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Abstract

In the present article, the homogenization of a composite star-shaped tube

with numerous thin, periodic, elastic wavy layers, is presented. The com-

posite exhibits a multiscale periodicity allowing for a multistep asymptotic

homogenization scheme starting from the finest scale. The scheme gives the

complete effective thermoelastic behavior of the composite. By a numerical

example of a two-phase composite with sinusoidal wavy walls, whose effective

behavior is an orhotropic material, the above method is illustrated.

Key words: A. Multi-scale shell; B. Wavy walls; C. Periodic

homogenization.

1. Introduction

Shell composites are the subject of intense research effort recently (see

Guinovart-Sanjuan et al. (2016) for a general methodology of homogeniza-

tion and a nice short survey on elastic laminate shell composites). Previously,

Popovich and Fedai (1997) presented the axisymmetric problem of thermoe-

lasticity of a multilayer thermosensitive tube. Tarn and Wang (2001) studied
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the mechanical response of laminated composite tubes. In nanomechanics,

Seidel (2007) proved the multifunctional nature of carbon-nanotube-polymer

nanocomposites. Chatzigeorgiou et al. (2008) studied the homogenization of

elastic hollow cylinders with discontinuous properties (see also Tsukrov and

Drach (2010) for composites with cylindrically orthotropic layers and Nie

and Batra (2010) for material tailoring of functionally graded hollow circular

cylinders). Cavalcante et al. (2009) investigated the transient thermome-

chanical analysis of a layered cylinder by the parametric finite-volume the-

ory. Multifunctional shell structures present desirable electronic, magnetic,

optical or thermal properties, combined with each other or with stiffness,

ductility and strengthening. The multifuctionality of multiscale composites

can be enhanced by building the material from the smaller to the greater scale

mimicking the nature structures (Salonikitis et al. (2010)). Chatzigeorgiou

et al. (2011) presented the homogenization of aligned fuzzy fiber composites.

Seidel et al. (2014) studied the case of fuzzy fibers based on multi-walled car-

bon nanotubes. Many bio-inspired systems present shell structure needing

further investigation.

In a parallel way, stratified structures with wavy layers occuring acci-

dentaly or deliberately, attracted the attention of many researchers due to

their waviness-induced strengthening under specific straining path (see for

instance Khatam and Pindera (2012), Tu and Pindera (2013), targeting the

finite deformation response of porcine mitral valve strut chordae based on a

simplified wavy model). Waviness of layers may occur accidentally during

the manufacturing process in thin metallic and ceramic multilayers for appli-

cations in magnetic, optoelectronic and high-speed electronics technology or
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may deliberately be induced to enhance selected properties (Khatam and Pin-

dera (2009b)). Composites with wavy multilayer architecture were proposed

for experimentally usage as isolation system in the space laser anti-missile

program by NASA. They showed high inherent damping and stiffness while

preserving the light weight advantages of composites (Pratt et al. (2000)).

The tube with wavy wall is one more example of a structure attempting

to replicate natural structures: complex biomolecular fluids are transported

along a membrane composed of wavy-rough nanoannuli (Chu (2013)).

Khatam and Pindera investigated the effective behavior of elastic wavy

periodic multilayers for the first time using micromechanics based homoge-

nization. In Khatam and Pindera (2009b), thermoelastic moduli of periodic

multilayers with wavy architectures were computed. Additionally, Khatam

and Pindera (2009a) revealed the important role that plasticity plays on the

post-yield regime relative to the corresponding flat configuration. Moreover,

concerning the same regime, in Khatam and Pindera (2010) the elastic layer

thickness is shown to have a substantial effect depending on waviness and

loading mode. It is known that fiber wavy architectures may occur dur-

ing fabrication of thin fiber-reinforced composite laminates with bad conse-

quences on compressive strength (Adams and Bell (1995), Kugler and Moon

(2002)). Taylor and Steigmann (2009) simulated thermoelastic membranes

and studied wrinkling and slackening effects of laminated thin films. Re-

cently, wavy architectures have been used in nanotechnology to enhance cer-

tain strength properties, or to reduce thermal warpage in printed circuit

boards (Grenestedt and Hutapea (2002)). Wavy interfacial morphologies

during manufacturing process in nanotechnology may affect the overall be-
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havior of the composite. Rough multi-walls can be modeled by wavy layers.

Minicomposites made via chemical vapor infiltration reinforced with fibers

are convenient specimens for interface evaluation (see Sauder et al. (2008)).

Nano- and micro elements are the basis of primary complex structures in

the form of multilayer nanoshell tubes made of alternating layers of metal

and polymers (Barmak and Coffey (2014)). Wavy fibers were studied in

Kundalwal and Ray (2014); Ray and Kundalwal (2013, 2014).

The effective thermal conductivity of composites is seriously affected by a

possible thermal barrier resistance at the interface between the constituents

or by the high thermal conductivity of thermal interfacial materials. Manual

processing may result in serious roughness of interfaces. Thermal stabil-

ity of multilayered structures (in the form of layers with an adhesive layer

between) improve heat dissipation of light-emitting diodes. Graphene rein-

forced SiBCN ceramics exhibit thermal shock resistance superior to monoliths

of the same material. Also toughening mechanisms including pull-out and

bridging appear to improve thermal shock response (Li et al. (2016)). In

multilayered-structured ceramic coating design for thermal barrier coatings,

dense layers lead to large thermal conductivity and stiffness but small ther-

mal life time, needing optimization of the process through the introduction of

lamellae well-bonded dense layer between the conventional porous materials

and the superalloy bond coat (Liu et al. (2016a)). Joining of ceramic ma-

trix composites (Cf/SiC) to high temperature ceramics (SiC multilayers)

improves thermal protection of aerospace heat protection systems (Jimenez

et al. (2016)).

In Tsalis et al. (2012) and Tsalis et al. (2013) the elastic and plastic
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homogenization of layered wavy composites is studied using a generalized

periodicity-based semi-analytical method. In the context of biomimicry,

Katz et al. (2015) studied biomimetic materials with material architectures

that resemble wavy brick-and-mortar structures found in nacre, using finite

volume direct averaging micromechanics theory and proved that waviness

induces increase in ductility. While flat architectures are accessible to ana-

lytical solutions, wavy architectures need a combination of cell problems and

computational techniques. Specifically for multi-scale materials with struc-

tural hierarchy (Lakes (2005)), a succession of cell problems and, possibly,

micromechanics methods at specific scales where the corresponding layers

are composites with finer scale, may be necessary (see Tsalis et al. (2015).

One-dimensional cell problems are obtained only by applying a generalized

periodicity-based homogenization scheme, while micromechanics techniques

as the Mori-Tanaka method (Qu and Cherkaoui (2006)) are used only in the

interior of composite layers exhibiting two-dimensional periodicity.

The intent of the present paper is to combine the two above geometries, i.e

the shell geometry with the wavy architecture, by considering shells made of

wavy cylindrical layers exhibiting two-dimensional periodicity thus needing

a FEM implementation in the framework of cartesian coordinates. In Liu

et al. (2016b) the axial dynamic performance of thin-walled tubes with star-

shaped cross section is studied. In the present paper, one of the desired goals

is to contribute to the effort for tailoring the elastic and thermal behavior of

the above tubes under different strain paths. The proposed homogenization

method is based on the assumption that different periodicity scales coexist in

the tube, i.e. a very fine scale in the interior of every layer, a fine scale in the
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radial direction and a sufficiently coarse scale in the angular direction. This

allows one to apply multi-scale homogenization techniques in three steps

starting from the finest scale. The second and the third steps lead to an

one-dimensional cell problem which has analytical solutions and gives closed

forms for the effective stiffness coefficients. The homogenization in these two

steps is based on the concept of generalized periodicity presented in Tsalis

et al. (2012) (see also Guinovart-Sanjuan et al. (2016) for a more general

methodology of shell structures) and follows the schema of the step-by-step

homogenization in Tsalis et al. (2015). The method proposed in this paper

reduces to the known results for strictly circular or non-wavy composites or

laminated tubes as a way of validation.

The paper is organized as follows: in Section 2 we pose the problem with

all needed assumptions on the periodicity scales, we find the equations of the

cell problem and we present the analytical solution for the unknown gradients

of the displacement fluctuation. Moreover, we give the analytical expressions

for the effective stiffness, thermal expansion and conductivity coefficients.

In Section 3, we present a numerical example of a two-phase tube made of

alternative stiff and soft isotropic materials with different thermal coefficients

and obtain its effective (orthotropic) behavior. Strengthening and weakening

effects are analyzed, correlated to certain straining cases. Finally, in Section

4, we present some concluding remarks.
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2. A multiscale homogenization scheme

2.1. Statement of the problem, periodicity assumptions and outline of the

method

In the sequel, we adopt the description of multiscale periodic functions

proposed in classical homogenization (Bensoussan et al. (1978), Briane (1990),

Briane (1993)): the heterogeneous material under consideration is character-

ized by heterogeneity parameters {ε1, ε2, ε3...}, denoting a set of periodic-

ity scales which are assumed to be of different order (see Milton (2002),

for the analysis of sequentially layered composites). A function ϕ exhibit-

ing periodicity ε with respect to a material surface % is written formally

ϕε(x) := ϕ(x,
%

ε
). In cylindrical coordinates x = (r, θ, z), a function ex-

hibiting periodicities εm, εn, εl with respect to %1, %2, %3 respectively is writ-

ten ϕε(r, θ, z) := ϕ(r, θ, z,
%1

εm
,
%2

εn
,
%3

εl
). We use the operators (Chatzigeorgiou

et al. (2012))

Lr =
∂

∂r
, Lθ =

1

r

∂

∂θ
, Lz =

∂

∂z
,

P1 = ∇r%, P2 =
1

r
∇θ%,

(2.1)

to write the equilibrium equations of a heterogeneous material

Ljσ
ε
rj +

σεrr − σεθθ
r

+ fr = 0,

Ljσ
ε
θj + 2

σεrθ
r

+ fθ = 0,

Ljσ
ε
zj +

σεrz
r

+ fz = 0,

(2.2)

the constitutive equations

σεij = Cε
ijkl[ε

ε
kl − αεkl(T ε − Tref )], (2.3)
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the strain-displacement relations

εεrr = Lru
ε
r, ε

ε
θθ = Lθu

ε
θ +

uεr
r
, εεzz = Lzu

ε
z,

εεθz =
1

2
(Lθu

ε
z + Lzu

ε
θ), ε

ε
rz =

1

2
(Lru

ε
z + Lzu

ε
r)

εεrθ =
1

2
(Lru

ε
θ + Lθu

ε
r),

(2.4)

and the energy equation for steady state heat flow and negligible elastic

mechanical energy

Liq
ε
i +

qr
r

= Q,

qk = −kεkjLjT ε, k = r, θ, z.
(2.5)

In the above equations, ui denotes the displacement vector, σij the stress

tensor, εij the strain tensor, Cijkl the fourth-order elasticity tensor, T the

temperature, Q the radiation, q the heat flux, αij the coefficients of thermal

expansion tensor, kij the coefficients of thermal conductivity tensor, where

all free latin indices take the values r, θ, z, while repetition of only the latin

indices means summation over r, θ, z. The above system must be supple-

mented by Neumann or Dirichlet or mixed boundary conditions in order to

be solved. However, in the asymptotic expansion homogenization (AEH)

method, the boundary conditions do not affect the effective properties of the

composite, if it is made of elastic constituents only.

We consider a star-shaped tube made of numerous thin wavy layers.

Cylindrical wavy multilayers may be comprised of alternating soft and stiff

homogeneous phases (see Khatam and Pindera (2009b) for stratified wavy

structures), or of a metal matrix reinforced by continuous fibers in arbitrary

orientations, resulting to transversely isotropic or monoclinic behavior inside

each individual layer, or of a polymeric matrix (Salzar et al. (1996)).
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Figure 1: Cross section of the tube with wavy walls vertical to its axes.

(a) (b)

Figure 2: (a) Cross section of the tube divided into k1 sectors and (b) a typical sector.
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In the present problem, it could be of interest to study the impact of

wavy layers or wavy interlayer morphologies to the overall mechanical or

thermomechanical behavior of the tube assuming that the wavy layers ex-

hibit a double periodicity with respect to material surfaces %(r, θ) = const

very close between them, forming a microstructure (see fig. 1). All ther-

momechanical functions are assumed to depend on the macro-coordinates

(r,θ) and additionally to be periodic with respect to the material surfaces

%(r, θ) = const. An example of such a periodic microstructure is the mi-

crostructure defined by the parametric equations of sinusoidal wavy layered

walls

%1 = r +Hsin(k1θ) = kε, k = 1, 2...,

%2 = θ = kεm, m <
1

2
, k = 1, 2...

(2.6)

In fig.2 the structure is divided into k1 sectors of typical form ABCD.

Along the %1-direction, the layers present a periodicity ε of the order
t

k2

,

where t the thickness of the tube and k2 the number of the layers. The

thickness t is assumed to be small relatively to the inner radius of the tube.

The angular periodicity is assumed to be of the order εm, m <
1

2
. We note

that it is possible that each layer is heterogeneous with a periodic structure.

In this case, the periodicity is assumed to be of the order ε2. For the notion

of the generalized periodicity function the reader is invited to consult Tsalis

et al. (2012, 2013). We proceed to a multi-step homogenization based on the

above assumption, i.e. that the periodicity with respect to the %1-direction

is much finer than the angular periodicity and that the heterogeneities inside

every layer are much finer than the thickness of the layers. The first step

consists in homogenizing the layers by a periodic homogenization FEM or
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micromechanics based method. We focus to the next two steps. The second

step (called 1st in the sequel) consists in performing the homogenization

with respect to the %1-direction thus obtaining a periodically, in the angular

direction, graded structure. In the final step (called 2nd in the sequel), the

structure is homogenized with respect to the angular direction.

2.2. First step of homogenization

In the sequel, the (possible) homogenization in the interior of the layers

is omitted and the structure, to be further homogenized, possesses homoge-

neous layered walls. As far as the 1st step of homogenization is concerned,

we consider that, in the sector ABCD of fig.2 and for a “mean” angle θ0,

all functions exhibit periodicity only with respect to %1 in the first equation

of (2.6), denoted in the sequel for simplicity by %. Then, every function is

expressed as

ϕε = ϕ(r, θ0,
%

ε
) = ϕ(r, θ0, %̄), (2.7)

with periodicity with respect to %̄, where

%̄ =
%

ε
. (2.8)

In the sequel, we simplify the above expression by writing

ϕε = ϕ(r, θ,
%

ε
) = ϕ(r, θ, %̄). (2.9)

Then the gradient of every function becomes

∇rϕ
ε = ∇rϕ+

1

ε
∇r%∇%̄ϕ, (2.10)

∇θϕ
ε = ∇θϕ+

1

ε
∇θ%∇%̄ϕ. (2.11)
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Following the AEH method, all functions are written in a series expansion

form

ϕε = ϕ(0)(r, θ, %̄) + εϕ(1)(r, θ, %̄) + ε2ϕ(2)(r, θ, %̄) + ..., (2.12)

where ϕ(0), ϕ(1), ϕ(2)... are assumed to be periodic with respect to %̄.

By defining the operators in polar coordinates (Chatzigeorgiou et al.

(2011))

L(1)
r =

∂

∂r
= ∇r, L

(1)
θ =

1

r

∂

∂θ
=

1

r
∇θ, L

(1)
z =

∂

∂z
= ∇z, (2.13)

and

L̄(1)
r = P

(1)
1

∂

∂%̄
, L̄

(1)
θ = P

(1)
2

∂

∂%̄
, L̄(1)

z = 0, (2.14)

all operators L
(1)
i , i = r, θ, z, are substituted by L

(1)
i +

1

ε
L̄

(1)
i . In addition,

we remind that P
(1)
1 = ∇r% and P

(1)
2 =

1

r
∇θ%.

Using the expanded forms of displacement, strain, stress and heat flux

and replacing in the equilibrium and in the energy equations, one obtains

from the condition of zero coefficients of ε−2 and ε−1 that the mechanical cell

problem reads (Chatzigeorgiou et al. (2012))

L̄
(1)
j Cijmn + L̄

(1)
j (CijklL̄

(1)
k N

mn (1)
l ) = 0, (2.15)

L̄
(1)
j Cijklakl + L̄

(1)
j CijklL̄

(1)
k N

0 (1)
l = 0, (2.16)

where N
mn (1)
i , N

0 (1)
i unknown functions, periodic in %̄ satisfying the conti-

nuity equations
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[|Nmn (1)
i |] = 0, [|(Cijmn + CijklL̄

(1)
k N

mn (1)
l )nj|] = 0, i,m, n = r, θ, z,

(2.17)

[|N0 (1)
i |] = 0, [|(Cijklakl + (CijklL̄

(1)
k N

0 (1)
l ))nj|] = 0, i = r, θ, z, (2.18)

while the thermal cell problem reads (Chatzigeorgiou et al. (2012))

L̄
(1)
i κim + L̄

(1)
i κijL̄

(1)
j W (1)

m = 0, (2.19)

where W
(1)
i unknown functions periodic in %̄ satisfying the continuity equa-

tions

[|W (1)
m |] = 0, [|(κim + κijL̄

(1)
j W (1)

m )ni|] = 0, m = r, θ, z. (2.20)

We note that the above system of equations (2.15), (2.16), (2.19) under

the continuity conditions (2.17), (2.18), (2.20) and periodicity conditions

can be solved with respect to the derivatives L̄
(1)
i N

mn (1)
j , L̄

(1)
i N

0 (1)
j , L̄

(1)
i W

(1)
m .

The full expansion of equations (2.15), (2.16), (2.19) (using Voigt notation

for (2.15), (2.16)) are presented in (A.1), (A.2) and (A.5) respectively of

Appendix A.

The solution of the cell problem (2.15) is of the form
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∂N
a (1)
r

∂%̄
=

B
(1)
2 (λ

a (1)
1 − P (1)

1 C6a − P (1)
2 C2a)− A

(1)
2 (λ

a (1)
2 − P (1)

1 C1a − P (1)
2 C2a)

A
(1)
1 B

(1)
2 − A

(1)
2 B

(1)
1

,

∂N
a (1)
θ

∂%̄
=

A
(1)
1 (λ

a (1)
2 − P (1)

1 C1a − P (1)
2 C2a)− B

(1)
1 (λ

a (1)
1 − P (1)

1 C6a − P (1)
2 C2a)

A
(1)
1 B

(1)
2 − A

(1)
2 B

(1)
1

,

∂N
a (1)
z

∂%̄
=
λ
a (1)
3 − P (1)

1 C5a − P (1)
2 C4a

P
(1)
1 C55P

(1)
1 + P

(1)
2 C44P

(1)
2

,

(2.21)

α = 1, 2, 3, 4, 5, 6, where the coefficients A
(1)
1 ,A

(1)
2 ,B

(1)
1 ,B

(1)
2 , λ

α (1)
1 , λ

α (1)
2 , λ

α (1)
3

are given in (B.15) and (B.16) of Appendix B.

The solution of the cell problem (2.16) is of the form

∂N
0 (1)
r

∂%̄
=
B

(1)
2 (λ̄

a (1)
1 − A(1)

3 )− A(1)
2 (λ̄

a (1)
2 −B(1)

3 )

A
(1)
1 B

(1)
2 − A

(1)
2 B

(1)
1

,

∂N
0 (1)
θ

∂%̄
=
A

(1)
1 (λ̄

a (1)
2 −B(1)

3 )−B(1)
1 (λ̄

a (1)
1 − A(1)

3 )

A
(1)
1 B

(1)
2 − A

(1)
2 B

(1)
1

,

∂N
0 (1)
z

∂%̄
=
λ̄
a (1)
3 −D(1)

2

D
(1)
1

,

(2.22)

where the coefficients A(1), B(1), D(1) are given in (A.4) of Appendix A and

λ̄
a (1)
1 , λ̄

a (1)
2 , λ̄

a (1)
3 are given in (B.19) of Appendix B.

Finally, the solution of the thermal cell problem (2.19) is of the form
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∂W
(1)
r

∂%̄
=
λ̃
a (1)
1 − F (1)

1

F
(1)
0

,

∂W
(1)
θ

∂%̄
=
λ̃
a (1)
2 − F (1)

2

F
(1)
0

,

∂W
(1)
z

∂%̄
=
λ̃
a (1)
3 − F (1)

3

F
(1)
0

,

(2.23)

where the coefficients F
(1)
0 , F

(1)
1 , F

(1)
2 , F

(1)
3 are given in (A.7) of Appendix A

and λ̃
a(1)
1 , λ̃

a (1)
2 , λ̃

a (1)
3 are given in (B.21) of Appendix B.

The above expressions for L̄
(1)
i N

mn (1)
j , L̄

(1)
i N

0 (1)
j , L̄

(1)
i W

(1)
m are needed for

the homogenized coefficients resulting from the 1st step of homogenization

C
eff (1)
ba =< Cba + Cb1L̄

(1)
r Na

r + Cb6L̄
(1)
r Na

θ + Cb5L̄
(1)
r Na

z +

+Cb6L̄
(1)
θ Na

r + Cb2L̄
(1)
θ Na

θ + Cb4L̄
(1)
θ Na

z >,
(2.24)

a
eff (1)
b = (C

eff (1)
ba )−1 < Ca1α1 + Ca2α2 + Ca3α3 + (Ca1L̄

(1)
r + Ca6L̄

(1)
θ )N0 (1)

r +

+(Ca6L̄
(1)
r + Ca2L̄

(2)
θ )N

0 (2)
θ + (Ca5L̄

(1)
r + Ca4L̄

(2)
θ )N0 (3)

z >,

(2.25)

or

a
eff (1)
b = (C

eff (1)
ba )−1 < Ca1α1 + Ca2α2 + Ca3α3 + (C11α1 + C12α2 + C13α3)L̄(1)

r Na (1)
r +

+(C21α1 + C22α2 + C23α3)L̄
(1)
θ N

a (1)
θ >

(2.26)

for a, b = 1, 2, 3, 4, 5, 6 and

κ
eff (1)
im =< κim + κirL̄

(1)
r W (1)

r + κiθL̄
(1)
r W

(1)
θ >, (2.27)

for i,m = r, θ, z, where the operator < ... > denotes the mean value. The

homogenized material corresponds to a periodically graded material. These

coefficients will be used as input data for the second step of homogenization.
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2.3. Second step of homogenization

The next step of homogenization (2nd step) is performed with respect

to the angular direction and leads again to an one-dimensional cell problem.

The heterogeneous anisotropic material under consideration admits as elastic

coefficients the coefficients obtained from the previous step. Using again the

same notations, where for simplicity now % is used instead of %2, we obtain

the expressions

ϕε = ϕ(θ,
θ

ε
) = ϕ(θ, θ̄), (2.28)

∇rϕ
ε = 0, (2.29)

∇θϕ
ε = ∇θϕ+

1

ε
∇θ%∇θ̄ϕ, (2.30)

L(2)
r =

∂

∂r
= ∇r, L

(2)
θ =

1

r

∂

∂θ
=

1

r
∇θ, L

(2)
z =

∂

∂z
= ∇z, (2.31)

L̄(2)
r = 0, L̄

(2)
θ = P

(2)
2

∂

∂θ̄
, L̄(2)

z = 0. (2.32)

In addition we remind that, P
(2)
1 = ∇r% and P

(2)
2 =

1

r
∇θ%.

The cell problems have now the following form

L̄
(2)
θ C

eff (1)
iθmn + L̄

(2)
θ (C

(eff 1)
iθkl L̄

(2)
k N

mn (2)
l ) = 0, (2.33)

for i,m, n = r, θ, z (no summation on θ),

L̄
(2)
j C

eff (1)
ijkl a

eff (1)
kl + L̄

(2)
j C

eff (1)
ijkl L̄

(2)
k N

0 (2)
l = 0, (2.34)

where N
mn (2)
i , N

0 (2)
i unknown functions, periodic in θ̄ satisfying the conti-

nuity equations
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[|Nmn (2)
i |] = 0, [|(Ceff (1)

ijmn + C
eff (1)
ijkl L̄

(2)
k N

mn (2)
l )nj|] = 0, i,m, n = r, θ, z,

(2.35)

[|N0 (2)
i |] = 0, [|(Ceff (1)

ijkl a
eff (1)
kl + (C

eff (1)
ijkl L̄

(2)
k N

0 (2)
l ))nj|] = 0, i = r, θ, z,

(2.36)

while the thermal cell problem reads (Chatzigeorgiou et al. (2012))

L̄
(2)
i κ

eff (1)
im + L̄

(2)
i κ

eff (1)
ij L̄

(2)
j W (2)

m = 0, (2.37)

where W
(2)
i unknown functions periodic in θ̄ satisfying the continuity equa-

tions

[|W (2)
m |] = 0, [|(κeff (1)

im + κ
eff (1)
ij L̄

(2)
j W (2)

m )ni|] = 0, m = r, θ, z. (2.38)

The full expansion of (2.33), (2.34) (using Voigt notation) and (2.37) is

presented in (A.8), (A.9) and (A.12) respectively in Appendix A.

The solution of the cell problem (2.33) is of the form

∂N
a (2)
r

∂θ̄
=

(λ
a (2)
1 − P (2)

2 C
eff (1)
2α )C

eff (1)
22 − (λ

a (2)
2 − P (2)

2 C
eff (1)
6α )C

eff (1)
62

P
2 (2)
2 (C

eff (1)
26 C

eff (1)
62 − Ceff (1)

66 C
eff (1)
22 )

,

∂N
a (2)
θ

∂θ̄
=
−(λ

a (2)
1 − P (2)

2 C
eff (1)
6α )C

eff (1)
26 + (λ

a (2)
2 − P (2)

2 C
eff (1)
2α )C

eff (1)
66

P
2 (2)
2 (C

eff (1)
26 C

eff (1)
62 − Ceff (1)

66 C
eff (1)
22 )

,

∂N
a (2)
z

∂θ̄
=
λ
a (2)
3 − P (2)

2 C
eff (1)
4α

P
2 (2)
2 C

eff (1)
44

,

(2.39)
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where the coefficients λ
a (2)
1 , λ

a (2)
2 , λ

a (2)
3 are given in (B.22) of Appendix B.

The solution of the cell problem (2.34) is of the form

∂N
0 (2)
r

∂θ̄
=
B

(2)
2 (λ̄

a (2)
1 − A(2)

3 )− A(2)
2 (λ̄

a (2)
2 −B(2)

3 )

A
(2)
1 B

(2)
2 − A

(2)
2 B

(2)
1

,

∂N
0 (2)
θ

∂θ̄
=
A

(2)
1 (λ̄

a (2)
2 −B(2)

3 )−B(2)
1 (λ̄

a (2)
1 − A(2)

3 )

A
(2)
1 B

(2)
2 − A

(2)
2 B

(2)
1

,

∂N
0 (2)
z

∂θ̄
=
λ̄
a (2)
3 −D(2)

2

D
(2)
1

,

(2.40)

where the coefficients λ̄
a (2)
1 , λ̄

a (2)
2 , λ̄

a (2)
3 are given in (B.23) of Appendix B.

The solution of the cell problem (2.37) is of the form

∂W
(2)
r

∂θ̄
=
λ̃
a (2)
1 − P (2)

2 κ
eff (1)
θr

P
(2)
2 κ

eff (1)
θθ P

(2)
2

,

∂W
(2)
θ

∂θ̄
=
λ̃
a (2)
2 − P (2)

2 κ
eff (1)
θθ

P
(2)
2 κ

eff (1)
θθ P

(2)
2

,

∂W
(2)
z

∂θ̄
=
λ̃
a (2)
3 − P (2)

2 κ
eff (1)
θz

P
(2)
2 κ

eff (1)
θθ P

(2)
2

,

(2.41)

where the coefficients λ̃
a (2)
1 , λ̃

a (2)
2 , λ̃

a (2)
3 are given in (B.25) of Appendix B.

2.4. Effective properties

Using the elastic and thermal coefficients obtained from the 1st step of

homogenization and the values of
∂N

a (2)
i

∂θ̄
,
∂N

0 (2)
i

∂θ̄
and

∂W
(2)
i

∂θ̄
obtained from

the 2nd step homogenization we obtain the effective thermoelastic properties

of the composite. More specifically, the analytical expressions for the effective
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elasticity tensor coefficients in Voigt notation read

Ceff
ba =< C

eff (1)
ba + C

eff (1)
b6 L̄

(2)
θ Na

r + C
eff (1)
b2 L̄

(2)
θ Na

θ + C
eff (1)
b4 L̄

(2)
θ Na

z >,

(2.42)

for a, b = 1, 2, 3, 4, 5, 6. The above expressions correspond to an orthotropic

elastic response.

The analytical expressions of the thermal expansion coefficients read

aeffb = (Ceff
ba )−1 < C

eff (1)
a1 α

eff (1)
1 + C

eff (1)
a2 α

eff (1)
2 + C

eff (1)
a3 α

eff (1)
3 +

+2C
eff (1)
a6 α

eff (1)
6 + C

eff (1)
a6 L̄

(2)
θ N0 (2)

r + Ca2L̄
(2)
θ N

0 (2)
θ + Ca4L̄

(2)
θ N0 (2)

z >

(2.43)

for a, b = 1, 2, 3, 4, 5, 6 or

aeffb = (Ceff
ba )−1 < C

eff (1)
a1 α

eff (1)
1 + C

eff (1)
a2 α

eff (1)
2 + C

eff (1)
a3 α

eff (1)
3 + 2C

eff (1)
a6 α

eff (1)
6 +

+(C
eff (1)
61 α

eff (1)
1 + C

eff (1)
62 α

eff (1)
2 + C

eff (1)
63 α

eff (1)
3 + 2C

eff (1)
66 α

eff (1)
6 )L̄

(2)
2 Na (2)

r +

(C
eff (1)
21 α

eff (1)
1 + C

eff (1)
22 α

eff (1)
2 + C

eff (1)
23 α

eff (1)
3 + 2C

eff (1)
26 α

eff (1)
6 )L̄

(2)
2 N

a (2)
θ >

(2.44)

for a, b = 1, 2, 3, 4, 5, 6 and Ceff
ijmn(Ceff

mnkl)
−1 = 1

2
(δikδjl + δilδjk).

Finally, the effective thermal conductivity coefficients read

κeffim =< κ
eff (1)
im + κ

eff (1)
ir L̄(2)

r W (2)
m + κ

eff (1)
iθ L̄

(2)
θ W (2)

m >, (2.45)

for i,m = r, θ, z.

3. Numerical examples. Results and discussion

In this section, we will apply the proposed homogenization technique in

order to determine the overall behavior of a star-shaped tube with multilay-

ered sinusoidal walls with parametric equations (2.6), made of two alternative
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elastic isotropic materials, whose properties are shown in tables 1-4. For the

1st step of homogenization,

∇r%
(1) = 1 + k1Hθ cos(k1θ), (3.1)

∇θ%
(1) = k1H cos(k1, θ), (3.2)

while for the 2nd step of homogenization,

∇r%
(2) = 0, (3.3)

∇θ%
(2) = 1. (3.4)

In fig.3 we see the variation with respect to the angular direction of the

coefficients of stiffness matrix deduced from the 1st step of homogenization.

We verify that large gradient of the wavy layers enhances shear strength in

all planes (fig.3(c)) and tensile strength along the angular direction (fig.3(a)).

On the other hand, it reduces the tensile strength along the radial direction.

In fig.4 we see the variation with respect to the angular direction of the

thermal expansion coefficients resulting from the 1st step. The values of

the coefficients of the thermal expansion coefficient tensor vary between the

respective values of the components of the composite. At points where the

gradient of the layer is zero (points 4 and 10), all coefficients are equal to the

corresponding coefficients in Chatzigeorgiou et al. (2012), while the effective

coefficients α1, α3 and α6 take their maximum and α2 its minimum value.

At points where the gradient of the layer takes its maximum value (points 1,

7 and 13) the opposite holds. In addition, the effective value α6 for the 1st

step of homogenization is oscillating around zero (fig. 4(d)).
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In fig.5 we see the variation with respect to the polar angle of the ther-

mal conductivity coefficients resulting from the 1st step of homogenization.

Zones of the layer with large wavy gradient exhibit large radial conductivity

(fig.5(a)) and small angular conductivity (fig.5(b)). Finally, concerning the

effective thermal conductivity from the 1st step of homogenization, the vari-

ation of the coefficients of the tensor in a sector is presented in fig.5, varying

between the respective values of the components of the composite. At points

with zero gradient (points 4 and 10), the coefficients are equal to the cor-

responting coefficients in Chatzigeorgiou et al. (2012). At these points the

effective coefficient κrr takes its minimum value while κθθ takes its maximum

value. At points where the gradient takes its maximum value (points 1, 7

and 13) the opposite holds. In addition, the effective value κrθ for the 1st

step of homogenization is oscillating around zero (fig.4(d)).

In table 5, the effective stiffness matrix, resulting from the 2nd step of ho-

mogenization, is shown. We verify that the overall behavior is orthotropic.

From these values, we find the effective Young moduli Err = 118.778 and

Eθθ = 116.497 and the effective shear modulus Grθ = 23.103. Comparison

with the corresponding values of the hollow cylinder with the same geometri-

cal and thermomechanical properties but without wavy layers (see Chatzige-

orgiou et al. (2012), where Err = 118.717, Eθθ = 139.567 and Grθ = 19.978)

shows an important strengthening of the shear resistance 15.6%. On the

contrary, the structure exhibits an important weakening of the hoop stress

capacity 16.5%. In table 6 we see the effective thermal expansion tensor. We

verify that, comparing to the tube without wavy layers, the radial effective

expansion coefficient is reduced 15%, while the angular expansion coefficient
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is enhanced 20%. Finally, in table 7 we see the effective thermal conductivity

tensor. We verify that the thermal conductivity is larger in the radial direc-

tion than in the angular direction, contrarily to the wavyless case. Moreover,

we verify that, comparing to the tube without wavy layers (Chatzigeorgiou

et al. (2012)), the radial effective conductivity coefficient is enhanced 19%,

while the angular conductivity coefficient is reduced 23%.

Table 1: Thermomechanical properties of constituents and volume fraction.

Property Material 1 (Steel) Material 2 (Aluminum)

Young Modulus (GPa) 206.742 72.041

Poisson Ratio 0.30 0.35

Thermal expansion coefficient (1/K) 12.265E-6 23.201E-6

Coefficient of heat conductivity (W/(mK)) 65.106 207.498

Volume fraction 50% 50%
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Table 2: Symmetric stiffness tensor coefficients of the two constituents (in Voigt notation

and in GPa).

Mechanical Properties Material 1 (Steel) Material 2 (Aluminum)

C11, C22, C33 278.307 115.621

C12, C13, C23 119.274 62.258

C44, C55, C66 79.516 26.682

C14, C15, C16 0 0

C24, C25, C26 0 0

C34, C35, C36 0 0

Table 3: Symmetric thermal expansion tensor (in
1

K
) of the two constituents.

Properties Material 1 (Steel) Material 2 (Aluminum)

α1, α2, α3 12.265E-6 23.201E-6

α4, α5, α6 0.0 0.0

Table 4: Symmetric thermal conductivity tensor (in
W

mK
) of the two constituents.

Properties Material 1 (Steel) Material 2 (Aluminum)

κrr, κθθ, κzz 65.106 207.498

κrθ, κrz, κzθ 0.0 0.0
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Figure 3: Variation of coefficients of the stiffness matrix (in GPa) from the 1st step of

homogenization with respect to the angle θ in inner layer.
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Table 5: Effective symmetric stiffness matrix (in GPa).

Ceff =



171.906 85.154 82.807 0 0 0

85.154 168.541 81.934 0 0 0

82.807 81.934 192.606 0 0 0

0 0 0 45.362 0 0

0 0 0 0 46.776 0

0 0 0 0 0 46.207



Table 6: Effective thermal expansion tensor (in
1

K
) in inner layer.

αeff =



17.737E − 6

18.582E − 6

15.448E − 6

0

0

0



In fig.6 the response of effective radial, hoop and shear (in the cross

section) stress vs corresponding strains for ∆T=10 K is depicted.
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Table 7: Effective thermal conductivity tensor (in
W

mK
) in inner layer.

κeff =


118.146 0 0

0 105.560 0

0 0 136.302



29



4. Concluding remarks

We presented a homogenization technique for a star-shaped cylinder made

of numerous thin wavy layers of elastic materials with discontinuous thermo-

mechanical parameters. The waviness of the layers has two major conse-

quences: First, the homogenization needs a two-dimensional cell problem in-

stead of the one-dimensional applied to the wavyless hollow cylinder. Second,

the waviness affects the effective thermomechanical behavior in an anisotropic

way.

In this paper, we overcome the difficulty of a 2-D cell problem by consid-

ering that the structure exhibits, additionally to the periodicity inside every

alternating layer, two distinct scales of periodicity, a fine scale in the radial

direction and a coarse scale in the angular direction. Then, a multi-scale ho-

mogenization method is proposed, starting from the finest scale, that leads

to the homogenized coefficients to be used in the next step as heterogenous

coefficients.

Both homogenization steps following radial and angular directions use

one-dimensional cell problems and give analytical expressions for the coeffi-

cients, in terms of the gradient of the wavy layers.

The principal goal of this paper is to apply the above method in order

to evaluate the waviness effect to the effective thermomechanical behavior

of the tube for any wavy form of the layers. The related results show that

waviness affects considerably this behavior, by strengthening the shear resis-

tance, reducing the radial expansion and enhancing the radial conductivity,

while weakening the hoop stress capacity, enhancing the angular expansion

and reducing the angular conductivity.
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These results could provide guidance for a way to estimate certain difficult-

to-measure moduli. Moreover, the 1st homogenization step is valid per se as

a method for determining the monoclinic behavior of a multilayered wavy-

walled cylinder.
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Appendix A. Analytical form of cell problems (a) for the 1st step

of homogenization (2.15), (2.16) and (2.19) and (b) for the 2nd step

of homogenization (2.33), (2.34) and (2.37)

From the 1st step of homogenization

L̄(1)
r C11 + L̄(1)

r (C11L̄
(1)
r N1 (1)

r + C12L̄
(1)
θ N

1 (1)
θ ) + L̄

(1)
θ (C66L̄

(1)
r N

1 (1)
θ + C66L̄

(1)
θ N1 (1)

r ) = 0

L̄(1)
r C12 + L̄(1)

r (C11L̄
(1)
r N2 (1)

r + C12L̄
(1)
θ N

2 (1)
θ ) + L̄

(1)
θ (C66L̄

(1)
r N

2 (1)
θ + C66L̄

(1)
θ N2 (1)

r ) = 0

L̄(1)
r C13 + L̄(1)

r (C11L̄
(1)
r N3 (1)

r + C12L̄
(1)
θ N

3 (1)
θ ) + L̄

(1)
θ (C66L̄

(1)
r N

3 (1)
θ + C66L̄

(1)
θ N3 (1)

r ) = 0

L̄
(1)
θ C21 + L̄(1)

r (C11L̄
(1)
r N6 (1)

r + C12L̄
(1)
θ N

6 (1)
θ ) + L̄

(1)
θ (C66L̄

(1)
r N

6 (1)
θ + C66L̄

(1)
θ N6 (1)

r ) = 0

L̄(1)
r (C11L̄

(1)
r N5 (1)

r + C12L̄
(1)
θ N

5 (1)
θ ) + L̄

(1)
θ (C66L̄

(1)
r N

5 (1)
θ + C66L̄

(1)
θ N5 (1)

r ) = 0

L̄(1)
r (C11L̄

(1)
r N4 (1)

r + C12L̄
(1)
θ N

4 (1)
θ ) + L̄

(1)
θ (C66L̄

(1)
r N

4 (1)
θ + C66L̄

(1)
θ N4 (1)

r ) = 0

L̄
(1)
θ C21 + L̄(1)

r (C66L̄
(1)
r N

1 (1)
θ + C66L̄

(1)
θ N1 (1)

r ) + L̄
(1)
θ (C21L̄

(1)
r N1 (1)

r + C22L̄
(1)
θ N

1 (1)
θ ) = 0

L̄
(1)
θ C22 + L̄(1)

r (C66L̄
(1)
r N

2 (1)
θ + C66L̄

(1)
θ N2 (1)

r ) + L̄
(1)
θ (C21L̄

(1)
r N2 (1)

r + C22L̄
(1)
θ N

2 (1)
θ ) = 0

L̄
(1)
θ C23 + L̄(1)

r (C66L̄
(1)
r N

3 (1)
θ + C66L̄

(1)
θ N3 (1)

r ) + L̄
(1)
θ (C21L̄

(1)
r N3 (1)

r + C22L̄
(1)
θ N

3 (1)
θ ) = 0

L̄(1)
r C66 + L̄(1)

r (C66L̄
(1)
r N

6 (1)
θ + C66L̄

(1)
θ N6 (1)

r ) + L̄
(1)
θ (C21L̄

(1)
r N6 (1)

r + C22L̄
(1)
θ N

6 (1)
θ ) = 0

L̄(1)
r (C66L̄

(1)
r N

5 (1)
θ + C66L̄

(1)
θ N5 (1)

r ) + L̄
(1)
θ (C21L̄

(1)
r N5 (1)

r + C22L̄
(1)
θ N

5 (1)
θ ) = 0

L̄(1)
r (C66L̄

(1)
r N

4 (1)
θ + C66L̄

(1)
θ N4 (r)

r ) + L̄
(1)
θ (C21L̄

(1)
r N4 (1)

r + C22L̄
(1)
θ N

4 (1)
θ ) = 0

L̄(1)
r (C55L̄

(1)
r N4 (1)

z ) + L̄
(1)
θ (C44L̄

(1)
θ N4 (1)

z ) = 0

L̄(1)
r (C55L̄

(1)
r N2 (1)

z ) + L̄
(1)
θ (C44L̄

(1)
θ N2 (1)

z ) = 0

L̄(1)
r (C55L̄

(1)
r N4 (1)

z ) + L̄
(1)
θ (C44L̄

(1)
θ N4 (1)

z ) = 0

L̄(1)
r (C55L̄

(1)
r N6 (1)

z ) + L̄
(1)
θ (C44L̄

(1)
θ N6 (1)

z ) = 0

L̄(1)
r C55 + L̄(1)

r (C55L̄
(1)
r N5 (1)

z ) + L̄
(1)
θ (C44L̄

(1)
θ N5 (1)

z ) = 0

L̄
(1)
θ C44 + L̄(1)

r (C55L̄
(1)
r N4 (1)

z ) + L̄
(1)
θ (C44L̄

(1)
θ N4 (1)

z ) = 0
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L̄(1)
r C11a1 + L̄(1)

r C12a2 + L̄(1)
r C13a3+

+(L̄(1)
r C11L̄

(1)
r + L̄

(1)
θ C66L̄

(1)
θ )N0 (1)

r + (L̄(1)
r C12L̄

(1)
θ + L̄

(1)
θ C66L̄

(1)
r )N

0 (1)
θ = 0,

L̄
(1)
θ C21a1 + L̄

(1)
θ C22a2 + L̄

(1)
θ C23a3+

+(L̄(1)
r C66L̄

(1)
θ + L̄

(1)
θ C21L̄

(1)
r )N0 (1)

r + (L̄(1)
r C66L̄

(1)
r + L̄

(1)
θ C22L̄

(1)
θ )N

0 (1)
θ = 0,

(L̄(1)
r C55L̄

(1)
r + L̄

(1)
θ C44L̄

(1)
θ )N0 (1)

z = 0,

(A.2)

or
∂

∂%̄

(
A

(1)
3 + A

(1)
1

∂N
0 (1)
r

∂%̄
+ A

(1)
2

∂N
0 (1)
θ

∂%̄

)
= 0,

∂

∂%̄

(
B

(1)
3 +B

(1)
1

∂N
0 (1)
r

∂%̄
+B

(1)
2

∂N
0 (1)
θ

∂%̄

)
= 0,

∂

∂%̄

(
D

(1)
1

∂N
0 (1)
z

∂%̄

)
= 0,

(A.3)

where

A
(1)
1 = P

(1)
1 C11P

(1)
1 + P

(1)
2 C66P

(1)
2 ,

A
(1)
2 = P

(1)
1 C12P

(1)
2 + P

(1)
2 C66P

(1)
1 ,

A
(1)
3 = P

(1)
1 C11a1 + P

(1)
1 C12a2 + P

(1)
1 C13a3,

B
(1)
1 = P

(1)
1 C66P

(1)
2 + P

(1)
1 C21P

(1)
1 ,

B
(1)
2 = P

(1)
1 C66P

(1)
1 + P

(1)
2 C22P

(1)
2 ,

B
(1)
3 = P

(1)
2 C21a1 + P

(1)
2 C22a2 + P

(1)
2 C23a3,

D
(1)
1 = P

(1)
1 C55P

(1)
1 + P

(1)
2 C44P

(1)
2 ,

(A.4)
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and

L̄(1)
r κrr + L̄

(1)
θ κθr + (L̄(1)

r κrrL̄
(1)
r + L̄(1)

r κrθL̄
(1)
θ + L̄

(1)
θ κθrL̄

(1)
r + L̄

(1)
θ κθθL̄

(1)
θ )

∂W
(1)
r

∂%̄
= 0,

L̄(1)
r κrθ + L̄

(1)
θ κθθ + (L̄(1)

r κrrL̄
(1)
r + L̄(1)

r κrθL̄
(1)
θ + L̄

(1)
θ κθrL̄

(1)
r + L̄

(1)
θ κθθL̄

(1)
θ )

∂W
(1)
θ

∂%̄
= 0,

L̄(1)
r κrz + L̄

(1)
θ κθz + (L̄(1)

r κrrL̄
(1)
r + L̄(1)

r κrθL̄
(1)
θ + L̄

(1)
θ κθrL̄

(1)
r + L̄

(1)
θ κθθL̄

(1)
θ )

∂W
(1)
z

∂%̄
= 0,

(A.5)

or
∂

∂%̄
(F

(1)
1 + F

(1)
0

∂W
(1)
r

∂%̄
) = 0,

∂

∂%̄
(F

(1)
2 + F

(1)
0

∂W
(1)
θ

∂%̄
) = 0,

∂

∂%̄
(F

(1)
3 + F

(1)
0

∂W
(1)
z

∂%̄
) = 0,

(A.6)

where

F
(1)
0 = P

(1)
1 κrrP

(1)
1 + P

(1)
1 κrθP

(1)
2 + P

(1)
2 κθrP

(1)
1 + P

(1)
2 κθθP

(1)
2 ,

F
(1)
1 = P

(1)
1 κrr + P

(1)
2 κθr,

F
(1)
2 = P

(1)
1 κrθ + P

(1)
2 κθθ,

F
(1)
3 = P

(1)
1 κrz + P

(1)
2 κθz.

(A.7)
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From the 2nd step of homogenization

L̄
(2)
θ C

eff (1)
61 + L̄

(2)
θ C

eff (1)
66 L̄

(2)
θ N1 (2)

r + L̄
(2)
θ C

eff (1)
62 L̄

(2)
θ N

1 (2)
θ = 0

L̄
(2)
θ C

eff (1)
62 + L̄

(2)
θ C

eff (1)
66 L̄

(2)
θ N (2)

r + L̄
(2)
θ C

eff (1)
62 L̄

(2)
θ N

(2)
θ = 0

L̄
(2)
θ C

eff (1)
63 + L̄

(2)
θ C

eff (1)
66 L̄

(2)
θ N3 (2)

r + L̄
(2)
θ C

eff (1)
62 L̄

(2)
θ N

3 (2)
θ = 0

L̄
(2)
θ C

eff (1)
66 + L̄

(2)
θ C

eff (1)
66 L̄θN

6 (2)
r + L̄

(2)
θ C

eff (1)
62 L̄

(2)
θ N

6 (2)
θ = 0

L̄
(2)
θ C

eff (1)
66 L̄

(2)
θ N4 (2)

r + L̄
(2)
θ C

eff (1)
62 L̄

(2)
θ N

4 (2)
θ = 0

L̄
(2)
θ C

eff (1)
66 L̄

(2)
θ N5 (2)

r + L̄
(2)
θ C

eff (1)
62 L̄

(2)
θ N

5 (2)
θ = 0

L̄
(2)
θ C

eff (1)
21 + L̄

(2)
θ C

eff (1)
22 L̄θN

1 (2)
θ + L̄

(2)
θ C

eff (1)
26 L̄

(2)
θ N1 (2)

r = 0

L̄
(2)
θ C

eff (1)
22 + L̄

(2)
θ C

eff (1)
22 L̄2N

2 (2)
θ + L̄

(2)
θ C

eff (1)
26 L̄

(2)
θ N2 (2)

r = 0

L̄
(2)
θ C

eff (1)
23 + L̄

(2)
θ C

eff (1)
22 L̄θN

3 (2)
θ + L̄

(2)
θ C

eff (1)
26 L̄

(2)
θ N3 (2)

r = 0

L̄
(2)
θ C

eff (1)
26 + L̄

(2)
θ C

eff (1)
22 L̄

(2)
θ N

6 (2)
θ + L̄

(2)
θ C

eff (1)
26 L̄

(θ)
2 N6 (2)

r = 0

L̄
(2)
θ C

eff (1)
22 L̄

(2)
θ N

4 (2)
θ + L̄

(2)
θ C

eff (1)
26 L̄

(2)
θ N4 (2)

r = 0

L̄
(2)
θ C

eff (1)
22 L̄

(2)
θ N

5 (2)
θ + L̄

(2)
θ C

eff (1)
26 L̄

(2)
θ N5 (2)

r = 0

L̄
(2)
θ C

eff (1)
44 L̄

(2)
θ N1 (2)

z = 0

L̄
(2)
θ C

eff (1)
44 L̄

(2)
θ N2 (2)

z = 0

L̄
(2)
θ C

eff (1)
44 L̄

(2)
θ N3 (2)

z = 0

L̄
(2)
θ C

eff (1)
44 L̄

(2)
θ N6 (2)

z = 0

L̄
(2)
θ C

eff (1)
44 + L̄

(2)
θ C

eff (1)
44 L̄θN

4 (2)
z = 0

L̄
(2)
θ C

eff (1)
45 + L̄

(2)
θ C

eff (1)
44 L̄

(2)
θ N5 (2)

z = 0
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L̄
(2)
θ C

eff (1)
61 a

eff (1)
1 + L̄

(2)
θ C

eff (1)
62 a

eff (1)
2 + L̄

(2)
θ C

eff (1)
63 a

eff (1)
3 + 2L̄

(2)
θ C

eff (1)
66 a

eff (1)
6 +

+L̄
(2)
θ C

eff (1)
66 L̄

(2)
θ N0 (2)

r + L̄
(2)
θ C

eff (1)
62 L̄

(2)
θ N

0 (2)
θ = 0,

L̄
(2)
θ C

eff (1)
21 a

eff (1)
1 + L̄

(2)
θ C

eff (1)
22 a

eff (1)
2 + L̄

(2)
θ C

eff (1)
23 a

eff (1)
3 + 2L̄

(2)
θ C

eff (1)
26 a

eff (1)
6 +

+L̄
(2)
θ C

eff (1)
26 L̄

(2)
θ N0 (2)

r + L̄
(2)
2 C

eff (1)
22 L̄

(2)
θ N

0 (2)
θ = 0,

2L̄
(2)
θ C

eff (1)
45 a

eff (1)
5 + 2L̄

(2)
θ C

eff (1)
44 a

eff (1)
4 + L̄

(2)
θ C

eff (1)
44 L̄

(2)
θ N0 (2)

z = 0,

(A.9)

or
∂

∂θ̄

(
A

(2)
3 + A

(2)
1

∂N
0 (2)
r

∂%̄
+ A

(2)
2

∂N
0 (2)
θ

∂%̄

)
= 0,

∂

∂θ̄

(
B

(2)
3 +B

(2)
1

∂N
0 (2)
r

∂%̄
+B

(2)
2

∂N
0 (2)
θ

∂%̄

)
= 0,

∂

∂θ̄

(
D

(2)
2 +D

(2)
1

∂N
0 (2)
z

∂%̄

)
= 0,

(A.10)

where

A
(2)
1 = P

(2)
2 C

eff (1)
66 P

(2)
2 ,

A
(2)
2 = P

(2)
2 C

eff (1)
62 P

(2)
2 ,

A
(2)
3 = P

(2)
2 C

eff (1)
61 a

eff (1)
1 + P

(2)
2 C62a

eff (1)
2 + P

(2)
2 C

eff (1)
63 a

eff (1)
3 + 2P

(2)
2 C

eff (1)
66 a6,

B
(2)
1 = P

(2)
2 C

eff (1)
26 P

(2)
2 ,

B
(2)
2 = P

(2)
2 C

eff (1)
22 P

(2)
2 ,

B
(2)
3 = P

(2)
2 C

eff (1)
21 a

eff (1)
1 + P

(2)
2 C22a

eff (1)
2 + P

(2)
2 C23a

eff (1)
3 + 2P

(2)
2 C

eff (1)
26 a

eff (1)
6 ,

D
(2)
1 = P

(2)
2 C

eff (1)
44 P

(2)
2 ,

D
(2)
2 = 2P

(2)
2 C

eff (1)
45 a

eff (1)
5 + 2P

(2)
2 C44a

eff (1)
4 .

(A.11)
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L̄
(2)
θ κ

eff (1)
θr + L̄

(2)
θ κ

eff (1)
θθ L̄

(2)
θ

∂W
(2)
r

∂%̄
= 0,

L̄
(2)
θ κ

eff (1)
θθ + L̄

(2)
θ κ

eff (1)
θθ L̄

(2)
θ

∂W
(2)
θ

∂%̄
= 0,

L̄
(2)
θ κ

eff (1)
θz + L̄

(2)
θ κ

eff (1)
θθ L̄

(2)
θ

∂W
(2)
z

∂%̄
= 0,

(A.12)

or
∂

∂%̄
(F

(2)
1 + F

(2)
0

∂W
(2)
r

∂%̄
) = 0,

∂

∂%̄
(F

(2)
2 + F

(2)
0

∂W
(2)
θ

∂%̄
) = 0,

∂

∂%̄
(F

(2)
3 + F

(2)
0

∂W
(2)
z

∂%̄
) = 0,

(A.13)

where

F
(2)
0 = P

(2)
2 κ

eff (1)
θθ P

(2)
2 ,

F
(2)
1 = P

(2)
2 κ

eff (1)
θr ,

F
(2)
2 = P

(2)
2 κ

eff (1)
θθ ,

F
(2)
3 = P

(2)
2 κ

eff (1)
θz .

(A.14)
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Appendix B. Solutions of cell problems (a) from the 1st step of

homogenization (2.15), (2.16) and (2.19) and (b) from the 2nd step

of homogenization (2.33), (2.34) and (2.37)

From the 1st step of homogenization

A
(i) (1)
1 = P

(1)
1 C

(i)
66 P

(1)
1 + P

(1)
2 C

(i)
22 P

(1)
2 ,

A
(i) (1)
2 = P

(1)
1 C

(i)
66 P

(1)
2 + P

(1)
2 C

(i)
21 P

(1)
1 ,

B
(i) (1)
1 = P

(1)
1 C

(i)
11 P

(1)
1 + P

(1)
2 C

(i)
66 P

(1)
2 ,

B
(i) (1)
2 = P

(1)
1 C

(i)
12 P

(1)
2 + P

(1)
2 C

(i)
66 P

(1)
1 ,

(B.15)

for a = 1, 2, 3, 4, 5, 6, where n are the phases of the structure,

λ
a (1)
1 =

Q
a (1)
3 R

(1)
2 − R

a (1)
3 Q

(1)
2

Q
(1)
1 R

(1)
2 − R

(1)
1 Q

(1)
2

,

λ
a (1)
2 =

Q
(1)
1 R

a (1)
3 − R

(1)
1 Q

a (1)
3

Q
(1)
1 R

(1)
2 − R

(1)
1 Q

(1)
2

,

λ
a (1)
3 =

∑n
i=1

(P
(1)
1 C

(i)
5a+P

(1)
2 C

(i)
4a )c(i)

P
(1)
1 C

(i)
55 P

(1)
1 +P

(1)
2 C

(i)
44 P

(1)
2∑n

i=1
c(i)

P
(1)
1 C

(i)
55 P

(1)
1 +P

(1)
2 C

(i)
44 P

(1)
2

(B.16)
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where

Q
(1)
1 =

n∑
i=1

B
(i) (1)
2 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

,

Q
(1)
2 = −

n∑
i=1

A
(i) (1)
2 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

,

Q
a (1)
3 =

n∑
i=1

(P
(1)
1 C

(i)
6a + P

(1)
2 C

(i)
2a )B

(i) (1)
2 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

−
n∑
i=1

(P
(1)
1 C

(i)
1a + P

(1)
2 C

(i)
2a )A

(i) (1)
2 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

,

(B.17)

R
(1)
1 = −

n∑
i=1

B
(i) (1)
1 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

,

R
(1)
2 =

n∑
i=1

A
(i) (1)
1 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

,

R
a (1)
3 =

n∑
i=1

(P
(1)
1 C

(i)
1a + P

(1)
2 C

(i)
2a )B

(i) (1)
1 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

−
n∑
i=1

(P
(1)
1 C

(i)
6a + P

(1)
2 C

(i)
2a )A

(i) (1)
1 ci

A
(i) (1)
1 B

(i) (1)
2 − A

(i) (1)
2 B

(i) (1)
1

(B.18)

λ̄
(1)
1 =

K
(1)
3 M

(1)
2 −K

(1)
2 M

(1)
3

K
(1)
1 M

(1)
2 −K

(1)
2 M

(1)
1

λ̄
(1)
2 =

K
(1)
1 M

(1)
3 −K

(1)
3 M

(1)
1

K
(1)
1 M

(1)
2 −K

(1)
2 M

(1)
1

λ̄
(1)
3 =

∑n
i=1

D
(i) (1)
2 c(i)

D
(i) (1)
1∑n

i=1
c(i)

D
(i) (1)
1

(B.19)
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where

K
(1)
1 =

n∑
i=1

B
(i) (1)
2 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A(i) (1)

2 B
(i) (1)
1

,

K
(1)
2 = −

n∑
i=1

A
(i) (1)
2 c(i)

A
(i) (1)
1

(i) (1)
2 − A(i) (1)

2 B
(i) (1)
1

,

K
(1)
3 =

n∑
i=1

(
(i) (1)
2 A

(i) (1)
3 − A(i) (1)

2 B
(i) (1)
3 )c(i)

A
(i) (1)
1 B

(i) (1)
2 − (i) (1)

2 B
(i) (1)
1

,

M
(1)
1 = −

n∑
i=1

B
(i) (1)
1 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A(i) (1)

2 B
(i) (1)
1

,

M
(1)
2 =

n∑
i=1

A
(i) (1)
1 c(i)

A
(i) (1)
1 B

(i) (1)
2 − A(i) (1)

2 B
(i) (1)
1

,

M
(1)
3 =

n∑
i=1

(A
(i) (1)
1 B

(i) (1)
3 −B(i) (1)

1 A
(i) (1)
3 )c(i)

A
(i) (1)
1 B

(i) (1)
2 − A(i) (1)

2 B
(i) (1)
1

.

(B.20)

λ̃
(1)
1 =

∑n
i=1

F
(i) (1)
1 c(i)

F
(i) (1)
0∑n

i=1
c(i)

F
(i) (1)
0

λ̃
(1)
2 =

∑n
i=1

F
(i) (1)
2 c(i)

F
(i) (1)
0∑n

i=1
c(i)

F
(i) (1)
0

λ̃
(1)
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From the 2nd step of homogenization
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