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Motivation and context

The principle of moderate deviations (PDM, in short) is a subject of classic study of the probability theory. Indeed, in the study of the limit theorems of a probability or statistical model, the PDM is one of main questions that we look, after the laws of large numbers, the central limit theorem (CLT, in short) and the law of the iterated logarithm.

The MDP can be seen as an intermediate behavior between the CLT and large deviations principle (LDP, in short). Usually, the MDP exhibit a simpler rate function (quadratic) inherited from the approximated Gaussian process, and holds for a larger class of dependent random variables than the LDP.

The LDP and MDP of sums of random variables is now a wide and fastly growing branch of probability theory. It was created initially in the framework of the theory of sums of independent identically distributed random variables and then extended to a wide class of random processes, i.e., random functions in one variable, with some general conditions of weak dependence traditional for the theory of random processes.

It is best to think of a specific example to clarify the idea.

Consider, for example, an independent and identically distributed (i.i.d.) sequence (Z i ) i≥1 of R d -valued zero mean random variable with common probability law. A LDP for S n = n i=1 Z i will formally say that for δ > 0,

P(|S n | > nδ) ≈ exp{-n inf{I(z) : |z| ≥ δ}},
where for z ∈ R d , I(z) = sup

α∈R d
α, zlog E exp α, Z . Now let a n be a positive sequence such that a n → ∞ and n -1/2 a n → 0 as n → ∞. Then the MDP for S n will say that P(|S n | > n 1/2 a n δ) ≈ exp{-a 2 n inf{I 0 (z) : |z| ≥ δ}}, where I 0 (z) = 1 2 z, Cov(Z) -1 z . Thus the MDP gives estimates on probabilities of deviations of order n 1/2 a n , which is of lower order than n and with a rate function that is quadratic form.

The purpose of this paper is to investigate MDP for both the Hayashi-Yoshida estimator as well as for the generalised bipower estimator. These two statistics have been widely studied, both theoretically and empirically.

We consider X t = (X 1,t , X 2,t ) t∈[0,T ] a 2-dimensional semimartingale, defined on the filtred probability space (Ω, F , (F t ) [0,T ] , P), of the form

dX 1,t = b 1 (t, X t )dt + σ 1,t dW 1,t dX 2,t = b 2 (t, X t )dt + σ 2,t dW 2,t (1.1) 
where Models of the type (1.1) and their extensions are widely used in mathematical finance to capture the dynamics of stock prices or interest rates.

W 1 = (W
To provide analysis of MDP in our context, we prove a new result about MDP for mdependent random variables using the Chen-Ledoux type condition. This condition links the speed of the MDP to the queue of the distribution of the random variables.

It known that the Chen-Ledoux type condition is a necessary and sufficient condition for the independent and identically distributed random variables, see [START_REF] Eichelsbacher | Moderate deviations for i.i.d. random variables[END_REF]. Djellout [START_REF] Djellout | Moderate deviations for martingale differences and applications to φ-mixing sequences[END_REF] using a similar condition has obtained the MDP for martingale difference sequence. Djellout and Guillin [START_REF] Djellout | Moderate deviations for Markov chains with atom[END_REF] have also obtained the MDP for Markov chain using this conditions. See also the work of Bitseki Penda, Djellout and Proia [START_REF] Bitseki Penda | Moderate deviations for the Durbin-Watson statistic related to the first-order autoregressive process[END_REF] for the MDP of the Durbin Watson statistics.

We start with the definition of the LDP.

We say that a sequence of random variables (Z n ) with topological state space Z satisfies a LDP with speed α n and good rate function I(•) : Z -→ R + if I is lower semi-continuous with compact level set and for every mesurable set A, we have

-inf x∈ Å I(x) ≤ lim inf n→∞ 1 α n log P(Z n ∈ A) ≤ lim sup n→∞ 1 α n log P(Z n ∈ A) ≤ -inf x∈ Ā I(x),
where Å and Ā denote the interior and the closure of A, respectively. Now we will introduce and explain the construction of the two estimators. We start with the Hayashi-Yoshida estimator and we continue next with the generalised bipower estimator.

Hayashi-Yoshida estimator In this first part, we focus our attention on the estimation of the co-volatility of X 1 and X 2

X 1 , X 2 T = T 0 σ 1,t σ 2,t ρ t dt.
Given the synchronous observations of the processes (X 1,t i , X 2,t i ) i=0,...,n a popular statistic to estimate the co-volatility is

C n := n i=1 ∆X 1 (I i )∆X 2 (I i ),
where I i = (t i-1 , t i ] and ∆X ℓ (I i ) = X ℓ,t i -X ℓ,t i-1 . This estimator is often called the realized co-volatility estimator, see [START_REF] Andersen | The distribution of realized exchange rate volatility[END_REF].

The asymptotic distribution of C n was formulated by Barndorff et al. [START_REF] Barndorff-Nielsen | Limit theorems for bipower variation in financial econometrics[END_REF]. Djellout and Samoura [START_REF] Djellout | Large and moderate deviations of realized covolatility[END_REF], Djellout et al. [START_REF] Djellout | Large deviations of the realized (co-)volatility vector[END_REF] obtained the LDP and MDP for the realized covolatility C n . For more references, one can see [START_REF] Djellout | Large and moderate deviations for estimators of quadratic variational processes of diffusions[END_REF], [START_REF] Jiang | Moderate deviations for estimators of quadratic variational process of diffusion with compound Poisson jumps[END_REF], [START_REF] Kanaya | Large deviations of realized volatility[END_REF], [START_REF] Mancini | Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process[END_REF] and the references therein.

However, in financial applications, actual transaction data are recorded at irregular times in a nonsynchronous manner, i.e. two transaction prices are usually not observed at the same time. This fact requires one who adopt C n to synchronize the original data a prior, choose a common interval length h first, then impute missing observations by some interpolation scheme such as previous-tick interpolation of linear interpolation. Unfortunately, those procedures may result in synchronization bias [START_REF] Hayashi | Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes[END_REF].

Recently, Hayashi and Yoshida [START_REF] Hayashi | Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes[END_REF] postulated a new estimator which is free of synchronization and hence of any bias due to it. To be explicitly, for the nonsynchronous observations X 1,t i , X 2,s j j=0,...,m i=0,...,n with 0 = s 0 < s 1 < ... < s m = T, 0 = t 0 < t 1 < ... < t n = T, m, n ∈ N, the Hayashi-Yoshida estimator is defined as

U n,m := n i=1 m j=1 ∆X 1 (I i )∆X 2 (J j )I {I i ∩J j =∅} , (1.2) 
where

I i = (t i-1 , t i ], J j = (s j-1 , s j ].
Under some assumptions on the equation (1.1), Hayashi and Yoshida [START_REF] Hayashi | Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes[END_REF], [START_REF] Hayashi | Nonsynchronous covariation process and limit theorems[END_REF] showed the consistency and asymptotic normality of U n,m respectively.

Generalised Bipower estimator Recently, the concept of realised bipower variation has built a non-parametric framework for backing out several variational measures of volatility, which has led to a new development in econometrics. Given the observations of the processes (X ℓ,t i ) i=0,...,n with 0 = t 0 < t 1 < ... < t n = T, n ∈ N, ℓ = 1, 2, the realised Bipower variation which is given by

V n ℓ,1 (r, q) = 1 n n-1 i=1 √ n∆X ℓ (I i ) r √ n∆X ℓ (I i+1 ) q , (1.3) 
provides a whole variety of estimators for different integrated powers of volatility. For practical convenience, it is standard to take equal spacing, i.e., t it i-1 = T n := h. An important special case of the class (1.3) is the realised volatility

[nt] i=1 |∆X ℓ (I i )| 2 , (1.4)
which is a consistent estimator of the quadratic variation of X ℓ , i.e. t 0 σ 2 ℓ,s ds, which is often referred to as integrated volatility in the econometric literature.

In the last years, Nielsen et al. [START_REF] Barndorff-Nielsen | Limit theorems for bipower variation in financial econometrics[END_REF], [START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF], [START_REF] Barndorff-Nielsen | Power variation and stochastic volatility: a review and some new results[END_REF] showed the consistency of V n ℓ,1 (r, q) and introduced the stable CLT for standardised version. Vetter [START_REF] Vetter | Limit theorems for bipower variation of semimartingales[END_REF] extend the results from Jacod [START_REF] Jacod | Asymptotic properties of realized power variations and related functionals of semimartingales[END_REF] to the case of bipower variation and he proved the CLT of the bipower variation for continuous semimartingales. In [START_REF] Barndorff-Nielsen | A central limit theorem for realised power and bipower variations of continuous semimartingales[END_REF] they consider the same problems as here where X have jumps and the CLT has been obtained. It was proved that realized bipower variation can estimate integrated power volatility in stochastic volatility models and moreover, under some conditions, it can be a good measure to integrated variance in the presence of jumps. S. Kinnebrock and M. Podolskij [START_REF] Kinnebrock | A note on the central limit theorem for bipower variation of general functions[END_REF] extended the CLT to the bipower variation of general functions called generalised bipower variation:

V n ℓ,1 (g, h) = 1 n n i=1 g √ n∆X ℓ (I i ) h √ n∆X ℓ (I i+1 ) , (1.5) 
where g, h are two maps on R, taking values in R and gived some examples from the litterature to which their theory can be applied.

We know from [START_REF] Barndorff-Nielsen | Limit theorems for bipower variation in financial econometrics[END_REF] and [START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF] that if g and h are continuously differentiable with g, h, g ′ and h ′ being of at most polynomial growth

V n ℓ,1 (g, h) P -→ V ℓ,1 (g, h) := T 0 Σ σ ℓ,u (g)Σ σ ℓ,u (h)du,
where

Σ σ (f ) := E(f (σZ)), Z ∼ N (0, 1), f is a real-valued function , (1.6) 
where P -→ denote the convergence in probability.

In additional, if h and g are even, we have the CLT

√ n V n ℓ,1 (g, h) -V ℓ,1 (g, h) → N (0, Σ ℓ (g, h))
where

Σ ℓ (g, h) := T 0 Σ σ ℓ,s (g 2 )Σ σ ℓ,s (h 2 ) + 2Σ σ ℓ,s (g)Σ σ ℓ,s (h)Σ σ ℓ,s (gh) -3Σ 2 σ ℓ,s (g)Σ 2 σ ℓ,s (h) ds.
(1.7) Hence, the establishment of the MDPfor the previously statistics is the natural continuation following the proof of central limit theorems and the law of large numbers. This article is structured as follows. In Section 2 we present the main theoretical results and we state the proofs in the Section 3. The appendix is devoted to state and prove the main result about the MDP for m-dependent random variables.

Main Results

2.1.

Moderate deviations for the Hayashi-Yoshida estimator. Firstly, a reduced design with respect to (I i ) i=1,...,n will be constructed in the following manner. We collect all I i s such that I i ⊂ J j and combine them into a new interval; if such I i does not exist, do nothing. Then collecting all such intervals and re-labeling them from left to right yields a new partition of (0, T ], denoted Îi i=1,...,n . Due to the bilinearity of U n,m given in (1.2),

U n,m = n i=1 m j=1 ∆X 1 ( Îi )∆X 2 (J j )K Î ij = n i=1 ∆X 1 ( Îi )∆X 2 ∪ j∈ Ĵ(i) J j , (2.1) 
where Ĵ(i

) := 1 ≤ j ≤ m : K Î ij = 0 with K Î ij = I { Îi ∩J j =∅} .
Then, we can find that each J j contains at most one Îi , which implies that the random variable sequence

∆X 1 ( Îi )∆X 2 ∪ j∈ Ĵ(i)
J j 1≤i≤n are 2-dependent. Now, the number n can be formulated as follows. Define

τ 1 = inf{1 ≤ i ≤ n : I i J 1 }, ς 1 = sup{1 ≤ j ≤ m : I τ 1 ∩ J j = ∅} and τ k = inf{τ k-1 < i ≤ n : I i J ς k-1 }, ς k = sup{ς k-1 < j ≤ m : I τ k ∩ J j = ∅}, with τ 0 = 0, ς 0 = 1 and inf ∅ = +∞, sup ∅ = 0. Let n 0 = sup{k : τ k < +∞}. Then, one can conclude that n 0 ≤ n ≤ n 0 + n 0 k=1 I {τ k -τ k-1 >1} + I {τn 0 <n} ≤ 2n 0 + 1. (2.2) Let A ℓ,t = t 0 b ℓ (s, ω)ds, t ∈ [0, T ] and ℓ = 1, 2.
When the drift b ℓ (t, ω) is known, we can consider the following estimator

V n,m : = n i=1 m j=1 ∆X 0 1 (I i )∆X 0 2 (J j )I {I i ∩J j =∅} = n i=1 ∆X 0 1 ( Îi )∆X 0 2 ∪ j∈ Ĵ(i) J j . (2.3) 
where X 0 ℓ,t = X ℓ,t -A ℓ,t . For any Borel set I ⊂ [0, T ], define

ν(I) := I σ 1,t σ 2,t ρ t dt, ν ℓ (I) := I σ 2 ℓ,t dt, ℓ = 1, 2.
Let r n,m := max 1≤i≤n |I i | ∨ max 1≤j≤m |J j |, the largest interval size. We always assume that as n, m → +∞, r n,m → 0, which implies that n 0 → +∞. For simplicity, let m = m(n) and as n → +∞, m → +∞. Moreover, write

U n,m = U n , V n,m = V n , r n,m = r n .
To establish the MDP for V n , we introduce the following conditions.

(C1) There exist a sequence of positive numbers (c n ) n≥1 ⊂ (0, 1) and some constant Σ ∈ (0, +∞) such that, as n -→ +∞, c n -→ 0 and

c -1 n n i=1 m j=1 ν 1 ( Îi )ν 2 (J j )K Î ij + n i=1 ν 2 (I i ) + m j=1 ν 2 (J j ) - n i=1 m j=1 ν 2 (I i ∩ J j ) -→ Σ. (C2) Let (b n ) n≥1 a sequence of positive numbers such that, as n -→ +∞, b n -→ +∞, b n √ c n -→ 0 and b n √ c n log n -→ ∞.
Theorem 2.1. Under conditions (C1) and (C2), the sequence

1 b n √ c n V n - T 0 σ 1,t σ 2,t ρ t dt n≥1 (2.4)
satisfies the LDP with speed b 2 n and rate function L(x) =

x 2 2Σ . 2 
Remark 2.1. The condition (C1) is similar to the Condition (C2) in the paper of Hayashi-Yoisda [START_REF] Hayashi | Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes[END_REF]. It postulates the asymptotic connection between the observation and the variance-covariance structure of the given processes. The constant Σ serves as the asymptotic variance of the proposed estimator. The rescaling factor c -1 n may be interpreted as the 'average number' off the observation times.

Remark 2.2. The condition (C2) is weaker to the condition (1.10) in Theorem 1.3 of the paper of Djellout et al. [START_REF] Djellout | Large and moderate deviations for estimators of quadratic variational processes of diffusions[END_REF]. Indeed in the last paper, we need additionnel condition which relies the sequence of the MDP (b n ) n≥1 to the integrated covolatility. This condition can be expressed in the following way in the actual context

b n c -1/2 n α n -→ 0, (2.5) 
where α n = max ℓ=1,2 max 1≤i≤n max 1≤j≤m (ν ℓ (I i ) ∨ ν ℓ (J j )). This condition (2.5) comes from the method of the proof based on the Taylor expansion of the Laplace transform of the estimator (2.4).

Remark 2.3. By the construction of partition ( Îi ) i=1,...,n , we obtain immediately that

n i=1 m j=1 ν 1 ( Îi )ν 2 (J j )K Î ij + n i=1 ν 2 ( Îi ) + m j=1 ν 2 (J j ) - n i=1 m j=1 ν 2 ( Îi ∩ J j ) = n i=1 m j=1 ν 1 (I i )ν 2 (J j )K I ij + n i=1 ν 2 (I i ) + m j=1 ν 2 (J j ) - n i=1 m j=1 ν 2 (I i ∩ J j ).
Remark 2.4. Similar to ( Îi ) i=1,...,n , a reduced design with respect to (J i ) i=1,...,m can also be constructed as follows. We collect all J j s such that J j ⊂ I i and combine them into a new interval; if such J j does not exist, do nothing. Then collecting all such intervals and re-labeling them from left to right yields a new partition of (0, T ], denoted ( Ĵj ) j=1,...,ñ . Then V n has the formula,

V n = ñ j=1 ∆X 0 1 ∪ i∈ Î(j) I i ∆X 0 2 ( Ĵj ), (2.6) 
where Î(j

) := 1 ≤ i ≤ n : K Ĵ ij = ∅ with K Ĵ ij = I {I i ∩ Ĵj =0} . Letting ñ0 = sup{k : ς k > 0}, then ñ0 = n 0 -1 and n 0 ≤ ñ ≤ n 0 + n 0 k=1 I {ς k -ς k-1 >1} + 1 ≤ 2n 0 + 1.
Therefore, we can conclude that the MDP of V n are independent of the different partitions ( Īi ) i=1,...,n and ( Ĵj ) j=1,...,ñ in (2.1) and (2.6). Now we turn to the MDP for U n . We need the following two additional conditions.

(C3) For ℓ = 1, 2, b ℓ (•, •) ∈ L ∞ (dt ⊗ P) , (C4) As n -→ +∞, r 2 n /c n -→ 0.
Theorem 2.2. Under conditions (C1) through (C4), the sequence 

1 b n √ c n U n - T 0 σ 1,
n 0 = n, c n = 1/n, Σ = T 0 σ 2 1,t σ 2 2,t 1 + ρ 2 t dt. Moreover, if σ ℓ,• ∈ L ∞ (dt) for ℓ = 1, 2, condition (C2) equivalent to b n -→ +∞, b n n -1/2 -→ 0, as n -→ +∞. (2.7)
Under (2.7), from our Theorem 2.1, it follows that the sequence

√ n b n V n - T 0 σ 1,t σ 2,t ρ t dt n≥1 (2.8) 
satisfies the LDP with speed b 2 n and rate function

L 0 (x) = x 2 2 T 0 σ 2 1,t σ 2 2,t (1 + ρ 2 t ) dt .
This result can also be obtained by Theorem 2.5 in Djellout et al. [START_REF] Djellout | Large deviations of the realized (co-)volatility vector[END_REF].

In this case, we have r n = 1/n, and condition (C4) holds automatically.

Remark 2.6. We consider a nonsynchrnous alternating sampling at odd/even times. We now consider the following deterministic, regularly spaced sampling scheme. The diffusion X 1 is sampled at 'odd' times, i.e., t

= 2k-1 n T, k = 1, 2, • • • , n while X 2 is at 'even' times, t = 2k
2n T . Hence X 1 and X 2 are sampled in a nonsynchronous, alternating way. So we have that the sequence given in (2.8) satisfies the LDP with speed b 2 n and rate function L(x) =

x 2 2Σ with Σ = T 0 (σ 1,t σ 2,t ) 2 (2 + 3 2 ρ 2 t )dt,
see [START_REF] Hayashi | Nonsynchronously observed diffusion and covariance estimation[END_REF] for the identification of Σ. (2.9)

Assume that g and h are two evens, continuous differentiable with at most polynomial growth such that

lim sup n→∞ 1 b 2 n log n n max j=1 P g √ n∆X ℓ (I j ) h √ n∆X ℓ (I j+1 ) -E g( √ n∆X ℓ (I i )) E h( √ n∆X ℓ (I i+1 )) > b n √ n = -∞.
(2.10)

So, we have that the sequence

√ n b n V n ℓ,1 (g, h) -V ℓ,1 (g, h) n≥1 (2.11)
satisfies the LDP with speed b 2 n and rate function I ℓ g,h (x) = x 2 /2Σ ℓ (g, h), where Σ ℓ (g, h) is given in (1.7).

Remark 2.7. The condition (2.9) is weaker to the condition (1.10) in Theorem 1.3 of the paper of Djellout et al. [START_REF] Djellout | Large and moderate deviations for estimators of quadratic variational processes of diffusions[END_REF]. Indeed in the last paper, we need additionnel condition which relies the sequence of the MDP (b n ) n≥1 to the integrated volatility. This condition can be expressed in the following way in the actual context

β n b n √ n -→ 0, (2.12) 
where β n = max 1≤i≤n I i Σ σ ℓ,s (g)Σ σ ℓ,s (h)ds with Σ σ (f ) given in (1.6). This condition (2.12) comes from the method of the proof based on the Taylor expansion of the Laplace transform of the estimator (2.11).

Remark 2.8. Realised bipower variation, which is probably the most important subclass of our model, corresponds to the functions g(x) = |x| r and h(x) = |x| q . In this case and under the condition that

lim sup n→∞ 1 b 2 n log n n max j=1 P | √ n∆X ℓ (I j )| r | √ n∆X ℓ (I j+1 )| q > b n √ n = -∞. (2.

13)

We have that the sequence

√ n b n V n ℓ,1 (r, q) -µ r µ q T 0 |σ ℓ,s | r+q ds ,
satisfies the MDP with speed b 2 n and rate function

I ℓ g,h (x) = x 2 /2Σ ℓ (g, h), with Σ ℓ (g, h) := Σ ℓ (r, q) = (µ 2r µ 2q + 2µ r µ q µ r+q -3µ 2 r µ 2 q ) T 0 |σ ℓ,u | 2(r+q) du,
where µ r = E|z| r with z ∼ N (0, 1).

If r = 2 and q = 0 we are in the quadratic case and the condition (2.13) is satisfied for all the sequence (b n ). The result was already obtained in Djellout-Guillin-Wu [START_REF] Djellout | Large and moderate deviations for estimators of quadratic variational processes of diffusions[END_REF].

If r + q < 2 the condition (2.13) is satisfied for every sequence b n .

Remark 2.9. The cubic power of returns is a special case of the generalised bipower variation, corresponds to the functions g(x) = |x| 3 and h(x) = 1. Then, under the condition 

lim sup n→∞ 1 b 2 n log n n max j=1 P | √ n∆X ℓ (I j )| 3 > b n √ n = -∞, the sequence √ n b n V n ℓ,1 (|x| 3 , 1) -µ 3 T 0 |σ ℓ,

proofs

In this section, we will use the appendix's Proposition 4.1 about the the MDP for mdependent random variables sequences which are not necessarily stationnary under the Chen-Ledoux type condition.

Proof of Theorem 2.1

We start this section by calculating the variance of V n . Different from the method used in Hayashi and Yoshida [START_REF] Hayashi | Nonsynchronous covariation process and limit theorems[END_REF], our approach relies on (2.1), the 2-dependent representation of U n . Moreover, the analysis of MDP will benefit from this straightforward thoughts. Lemma 3.1. For the estimator V n defined by (2.3), we have

Var(V n ) = n i=1 m j=1 ν 1 ( Îi )ν 2 (J j )K Î ij + n i=1 ν 2 ( Îi ) + m j=1 ν 2 (J j ) - n i=1 m j=1 ν 2 Îi ∩ J j . Proof. For ℓ = 1, 2, letting M ℓ,t = t 0 σ ℓ,s dW ℓ,s , t ∈ [0, T ], then V n = n i=1 ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j . Since ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j 1≤i≤n are 2-dependent, one can write that Var(V n ) = n î=1 Var ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j + n i=1 Cov ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j , ∆M 1 ( Îi+1 )∆M 2 ∪ j∈ Ĵ(i+1) J j + n i=1 Cov ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j , ∆M 1 ( Îi+2 )∆M 2 ∪ j∈ Ĵ(i+2) J j + n i=1 Cov ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j , ∆M 1 ( Îi-1 )∆M 2 ∪ j∈ Ĵ(i-1) J j + n i=1 Cov ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j , ∆M 1 ( Îi-2 )∆M 2 ∪ j∈ Ĵ(i-2) J j := D 1 + D 2 + D 3 + D 4 + D 5 ,
where Îi = ∅ for i < 1 or i > n.

We will only consider D 1 and D 2 , the other terms can be dealt with in the same way. A simple calculation gives us

D 1 = n i=1 ν 1 ( Îi )ν 2 ∪ j∈ Ĵ(i) J j + ν 2 ( Îi ) = n i=1 m j=1 ν 1 ( Îi )ν 2 (J j )K Î ij + n î=1 ν 2 ( Îi ). (3.1)
Moreover, from the fact

∆M 2 ∪ j∈ Ĵ(i) J j = ∆M 2 Îi + ∆M 2 ∪ j∈ Ĵ(i) J j ∩ Îi+1 + ∆M 2 ∪ j∈ Ĵ(i) J j ∩ Îi+2 + ∆M 2 ∪ j∈ Ĵ(i) J j ∩ Îi-1 + ∆M 2 ∪ j∈ Ĵ(i) J j ∩ Îi-2 ,
it follows that

E ∆M 1 ( Îi )∆M 1 ( Îi+1 )∆M 2 ∪ j∈ Ĵ(i) J j ∆M 2 ∪ j∈ Ĵ(i+1) J j = ν Îi ν Îi+1 + ν ∪ j∈ Ĵ(i) J j ∩ Îi+1 ν ∪ j∈ Ĵ(i+1) J j ∩ Îi = ν Îi ν Îi+1 + m j 1 =1 m j 2 =1 ν J j 1 ∩ Îi+1 ν J j 2 ∩ Îi K Î ij 1 K Î (i+1)j 2 .
We can write the second term in the above equality as

ν J j 1 ∩ Îi+1 ν J j 2 ∩ Îi K Î ij 1 K Î (i+1)j 2 = ν J j 1 ∩ Îi+1 ν J j 2 ∩ Îi K Î ij 1 K Î (i+1)j 2 K Î (i+1)j 1 K Î ij 2 .
By the following fact,

K Î ij 1 K Î (i+1)j 2 K Î (i+1)j 1 K Î ij 2 = 0 ⇔ j 1 = j 2 , we can obtain immediately that E ∆M 1 ( Îi )∆M 1 ( Îi+1 )∆M 2 ∪ j∈ Ĵ(i) J j ∆M 2 ∪ j∈ Ĵ(i+1) J j = ν Îi ν Îi+1 + m j=1 ν Îi+1 ∩ J j ν Îi ∩ J j ,
which implies that

D 2 = n i=1 m j=1 ν Îi+1 ∩ J j ν Îi ∩ J j . (3.2) 
Applying the same arguments to D 3 , D 4 , D 5 ,

D 3 = n i=1 m j=1 ν Îi+2 ∩ J j ν Îi ∩ J j , (3.3) 
D 4 = n i=1 m j=1 ν Îi-1 ∩ J j ν Îi ∩ J j , (3.4) 
D 5 = n i=1 m j=1 ν Îi-2 ∩ J j ν Îi ∩ J j . (3.5) 
Putting (3.2) through (3.5) together, and noting fact that if K Î ij = 0, then

J j = ∪ 2 ℓ=-2 I i+ℓ ∩ J j ,
we have

D 2 + D 3 + D 4 + D 5 = n i=1 m j=1 ν(J j ) -ν Îi ∩ J j ν Îi ∩ J j = m j=1 ν 2 (J j ) - n i=1 m j=1 ν 2 Îi ∩ J j .
Together with (3.1), we can conclude

Var(V n ) = n i=1 m j=1 ν 1 ( Îi )ν 2 (J j )K Î ij + n i=1 ν 2 ( Îi ) + m j=1 ν 2 (J j ) - n i=1 m j=1 ν 2 Îi ∩ J j . Remark 3.1. From the proof of Lemma 3.1, each ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j , for 1 ≤ i ≤ n contributes to the variance of V n with m j=1 ν 1 ( Îi )ν 2 (J j )K Î ij + ν 2 ( Îi ) + m j=1 ν(J j ) -ν Îi ∩ J j ν Îi ∩ J j . 2
Proof of Theorem 2.1 For the expectation of V n , we have

EV n = n i=1 ν Îi = T 0 σ 1,t σ 2,t ρ t dt.
Therefore,

V n - T 0 σ 1,t σ 2,t ρ t dt = n i=1 ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i) J j -ν Îi := n i=1 Y i , (3.6) 
where

Y i = ∆M 1 ( Îi )∆M 2 ∪ j∈ Ĵ(i)
J jν Îi . Consequently, the random variable sequence {Y i } 1≤i≤n are 2-dependent. Since Y i is a product of two gaussian random variable, so there exist δ > 0 such that

lim n→∞ sup 1≤i≤n E(e δ|Y i | ) < ∞.
Applying the exponential Chebyshev inequality yields with δ as before

lim n→∞ 1 b 2 n log n n max i=1 P(|Y i | ≥ b n √ c n ) ≤ lim n→∞ log(n) b 2 n -δ 1 b n √ c n + 1 b 2 n log n max i=1 E(e δ|Y i | ) = lim n→∞ 1 b n √ c n log(n) √ c n b n -δ = lim n→∞ - 1 b n √ c n δ = -∞.
Hence, with appendix Proposition 4.1, the Theorem 2.1 holds. 2

Proof of Theorem 2.2 From Theorem 2.1, we only need to show the exponential equivalence of U n and V n , i.e. for any δ > 0

lim n→+∞ 1 b 2 n log P 1 b n c 1/2 n |U n -V n | ≥ δ = -∞. (3.7) 
In fact, by simple calculation, we can write that

|U n -V n | = n i=1 ∆A 1 ( Îi )∆A 2 ( ∪ j∈ Ĵ(i) J j ) + n i=1 ∆A 1 ( Îi )∆M 2 ( ∪ j∈ Ĵ(i) J j ) + n i=1 ∆M 1 ( Îi )∆A 2 ( ∪ j∈ Ĵ(i) J j ) ≤ 3T r n max ℓ=1,2 b ℓ ∞ + r n b 1 ∞ n i=1 ∆M 2 ( ∪ j∈ Ĵ(i) J j ) + 3r n b 2 ∞ n i=1 ∆M 1 ( Îi ) ≤ 3T r n max ℓ=1,2 b ℓ ∞ + 3r n b 1 ∞ n i=1 ∆M 2 ( Îi ) + 3r n b 2 ∞ n i=1 ∆M 1 ( Îi ) .
In the calculation above, we have used Lemma 5 in [START_REF] Hayashi | Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes[END_REF], which says that

n i=1 | ∪ j∈ Ĵ(i) J j | ≤ 3T.
Using condition (C4), we have as

n -→ ∞ 3T r n max ℓ=1,2 b ℓ ∞ b n c 1/2 n -→ 0.
Therefore, to prove (3.7), we only need to show that for any δ > 0

lim n→+∞ 1 b 2 n log P r n b n c 1/2 n n i=1 ∆M 1 ( Îi ) ≥ δ = -∞, (3.8) 
and

lim n→+∞ 1 b 2 n log P r n b n c 1/2 n n i=1 ∆M 2 ( Îi ) ≥ δ = -∞. (3.9) 
In fact, according to Chebyshev's inequality, for (3.8),

P r n b n c 1/2 n n i=1 ∆M 1 ( Îi ) ≥ δ ≤ inf λ>0 exp -λδ + λ 2 r 2 n T 0 σ 2 1,t dt 2b 2 n c n ≤ exp - b 2 n c n δ 2 2r 2 n T 0 σ 2 1,t dt
, which implies that (3.8) by condition (C4). Moreover, (3.9) can be established similarly. 2

Proof of Proposition 2.3 Our proof is an application of Proposition 4.1.

V n ℓ,1 (g, h) -V ℓ,1 (g, h) = 1 n n i=1 g √ n∆X ℓ (I i ) h √ n∆X ℓ (I i+1 ) - T 0 Σ σ l,u (g)Σ σ l,u (h)du := 1 n n i=1 Z i + L n ,
where

Z i = g √ n∆X ℓ (I i ) h √ n∆X ℓ (I i+1 ) -E g( √ n∆X ℓ (I i ))h( √ n∆X ℓ (I i+1 )) ,
and

L n = 1 n n i=1 E g( √ n∆X ℓ (I i ))h( √ n∆X ℓ (I i+1 )) - T 0 Σ σ l,u (g)Σ σ l,u (h)du .
In fact, by a straightforward calculation, one can see that [START_REF] Djellout | Large and moderate deviations for estimators of quadratic variational processes of diffusions[END_REF], √ nL n -→ 0, as n → ∞.

So the LDP still holds with V ℓ,1 (g, h) substitude by EV n ℓ,1 (g, h). Hence, by the 1-dependence of (Z i ) and from (2.10) together the Proposition 4.1, the Proposition 2.3 holds. 2

Appendix A

Let us begin with some few bibliographical notes on the MDP. Borovkov and Mogulskii ([10], [START_REF] Borovkov | Large deviations and testing statistical hypotheses. IV. The statistical invariance principle and the laws of conservation[END_REF]) considered the MDP for Banach valued i.i.d.r.v. sequences (Z n ) n≥1 . Under the condition that Ee δ|Z 1 | < +∞, for some δ > 0, they proved the MDP for n i=1 Z i . For b n = n α with 0 < α < 1 2 , Chen [START_REF] Chen | Moderate deviations for m-dependent random variables with Banach space values[END_REF] found the necessary and sufficient condition for the MDP in a Banach space, and he obtained the lower bound for general b n under very weak condition. Using the isoperimetry techniques, Ledoux [START_REF] Ledoux | Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi[END_REF](see also [START_REF] Eichelsbacher | Moderate deviations for i.i.d. random variables[END_REF]) obtained the necessary and sufficient condition for the general sequence b n satisfying:

b n -→ ∞ and b n √ n -→ 0. (4.1)
The results of Ledoux [START_REF] Ledoux | Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi[END_REF] is extended to functional empirical processes (in the setting of non parametrical statistics) by Wu [START_REF] Wu | On large deviations for moving average processes[END_REF]. The further developments are given by Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Arcones [START_REF] Arcones | The large deviation principle for stochastic processes[END_REF] obtains the MDP of functional type with the following condition lim sup

n→∞ 1 b 2 n log nP |Z 1 | > b n √ n = -∞. (4.2)
How to extend the MDP to the dependent situations has recently attracted much attention and remarkable works. The Markovian case has been studied under successively less restrictive conditions (see Wu [START_REF] Wu | On large deviations for moving average processes[END_REF], Chen [START_REF] Chen | Moderate deviations for m-dependent random variables with Banach space values[END_REF] for the relevant references) and very recently under weak conditions by de Acosta [START_REF] De Acosta | Large deviations for vector-valued Lévy processes[END_REF] and Chen [START_REF] Chen | Moderate deviations for m-dependent random variables with Banach space values[END_REF] for the lower bound (under different and non comparable conditions) and by de Acosta-Chen [START_REF] De Acosta | Moderate deviations for empirical measure of markov chains : Upper bound[END_REF] and Chen [START_REF] Chen | Moderate deviations for m-dependent random variables with Banach space values[END_REF] (under the same condition but different proof) for the upper bound. Guillin [START_REF] Guillin | Uniform moderate deviations of functional empirical processes of markov chain[END_REF] obtained uniform (in time) MDP for functional empirical processes. Using regeneration split chain method, Djellout and Guillin ( [START_REF] Djellout | Moderate deviations for Markov chains with atom[END_REF], [START_REF] Djellout | Large and moderate deviations for moving average process[END_REF]) extend the characterization of MDP for i.i.d.r.v. case of Ledoux [START_REF] Ledoux | Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi[END_REF] to Markov chains. The geometric ergodicity is substituted by a tail on the first time of return to the atom. Their conditions are weaker than Theorem 1 in [START_REF] De Acosta | Moderate deviations for empirical measure of markov chains : Upper bound[END_REF], which allow them to obtain MDP for empirical measures and functional empirical processes.

For the studies of the MDP of martingale see Puhalskii [START_REF] Puhalskii | The method of stochastic exponentials for large deviations[END_REF], Dembo [START_REF] Dembo | Moderate deviations for martingales with bounded jumps[END_REF], Gao [START_REF] Gao | Moderate deviations for martingales and mixing random processes[END_REF], Worms [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF] and Djellout [START_REF] Djellout | Moderate deviations for martingale differences and applications to φ-mixing sequences[END_REF]. Those works motivate directly the studies here. Our main aim is to prove the Chen-Ledoux type theorem for the MDP of a sequence of m-dependent random variables. Let X n be an m-dependent random variables, namely, for every k ≥ 1 the following two collections

{X 1 , • • • , X k } and {X k+m+1 , X k+m+2 , • • • } are independent.
In this terminology, an independent identically distributed (i.i.d.) random variables sequence is 0-dependent and, for any non-negative intergers m 1 < m 2 , m 1 dependence implies m 2 -dependence. The aim of this section is to consider the MDP for m dependent random variables sequences which are not necessarily stationnary under the Chen-Ledoux type condition. This condition links the speed of the MDP to the queue of the distribution of the random variable. This is a little adaptation of the proof of the Lemma 2.5 in [START_REF] Eichelsbacher | Moderate deviations for i.i.d. random variables[END_REF]. 
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 2 Moderate deviations for bipower variation of general function. Proposition 2.3. Let (b n ) be a sequence of positive numbers such that b n -→ ∞ and b n / √ n -→ 0.

s | 3

 3 ds satisfies the LDP with speed b 2 n and rate function I(u) = 24x 2 /

4. 1 .

 1 Moderate deviations for m-dependent randon variables. Let (b n ) a sequence of positive real numbers satisfying (4.1).

Proposition 4 . 1 . 3 ) 1 n

 4131 Let (X k ) be a sequence of m-dependent random variables with zero means such that Write S n = n j=1 X j and let (b n ) a sequence of positive numbers satisfying (4.1). Then S n b n √ n n≥1 satisfies the LDP on R with speed b 2 n and rate fonction I(x) = x 2 /2σ 2 , where σ 2 := lim n→∞ Var(S n ) < ∞.

Remark 4 . 1 .

 41 Remark that the condition (4.3) implies thatlim n→∞ sup 1≤ℓ≤n E(X 2 ℓ ) < ∞.

Remark 4 . 2 .Remark 4 . 3 . 1 p - 1 2Lemma 4 . 2 . 1 n 4 )

 4243114214 If there exists some δ > 0 such that lim n→∞ sup 1≤ℓ≤n E(e δ|X ℓ | ) < ∞, so the condition (4.3) is satisfied for every sequence b n . See Remark 2.32 in[START_REF] Eichelsbacher | Moderate deviations for i.i.d. random variables[END_REF]. See[START_REF] Djellout | Moderate deviations for Markov chains with atom[END_REF]. If b n = n with 1 < p < 2 so the condition (4.3) is equivalent to lim n→∞ sup 1≤ℓ≤n E(e δ|X ℓ | 2-p ) < ∞. Let (Y k ) be a sequence of independent random variables with zero means such that the condition (4.3) is satisfied. Write S ′ n = n j=1 Y j and let (b n ) a sequence of positive numbers satisfying (4.1). Then S ′ n b n √ n n≥1 satisfies the LDP on R with speed b 2 n and rate fonction I(x) = x 2 /2σ 2 , where σ 2 := lim n→∞ Var(S n ) < ∞.Proof of Lemma 4.2 The proof of this result is a little adaptation of the proof of the independent and identically distributed random variables given in[START_REF] Djellout | Moderate deviations for Markov chains with atom[END_REF]. 2Proof of Proposition 4.1 We will do the proof in the case m = 1 for simplicity. Fix the integer p > 1 and write, for each n ≥ 1,n = k n p + r nwhere k n and r n are non-negative integers with 0 ≤ r n ≤ p -1. DefineY k = (k-1)p<j<kp X j , k = 1, 2, • • • Then (Y k ) k≥1 isan independent random variables and Notice that Since the random variables (X ℓp ) ℓ≥1 are independent, by Lemma 4.2, we use the ℓp ) ≤ C lim n→∞ k n n = C p . Now we have to prove that σ 2 = σ 2 Y . For that we have ∆ n := VarS n -Var

  1,t ) t∈[0,T ] and W 2 = (W 2,t ) t∈[0,T ] are two correlated Wiener processes withρ t = Cov(W 1,t , W 2,t ), t ∈ [0, T ]. Moreover, ρ • ∈ [0, 1]and σ ℓ,• , ℓ = 1, 2 are both unknown deterministic and measurable functions of t, b ℓ (•, •), ℓ = 1, 2 are progressively measurable (possibly unknown) functions.

  t σ 2,t ρ t dt Remark 2.5. Suppose synchronous and equidistant sampling, i.e. I i ≡ J i and |I i | ≡ T /n. Then, we can see that

			n≥1
	satisfies the LDP with speed b 2 n and rate function L(x) =	x 2 2Σ	. 2

  EX ℓp X ℓp+1 + EX ℓp X ℓp-1 ) X ℓ X ℓ+1 + X ℓ X ℓ-1 ). Now since sup 1≤ℓ≤n EX 2 ℓ < ∞, we have that ∆ n /n ≤ (k n C + 4Ck n + 3r n C)/n. So lim n→∞ ∆ n /n = C/p,which goes to 0 when p goes to infinity.2

	kn
	E(X 2 ℓp ) + 2 pkn+rn (+ ℓ=1 E(X 2 ℓ +
	ℓ=pkn+1

Letting p goes to infinty, we get (4.4). Now we have to prove that lim sup

If r n = 0 there is no thing to prove, so we suppose that r n > 0.

Taking the log and normalizing by 1/b 2 n , we obtain (4.5). Now, we have to prove that lim sup

We have

Taking the log and normalizing by 1/b