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In this paper we propose a numerical scheme and perform its numerical analysis devoted to an anisotropic phase-field model with convection under the influence of magnetic field for the isothermal solidification of binary mixtures in two-dimensional geometry. Precisely, the numerical stability and error analysis of this approximation scheme which is based on mixed finite-element method are performed. The particular application of a nickelcopper (NiCu) binary alloy, with real physical parameters, is considered. The study substantiates a good agreement between the numerical and theoretical results, and demonstrates the efficiency of the presented method.

Introduction

The understanding and control over the evolution of dendrites during the solidification process of metals and alloys has a critical impact on the final solidified material. The voracious investigators have, therefore, performed a great deal of experimental as well as mathematical and numerical studies to explore the microstructure in alloys. In recent years phase field models have become an important tool to simulate, during the solidification process of pure and mixtures of materials, the formation and growth of dendrites. This paradigm allowed several investigators to understand and analyze the peculiarities of the synthesis and dynamics of materials during the past couple of decades, see for instance [START_REF] Anderson | A phase-field model of solidification with convection[END_REF][START_REF] Belmiloudi | Robust and optimal control problems to a phase-field model for the solidification of a binary alloy with a constant temperature[END_REF]8,[START_REF] Ramizer | Phase-field modeling of binary alloy solidification with couple heat and solute diffusion[END_REF][START_REF] Ramizer | Examination of binary alloy free dendritic growth theories with a phase-field model[END_REF]15,[START_REF] Takaki | Phase-field Simulations during Directional Solidification of a Binary Alloy using Adaptive Finite Element Method[END_REF][START_REF] Tonhardt | Simulation of natural convection effects on succinonitrile crystals[END_REF][START_REF] Tong | Phase-field simulations of dendritic crystal growth in a forced flow[END_REF][START_REF] Warren | Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[END_REF] and the references therein. In order to ameliorate the quality of the final solidified metal in the industrial processes, it is essential to control the evolution of dendrites during the solidification process, albeit these models are unable to render control over dendrite growth and micro-segregation stand-alone. Nevertheless, experimental studies indicate that the control can be procured in the solidification process by virtue of applied external electric and magnetic fields see e.g. [START_REF] Belmiloudi | Method of characteristics and error estimates of the perturbation of given mean flow. Application of mathematics in Engineering and Business Sozopol[END_REF][START_REF] Prescott | Magnetically damped convection during solidification of a binary metal alloy[END_REF] and the references therein. For other applications of the influence of magnetic fields on the materials, we can cite, e.g., for the MHD flows Hadid et al. [START_REF] Hadid | Numerical study of convection in the horizontal Bridgman configuration under the action of a constant magnetic field. Part 1. Two dimensional flow[END_REF], for the semi-conductor melt flow in the crystal growth Belmiloudi [5], Gunzberger et al. [9], Watanabe et al. [START_REF] Watanabe | Large modification of crystal-melt interface shape during Si crystal growth by using electromagnetic Czochralski method[END_REF], Galindo et al. [7] and for the solidification processes, Roplekar and Dantzig [START_REF] Roplekar | A study of solidification with a rotating magnetic field[END_REF], Prescott [START_REF] Prescott | Magnetically damped convection during solidification of a binary metal alloy[END_REF], Sampath [23] and the references therein.

In view of these facts, Rasheed and Belmiloudi in [START_REF] Grujicic | Computer modelling of the evolution of dendrite microstructure in binary alloys during non-isotheraml solidification[END_REF] (see also [16,17,20]) developed a phase-field model taking care of convection as well as magnetic field. Primarily, the two dimensional model of Warren-Boettinger [START_REF] Warren | Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[END_REF] is considered and then, among other, the effect of convection in the phase-field and solute equations, and melt-flow equations in the presence of an externally applied magnetic field are included. The model is composed of three systems, the magnetohydrodynamic system which is obtained with the help of incompressible Navier-Stokes equations by using the Lorentz force and boussinesq approximations, the phase-field system and the concentration system. The phase field and concentration systems are the convection diffusion type systems which represent the phase change and relative concentration of the binary mixture during the solidification process. We refer the reader to [START_REF] Grujicic | Computer modelling of the evolution of dendrite microstructure in binary alloys during non-isotheraml solidification[END_REF] for detailed description of the model.

In order to extend further our studies associated with dendritic growth in the binary alloys under the action of magnetic field using the phase field model proposed by Rasheed and Belmiloudi, it is indispensable to develop stable and effective numerical schemes able to carry out the realistic physical simulations. The purpose of this paper is then to provide a numerical approximation scheme based on mixed finite-element method, and numerical error and stability analysis for Rasheed and Belmiloudi model in the anisotropic case. Some numerical results in the isotropic case are presented in the note [19].

The organization of the paper is as follows. In the next section we recall briefly the mathematical model and we describe its weak formulation. Section 4 is dedicated to the discrete variational formulation, in the context of a mixed method. The stability of the discrete variational formulations is studied, and error estimates of the finite element approximations are performed and confirmed by numerical experiments in section 5. Finally, numerical simulations of the evolution of dendrites during the solidification of the binary mixture of Nickel-Copper (Ni-Cu) are presented in section 6.

Mathematical formulation

Initially a region Ω is occupied by a binary alloy composed by two pure elements, the solute B (e.g., Cu) and the solvent A (e.g., Ni), which is considered as incompressible electrically conducting fluid. To treat the system which represents the isothermal and anisotropic solidification process, we have considered the following phase field model for dendrite solidification due to Rasheed and Belmiloudi [START_REF] Grujicic | Computer modelling of the evolution of dendrite microstructure in binary alloys during non-isotheraml solidification[END_REF]. Let u, p, ψ, c and B represent the velocity, pressure, phase, concentration and applied magnetic fields respectively. Then, in the absence of phase and concentration exchange across, and negligible melt velocity along ∂Ω, we have the following system

                             ρ 0 ∂ t u + (u • ∇)u = -∇p + µ∆u + A 1 (ψ, c) + b(ψ) u × B × B on Q, divu = 0 on Q, ∂ t ψ + (u • ∇)ψ = div (A g (∇ψ)∇ψ) -A 2 (ψ, c) on Q, ∂ t c + (u • ∇)c = div (D(ψ)∇c + A 3 (ψ, c)∇ψ) on Q, subject to the initial conditions (u, ψ, c) (t = 0) = (u 0 , ψ 0 , c 0 )
on Ω, and the boundary conditions

u = 0, A g (∇ψ)∇ψ • n = 0, (D(ψ)∇c + A 3 (ψ, c)∇ψ) • n = 0 on Σ, (2.1)
where Ω ⊂ 2 is a sufficiently smooth open solidification domain with regular boundary ∂Ω, T is the final time of the solidification process,

Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), ρ 0 = ρ (A) 0 +ρ (B) 0 2 and µ = µ (A) +µ (B)
2 are the average density and viscosity, D(ψ) is the diffusion coefficient and n is the unit outward normal to ∂Ω. The anisotropy matrix A g is defined by

A g (∇ψ) = M ψ η 2 γ (θ) -η γ (θ)η γ (θ) η γ (θ)η γ (θ)
η 2 γ (θ) where M ψ > 0 is the interfacial mobility parameter and η γ is the anisotropy function defined as [START_REF] Warren | Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[END_REF] 

η γ = 0 (1 + γ cos(kθ)), (2.2)
γ ≥ 0 is the anisotropic amplitude, the integer k > 1 corresponds to the number of branching directions, 0 is a constant and θ (the angle between the x-axis and ∇ψ)

θ = arctan ψ y ψ x , (2.3)
is the angle between the local interface normal and a designated base vector of the crystal lattice, subscripts x and y are used to denote the partial derivatives with respect to spatial coordinates, that is ψ x = ∂ψ/∂x and ψ y = ∂ψ/∂y. For low to moderate accuracy, γ > 0 is chosen so that the condition η γ (θ) + d 2 η γ dθ 2 (θ) > 0 is valid for all θ. For k = 4 (fourfold anisotropy) which is a case of physical relevance, the previous condition is valid iff γ < 1 15 ≈ 0, 6667. The operators A 1 , A 2 and A 3 are defined by is the the average electric conductivity, G is the gravity vector, β c is the solutal expansion coefficient, δ is the interface thickness, α 0 is a material parameter, λ i (i = 1, 2) are linear functions involving material dependent constants and, g, p, a 1 and a 2 are included for modeling convenience satisfying the conditions g(0) = g(1) = 0, g (ψ) = 0 iff ψ ∈ {0, 1, 1/2}, g (0), g (1) > 0, g(ψ) = g(1 -ψ), p(0) = p(1) = 0, p (ψ) > 0 for all ψ ∈ (0, 1) and a i (0) = 0 (i = 1, 2). Throughout in this study, we assume a i (ψ) = ψ, f (ψ) = (ψ, ψ), p(ψ) = ψ 3 (10 -15ψ + 6ψ 2 ) and g(ψ) = p (ψ)/30. For a complete description of the mathematical modeling, the reader is referred to [START_REF] Grujicic | Computer modelling of the evolution of dendrite microstructure in binary alloys during non-isotheraml solidification[END_REF].

A 1 (ψ, c) = β c a 1 (ψ)cG + ζf (ψ), A 2 (ψ, c) = M ψ ( λ 1 (c) δ 2 g (ψ) + λ 2 (c) δ p (ψ)), A 3 (ψ, c) = α 0 D(ψ)c(1 -c) λ 1 (c) δ g (ψ) -λ 2 (c)p (ψ) , (2.4 
Remark 2.1 Note that to derive equations for the melt flow, we have assumed the Boussinesq approximations (see e.g. [3]), as is often done in the heat and/or solute transfer problems. This has led us to neglect the density variations with respect to temperature and/or concentration everywhere except in the gravitational force term in the momentum equation, and also neglecting the temperature variations of the other material properties. Also as we know that the phase-field variable ψ is 0 in the solid phase and 1 in the liquid phase and there is no motion in the solid phase, therefore equations of the melt flow should give us the zero velocity in the solid region of the domain. To include this fact in the equations of melt flow, we have multiplied the Boussinesq approximation term and Lorentz force term by functions a 1 (ψ) and a 2 (ψ). These functions are chosen in way that they are null at ψ = 0, so that the Boussinesq approximation term and Lorentz force term become zero in the solid region and the equations of the melt flow together with the zero initial and boundary conditions give the zero velocity in the solid region of the domain. Also to include the effects on the velocity with respect to the phase change at the solid/liquid interface, we have added an additional term f (ψ) in the flow equations which will also be chosen so that it is zero at ψ = 0 (it depends on the choice of the temperature).

Weak formulation

We shall define some notations and basic spaces. The inner product and the norm in L 2 (Ω) are respectively denoted by (., .) and | . |. We introduce the following spaces:

W = (H 1 0 (Ω)) 2 = v ∈ H 1 (Ω) 2 | v = 0 on ∂Ω , W d = {v ∈ W | div(v) = 0 } , M = H 1 (Ω), H = q ∈ L 2 (Ω) | Ω qdx = 0 , (3.1)
where W is equipped with the norm ∇. . The scalar product and norm in H are denoted by the usual L 2 (Ω) inner product and its norm (., .) and | . |, respectively.

Remark 3.1 : The condition Ω qdx = 0 on the pressure is imposed in order to assure the uniqueness of the pressure because the pressure is defined within a class of equivalence, regardless of a time-dependent function. We can impose also other conditions on the pressure, in accordance on its regularity, e.g., the pressure is zero on part of the boundary, etc.

Now, we define the following bilinear and trilinear forms as follows (for all (u, v, w)

∈ (W) 3 , p ∈ H, (c, z) ∈ (M) 2 and (φ, ψ) ∈ (M) 2 ): a u (u, v) = µ Ω ∇u • ∇vdx, c p (u, p) = -(div(u), p) , b u (u, v, w) = ρ 0 2 i,j=1 Ω u i (∂ i v j )w j dx, b c (u, c, z) = 2 i=1 Ω u i (∂ i c)zdx, b ψ (u, ψ, φ) = 2 i=1 Ω u i (∂ i ψ)φdx.
Moreover, if div(u) = 0, the trilinear forms satisfy the classical relations given in the following Lemma (see e.g. [3,[START_REF] Temam | NavierStokes Equations[END_REF]):

Lemma 3.1 The trilinear forms b u , b ψ , b c have the following properties (i) For all u ∈ W d , v ∈ W and ψ, c ∈ M b u (u, v, v) = 0, b ψ (u, ψ, ψ) = 0, b c (u, c, c) = 0. (ii) For all u ∈ W d , v, w ∈ W and ψ, φ, c, z ∈ M b u (u, v, w) = -b u (u, w, v), b ψ (u, ψ, φ) = -b ψ (u, φ, ψ), b c (u, c, z) = -b c (u, z, c).
Multiplying the first and second equations of (2.1) by v ∈ W, third equation of (2.1) by φ ∈ M and last equation of (2.1) by z ∈ M, integrate the results over Ω with use of Green's formulas and use boundary conditions, we obtain the following weak formulation of the problem (2.1) (wherein we use artificial source terms F u , F ψ and F c for fabricating exact solutions thereby analyzing the convergence and stability of the numerical scheme):

Find (u, p, ψ, c) ∈ W × H × M × M such that ∀ (v, q, ϕ, z) ∈ W × H × M × M                    ρ 0 (∂ t u, v) + a u (u, v) + b u (u, u, v) + c p (v, p) -(A 1 (ψ, c), v) -(b(ψ)((u × B) × B), v) = (F u , v) , -c p (u, q) = 0, (∂ t ψ, ϕ) + b ψ (u, ψ, ϕ) + (A g (∇ψ)∇ψ, ∇ϕ) + (A 2 (ψ, c), ϕ) = (F ψ , ϕ) , (∂ t c, z) + b c (u, c, z) + (D(ψ)∇c, ∇z) + (A 3 (ψ, c)∇ψ, ∇z) = (F c , z) , (u, ψ, c) (t = 0) = (u 0 , ψ 0 , c 0 ) . (3.2)

Discrete weak formulation and finite element discretization

Let T h be a family of shape-regular triangulations of the domain Ω with maximum mesh spacing parameter 0 < h = max ∈T h diam( ) < h 0 < 1. To construct a Galerkin approximation of (3.2), we consider the P l , P l-1 and P l finite element subspaces W h , H h and M h of W, H and M respectively over the partition T h , where the polynomials P l is the space of polynomials of degree at most l. Furthermore, we make the following assumptions (H)

(C1) ∃ c 1 > 0, such that ∀X = (u, ψ, c) ∈ H r+1 (Ω) 4 ∩ W × M 2 and ∀r ∈ [1, l] inf X h ∈W h ×M 2 h X -X h ≤ c 1 h r X H r+1 (Ω) . (C2) ∃ c 2 > 0, such that ∀ q ∈ H r (Ω) ∩ H and ∀ r ∈ [1, l] inf q h ∈H h q -q h ≤ c 2 h r q H r (Ω) . (C3) ∃ c 3 > 0 such that (Inf-Sup condition) inf q h ∈H h sup v h ∈W h c p (v h , q h ) v h |q h | ≥ c 3 . (C4) Let X 0 = (u 0 , ψ 0 , c 0 ) ∈ H r+1 (Ω) 4 with r ∈ [1, l], then h X 0 -X 0h + |X 0 -X 0h | ≤ c 4 h r+1 ,
where

X 0h = (u 0h , ψ 0h , c 0h ) ∈ W h × M 2 h is the approximation of X 0 .
(C5) For all integers m, p, q and k with 0 < p, q ≤ ∞ and ∀ K ∈ T h , we have

X h W m,q (K) ≤ c 4 h n/q-n/p+k-m X h W k,p (K) , ∀ X h ∈ W h × M 2 h , X h W m,q (Ω) ≤ c 4 h n/q-n/p+k-m X h W k,p (Ω) , ∀ X h ∈ W h × M 2 h .
We can now define the space and time discretization of the problem (3.2) i.e. the discrete weak formulation of the problem (2.1). We shall explain in detail the numerical scheme and give the space discretization and the general form of the differential-algebraic systems for (3.2). Then we present briefly the time discretization of the problem. For the discretization of the problem with respect to spatial coordinates, we have utilized mixed finite elements, which satisfy the Inf-Sup condition (Babuska-Brezi's condition), for the velocity u and pressure p and usual finite elements for phase-field ψ and concentration c state variables. The discrete weak formulation can be formulate as follows:

Find (u h , p h , ψ h , c h ) ∈ W h × H h × M h × M h such that ∀(v h , q h , ϕ h , z h ) ∈ W h × H h × M h × M h                      ρ 0 (∂ t u h , v h ) + a u (u h , v h ) + b u (u h , u h , v h ) + c p (v h , p h ) -(A 1 (ψ h , c h ), v h ) -(b(ψ h )((u h × B) × B), v h ) = (F u , v h ) , -c p (u h , q h ) = 0, (∂ t ψ h , ϕ h ) + b ψ (u h , ψ h , ϕ h ) + (A g (∇ψ h )∇ψ h , ∇ϕ h ) + (A 2 (ψ h , c h ), ϕ h ) = (F ψ , ϕ h ) , (∂ t c h , z h ) + b c (u h , c h , z h ) + (D(ψ h )∇c h , ∇z h ) + (A 3 (ψ h , c h )∇ψ h , ∇z h ) = (F c , z h ) , (u h , ψ h , c h ) (t = 0) = (u 0h , ψ 0h , c 0h ) . (4.1)
Let (ϕ ih ) 1≤i≤M , (q ih ) 2M +1≤i≤2M +N and (z ih ) 2M +N +1≤i≤2M +N + M be the basis of W h , H h and M h respectively and

u h (x, t) = M i=1 u ih (t)ϕ ih (x) = M i=1 u ih (t)ϕ u ih (x) + M i=1 v ih (t)ϕ v ih (x), p h (x, t) = 2M +N i=2M +1 p ih (t)q ih (x), ψ h (x, t) = 2M +N + M i=2M +N +1 ψ ih (t)z ih (x), c h (x, t) = 2M +N +2 M i=2M +N + M +1 c ih (t)z ih (x), (4.2) 
where

u ih = u ih v ih , ϕ u ih = ϕ ih 0 , ϕ v ih = 0 ϕ ih .
By virtue of (4.2), the semi-discrete weak form (4.1) yields

M i=1 ρ 0 ϕ u ih , ϕ u jh du ih dt + M i=1 a u ϕ u ih , ϕ u jh + b u u h , ϕ u ih , ϕ u jh -b(ψ h )((ϕ u ih × B) × B), ϕ u jh u ih + 2M +N i=2M +1 q ih , div(ϕ u jh ) p ih -A 1 (ψ h , c h ), ϕ u jh + M i=1 ρ 0 ϕ v ih , ϕ v jh dv ih dt + M i=1 a u ϕ v ih , ϕ v jh + b u u h , ϕ v ih , ϕ v jh -b(ψ h )((ϕ v ih × B) × B), ϕ v jh v ih + 2M +N i=2M +1 q ih , div(ϕ v jh ) p ih -A 1 (ψ h , c h ), ϕ v jh = F u , ϕ u jh + ϕ v jh , for all 1 ≤ j ≤ M, - 2M +N i=2M +1 div(ϕ u ih ), q jh u ih + div(ϕ v ih ), q jh v ih = 0, 2M + 1 ≤ j ≤ 2M + N, 2M +N + M i=2M +N +1 (z ih , z jh ) dψ ih dt + 2M +N + M i=2M +N +1 b ψ (u h , z ih , z jh ) + (A g (∇ψ h )∇z ih , ∇z jh ) ψ ih + (A 2 (ψ h , c h ) , z jh ) = (F ψ , z jh ) , for all 2M + N + 1 ≤ j ≤ 2M + N + M , 2M +N +2 M i=2M +N + M +1 (z ih , z jh ) dc ih dt + 2M +N +2 M i=2M +N + M +1 b c (u h , z ih , z jh ) + (D(ψ h )∇z ih , ∇z jh ) c ih + 2M +N + M i=2M +N +1 (A 3 (ψ h , c h )∇z ih , ∇z jh ) ψ ih = (F c , z jh ) , for all 2M + N + M + 1 ≤ j ≤ 2M + N + 2 M .
The above equations can be written in the differential-algebraic system form (DAE) as

M dY h dt + A(Y h )Y h + L(Y h ) = R, Y h (t = 0) = Y h 0 , (4.3) 
Y h = u 1h • • • u M h p 1h • • • p N h ψ 1h • • • ψ M h c 1h • • • c M h t , where R = R 1 0 R 3 R 4 t , L(Y h ) = L 1 0 L 3 0 t and, for K 1 = 2M + N + 2 M and K 2 = 2M + N + 2 M M =     M 11 0 0 0 0 0 0 0 0 0 M 33 0 0 0 0 M 44     ∈ R K1,K2 , A(Y h ) =     A 11 A 12 0 0 A 21 0 0 0 0 0 A 33 0 0 0 A 43 A 44     ∈ R K1,K2 , with (M 11 ) ji = ρ 0 ϕ u ih , ϕ u jh + ρ 0 ϕ v ih , ϕ v jh , (M 33 ) ji = (z ih , z jh ) , (M 44 ) ji = (z ih , z jh ) , (A 11 ) ji = a u ϕ u ih , ϕ u jh + a u ϕ v ih , ϕ v jh + b u u h , ϕ u ih , ϕ u jh + b u u h , ϕ v ih , ϕ v jh -b(ψ h )((ϕ u ih × B) × B), ϕ u jh -b(ψ h )((ϕ v ih × B) × B), ϕ v jh , (A 12 ) ji = q ih , ∇ • (ϕ u jh ) + q ih , ∇ • ϕ v jh = (A 21 ) ij , (A 33 ) ji = (A g (∇ψ h )∇z ih , ∇z jh ) + b ψ (u h , z ih , z jh ) , (A 43 ) ji = (A 2 (ψ h , c h )∇z ih , ∇z jh ) , (A 44 ) ji = (D(ψ h )∇z ih , ∇z jh ) + b c (u h , z ih , z jh ) , (L 1 ) j = A 1 (ψ h , c h ), ϕ u jh + A 1 (ψ h , c h ), ϕ v jh , (L 3 ) j = 1 (A 2 (ψ h , c h ), z jh ) , (R 1 ) j = F u , ϕ u jh + F u , ϕ v jh , (R 3 ) j = (F ψ , z jh ) , (R 4 ) j = (F c , z jh ) . (4.4) 
The equation ( 4.3) can be written in general form as

F(t, Y h (t), dY h dt ) = 0, Y h (t = 0) = Y h 0 . (4.5)
In order to consider the fully discrete scheme, for an integer K > 0, we introduce the timestep τ = T K , the time subdivision t i = iτ (0 ≤ i ≤ K) of [0, T ] and, for sufficiently regular function v, we denote by v i the value of v at time t i and by ∂ τ,n v = vn+1-vn τ . The differential-algebraic system (4.3) is first fully discretized by invoking Euler's backward difference method as

F(t n+1 , Y h n+1 , ∂ τ,n Y h ) = 0 (4.6)
and then resolved by using the Newton iteration technique on the resulting non-linear fixed-point system, whereas we have made use of the solver DASSL [START_REF] Petzold | A discription of DASSL: A differential/algebraic system solver[END_REF].

Then, the following a priori error estimates for the solution (Ψ h , p h ), with Ψ h = (u h , ψ h , c h ), of the finite element discretiszation (4.6) can be obtained by adapting similar argument and technique as those in e.g. [2, 24] (for some β 1 , β 2 > 1 and α ≥ 1)

Ψ h -Ψ 2 (0,T,L 2 (Ω)) ≤ C δ (τ α + h β1 ) and p h -p 2 (0,T,L 2 (Ω)) ≤ C δ (τ α + h β2 ) (4.7)
where C δ > 0 is independent of h, Ψ = (u, ψ, c) is the known exact solution of the problem under consideration and the space p (0, T, X), for a Banach space X and 0 < p < +∞ is defined by

p (0, T, X) = v : (t 1 , ..., t k ) → X such that v p (0,T,X) = τ k i=1 v i p X 1/p < ∞ .
Note that β i , i = 1, 2, are greater than 1 and less than minimum of the degree of the finite elements (polynomials) and the Sobolev space regularity of the solutions. Moreover, for optimal spatial (resp. temporal) convergence rate we take τ α ≤ h βi , i = 1, 2 (resp. h βi ≤ τ α , i = 1, 2).

Remark 4.1

The constant C δ is independent of h but depends, among other things, on the solution and in particular on the interface thickness δ, which is a "worst-case" error estimate for phase field model (see e.g., [6])

In the next section, we validate the convergence results (4.7) and the stability of numerical scheme by numerical experiments.

Analysis of the numerical scheme

In this section, we present numerical examples to verify theoretical estimates (4.7) and stability of the method. To investigate the convergence rates of the numerical scheme, two numerical tests are conducted: the first evaluates the time discretization error, and the second evaluates the spatial discretization error. In order to ascertain the numerical stability of the method, we include (1 -randf ) in the artificial source terms to introduce -perturbations in the numerical solution, where random function randf (which generates some F-distributed random variables) assumes values in [0, 1] and is the perturbation control parameter. The values of the physical parameters are consistent with that given in [START_REF] Warren | Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[END_REF] and the constants for the meltflow equations are chosen in accordance with the physical properties of the nickelcopper (NiCu) system see Table 1 (see e.g., [START_REF] Grujicic | Computer modelling of the evolution of dendrite microstructure in binary alloys during non-isotheraml solidification[END_REF]). 

u ex (x, y, t) = 2 (2π) 2 e 1-t sin(x) 2 y(1 - y 2π )(1 - y π ), v ex (x, y, t) = - 2 (2π) 2 e 1-t sin(x)cos(x)y 2 (1 - y 2π
) 2 , p ex (x, y, t) = e 1-t cos(y),

ψ ex (x, y, t) = e 1-t 2 (cos(x)cos(y) + 1), c ex (x, y, t) = 8 (2π) 2 e 1-t x 2 (1 - x 2π
) 2 (cos(y) + 1),

(5.1)

where Ω = [0, 2π] × [0, 2π].

• Example 2 :

u ex (x, y, t) = 4πe t-1 x 2 (1 -x) 2 sin(2πy)cos(2πy), v ex (x, y, t) = -2e t-1 x(2x 2 -3x + 1)sin 2 (2πy), p ex (x, y, t) = e t-1 cos(2πx), ψ ex (x, y, t) = 1 4 e t-1 (cos(2πx) + cos(2πy) + 2), c ex (x, y, t) = 8e t-1 (x 2 (1 -x) 2 + y 2 (1 -y) 2 ),
(5.2)

where

Ω = [0, 1] × [0, 1].
The right-hand side terms F u , F ψ and F c are computed appropriately to ensure that (5.1) (resp. (5.2)) is the exact solution of system (2.1). Furthermore, we consider a sequence of four meshes with a decreasing step h (see Fig. 1 and Table 2).

Numerical error analysis

To numerically verify the error estimates and the convergence orders of scheme, two types of computations have been made. First, we have estimated the spatial convergence rates wherein sufficiently small timesteps τ (as compared to the spatial step size h) are fixed and we have varied the spatial step size h as described in Table 2: Mesh Statistics Table 2 of mesh statistics. In order to calculate the rates β 1 and β 2 with respect to h, we use the Lagrangequadratic P 2 and Lagrange-cubic P 3 finite elements for the phase-field and concentration system, and the velocity/pressure mixed finite elements P 2 -P 1 and P 3 -P 2 for the flow system. In Fig. 2 and Fig. 3, L 2 (Q)-norms of errors of u, p, ψ and c are plotted versus h and τ respectively, in log-scales. For h-curves, we use τ = 0.01, τ = 0.001 and τ = 0.0001 for linear, quadratic and cubic finite elements, respectively. It is observed that the slopes of error curves for the velocity, phase-field and concentration are approximately equal to 3 and 4 for quadratic and cubic finite elements respectively, whereas the slopes of error curves for the pressure are approximately equal to 2 and 3 for linear and quadratic finite elements respectively; refer to Table 3 andTable 4. τ -curves slopes of all the curves are approximately 1, i.e., α = 1; refer to Table 5 and Table 6. Both of these numerical estimates are in good agreement with the postulated error estimate (4.7).

Numerical stability analysis

In order to study the stability of the method, we include (1 -randf ) in the artificial source terms to introduce -perturbations in the numerical solution, where the random function randf assumes values in [0, 1] (see e.g. Fig. 4) and is the perturbation control parameter. We fix h = 0.2 and τ = 0.1 and we use quadratic finite elements P 2 for ψ, c and u and linear finite elements P 1 for p. We perform three different computational stability tests (in Fig. 5, Fig. 6, Fig. 7 and Fig. 8). In Fig. 5, the L 2 (Q)-norm of the discrepancy between exact solution Φ ex = (Φ

(s) ex ) s=1,4 = (u ex , p ex , ψ ex , c ex ) and its -perturbation Φ = (Φ (s) ) s=1,4 = (u , p , ψ , c ) i.e. E ,ex Φ (s) -Φ (s) ex = Φ (s) -Φ (s) ex L2(Q) 
, for s = 1, 4 are plotted versus (which are shown for = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4). A linear dependence -1.1 -1 -0.9 -0.8 (i.e., = 0) and Φ , are plotted against . The same observation holds as in Fig. 5; refer also to Table 7.

-1.2 -1 -0.8 -0.6 -6 -5 -4 -3 -2 -1 0 log 10 (h) P 2 -P 1 E(u-u ex ) E(ψ-ψ ex ) E(c-c ex ) E(p-p ex ) -1 -0.9 -0.8 -0.7 -8 -6 -4 -2 0 2 4 log 10 (h) P 3 -P 2 E(u-u ex ) E(ψ-ψ ex ) E(c-c ex ) E(p-p ex ) (b) Spatial error curves in Example 2
E(u-u ex ) E(c-c ex ) E(p-p ex ) E(ψ-ψ ex ) -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 log 10 (τ) P 3 -P 2 E(u-u ex ) E(c-c ex ) E(p-p ex ) E(ψ-ψ ex ) (a) Temporal error curves in Example 1 -1.4 -1.3 -1.2 -1.1 -1 -3 -2.5 -2 -1.5 -1 -0.5 0 log 10 (τ) P 2 -P 1 E(u-u ex ) E(ψ-ψ ex ) E(p-p ex ) E(c-c ex ) -1.4 -1.3 -1.2 -1.1 -1 -3.5 -3 -2.5 -2 -1.5 -1 -0.
Finally, in Fig. 7 and Fig. 8, the solution curves for different perturbation levels are delineated on a part of the domain and at time t = 1 in order to establish stability with respect to random perturbations. In Fig. 7, we fix y = π/2 and x varies for velocity and concentration, and t = 1, x = π and y varies for pressure and phase field. In Fig. 8 we fix x = 1/2 and y varies for velocity and phase field, and x = 1/2 and y varies for pressure and concentration. The graphs substantiate that the solution is indeed stable (and it does not become unstable by increasing the random error). 

A physical test

In this section we present realistic numerical simulations of dendrite growth during the solidification process of the binary mixture of Nickel-Copper (Ni-Cu). We present first the non-dimensionalization of the model (2.1) (there is no artificial forcing terms) and the details of the physical parameters used in the numerical simulations. In order to nondimensionalize (2.1) we introduce the following dimensionless quantities

x = x , t = D L t 2 , ũ(x, t) = D L u(x, t), p = 3 ρ 0 D 2 L p B = B B 0 , ψ(x, t) = ψ(x, t), c(x, t) = c(x, t),
where x and t are the dimensionless spatial and time coordinates, ũ, ψ, and c are the nondimensional velocity-field, phase-field and concentration respectively, D L is the solutal diffusivity in liquid, is the characteristic length of the domain Ω, 2 /D L is the liquid diffusion time and B 0 is the characteristic magnetic-field. Note that the phase-field is a mathematical quantity and c is the relative concentration which are already dimensionless quantities. Using these adimensional relations, we get finally the dimen- sionless system With this value of , we have the adimensional δ = 0.03 which corresponds to an interface thickness δ of order 10 -8 m. Since the value of δ is strongly dependent on the size of mesh and as the mesh size should be sufficiently less than the interface thickness δ and as we have used a coarse mesh for our simulations due to technical difficulties in computations, therefore we fix the value of the adimensional interface thickness as δ = 0.05 for our simulations to ensure the mesh size less than the interface thickness. Moreover we have used some strategies to construct a necessary fixed structured grid to properly resolve the sharp fronts in this dendritic solidification problem (for more details see [START_REF] Grujicic | Computer modelling of the evolution of dendrite microstructure in binary alloys during non-isotheraml solidification[END_REF]). The adimensional final time is T = 0.125, which corresponds to the real physical final time of T = 1 ms. Note that big time steps and smaller interface values can create convergence problems during the calculation of numerical solution of the problem. We choose the values of the physical parameters (see Table 1) for the phase-field and concentration equations as given in [START_REF] Warren | Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[END_REF] and the parameters associated with the flow system are chosen by keeping in view the properties of substances A (Copper (Cu) in the present case) and B (Nickel (N i) in the present case). At initial time the computational domain Ω is liquid and the solidification starts with an initial circular grain (or seed) of radius √ 0.2 at the center of the domain Ω. The of ψ inside the grain is 0 otherwise the value of ψ is 1. The concentration c in the initial grain is equal to 0.482 and outside the grain it is taken to be 0.497. The velocity inside and outside the circular seed is taken to be 0 at the start of the solidification. We have solved the model using P 3 for the velocity, phase-field and concentration and P 2 for the pressure.

∂ ũ ∂ t + (ũ. ∇)ũ = -∇p + μ ∆ũ + Ã1 ( ψ, c) + b( ψ)(ũ × B) × B on Q = Ω × (0, T ), div(ũ) = 0 on Q, ∂ ψ ∂ t + (ũ. ∇) ψ = div Ãg ( ∇ ψ) ∇ ψ -Ã2 ( ψ, c) on Q, ∂c ∂ t + (ũ. ∇)c = div D( ψ) ∇c + Ã3 ( ψ, c) ∇ ψ on Q, (6.1) with Ãg ( ∇ ψ) = 1 D L A g ( ∇ ψ), b( ψ) = P r(Ha) 2 a 2 ( ψ), Ã1 ( ψ, c) = P rRa c a 1 ( ψ)ce G + Krf( ψ), Ã2 ( ψ, c) = Mψ ( λ 1 (c) δ2 g ( ψ) + λ2 (c) δ p ( ψ)), Ã3 ( ψ, c) = α 0 D( ψ)c(1 -c) λ 1 (c) δ g ( ψ) -λ 2 (c)p ( ψ) , ( 
In Fig. 9, we present the phase-field and concentration with the magnetic-field B = 1 √ 2 (1, 1) (at an angle 45

• ) at final time T . In this case, we observe that the dendrite is deformed along the direction of the applied magnetic field (unlike the case of zero magnetic field, where the dendrite is completely symmetric about x-axis and y-axis). More analysis can be found in [START_REF] Grujicic | Computer modelling of the evolution of dendrite microstructure in binary alloys during non-isotheraml solidification[END_REF].

Concluding remarks

In this paper we have elaborated numerical resolution of the isothermal anisotropic solidification model (2.1) and validated it by performing its error and stability analysis. First, we have discretized the problem with respect to spatial coordinates using mixed finite elements, which satisfy the InfSup condition (Babuska-Brezi's condition), for the velocity u and pressure p and the usual finite elements for phase-field ψ and concentration c. More precisely we have used mixed finite elements P i -P i-1 for the velocity ũ and pressure p and P i for the phase-field ψ and concentration c respectively, where P i is the polynomial of degree i. We obtain a system of nonlinear ordinary differential equations. The derived non-linear systems are then solved by using solver DASSL.

Second, we have studied the convergence (both with respect to space and time variables) and stability of the scheme by considering two examples with known exact solutions (with parameters and data corre-sponding to the mixture Ni-Cu). We have demonstrated numerically that the error estimates with respect to space are of order i + 1 for u, ψ and c and of order i for p, and the error estimates with respect to time are of order 1 for (u, p, ψ, c). Both of these numerical estimates are in good agreement with the postulated error estimate defined in (4.7). The stability of the scheme has also been studied by introducing a random function, which varies between 0 and 1, in the model. We found that the numerical scheme is stable and it has linear dependence with the increase in percentage error. The simulations can be broaden for the non-isothermal anisotropic case by the inclusion of the temperature equation.
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  6.2) where μ = P r = µ/D L is the Prandtl number, Ra c = gβ c 3 /D L µ, is the solutal Rayleigh number, Ha = (σ e /ρ 0 µ) 1/2 B 0 is the Hartmann number and Kr = ζ 3 /ρ 0 D 2 L , δ = δ/ is the adimensional interface thickness, λ2 = λ 2 , α0 = α 0 / , Mψ = M ψ /D L and 2 = Mψ 2 0 are the adimensional parameters and e G = (0, 1). The density ρ, viscosity µ, and electrical conductivity σ e are assumed to be constant in the liquid as well as in the solid, therefore we have used average values of Ni and Cu for these constants in the simulations and we define ζ = 3.57 10 4 kgm -2 s -2 and B 0 = 10. The adimensional space unit is chosen as = 2.8284 × 10 -6 m which gives the domain length equal to 8 and the domain as Ω = [-4, 4] × [-4, 4].
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Table 1 :

 1 

	Property Name	Symbol	Unit	Nickel (A)	Copper (B)
	Melting temperature	Tm	K	1728	1358
	Latent heat	L	J/m 3	2350 × 10 6	1758 × 10 6
	Diffusion coeff. liquid	DL	m 2 /s	10 -9	10 -9
	Diffusion coeff. solid	DS	m 2 /s	10 -13	10 -13
	Linear kinetic coeff.	β	m/K/s	3.3 × 10 -3	3.9 × 10 -3
	Interface thickness	δ	m	8.4852 × 10 -8 6.0120 × 10 -8
	Density	ρ	Kg/m 3	7810	8020
	viscosity	µ	P a • s	4.110 × 10 -6	0.597 × 10 -6
	Surface energy	σ	J/m 2	0.37	0.29
	Electrical conductivity	σe	S/m	14.3 × 10 6	59.6 × 10 6
	Molar volume	Vm	m 3	7.46 × 10 -6	7.46 × 10 -6
	Mode Number	k	N/A	4	4
	Anisotropy Amplitude	γ0	N/A	0.04	0.04

Physical values of constants As exact solutions, we consider the two following examples (with T = 1 and B = 1 √ 2 (1, 1)). • Example 1 :

Table 3 :

 3 Error Estimate P 2 -P 1 P 3 -P 2 Order of convergence β i , (i = 1, 2), for velocity u and pressure p in Examples 1 and 2.

	Example 1	β 1 for u β 2 for p	2.6201 1.9207	3.8730 3.0646
	Example 2	β 1 for u β 2 for p	2.7664 2.3462	4.0303 3.4302
		Error Estimate	P 2	P 3
	Example 1	β 1 for ψ β 1 for c	2.7001 3.7500 2.9278 3.8739
	Example 2	β 1 for ψ β 1 for c	2.9200 3.8200 2.8972 4.0681

Table 4 :

 4 Order of convergence β 1 for phase-field ψ and concentration c in Examples 1 and 2.

Table 5 :

 5 Order of convergence α for velocity u and pressure p in Examples 1 and 2.

		Error Estimate P 2 -P 1 P 3 -P 2
	Example 1	α for u α for p	1.1494 1.0733	1.1446 1.0634
	Example 2	α for u α for p	0.9011 1.0032	0.9152 0.9944
		Error Estimate	P 2	P 3
	Example 1	α for ψ α for c	1.0558 1.0396 1.0602 1.0565
	Example 2	α for ψ α for c	0.9821 0.9856 0.9792 0.9815

Table 6 :

 6 Order of convergence α for phase-field ψ and concentration c in Examples 1 and 2. , for s = 1, 4, where m s represents the slope of the error curve; refer to Table7. In Fig.6, the error E ,app Φ (s) -Φ = (u app , p app , ψ app , c app ) without random

	(s) ex	≈ m s (s) app = Φ	(s) -Φ (s) app	L2(Q)	, for

of errors on is observed, indeed, E ,ex Φ (s) -Φ

Table 7 :

 7 Slopes of Norm L 2 in Examples 1 and 2.

		Slope E ,ex	E ,app
		m u	0.1701 0.1754
		m ψ	0.8638 0.8818
	Example 1	m c	0.4341 0.4371
		m p	1.4738 1.4913
		m u	0.0628 0.0635
		m ψ	0.1283 0.1347
	Example 2	m c	0.1018 0.1065
		m p	1.4877 1.4236