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MODERATE DEVIATIONS FOR BIPOWER VARIATION OF GENERAL
FUNCTION AND HAYASHI-YOSHIDA ESTIMATORS

HACÈNE DJELLOUT, HUI JIANG, ARNAUD GUILLIN, AND YACOUBA SAMOURA

Abstract. We consider the moderate deviations behaviors for two (co-) volatility estima-
tors: generalised bipower variation, Hayashi-Yoshida estimator. The results are obtained
by using a new result about the moderate deviations principle for m-dependent random
variables based on the Chen-Ledoux type condition.

AMS 2000 subject classifications: 60F10, 62J05, 60J05.

1. Motivation and context

In the last decade there has been a considerable development of the asymptotic theory
for processes observed at a high frequency. This was mainly motivated by financial appli-
cations, where the data, such as stock prices or currencies, are observed very frequently. As
under the no-arbitrage assumptions price processes must follow a semimartingale, there was
a need for probabilistic tools for functionals of semimartingales based on high frequency
observations. Inspired by potential applications, probabilists started to develop limit theo-
rems for semimartingales. Statisticians applied the asymptotic theory to analyze the path
properties of discretely observed semimartingales: for the estimation of certain volatility
functionals and realised jumps, or for performing various test procedures.

We consider Xt = (X1,t, X2,t)t∈[0,T ] a 2-dimensional semimartingale, defined on the filtred
probability space (Ω,F , (Ft)[0,T ],P), of the form

{

dX1,t = b1(t, Xt)dt+ σ1,tdW1,t

dX2,t = b2(t, Xt)dt+ σ2,tdW2,t

(1.1)

where W1 = (W1,t)t∈[0,T ] and W2 = (W2,t)t∈[0,T ] are two correlated Wiener processes with
ρt = Cov(W1,t,W2,t), t ∈ [0, T ]. Moreover, ρ· ∈ [0, 1] and σℓ,·, ℓ = 1, 2 are both unknown
deterministic and measurable functions of t, bℓ(·, ·), ℓ = 1, 2 are progressively measurable
(possibly unknown) functions.

Models of the type (1.1) and their extensions are widely used in mathematical finance to
capture the dynamics of stock prices or interest rates.

This work aims to provide analysis of modearte deviations principle for two estimators:
generalised bipower estimator and Hayashi-Yoshida estimator. To do that we prove a
new result about moderate deviations for m-dependent random vgariables using the Chen-
Ledoux type condition. This condition links the speed of the moderate deviation principle
to the queue of the distribution of the random variables. It known that the Chen-Ledoux
type condition is a necessary and sufficient condition for the independent and identically
distributed random variables. Djellout [18] using a similar condition have obtained the

Date: September 12, 2016.
Key words and phrases. Moderate deviation principle, nonsynchronicity, M-dependent, Diffusion,

Discrete-time observation, Quadratic variation, Volatility, Bipower variation.
1
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moderate deviation for random variables. Djellout and Guillin [20] have also obtained the
moderate deviation for Markov chain using this conditions. See also the work of Djellout
Bitseki Penda and Proia [9] for the moderate deviation of the Durbin Watson statistics
using this condition.

Generalised Bipower estimator Recently, the concept of realised bipower variation
has built a non-parametric framework for backing out several variational measures of volatil-
ity, which has led to a new development in econometrics. Given the observations of the
processes (Xℓ,ti)i=0,...,n with 0 = t0 < t1 < ... < tn = T, n ∈ N, the realised Bipower
variation which is given by

V n
ℓ,1(r, q) = n

r+l
2

−1
n−1
∑

i=1

∣

∣∆Xℓ(I
i)
∣

∣

r ∣
∣∆Xℓ(I

i+1)
∣

∣

q
, (1.2)

where I i = (ti−1, ti] ∆Xℓ(I
i) = Xℓ,ti − Xℓ,ti−1

, provides a whole variety of estimators for
different (integrated) powers of volatility. For practical convenience, it is standard to take
equal spacing, i.e., ti − ti−1 = T

n
:= h. An important special case of the class (1.2) is the

realised volatility
[nt]
∑

i=1

|∆Xℓ(I
i)|2, (1.3)

which is a consistent estimator of the quadratic variation of Xℓ, i.e.

IVt =

∫ t

0

σ2
ℓ,sds,

which is often referred to as integrated volatility in the econometric literature.
In the last years, Nielsen et al.([5],[7],[6]) showed the consistency of V n

ℓ,1(r, q) and intro-
duced the (stable) Central Limit Theorem (CLT, in short) for standardised version. Vetter
[39] extend the results from Jacod [31] to the case of bipower variation and he prove the
CLT of the bipower variation for continuous semimartingales. In [4] they consider the same
problems as here where X have jumps and the CLT has been solved. It was demonstrated
that realized bipower variation can estimate integrated power volatility in stochastic volatil-
ity models and moreover, under some conditions, it can be a good measure to integrated
variance in the presence of jumps.

S. Kinnebrock and M. Podolskij [33] extended the CLT to the bipower variation of general
functions (called generalised bipower variation):

V n
ℓ,1(g, h) =

1

n

n
∑

i=1

g
(√

n∆Xℓ(I
i)
)

h
(√

n∆Xℓ(I
i+1)
)

, (1.4)

where g, h are two maps on Rd, taking values in R×R and given some examples from the
litterature to which his theory can be applied.

We know from [5] and [7] that if g and h are continuously differentiable with g, h, g′ and
h′ being of at most polynomial growth

V n
ℓ,1(g, h)

P−→ Vℓ,1(g, h) :=

∫ 1

0

Σσℓ,u
(g)Σσℓ,u

(h)du,

where

Σσ(f) := E(f(σZ)), Z ∼ N (0, 1), f is a real-valued function on R.
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In additional, if h and g are even (i.e. g(x) = g(−x), h(x) = h(−x) for all x ∈ Rd), we
have the CLT √

n
(

V n
ℓ,1(g, h)− Vℓ,1(g, h)

)

→ N (0,Σℓ(g, h))

where

Σℓ(g, h) =

∫ 1

0

(

Σσℓ,s
(g2)Σσℓ,s

(h2) + 2Σσℓ,s
(g)Σσℓ,s

(h)Σσℓ,s
(gh)− 3Σ2

σℓ,s
(g)Σ2

σℓ,s
(h)
)

ds.

All the elements of f on Rd are continuous with at most polynomial growth. This amounts
to there being suitable constants C > 0 and p ≥ 2 such that

∀x ∈ Rd, ‖f(x)‖ ≤ C(1 + ‖x‖p). (1.5)

Hayashi-Yoshida estimator We concentrate on the estimation of the co-volatility of
X1 and X2

〈X1, X2〉T =

∫ T

0

σ1,tσ2,tρtdt.

Given the synchronous observations of the processes (X1,ti , X2,ti)i=0,...,n a popular statistic
to estimate the co-volatility is

CV n :=

n
∑

i=1

∆X1(I
i)∆X2(I

i),

which is often called the realized co-volatility estimator ([2]).

The asymptotic distribution of CVn was formulated by Barndorff et al. ([5]). Djellout
and Samoura ([23]), Djellout et al. ([21]) obtained the large and moderate deviations for
the realized covolatility CVn. For more references, one can see ([22],[30],[32],[37]) and the
references therein.

However, in financial applications, actual transaction data are recorded at irregular times
in a nonsynchronous manner, i.e. two transaction prices are usually not observed at the
same time. This fact requires one who adopt CV n to synchronize the original data a prior,
choose a common interval length h first, then impute missing observations by some inter-
polation scheme such as previous-tick interpolation of linear interpolation. Unfortunately,
those procedures may result in synchronization bias ([28]).

Recently, Hayashi and Yoshida ([28]) postulated a new estimator which is free of syn-
chronization and hence of any bias due to it. To be explicitly, for the nonsynchronous
observations-

(

X1,ti , X2,sj

)

i=0,...,n;j=0,...,m
with 0 = s0 < s1 < ... < sm = T, 0 = t0 < t1 < ... <

tn = T,m, n ∈ N, the Hayashi-Yoshida estimator is defined as

Un,m :=

n
∑

i=1

m
∑

j=1

∆X1(I
i)∆X2(J

j)I{Ii∩Jj 6=∅}, (1.6)

where I i = (ti−1, ti], J j = (sj−1, sj ]. Under some assumptions on the equation (1.1),
Hayashi and Yoshida ([28],[29]) showed the consistency and asymptotic normality of Un,m

respectively.

This article is structured as follows. In Section 2 we present the main theoretical results
and we state the proofs in the Section 3.
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2. Main Results

2.1. Moderate deviations for the Hayashi-Yoshida estimator. Firstly, a reduced
design with respect to (I i)i=1,...,n will be constructed in the following manner. We collect
all I is such that I i ⊂ J j and combine them into a new interval; if such I i does not exist,
do nothing. Then collecting all such intervals and re-labeling them from left to right yields

a new partition of (0, T ], denoted
(

Î i
)

i=1,...,n̂
. Due to the bilinearity of Un,m,

Un,m =
n̂
∑

i=1

m
∑

j=1

∆X1(Î
i)∆X2(J

j)K Î
ij =

n̂
∑

i=1

∆X1(Î
i)∆X2

(

∪j∈Ĵ(i)J
j
)

, (2.1)

where Ĵ(i) :=
{

1 ≤ j ≤ m : K Î
ij 6= 0

}

with K Î
ij = I{Îi∩Jj 6=∅}. Then, we can find that each

J j contains at most one Î i, which implies that the random variable sequence
{

1 ≤ i ≤ n̂ : ∆X1(Î
i)∆X2

(

∪j∈Ĵ(i)J
j
)}

are 2-dependent. Now, the number n̂ can be formulated as follows. Define

τ1 = inf{1 ≤ i ≤ n : I i * J1}, ς1 = sup{1 ≤ j ≤ m : Iτ1 ∩ J j 6= ∅}
and

τk = inf{τk−1 < i ≤ n : I i * J ςk−1}, ςk = sup{ςk−1 < j ≤ m : Iτk ∩ J j 6= ∅},
with τ0 = 0, ς0 = 1 and inf ∅ = +∞, sup ∅ = 0. Let n0 = sup{k : τk < +∞}. Then, one
can conclude that

n0 ≤ n̂ ≤ n0 +

n0
∑

k=1

I{τk−τk−1>1} + I{τn0
<n} ≤ 2n0 + 1. (2.2)

Let Aℓ,t =
∫ t

0
bℓ(s, ω)ds, t ∈ [0, T ] and ℓ = 1, 2. When the drift bℓ(t, ω) is known, we can

consider the following estimator

Vn,m : =

n
∑

i=1

m
∑

j=1

∆X0
1 (I

i)∆X0
2 (J

j)I{Ii∩Jj 6=∅}

=

n̂
∑

i=1

∆X0
1 (Î

i)∆X0
2

(

∪j∈Ĵ(i)J
j
)

.

(2.3)

where X0
ℓ,t = Xℓ,t − Aℓ,t. For any Borel set I ⊂ [0, T ], define

ν(I) =

∫

I

σ1,tσ2,tρtdt, νℓ(I) =

∫

I

σ2
ℓ,tdt, ℓ = 1, 2.

Let rn,m := max1≤i≤n |I i| ∨max1≤j≤m |J j|, the largest interval size. We always assume that
as n,m → +∞, rn,m → 0, which implies that n0 → +∞. For simplicity, let m = m(n) and
as n → +∞, m → +∞. Moreover, write

Un,m = Un, Vn,m = Vn, rn,m = rn.

To establish the moderate deviations for Vn, we introduce the following conditions.



MDP FOR SOME ESTIMATORS OF THE REALISED (CO-)VOLATILITY 5

(C1) There exist a sequence of positive numbers {vn, n ≥ 1} and some constant Σ ∈
(0,+∞) such that, as n → +∞, vn → 0 and

v−1
n

(

n̂
∑

i=1

m
∑

j=1

ν1(Î
i)ν2(J

j)K Î
ij +

n̂
∑

i=1

ν2(I i) +

m
∑

j=1

ν2(J j)−
n̂
∑

i=1

m
∑

j=1

ν2(I i ∩ J j)

)

→ Σ.

(C2) There exist a sequence of positive numbers {bn, n ≥ 1} such that, as n → +∞,

bn → +∞, bnv
1/2
n → 0 and bnv

−1/2
n νn → 0,

where νn = maxℓ=1,2max1≤i≤n max1≤j≤m (νℓ(I
i) ∨ νℓ(J

j)).

Theorem 2.1. Under conditions (C1) and (C2),
{

1

bnv
1/2
n

(

Vn −
∫ T

0

σ1,tσ2,tρtdt

)

, n ≥ 1

}

satisfies the large deviations with speed b2n and rate function L(x) = x2

2Σ
. 2

Remark 2.1. By the construction of partition (Î i)i=1,...,n̂, we obtain immediately that

n̂
∑

i=1

m
∑

j=1

ν1(Î
i)ν2(J

j)K Î
ij +

n̂
∑

i=1

ν2(Î i) +

m
∑

j=1

ν2(J j)−
n̂
∑

i=1

m
∑

j=1

ν2(Î i ∩ J j)

=

n
∑

i=1

m
∑

j=1

ν1(I
i)ν2(J

j)KI
ij +

n
∑

i=1

ν2(I i) +

m
∑

j=1

ν2(J j)−
n
∑

i=1

m
∑

j=1

ν2(I i ∩ J j).

Remark 2.2. Similar to (Î i)i=1,...,n̂, a reduced design with respect to (J i)i=1,...,m can also
be constructed as follows. We collect all J js such that J j ⊂ I i and combine them into a
new interval; if such J j does not exist, do nothing. Then collecting all such intervals and
re-labeling them from left to right yields a new partition of (0, T ], denoted (Ĵ j)j=1,...,ñ. Then
Vn has the formula,

Vn =
ñ
∑

j=1

∆X0
1

(

∪i∈Î(j)I
i
)

∆X0
2 (Ĵ

j), (2.4)

where Î(j) :=
{

1 ≤ i ≤ n : K Ĵ
ij 6= ∅

}

with K Ĵ
ij = I{Ii∩Ĵj 6=0}.

Letting ñ0 = sup{k : ςk > 0}, then ñ0 = n0 − 1 and

n0 ≤ ñ ≤ n0 +
n0
∑

k=1

I{ςk−ςk−1>1} + 1 ≤ 2n0 + 1.

Therefore, we can conclude that the moderate deviations of Vn are independent of the dif-
ferent partitions (Ī i)i=1,...,n̄ and (Ĵ j)j=1,...,ñ in (2.1) and (2.4).

Now we turn to the moderate deviatons for Un. We need the following three additional
conditions.
(C3) For ℓ = 1, 2, bℓ(·, ·) ∈ L∞ (dt⊗ dP )

(C4) As n → +∞, r2n
vn

→ 0.
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Theorem 2.2. Under conditions (C1) through (C4),
{

1

bnv
1/2
n

(

Un −
∫ T

0

σ1,tσ2,tρtdt

)

, n ≥ 1

}

satisfies the large deviations with speed b2n and rate function L(x) = x2

2Σ
. 2

Remark 2.3. Suppose synchronous and equidistant sampling as in (3) of Remark 2.1. We
have rn = 1/n, and condition (C4) holds automatically.

2.2. Examples.

Perfectly synchronous sampling Suppose synchronous and equidistant sampling, i.e.
I i ≡ J i and |I i| ≡ T/n. Then, we can see that

n0 = n, vn = 1/n, Σ =

∫ T

0

σ2
1,tσ

2
2,t

(

1 + ρ2t
)

dt.

Moreover, if σℓ,· ∈ L∞(dt) for ℓ = 1, 2, condition (C2) equivalents to

bn → +∞, bnn
−1/2 → 0, n → +∞. (2.5)

Under (2.5), from our Theorem 2.1, it follows that
{

n1/2

bn

(

Vn −
∫ T

0

σ1,tσ2,tρtdt

)

, n ≥ 1

}

(2.6)

satisfies the large deviations with speed b2n and rate function

L0(x) =
x2

2
∫ T

0
σ2
1,tσ

2
2,t (1 + ρ2t ) dt

.

This result can also be obtained by Theorem 2.5 in Djellout et al. ([21]).

Nonsynchrnous alternating sampling at odd/even times We now consider the fol-
lowing deterministic, regularly spaced sampling scheme. X1 is sampled at ’odd’ times, i.e.,
t = 2k−1

n
T, k = 1, 2, · · · , n while X2 is at ’even’ times, t = 2k

2n
T . Hence X1 and X2 are

sampled in a nonsynchronous, alternating way. so we have that the sequence given in (2.6)
satisfies the LDP with speed b2n and rate function with

Σ =

∫ 1

0

(σ1,tσ2,t)
2(2 +

3

2
ρ2t )dt.

2.3. Moderate deviations for bipower variation of general function.

Proposition 2.3. Let (bn) be a sequence of positive numbers such that

bn → ∞, bn/
√
n → 0, and νnbn

√
n −→ 0, (2.7)

where νn = max1≤i≤n

∫

Ii
Σσℓ,s

(g)Σσℓ,s
(h)ds. Assume that g and h are two evens, continuous

differentiable with at most polynomial growth such that

lim sup
n→∞

n

b2n
logn

n
max
j=1

P

(
∣

∣

∣

∣

g
(√

n∆Xℓ(I
j)
)

h
(√

n∆Xℓ(I
j+1)

)

− E
(

g(
√
n∆Xℓ(I

i))
)

E
(

h(
√
n∆Xℓ(I

i+1))
)

∣

∣

∣

∣

> nbn

)

= −∞.

(2.8)
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So, we have that √
n

bn

(

V n
ℓ,1(g, h)− Vℓ,1(g, h)

)

satisfies the large deviations principle with speed b2n and rate function Iℓg,h(x) = x2/2Σℓ(g, h).

2.4. Examples.
Realised Bipower Variation. Realised bipower variation, which is probably the most

important subclass of our model, corresponds to the functions g(x) = |x|r and h(x) = |x|q.
In this case and under the condition that

lim sup
n→∞

n

b2n
log n

n
max
j=1

P
(

n
r+q

2 |∆Xℓ(I
j)|r|∆Xℓ(I

j+1)|q > bn

)

= −∞. (2.9)

we have the moderate deviation principle for
√
n

bn

(

V n
ℓ,1(r, q)− µrµq

∫ 1

0

|σℓ,s|r+qds

)

Σℓ(g, h) := Σℓ(r, q) = (µ2rµ2q + 2µrµqµr+q − 3µ2
rµ

2
q)

∫ 1

0

|σℓ,u|2(r+q)du.

where µr = E|z|r with z ∼ N (0, 1).
If r = 2 and q = 0 we are in the quadratic case and the condition (2.9) is satisfaied for

all the sequence (bn). The result was already obtained in Djellout-Guillin-Wu [22].
If r + q < 2 the condition (2.9) is satisfied for every sequence bn.

The Cubic Power of Returns. The Cubic Power of Returns is a special case of the
generalised bipower variation, corresponds to the functions g(x) = |x|3 and h(x) = 1.

Then, under the condition

lim sup
n→∞

n

b2n
logn

n
max
j=1

P
(

n
3

2 |∆Xℓ(I
j)|3 > bn

)

= −∞,

the sequence
√
n

bn

(

V n
ℓ,1(|x|3, 1)

)

satisfies the large deviations principle with speed b2n and rate

function I|x|3(u) = 24x2/
∫ 1

0
σ6
sds..

3. proofs

In this section, we will use the appendix’s Proposition 4.1 about the the moderate devi-
ations for m-dependent random variables sequences which are not necessarily stationnary
under the Chen-Ledoux type condition.

Proof of Theorem 2.1

We start this section by calculating the variance of Vn. Different from the method used
in Hayashi and Yoshida ([29]), our approach relies on (2.1), the 2-dependent representation
of Un. Moreover, the analysis of moderate deviations will benefit from this straightforward
thoughts.

Lemma 3.1. For the estimator Vn defined by (2.3), we have

V ar(Vn) =

n̂
∑

i=1

m
∑

j=1

ν1(Î
i)ν2(J

j)K Î
ij +

n̂
∑

i=1

ν2(Î i) +

m
∑

j=1

ν2(J j)−
n̂
∑

i=1

m
∑

j=1

ν2
(

Î i ∩ J j
)

.
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Proof. For ℓ = 1, 2, letting

Mℓ,t =

∫ t

0

σℓ,sdWℓ,s, t ∈ [0, T ],

then

Vn =
n̂
∑

i=1

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

Since
{

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

: 1 ≤ i ≤ n̂
}

are 2-dependent, one can write that

V ar(Vn) =
n̂
∑

î=1

V ar
(

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
))

+
n̂
∑

i=1

Cov
(

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

,∆M1(Î
i+1)∆M2

(

∪j∈Ĵ(i+1)J
j
))

+

n̂
∑

i=1

Cov
(

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

,∆M1(Î
i+2)∆M2

(

∪j∈Ĵ(i+2)J
j
))

+

n̂
∑

i=1

Cov
(

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

,∆M1(Î
i−1)∆M2

(

∪j∈Ĵ(i−1)J
j
))

+

n̂
∑

i=1

Cov
(

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

,∆M1(Î
i−2)∆M2

(

∪j∈Ĵ(i−2)J
j
))

:= D1 +D2 +D3 +D4 +D5,

where Î i = ∅ for i < 1 or i > n̂.
We will only consider D1 and D2, the other terms can be dealt with in the same way. A

simple calculation gives us

D1 =

n̂
∑

i=1

(

ν1(Î
i)ν2

(

∪j∈Ĵ(i)J
j
)

+ ν2(Î i)
)

=

n̂
∑

i=1

m
∑

j=1

ν1(Î
i)ν2(J

j)K Î
ij +

n̂
∑

î=1

ν2(Î i).

(3.1)

Moreover, from the fact

∆M2

(

∪j∈Ĵ(i)J
j
)

= ∆M2

(

Î i
)

+∆M2

(

∪j∈Ĵ(i)J
j ∩ Î i+1

)

+∆M2

(

∪j∈Ĵ(i)J
j ∩ Î i+2

)

+∆M2

(

∪j∈Ĵ(i)J
j ∩ Î i−1

)

+∆M2

(

∪j∈Ĵ(i)J
j ∩ Î i−2

)

,
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it follows that

E
(

∆M1(Î
i)∆M1(Î

i+1)∆M2

(

∪j∈Ĵ(i)J
j
)

∆M2

(

∪j∈Ĵ(i+1)J
j
))

= ν
(

Î i
)

ν
(

Î i+1
)

+ ν
(

∪j∈Ĵ(i)J
j ∩ Î i+1

)

ν
(

∪j∈Ĵ(i+1)J
j ∩ Î i

)

= ν
(

Î i
)

ν
(

Î i+1
)

+

m
∑

j1=1

m
∑

j2=1

ν
(

J j1 ∩ Î i+1
)

ν
(

J j2 ∩ Î i
)

K Î
ij1K

Î
(i+1)j2 .

We can write the second term in the above equality as

ν
(

J j1 ∩ Î i+1
)

ν
(

J j2 ∩ Î i
)

K Î
ij1
K Î

(i+1)j2

= ν
(

J j1 ∩ Î i+1
)

ν
(

J j2 ∩ Î i
)

K Î
ij1
K Î

(i+1)j2
K Î

(i+1)j1
K Î

ij2
.

By the following fact,

K Î
ij1K

Î
(i+1)j2K

Î
(i+1)j1K

Î
ij2 6= 0 ⇔ j1 = j2,

we can obtain immediately that

E
(

∆M1(Î
i)∆M1(Î

i+1)∆M2

(

∪j∈Ĵ(i)J
j
)

∆M2

(

∪j∈Ĵ(i+1)J
j
))

= ν
(

Î i
)

ν
(

Î i+1
)

+
m
∑

j=1

ν
(

Î i+1 ∩ J j
)

ν
(

Î i ∩ J j
)

,

which implies that

D2 =
n̂
∑

i=1

m
∑

j=1

ν
(

Î i+1 ∩ J j
)

ν
(

Î i ∩ J j
)

. (3.2)

Applying the same arguments to D3, D4, D5,

D3 =
n̂
∑

i=1

m
∑

j=1

ν
(

Î i+2 ∩ J j
)

ν
(

Î i ∩ J j
)

(3.3)

D4 =
n̂
∑

i=1

m
∑

j=1

ν
(

Î i−1 ∩ J j
)

ν
(

Î i ∩ J j
)

(3.4)

D5 =
n̂
∑

i=1

m
∑

j=1

ν
(

Î i−2 ∩ J j
)

ν
(

Î i ∩ J j
)

(3.5)

Putting (3.2) through (3.5) together, and noting fact that if K Î
ij 6= 0, then

J j = ∪2
ℓ=−2

(

I i+ℓ ∩ J j
)

,
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we have

D2 +D3 +D4 +D5

=
n̂
∑

i=1

m
∑

j=1

(

ν(J j)− ν
(

Î i ∩ J j
))

ν
(

Î i ∩ J j
)

=
m
∑

j=1

ν2(J j)−
n̂
∑

i=1

m
∑

j=1

ν2
(

Î i ∩ J j
)

Together with (3.1), we can conclude

V ar(Vn) =
n̂
∑

i=1

m
∑

j=1

ν1(Î
i)ν2(J

j)K Î
ij +

n̂
∑

i=1

ν2(Î i) +
m
∑

j=1

ν2(J j)−
n̂
∑

i=1

m
∑

j=1

ν2
(

Î i ∩ J j
)

.

�

Remark 3.1. From the proof of Lemma 3.1, each ∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

, 1 ≤ i ≤ n̂

contributes to the variance of Vn with

m
∑

j=1

ν1(Î
i)ν2(J

j)K Î
ij + ν2(Î i) +

m
∑

j=1

(

ν(J j)− ν
(

Î i ∩ J j
))

ν
(

Î i ∩ J j
)

. 2

Proof of Theorem 2.1 For the expectation of Vn, we have

EVn =
n̂
∑

i=1

ν
(

Î i
)

=

∫ T

0

σ1,tσ2,tρtdt.

Therefore,

Vn −
∫ T

0

σ1,tσ2,tρtdt =

n̂
∑

i=1

(

∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

− ν
(

Î i
))

:=

n̂
∑

i=1

Yi, (3.6)

where Yi = ∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

− ν
(

Î i
)

. Consequently, the random variable se-

quence {Yi : 1 ≤ i ≤ n̂} are 2-dependent. We have to prove that

lim sup
n→∞

1

b2n
log
(

n̂
n̂

max
i=1

P(|Yi| > bnv
1/2
n )
)

= −∞. (3.7)

By the condition (C4), there exist a sequence εn > 0 satisfying as n → +∞, ε2n
vn

→ 0.
Now, we can write that

|Yi| = |∆M1(Î
i)∆M2

(

∪j∈Ĵ(i)J
j
)

− ν
(

Î i
)

|

≤ εn|∆M1(Î
i)|2 + 3

εn
|∆M2(Î

i)|2 + |ν
(

Î i
)

|

Using condition (C2), we have as n → ∞

bnvn1/2|ν
(

Î i
)

| → 0.
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Hence, to prove (3.7), we have to whow that

lim sup
n→∞

1

b2n
log
(

n̂
n̂

max
i=1

P(εn|∆M1(Î
i)|2 > bnv

1/2
n )
)

= −∞. (3.8)

and

lim sup
n→∞

1

b2n
log

(

n̂
n̂

max
i=1

P(
3

εn
|∆M2(Î

i)|2 > bnv
1/2
n )

)

= −∞. (3.9)

In fact, by virtue of Chebyshev’s inequality, for (3.8),

P(
3

εn
|∆M2(Î

i)|2 > bnv
1/2
n )

≤ inf
λ>0

exp

{

−λ+
λ2ε2nK

2b2nvn

}

≤ exp

{

− b2nvn
2ε2nK

}

,

where K =
∫ T

0
σ4
1,tdt + (

∫ T

0
σ2
1,tdt)

2. From our choice of εn, (3.8) follows. Therefore, (3.9)
can be established similarly.
Hence, from lemma 3.1 and (3.7) together with appendix Proposition 4.1, the Theorem 2.1
holds. 2

Proof of Theorem 2.2 From Theorem 2.1, we only need to show the exponential equiv-
alence of Un and Vn, i.e. for any δ > 0

lim
n→+∞

1

b2n
logP

(

1

bnv
1/2
n

|Un − Vn| ≥ δ

)

= −∞. (3.10)

In fact, by simple calculation, we can write that

|Un − Vn|

=
n̂
∑

i=1

∣

∣

∣
∆A1(Îi)∆A2(∪j∈Ĵ(i)J

j)
∣

∣

∣
+

n̂
∑

i=1

∣

∣

∣
∆A1(Îi)∆M2(∪j∈Ĵ(i)J

j)
∣

∣

∣

+
n̂
∑

i=1

∣

∣

∣
∆M1(Îi)∆A2(∪j∈Ĵ(i)J

j)
∣

∣

∣

≤ 3Trnmax
ℓ=1,2

‖bℓ‖∞ + rn‖b1‖∞
n̂
∑

i=1

∣

∣

∣
∆M2(∪j∈Ĵ(i)J

j)
∣

∣

∣

+ 3rn‖b2‖∞
n̂
∑

i=1

∣

∣

∣
∆M1(Îi)

∣

∣

∣

≤ 3Trnmax
ℓ=1,2

‖bℓ‖∞ + 3rn‖b1‖∞
n̂
∑

i=1

∣

∣

∣
∆M2(Îi)

∣

∣

∣
+ 3rn‖b2‖∞

n̂
∑

i=1

∣

∣

∣
∆M1(Îi)

∣

∣

∣

Using condition (C4), we have as n → ∞
3Trnmaxℓ=1,2 ‖bℓ‖∞

bnv
1/2
n

→ 0.
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Therefore, to prove (3.10), we only need to show that for any δ > 0

lim
n→+∞

1

b2n
logP

(

rn

bnv
1/2
n

n̂
∑

i=1

∣

∣

∣
∆M1(Îi)

∣

∣

∣
≥ δ

)

= −∞ (3.11)

and

lim
n→+∞

1

b2n
logP

(

rn

bnv
1/2
n

n̂
∑

i=1

∣

∣

∣
∆M2(Îi)

∣

∣

∣
≥ δ

)

= −∞. (3.12)

In fact, according to Chebyshev’s inequality, for (3.11),

P

(

rn

bnv
1/2
n

n̂
∑

i=1

∣

∣

∣
∆M1(Îi)

∣

∣

∣
≥ δ

)

≤ inf
λ>0

exp

{

−λδ +
λ2r2n

∫ T

0
σ2
1,tdt

2b2nvn

}

≤ exp

{

− b2nvnδ
2

2r2n
∫ T

0
σ2
1,tdt

}

,

which implies that (3.11) by condition (C4). Moreover, (3.12) can be established similarly.
2

Proof of Proposition 2.3 Our proof is an application of Proposition 4.1.
In fact, by a straightforward calculation, one can see that

V n
ℓ,1(g, h)− Vℓ,1(g, h) =

1

n

n
∑

i=1

g
(√

n∆Xℓ(I
i)
)

h
(√

n∆Xℓ(I
i+1)

)

−
∫ 1

0

Σσl,u
(g)Σσl,u

(h)du

=
1

n

n
∑

i=1

[

g
(√

n∆Xℓ(I
i)
)

h
(√

n∆Xℓ(I
i+1)

)

− E

(

g(
√
n∆Xℓ(I

i))

)

E

(

h(
√
n∆Xℓ(I

i+1))

)]

=
n
∑

i=1

Yi

where Yi = 1

n

[

g
(√

n∆Xℓ(I
i)
)

h
(√

n∆Xℓ(I
i+1)

)

− E

(

g(
√
n∆Xℓ(I

i))

)

E

(

h(
√
n∆Xℓ(I

i+1))

)]

are 1-

dependent random variables.
Hence, by the 1−dependence of (Yi) and from (2.8) together the Proposition 4.1, the Propo-
sition 2.3 holds. 2

4. Appendix A

Let us begin with some few bibliographical notes on the MDP. Borovkov and Mogulskii
([10], [11]) considered the MDP for Banach valued i.i.d.r.v. sequences (Zn)n≥1. Under the
condition that Eeδ|Z1| < +∞, for some δ > 0, they proved the MDP for

∑n
i=1 Zi.

For bn = nα with 1
2
< α < 1, Chen [12] found the necessary and sufficient condition for

the MDP in a Banach space, and he obtained the lower bound for general bn under very
weak condition. Using the isoperimetry techniques, Ledoux [34](see also [24]) obtained the
necessary and sufficient condition for the general sequence bn satisfying:

bn√
n
−→ ∞ and

bn
n

−→ 0. (4.1)
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The results of Ledoux [34] is extended to functional empirical processes (in the setting of
non parametrical statistics) by Wu [36]. The further developments are given by Dembo and
Zeitouni [17]. Arcones [3] obtains the MDP of functional type with the following condition

lim sup
n→∞

n

b2n
log

(

nP(|Z1| > bn)

)

= −∞. (4.2)

How to extend the MDP to the dependent situations has recently attracted much atten-
tion and remarkable works. The Markovian case has been studied under successively less
restrictive conditions (see Wu [36], Chen [12] for the relevant references) and very recently
under weak conditions by de Acosta [14] and Chen [12] for the lower bound (under different
and non comparable conditions) and by de Acosta-Chen [15] and Chen [12] (under the same
condition but different proof) for the upper bound. Guillin [26] obtained uniform (in time)
MDP for functional empirical processes. Using regeneration split chain method, Djellout
and Guillin ([20], [19]) extend the characterization of MDP for i.i.d.r.v. case of Ledoux [34]
to Markov chains. The geometric ergodicity is substituted by a tail on the first time of
return to the atom. Their conditions are weaker than Theorem 1 in [15], which allow them
to obtain MDP for empirical measures and functional empirical processes.

For the studies of the MDP of martingale see Puhalskii [38], Dembo [16], Gao [25], Worms
[41] and Djellout [18].

Those works motivate directly the studies here. Our main aim is to prove the Chen-
Ledoux type theorem for the MDP of a sequence of m-dependent random variables.

4.1. Moderate deviations for m-dependent randon variables. Let (bn) a sequence
of positive real numbers satisfying (4.1).

Let Xn be an m-dependent random variables, namely, for every k ≥ 1 the following two
collections

{X1, · · · , Xk} and {Xk+m+1, Xk+m+2, · · · }
are independent. In this terminology, an independent identically distributed (i.i.d.) ran-
dom variables sequence is 0- dependent and, for any non-negative intergers m1 < m2, m1

dependence implies m2-dependence. The aim of this section is to consider the moderate de-
viations for m dependent random variables sequences which are not necessarily stationnary
under the Chen-Ledoux type condition. This condition links the speed of the moderate
deviation principle to the queue of the distribution of the random variable.

Proposition 4.1. Let (Xk) be a sequence of m-dependent random variables with zero means
such that

lim sup
n→∞

n

b2n
log
(

n
n

max
i=1

P(|Xi| > bn)
)

= −∞. (4.3)

Write Sn =
∑n

j=1Xj and let (bn) a sequence of positive numbers satisfying (4.1). Then

Sn/bn satisfies the moderate deviation principle on R with speed b2n/n and rate fonction
I(x) = x2/2σ2, where σ2 := limn→∞

1
n
V ar(Sn) < ∞.

Remark 4.1. Remark that the condition (4.3) implies that

lim
n→∞

sup
1≤ℓ≤n

E(X2
ℓ ) < ∞.
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Remark 4.2. If there exists some δ > 0 such that

sup
1≤ℓ≤n

E(eδ|Xℓ|) < ∞,

so the condition (4.3) is satisfied for every sequence bn.

Remark 4.3. If bn = n1/p with 1 < p < 2 so the condition (4.3) is equivalent to

sup
1≤ℓ≤n

E(eδ|Xℓ|2−p

) < ∞.

Lemma 4.2. Let (Yk) be a sequence of independent random variables with zero means such
that the condition (4.3) is satisfied. Write S ′

n =
∑n

j=1 Yj and let (bn) a sequence of positive

numbers satisfying (4.1). Then S ′
n/bn satisfies the moderate deviation principle on R with

speed b2n/n and rate fonction I(x) = x2/2σ2, where σ2 := limn→∞
1
n
V ar(Sn) < ∞.

Proof of Lemma 4.2 The proof of this result is a little adaptation of the proof of the
independent and identically distributed random variables given in [20]. 2

Proof of Proposition 4.1 We will do the proof in the case m = 1 for simplicity.
Fix the integer p > 1 and write, for each n ≥ 1,

n = knp+ rn

where kn and rn are non-negative integers with 0 ≤ rn ≤ p− 1. Define

Yk =
∑

(k−1)p<j<kp

Xj, k = 1, 2, · · ·

Then (Yk)k≥1 is an independent random variables and
Notice that

Sn =

kn
∑

ℓ=1

Yℓ +

kn
∑

ℓ=1

Xℓp +

n
∑

ℓ=knp+1

Xj (n ≥ 1).

We have to prove that

lim sup
n→∞

n

b2n
log P

(
∣

∣

∣

∣

∣

kn
∑

ℓ=1

Xℓp

∣

∣

∣

∣

∣

> δbn

)

= −∞. (4.4)

Since the random variables (Xℓp)ℓ≥1 are independent, we use the moderate deviation

principle for ( 1
bn

∑kn
ℓ=1Xℓp)ℓ≥1, to obtain that for n large

n

b2n
logP

(
∣

∣

∣

∣

∣

kn
∑

ℓ=1

Xℓp

∣

∣

∣

∣

∣

> δbn

)

≤ − δ2

2σ2
0

where

σ2
0 = lim

n→∞
1

n

kn
∑

ℓ=1

Var(Xℓp) ≤ C lim
n→∞

kn
n

=
C

p
.

So

lim sup
n→∞

n

b2n
log P

(
∣

∣

∣

∣

∣

kn
∑

ℓ=1

Xℓp

∣

∣

∣

∣

∣

> δbn

)

≤ −p

2

δ2

C

Letting p goes to infinty, we get (4.4).
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Now we have to prove that

lim sup
n→∞

n

b2n
logP

(∣

∣

∣

∣

∣

n
∑

ℓ=knp+1

Xℓ

∣

∣

∣

∣

∣

> δbn

)

= −∞. (4.5)

If rn = 0 there is no thing to prove, so we suppose that rn > 0

P

(
∣

∣

∣

∣

∣

n
∑

ℓ=knp+1

Xℓ

∣

∣

∣

∣

∣

> δbn

)

≤
n
∑

ℓ=knp+1

P

(

|Xℓ| >
δbn
rn

)

≤ rn
n

max
ℓ=knp+1

P

(

|Xℓ| > δ
bn
rn

)

≤ n
n

max
ℓ=1

P

(

|Xℓ| > δ
bn
p

)

.

Taking the log and normalizing by n/b2n, we obtain (4.5).

Now, we have to prove that

lim sup
n→∞

n

b2n
log
[

kn
kn

max
ℓ=1

P (|Yℓ| > bn)
]

= −∞. (4.6)

We have

kn
kn

max
ℓ=1

P (|Yℓ| > bn) ≤ kn
kn

max
ℓ=1

ℓp−1
∑

j=(ℓ−1)p+1

P

(

|Xj | >
1

p
bn

)

≤ knp
kn

max
ℓ=1

ℓp−1
max

j=(ℓ−1)p+1
P

(

|Xj | >
1

p
bn

)

≤ n
n

max
ℓ=1

P

(

|Xj | >
1

p
bn

)

.

Taking the log and normalizing by n/b2n and letting n goes to infinity, we obtain (4.6).

So we deduce that the sequence 1/bn

kn
∑

ℓ=1

Yℓ satisfies the moderate deviations principle

with speed b2n/n and rate function I(x) = x2/2σ2
Y , where

σ2
Y := lim

n→∞
1

n
Var

(

kn
∑

ℓ=1

Yℓ

)

. (4.7)

Now we have to prove that σ2 = σ2
Y . For that we have

∆n := VarSn − Var

(

kn
∑

ℓ=1

Yℓ

)

=

kn
∑

ℓ=1

E(X2
ℓp) + 2

kn
∑

ℓ=1

(EXℓpXℓp+1 + EXℓpXℓp−1)

+

pkn+rn
∑

ℓ=pkn+1

E(X2
ℓ +XℓXℓ+1 +XℓXℓ−1).
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Now since sup1≤ℓ≤n EX
2
ℓ < ∞, we have that ∆n/n ≤ (knC + 4Ckn + 3rnC)/n. So

limn→∞∆n/n = C/p, which goes to 0 when p goes to infinity.2
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FRANCE.


