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Abstract 

A laccase-catalyzed process was developed to prepare, selectively, in high yield, dimers of lignin-based phenolic 

compounds without any purification. The influence of experimental parameters such as laccase loading, nature 

of solvent and the presence of oxygen on the conversion of vanillin was investigated. After the dimerization, the 

product obtained as a precipitate is filtered off and the solution containing the enzyme can be re-used several 

times, which improves the process economics. A phenolic-substrate screening reveals that such process enables 

to dimerize regioselectively, six ortho-methoxy-para-substituted phenols (vanillin, 4-hydroxy-3-

methoxybenzonitrile, acetovanillon, methyl vanillate, 2-methoxy-4-methylphenol, and eugenol) with yields 

ranging from 87% to 96% and one ortho-disubstituted phenol (2,6-dimethoxyphenol) with 80% yield. 

1. Introduction 

Nowadays, the partial replacement of fossil feedstocks by renewable resources attracts a thriving interest due 

to the petrol depletion and the growth of environmental concerns [1], [2]. In this purpose, new molecules 

and monomers issued from available biomass have to be developed [3], [4], [5], [6]. Lignin is the main source of 

aromatic bio-based substrates. Despite extensive researches on efficient ways of recovering aromatic products 

from lignin [7], nowadays, the only commercial process is the production of vanillin and vanillic acid by 

hydrothermal pretreatment under alkaline conditions of lignosulfonates, by-products of the sulfite paper 

industry [8], [9], [10], [11], [12]. 

Vanillin can be derived into divanillin, also called dehydrodivanillin, which is used mainly as flavoring [13] and 

antioxidant agent in food, cosmestic and pharmaceutical industry but can also be employed in 

microlithography [14] and in polymer synthesis [15], [16]. Over the years, divanillin has been synthesized by 

different methods. It is commonly produced by oxidative phenol-coupling using iron(III) chloride (FeCl3) or iron(II) 

sulfate (FeSO4) [17], [18], [19], [20], [21], [22]. These non-sustainable processes require a high amount of iron 

catalyst, long reaction times and are not fully selective, thus generating a mixture of products and a difficult work 

up. In order to avoid the use of inorganic salts and toxic agents (sodium persulfate), enzymatic pathways were 

developed. In 1972, the formation of divanillin was observed for the first time after oxidation of vanillin in 

aqueous solution with peroxidase in the presence of hydrogen peroxide [23]. In 2004, Dordick and coworkers 



studied the structural diversity of peroxidase-catalyzed oxidation products of o-methoxyphenols, leading 

to oligomers in the case of vanillin [24]. Further improvements of the conditions were needed to reach a rather 

good selectivity in dimer formation [25]. 

Laccase is another very well-known class of oxidative enzyme studied since 1883 [26]. The latter were identified 

in several plants, insects, bacteria and fungus, where they have different biological functions [27], [28], [29]. 

Contrary to peroxidases, laccases employ dioxygen as oxidant. Currently, a lot of studies report the use of 

laccases as biocatalysts for the oxidation of functional moieties or the oxidative coupling of phenolic 

substrates [30], [31], [32], [33], [34], [35], [36], [37]. Laccases generate radical intermediates on phenolic 

compounds, which can undergo self-coupling reactions generally resulting in the formation of a mixture of 

products from dimers to higher oligomers. The selectivity of the coupling and the size of the oligomers depend 

on a broad range of parameters such as laccase source, pH, temperature, substitution of the phenolic compound, 

solvents, etc. The use of laccases is limited due to their lack of selectivity. Recently, Beifuss and coworkers 

described a method on the coupling of vanillidene derivatives catalyzed by laccase from Trametes 

versicolor which provided the best result, in terms of yield/selectivity, of dimer synthesis by laccase catalysis [38]. 

Some specific substrates selectively led to one dimer in yield of over 80% but the authors did not investigate 

further the coupling reaction. 

This study extends previous works in laccase-catalyzed dimer formation of ortho-methoxy-para-substituted 

phenols by improving dimerization process, product yields and extending the range of molecules studied for this 

reaction. Indeed, different reaction parameters such as reaction time, laccase loading and type of solvent were 

investigated on the example of vanillin. A refill procedure was also developed in order to recycle the catalyst 

solution. Afterwards, the same reaction conditions were applied on several phenolic substrates and the 

structures of the resulting products investigated. 

2. Results and discussion 

2.1. Coupling process development and optimization on the example of vanillin 

Vanillin dimerization, catalyzed by laccase from Trametes versicolor, was performed at room temperature in a 

solution saturated in oxygen (Scheme 1). Prior to the addition of the acetate buffer (90 vol%, pH 5), vanillin was 

dissolved into acetone (10 vol%). Hence, the reactant stays in solution while the resulting product precipitated. 

After addition of the laccase, the colorless solution turned yellow, which either indicate the formation of radicals 

or quinone structures. After few minutes, a brown solid precipitated. The first reactions were performed on 1.5 g 

scale of vanillin, employing 100 U of laccase, in 200 mL solvent, for 24 h. The precipitate was filtered off, washed 

with water and analyzed by mass spectrometry, NMR and HPLC (Figs. S1–S4, SI). These analyses revealed the 

selective formation of a symmetric dimer, divanillin 1 (Scheme 1). Particularly, the NMR spectroscopy analyses 

were in agreement with the study of Eswaran et al. [14]. 



 

Scheme 1. Laccase-catalyzed vanillin dimerization, in acetone/acetate buffer 10/90, under oxygen, at 

room temperature. 

 

The selectivity and yield of coupling reactions catalyzed by laccase depend on the reaction conditions [39]. In this 

work, the influence of various parameters (enzyme loading, solvent, pH and saturation in oxygen) was 

investigated. The enzyme loading can be decreased down to 20 U without affecting the yield of divanillin, which 

after 24 h, remained over 80% (Fig. 1). Below this value, the yield decreased drastically to 50%. Thus, the quantity 

of laccase for the following reactions was set at 20 U for 1.5 g of substrate. 

 

Fig. 1. Divanillin yields depending on laccase quantity for 1.5 g of vanillin, in 200 mL of solvent, after 

24 h. 
  



Vanillin conversion under different reaction conditions was followed by 1H NMR spectroscopy (Fig. 2). 

 

Fig. 2. Vanillin conversion versus time using data extracted from 1H NMR spectra (aldehyde signal): 

different conditions: (a) 10% acetone–90% acetate buffer/O2, (b) 10% acetone–90% acetate buffer/air, 

(c) 10% acetone–90% water/O2, (d) 40% acetone–60% acetate buffer/O2, (e) 10% acetone–90% acetate 

buffer/N2, (f) 70% acetone–30% acetate buffer/O2. 

 

After 8 h, 85% conversion of vanillin into divanillin was achieved for an acetone/acetate buffer ratio of 10/90 

under O2 bubbling (a). In the following samples, the concentration of vanillin in the solution was too low to be 

detected (Fig. S5, SI). Instead of bubbling O2, the reaction was carried out in a beaker with a large surface in 

contact with air, under vigorous stirring. The vanillin conversion (b) was similar to the conversion obtained in a 

solution saturated in oxygen (a). However, if the quantity of O2 in the solution is limited by bubbling N2 into the 

solution, after 25 h, the vanillin conversion (d) only reached 25%. The saturation of the solution with O2 is thus a 

key parameter to reach high yield in divanillin. 

When the acetate buffer is substituted by water, the conversion profile (c) follows the reference curve (a) until 

5 h of reaction. Beyond this time, the reaction speed decreased and, only 75% conversion was achieved after 

24 h. An increase of the pH from 5–7 was observed after the reaction was stopped, that can explain the low 

conversion in the last hours. Indeed, the optimal pH zone for laccase ranges from 4–6; off this range, the laccase 

activity decreases. 

The amount and nature of solvent also influence the laccase activity. Increasing the acetone/buffer ratio to 40% 

dramatically decreased the reaction speed (e). When the reaction was carried out with 70% of acetone, no 

conversion of the starting compound was observed (f). It is thus crucial to use the minimum amount of solvent 

required to dissolve the starting material in order to achieve high yields. Acetone can be substituted by 

other organic solvents provided the latter do not inhibit the laccase. However, depending on the solvent and 



quantity, the reaction yield can be affected [40], [41]. For instance, 10% of DMSO was tested as alternative co-

solvent and led to a yield around 90% after 8 h. 

In this process, the recovery of divanillin as a precipitate presents three advantages: (i) as vanillin is soluble into 

the solution, the purity of the obtained dimer is very high (95% by NMR) and no purification is needed (ii) the 

precipitation shifts the reaction equilibrium to divanillin formation and prevent divanillin from further phenolic 

coupling, (iii) after filtration, the filtrate can be re-used for a new reaction. Indeed, after reaction, the precipitate 

was filtered off. The filtrate, which still contains the laccase, was saturated again with oxygen and another batch 

of vanillin was added. After few seconds, vanillin was dissolved and after few minutes, a brown solid started to 

precipitate (Fig. S6, SI). Even after 8 runs of recharging the catalyst with the substrat, more than 80% of product 

was isolated (Fig. 3). The combination of the easy recovery method without a marginal loss of activity constitutes 

the main advantage of this process. 

 

Fig. 3. Divanillin yield, after 24 h of reaction under optimized conditions (20 U, acetate buffer) for the 

first reaction plus 8 refills. 

2.2. Substrate screening 

The dimerization procedure developed previously was applied on several substrates with the objective to 

selectively produce dimers. First, the dimerization of ortho-methoxy phenols with different para substituents 

was investigated. 

The reaction of some of the phenols led to complex mixtures. Vanillic acid led to oligomers up to 5 units, probably 

due to a decarboxylation reaction (Fig. S7, SI). Indeed, in literature, decarboxylation reactions were reported for 

the reaction of syringic acid with laccase (Fig. S8 SI). The postulated reaction mechanism is explained by the 

formation of phenoxy radicals which can couple each other to give the quinoide-type intermediates. The dimer 

is formed by release of carbon dioxide from the intermediate. Further couplings lead to the formation of 

poly(phenylene oxide) [42]. Similarly, under our reaction conditions, poly(phenylene oxide) was produced from 

syringic acid (Fig. S9, SI). The coupling of vanillyl alcohol resulted in a mixture of dimers, trimers and tetramers 

(Fig. S10, SI). The latter has already been reported in literature and, depending on the conditions, dimers with 

three different structures, trimers or tetramers were produced [43], [44]. In the case of substrates bearing 



a para substituent containing a double bond conjugated to the aromatic ring, the radical generated by 

laccase oxidation is delocalized over the extended π-system. This conjugation leads to the formation of further 

coupling products. In this case, the formation of β-5 dimers, 5,5′ dimer, phenylcoumaran and β–β′ dimers were 

reported in literature [45], [46], [47], [48]. These dimers further recombine with other radical species, resulting 

in complex oligomeric structures. We investigated the coupling of coniferaldehyde (Fig. S11, SI), 2-methoxy-4-

vinylphenol (Fig. S12, SI) and isoeugenol (Fig. S13, SI) which, respectively, led to a complex mixture of dimers to 

pentamers, oligomers up to 6000 g/mol and mainly dimers (90%) plus oligomers (10%) in which coumaran and 

β–β′ units were observed (Table 1). 

 

Table 1. Laccase-catalyzed oxidative coupling of ortho mono substituted phenol. 

Starting compound Final product Yielda (%) 

Vanillic acid Oligomers up to 5 units 40 

Vanillyl alcohol Mixture of dimers and tetramers 85 

Coniferaldehyde Several dimers, trimers and tetramers 92 

2-Methoxy-4-vinylphenol Oligomers up to 6000 g/mol 83 

Isoeugenol Mainly dimers and oligomers 85 

a Yield of the isolated precipitate. 

 

The selective formation of dimers by C C coupling was achieved under the above mentioned conditions with 

six ortho-methoxy-para-substituted phenols bearing aldehyde, nitrile, ketone, ester, methyl and alkylene 

as para substituents. 4-Hydroxy-3-methoxybenzonitrile dimer, 2, diacetovanillon, 3, methyl vanillate dimer, 4, 2-

methoxy-4-methylphenol dimer, 5, and dieugenol, 6, selectively precipitated with yields ranging from 87% to 

96% (Scheme 2). 



 

Scheme 2. Products of laccase-catalyzed selective dimerization of vanillin, 4-hydroxy-3-

methoxybenzonitrile, acetovanillon, methylvanillate, 2-methoxy-4-methyl phenol and eugenol. 

 

The HPLC profiles of each reaction product show a single peak and the mass spectrum reveals the formation of 

the corresponding dimer (see SI). The symmetry of the molecule was demonstrated by NMR spectroscopy and 

fully assigned (Fig. 4). The main difference between substrate and dimer is the disappearance of an aromatic 

proton. 



 

Fig. 4. 1H NMR spectra of the dimers obtained by selective oxidative coupling catalyzed 

by laccase of vanillin (1), acetovanillon (2), methylvanillate (3), 4-hydroxy-3-methoxybenzonitrile (4), 2-

methoxy-4-methyl phenol (5), eugenol (6) and of 2,6-dimethoxyphenol (7). 



Furthermore, the coupling of 2,6-dimethoxyphenol was also investigated at the aforementioned conditions. The 

reaction led selectively to the formation of dimer 8 in 80% yield, contrary to a previously reported study, where 

four demethylated products were also observed employing laccase from Trametes pubescens [49]. During 

the oxidative coupling of 2,6-dimethoxyphenol, Q1 is produced by recombination of two para radical species. 

Further reaction of this compound with laccase can lead either to its re-aromatization into compound 8 or to the 

formation of the very stable quinone 7 (Scheme 3) which show different molar masses. In the literature, 

depending on the study, the formation of 8 or 7 was reported [49], [50]. In this experiment, mass spectroscopy 

resulted in a molar mass of 304 g/mol attributed to the quinone 7. The nature of the ortho substituents plays an 

important role in the coupling selectivity. For instance, the coupling of 2,6-dimethylphenol led to a mixture of 

dimers (around 15%) and oligomers of phenylene oxide with a molar mass of 1300 g/mol. This difference in 

selectivity may be attributed to different inductive effects. 

 

Scheme 3. Laccase-catalyzed dimerization of 2,6-dimethoxyphenol. 
  



3. Conclusion 

A green and easy way to synthesize divanillin in high yield (95%) and purity was developed and scale up to 15 g. 

This process presents several advantages: (i) the divanillin formation occurs at room temperature, under oxygen 

which could be replaced by air, (ii) the employed (co) solvent, 10% of acetone, shows a low toxicity, (iii) the 

product extraction is easy and the purity is high (95%) because the solvent conditions enable the reactant 

solubility while the so-formed dimer precipitates, (iv) a low quantity of enzyme is required and the catalyst-

containing solution can be re-used to dimerize a new batch of substrate. Some parameters such as a minimal 

amount of organic solvent, sufficient oxygen content and the use of a buffer solution appeared to be crucial to 

reach a high vanillin conversion. Furthermore, this dimerization procedure was extended to several substrates. 

In addition to vanillin, the coupling of 4-hydroxy-3-methoxybenzonitrile, methyl vanillate, 4-methyl-2-

methoxyphenol, 2,6-dimethoxyphenol and eugenol yielded selectively dimers with yields over 85%, with a high 

purity and without further purification. Such a platform of symmetrical and functional aromatic dimers is of high 

interest for the design of novel rigid (semi) aromatic bio-based polymers. 

4. Experimental 

4.1. Material 

Laccase from Trametes versicolor, acetic acid, eugenol, isoeugenol, 2,6-dimethoxyphenol, coniferaldehyde and 

2-methoxy-4-vinylphenol were purchased from Sigma–Aldrich. Vanillic acid, vanillin and 2-methyl-4-

methoxyphenol were purchased from Alfa Aesar. Acetovanillon was purchased from Acros Organics. All products 

and solvents (reagent grade) were used as received. 

4.2. Instrumentations 

All NMR experiments were performed at 298 K on a Bruker Avance 400 spectrometer operating at 400 MHz, in 

DMSO-d6. Size exclusion chromatography (SEC) analyses were performed in THF (40 °C) on a PL-GPC 50 plus 

Integrated GPC from Polymer laboratories-Varian with a series of four columns from TOSOH (TSKgel TOSOH: HXL-

L (guard column 6.0 mm ID × 4.0 cm L); G4000HXL (7.8 mm ID × 30.0 cm L); G3000HXL (7.8 mm ID × 30.0 cm L) 

and G2000HXL (7.8 mm ID × 30.0 cm L)). The elution of the filtered samples was monitored using 

simultaneous refractive index and UV detection. The elution times were converted to molar mass using a 

calibration curve based on low dispersity polystyrene standards. HPLC was performed using a Spectra system 

instrument fitted with a Phenomenex Luna 5μ C18 100A column and compounds were detected with a Sedere 

Sedex 85 LT ELSD detector at 40 °C (G = 4, filter OFF). These analyses were performed in acetonitrile at a flow 

rate of 1 mL/min. Mass (FD) spectra were performed by the Centre d'Etudes Structurales et d'Analyses des 

Molécules, CESAMO (Bordeaux, France). The measurements were carried out on a TOF mass spectrometer 



AccuTOF GCv using an FD emitter with an emitter voltage of 10 kV. One to two microliters solution of the 

compound is deposited on a 13 mm emitter wire. 

4.3. Experimental procedure 

4.3.1. Synthesis of methylvanillate 

Vanillic acid (15.0 g, 0.09 mol) was dissolved in methanol (75 mL). Sulfuric acid (2.1 mL) was added and the 

mixture was stirred and warmed to reflux for 8 h. After evaporation of methanol, the solid was dissolved in 

ethylacetate (60 mL), washed with a NaHCO3 solution (30 mL), water (2 times) and brine (1 time). The organic 

phase was evaporated under reduced pressure. Yield: 90%. 

1H NMR (400 MHz, CDCl3, δ (ppm)): δ 7.45 (m, 2H, Ar), 6.88 (d, 1H, Ar), 3.81 (s, 3H, OCH3), 3.79 (s, 3H, OCH3 ester). 

13C NMR (400 MHz, CDCl3, δ (ppm)): δ 166,03 (OCH3 ester), 151.22 (Ar–C), 147.20 (Ar–C), 123.38 (Ar–C), 120.30 

(Ar–C), 115.13 (Ar–C), 112.42 (Ar–C), 55.27 (OCH3), 51.60 (OCH3 ester). 

4.3.2. 4-Hydroxy-3-methoxybenzonitrile synthesis 

Vanillin (750 mg, 5 mmol) was dissolved in acetic acid (15 mL). NH2OH·HCl (520 mg, 7.5 mmol) was added and 

the mixture was stirred and warmed at 110 °C for 2 h. The reaction was stopped by adding H2O; the organic 

product extracted using CH2Cl2, dried and purified by flash chromatography (Ethyl acetate/cyclohexane 3/7). 

Yield: 80%. 1H NMR (400 MHz, DMSO, δ (ppm): δ 7.34 (1H, s, Ar), 7.27 (d, 1H Ar), 6.88 (d, 1H Ar) 3.81 (s, OCH3). 

13C NMR (400 MHz, DMSO, δ (pm)) δ 151.79 (Ar–C), 148.41 (Ar–C), 126.92 (Ar–C), 120.06 (CN), 116.68 (Ar–C), 

115.56 (Ar–C); 101.1 (Ar–C) 1, 56.39 (OCH3). 

4.3.3. Enzyme activity 

The activity of commercial laccase from Trametes versicolor was determined spectrophotometrically by 

monitoring the oxidation of 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS, ε = 36,000 mol−1 cm−2). 

The reaction mixture contained 0.04 mM of ABTS, 50 mM of acetate buffer (pH 5.0) and laccase. The absorbance 

change was monitored at 414 nm for 5 min at room temperature [51]. The amount of laccase that generated 

1 μmol of ABTS radical cation per minute was defined as one unit, U. The activity of laccase batch used in this 

study was evaluated at 1.6 U/mg. 

4.3.4. General procedure for dimerization: synthesis of dimers 1–7 

A solution of phenol substrate (1–7) (1.5 g) in acetone (20 mL) was added to NaOAc buffer (180 mL, 0.1 M, pH 

5.0). O2 was bubbled into the solution for 5 min. Laccase from Trametes versicolor (20 U, 12.4 mg) was added 

and the reaction was stirred at room temperature for 24 h. The precipitate was filtered off the solution and the 

product dried overnight at 80 °C under vacuum. 



This procedure was adapted on 15 g in the case of vanillin. 

Divanillin (1): MW = 302 g/mol, yield: 96%. 

1H NMR (400 MHz, CDCl3, δ (ppm)): δ 9.85 (s, CHO), 7.50 (s, 2H Ar), 4.00 (s, OCH3). 

13C NMR (400 MHz, CDCl3, δ (ppm)): δ 191.04 (CHO), 150.70 (Ar–C), 147.95 (Ar–C), 128.30 (Ar–C), 127.69 (Ar–C), 

124.52 (Ar–C), 109.10 (Ar–C), 55.88 (OCH3). 

4-Hydroxy-3-methoxybenzonitrile dimer (2): MW = 296 g/mol, yield: 95%. 

1H NMR (400 MHz, CDCl3, δ (ppm)): δ 9.91 (s, 2H, HO), 7.57(s, 2H, Ar), 7.42 (s, 2H, Ar), 3,93 (s, 6H, OCH3). 

13C NMR (400 MHz, CDCl3, δ (ppm)): δ 148.63 Ar–C), 147.85 (Ar–C), 128.05 (Ar–C), 124.56 (Ar–C), 119.45 (Ar–C), 

114.03 (Ar–C), 100.30 (CN), 56.15 (OCH3). 

Diacetovanillon (3): MW = 330 g/mol, yield: 92%. 

1H NMR (400 MHz, CDCl3, δ (ppm)): δ 7.49 (s, 4H, Ar), 3.93 (s, 6H, OCH3), 2.56 (s, 6H, C OCH3). 

13C NMR (400 MHz, CDCl3, δ (ppm)): δ 196.07 (OCH), 149.22 (Ar–C), 147.06 (Ar–C), 127.81 (Ar–C), 124.23 (Ar–C), 

124.04 (Ar–C), 109.03 (Ar–C), 55.76 (OCH3), 26.25 (CH3). 

Dimethyl divanillate (4): MW = 362 g/mol, yield: 90%. 

1H NMR (400 MHz, CDCl3, δ (ppm)): δ 9.60 (s, 2H, HO), 7.46 (s, 4H, Ar), 3.90 (s, 6H, OCH3), 3.80 (s, 6H, OCH3 ester). 

13C NMR (400 MHz, CDCl3, δ (ppm)): δ 166,04 (OCH3 ester), 148.60 (Ar–C), 147.27 (Ar–C), 125.25 (Ar–C), 

123.93(Ar–C), 119.21 (Ar–C), 110.89 (Ar–C), 55.97 (OCH3), 51.75(OCH3 ester). 

2-Methoxy-4-methyl phenol dimer (5): MW = 274 g/mol, yield: 92%. 

1H NMR (400 MHz, CDCl3, δ (ppm)): δ 6.73 (s, 2H, Ar), 6.53 (s, 2H, Ar), 3.79 (s, 6H, OCH3), 2.23 (s, 6H, CH3). 

13C NMR (400 MHz, CDCl3, δ (ppm)): 147.52 (Ar–C), 140.99 (Ar–C), 126.92 (Ar–C), 125.68 (Ar–C), 123.04 (Ar–C), 

111.61 (Ar–C), 55.85 (OCH3), 20.65 (CH3). 

Dieugenol (6): MW = 326 g/mol, yield: 87%. 

1H NMR (400 MHz, CDCl3, δ (ppm)): δ 6.74 (s, 2H Ar), 6.52 (s, 2H Ar), 5.94 (q, 2H CH-CH2), 5.03 (d, 4H CH-CH2), 

3.79 (s, OCH3), 3.27 (d, 2H CH2). 

13C NMR (400 MHz, CDCl3, δ (ppm)): δ 147.80 (Ar–C), 141.62 (Ar–C), 138.38 (CH–CH2), 129.57 (Ar–C), 125.67 (Ar–

C), 122.62 (Ar–C), 115.28 (CH–CH2), 105.56 (Ar–C), 55.64 (OCH3), 39.19 (CH2). 

2,6-Dimethoxyphenol dimer (7): MW = 304 g/mol, yield: 80%. 

1H NMR (400 MHz, CDCl3, δ ppm): δ 8.32 (s, 2H, HO), 6.82 (s, 4H, Ar), 3,84 (s, 12H, OCH3). 

4.3.5. Refill procedure 

After filtration of the dimer, the solution is kept, refilled with 1.5 g of vanillin O2 again. After 24 h, the precipitate 

is filtered and the refill procedure followed again up to 9 times. 

4.3.6. Conversion investigation 



Dioxane was used as an internal reference. 0.4 mL of solution is sampled regularly, filtered and diluted in 

acetone-d6. The samples are analyzed by 1H NMR spectroscopy. The vanillin conversion is extracted from the 

ratio of CHO peak integration at 9.81 ppm and the dioxane peak integration at 3.63 ppm. 

Details experiments Fig. 3: 

(a) 10% acetone–90% acetate buffer/O2: general procedure described above. 

(b) 10% acetone–90% acetate buffer/air: the solution is not bubbled with O2 but is carried out under high stirring 

in an open beaker. 

(c) 10% acetone–90% water/O2: the acetate buffer is replaced by distilled water. 

(d) 40% acetone–60% acetate buffer/O2: the solvent ratio is modified. 

(e) 10% acetone–90% acetate buffer/N2: the solution is not bubbled with O2 but with N2. 

(f) 70% acetone–30% acetate buffer/O2: the solvent ratio is modified. 
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Figure S1: HPLC profile of vanillin (dashed line) and divanillin (straight line), using a C18 grafted silica 

column in acetonitrile with a UV detector (a), Mass spectrum of divanillin ionized by electronic impact 

positive mode, direct introduction (b). 



 

Figure S2: 1H NMR spectra of vanillin (top) and divanillin (bottom) in DMSO at room temperature. 

 

Figure S3: HSQC (a) and HMBC (b) spectra of divanillin in DMSO, at room temperature. 



  

Figure S4: 13C NMR spectrum of divanillin in DMSO, at room temperature. 

 

 

Figure S5: 1H NMR spectra of remaining vanillin in solution during dimerization initial (red), after 3 h 

(green), after 17 h (purple), after 20 h (blue). 



 

Figure S6: Process of vanillin dimerization: precipitation, filtration, refill. 

 

 

Figure S7: 1H NMR spectrum in DMSO at room temperature (a), SEC trace in THF (b), HPLC profile 

using a C18 grafted silica column and acetonitrile as eluent (c) of product obtained by coupling of vanillic 

acid catalyzed by laccase.  

 

 



 

Figure S8: 1H NMR spectrum in DMSO at room temperature (a), SEC trace in THF (b), HPLC profile 

using a C18 grafted silica column and acetonitrile as eluent (c) of product obtained by coupling of syringic 

acid catalyzed by laccase. 

 

Figure S9: Proposed mechanism for decarboxylation of ortho-substituted 4-hydroxybenzoic acid 

derivatives catalyzed by laccase. 

 



 

Figure S10: 1H NMR spectrum in DMSO at room temperature (a), SEC trace in THF (b), HPLC profile 

using a C18 grafted silica column and acetonitrile as eluent (c) of the product obtained by vanillyl alcohol 

coupling catalyzed by laccase.  

 

Figure S11: (a) 1H NMR spectrum in DMSO at room temperature, (b) SEC trace in THF, (c) HPLC 

profile using a C18 grafted silica column and acetonitrile as eluent of product obtained by coniferaldehyde 

coupling catalyzed by laccase 



 

 

Figure S12: 1H NMR spectrum in DMSO at room temperature (a), SEC trace in THF (b), HPLC profile 

using a C18 grafted silica column and acetonitrile as eluent (c) of products resulting from 2-methoxy-4-

vinylphenol coupling catalyzed by laccase. 



 

Figure S13: 1H NMR spectrum in DMSO at room temperature (a), SEC trace in THF (b), HPLC profile 

using a C18 grafted silica column and acetonitrile as eluent (c)  of the product obtained by coupling of 

isoeugenol catalyzed by laccase. 

 

 

 



 

Figure S24: 1H NMR spectrum in DMSO at room temperature (a), SEC trace in THF (b), HPLC profile 

using a C18 grafted silica column and acetonitrile as eluent (c) of product obtained by 2,6-dimethylphenol 

coupling catalyzed by laccase. 

 

 



 

Figure S35: 13C NMR spectra of the dimers obtained by selective oxidative coupling catalyzed by laccase. 



 

Figure S46: 1H NMR spectrum of 4-hydroxy3-methoxyvenzonitrile in DMSO, at room temperature. 

 

Figure S57: 13C NMR spectrum of 4-hydroxy3-methoxyvenzonitrile in DMSO, at room temperature. 



 

Figure S68: (a) HPLC profile of 4-hydroxy3-methoxyvenzonitrile (dashed line) and 4-hydroxy3-

methoxyvenzonitrile dimer (2) (straight line), using a C18 grafted silica column in acetonitrile with a UV 

detector, (b) Mass spectrum of 4-hydroxy3-methoxyvenzonitrile (2) ionized by electronic impact,positive 

mode, direct introduction. 

 

Figure S79: HSQC (a) and HMBC (b) spectra of 4-hydroxy3-methoxybenzonitrile (2) in DMSO, at room 

temperature. 

 
Figure S208: HSQC (zoom on the aromatic region) (a) and HMBC (b) spectra of acetovanillon dimer (3) 

in DMSO, at room temperature. 



 

Figure S91: 1H NMR spectrum of methyl vanillate in DMSO, at room temperature. 

 

Figure S102: 13C NMR spectrum of methyl vanillate in DMSO, at room temperature. 



 

Figure S113: Mass spectrum of methyl vanillate dimer (4) ionized by electronic impact, positive mode, 

direct introduction. 

 

Figure S124: HSQC (a) and HMBC (b) spectra of methyl vanillate dimer (4) in DMSO, at room 

temperature. 



 

Figure S135: (a) HPLC profile of 2-methoxy-4-methylphenol (dashed line) and 2-methoxy-4-methylphenol 

dimer (5) (straight line), using a C18 grafted silica column in acetonitrile with a UV detector, (b) Mass 

spectrum of 2-methoxy-4-methylphenol dimer (5) ionized by electronic impact, positive mode, direct 

introduction. 

 

Figure S146 : HSQC (zoom on the aromatic region) (a) and HMBC (b) spectra of 2-methoxy-4-

methylphenol (5) in DMSO, at room temperature. 



 

Figure S157: (a) HPLC profile of 2,6-dimethoxyphenol dimer (dashed line) and 2,6-dimethoxylphenol 

dimer (6) (straight line), using a C18 grafted silica column in acetonitrile with a UV detector, (b) Mass 

spectrum of 2,6-dimethoxylphenol dimer (6) ionized by electronic impact, positive mode, direct 

introduction. 

 

Figure S168: Mass spectrum of dieugenol (7) ionized by chemical ionization, positive mode direct 

introduction. 



 

Figure S179: HSQC (zoom on the aromatic region) (a) and HMBC (b) spectra of dieugenol (7) in DMSO, 

at room temperature. 

 


