compressive
stresses above its mean strength. As in rocks and agglomer-
ates of fine particles, such fluctuations reflect the presence
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Fig. 12 Survival probability of particles as function of the mean
applied stress for particles composed of 150 cells

and distribution of defects and stress concentration factors,
which vary with particle size and/or the size of defects com-
pared to particle size [32,40]. In our simulations, the particle
size is kept constant and the number ncl of cells is varied
in a limited range such that our largest spheres contain only
250 cells. This is too small to allow for a systematic analysis
of size effect as the particle size increases (except for par-
ticles containing below 75 cells and showing slightly lower
strength as discussed in Sect. 3.2). For this reason, we focus
here on strength variability only for particles composed of
150 cells.

Figure 12 shows the survival probability Ps (the proba-
bility that the particle does not break under a load σa) of
normalized particle stress σa/Cn in the case Cn = Ct . The
log–log plot is consistent with Weibull probability distribu-
tion:

Ps(σa/Cn) = e−(σa/σ0)
m
, (11)

to obey Tresca’s failure criterion. Specifically, the bonding
strength is controlled by critical stresses along normal and
shear directions between cells. The cells were generated by
means of a three-dimensional Voronoi meshing in which the
control parameters are the number of cells and their degree
of disorder.

A systematic study was undertaken to analyze the effect
of various parameters on the particle strength defined as the
compressive strength of the particle under diametral loading
between two platens. For this purpose, particles of icosa-
hedral shape were loaded between two platens. We showed
that particle strength increases with the number of cells and
levels off at around 1.25 times the tensile intercell strength.
On the other hand, as disorder increases, the particle strength
rapidly declines to a well-defined value. The particle strength
in those asymptotic states was shown to define two distinct
regimes as a function of the ratio of intercell shear strength to
tensile strength. In both regimes, the particle strength varies
as a power law of both shear and normal intercell strengths.
We argued that this nonlinear behavior is a consequence of
the evolution of failure modes at the cell scale as the above
ratio increases. In particular, the particle strength depends
not only on the intercell tensile strength but also crucially on
the intercell shear strength, which prevails when the strength
ratio is above 1, and amplifies interlocking effect between
cells. Finally, we also showed that particle strength fluctua-
tions are consistent with Weibull statistics.

Our bonded-cell model in 3D and its behavior analyzed
here under diametral loading provide the first applications of
this model in the framework of the contact dynamics method
with particles and cells treated as perfectly rigid bodies.
This model is simple and capable of reproducing the angu-
lar shapes of fragments while conserving the total volume.
Further analyses are underway to highlight the initiation of
particle failure at the cell scale, the effects of cell disorder
on strength variability, and finite size effect as the number
of cells is increased. This method can be applied to simulate
large samples of crushable particles in 3D.
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