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MODELLING OF BEAM EXCITED BY PIEZOELECTRIC ACTUATORS
IN VIEW OF TACTILE APPLICATIONS

C. Nadal, C. Giraud-Audine, F. Giraud, M. Amberg and B. Lemaire-Semail

L2EP-IRCICA, Université de Lille 1, 50 avenue Halley, Villeneuve d’Ascq, France
e-mail : clement.nadal@ircica.univ-lillel.fr

Abstract - This paper deals with an unidimensional analytical modelling of
the vibratory behaviour of a rectangular beam excited by several piezoelectric
ceramics glued on its lower face. The establishment of the equations of motion
is guaranteed by the application of Hamilton’s principle. From this approach,
it results an accurate knowledge on the mode shape in function of the geome-
try, the structure and the positions of the piezoelectric actuators. This approach
deployed on a simple case falls within a general process of the tactile surfaces
optimization. This article shows that it exists a trade-off between the optimiza-
tion of the homogeneity of the tactile stimulation and the coupling factor.

Keyword - Analytical modelling, Hamilton’s principle, Piezoelectricity, Tac-

tile applications.

1 INTRODUCTION

During the last decade, a noticeable interest has
been demonstrated for the sense of touch in the
human-computer interaction, owing to its importance
in the perception of our world by the manipulation
and the identif cation of the objects surrounding us.
In order to enhance the interaction between the user
and the communicating device, it is considered to
provide to the former a rendering of tactile sensations
matching the actions he performs. In this sense,
the feld of tactile feedback has been emphasized
by the emergence of several technologies. One of
them uses lateral forces which create the illusion of
fne textures and surface features [1]. Many haptic
surfaces have been realized to take advantage of this
illusion. Watanabe and Fukui [2] developed the frst
ultrasonic vibrating plate, with resonant frequency of
75.6 kHz and amplitude 2 pm, capable of controlling
the roughness surface displayed to a bare f nger. The
main idea was to use the reduction of the effective
friction thanks to an air flm between the vibrating
plate and the user’s f nger, the so-called squeeze fim
effect. Biet et al. [3] used a monomorph composed
of an array of piezoelectric actuators bonded on the
lower face of a metallic plate to generate out-of-plane
vibrations of 1 pm amplitude at a 30.5 kHz resonant
frequency. A circular variant of such a device was
developed by Winfeld et al. [4] who mounted a glass
disk on a circular piezoelectric actuator. In a near
future, these technologies will be destined to equip
general public systems with tactile screen (smart
phones, tablet computers, laptops, remote controls,
etc.). In fact, their implementation in a limited

environment gives rise to optimization questions in
terms of, especially, energy consumption and mass of
used piezoelectric ceramics. A frst attempt has been
carried out by Sergeant et al. [5] who determined the
optimal dimensions of the resonator and the ceramics
composing the device in order to obtain a maximal
def ection with a minimal supply voltage.

In this paper, a different problem is addressed.
Indeed, it is shown that an homogeneous deformation
is required in order to obtain an uniform tactile
stimulus thus, the goal is to obtain such a condition,
with a minimal amount of ceramics and enough
amplitude. Moreover, the location of the actuator
is also optimised to select specif c mode shapes to
realize a satisfactory stimulation. Briefy put, the
deformation should be as homogeneous as possible
in order to obtain an uniform tactile stimulus all over
the plate surface while having the largest conversion
factor.

To achieve this, an analytical model is developed in
the frst part of the paper, based on some common
assumptions. For instance, Ducarne et al. [6] op-
timize the placement and the dimensions of shunted
piezoelectric ceramics dedicated to vibration reduc-
tion. Numerical methods have been validated for the
understanding of the dynamic of these active struc-
tures (see e.g. [7]). In this paper, we detail a general-
ized model of a free-free beam excited by n, piezo-
electric actuators bonded on its lower faces def ning a
non-symmetric geometry. In fact, in this article, the
geometry and the different assumptions enabling its
establishment will be f rstly specif ed. Then, the equa-
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tions of motion will be deduced from the application
of Hamilton’s principle. Finally, examples structures
composed of two ceramics will be simulated and stud-
ied in terms of homogeneity and promotion of me-
chanical mode shape.

2 ANALYTICAL MODELLING

2.1 GEOMETRY AND ASSUMPTIONS

The analytical modelling developing below relies on
a geometry of a rectangular cross-section beam com-
posed of NN parts in the longitudinal direction and
excited on its back, as illustrated by Fig. 1, by n,
piezoelectric ceramics behaving like actuators. The
beam is supposed to be a parallelepiped of dimensions
Ly x wy x hy. The i*1 actuator is a parallelepiped of
the same width than the beam w, = wy, a length L,(f)
and a thickness hfli). These ceramics are polarized
along the z—axis and are supplied by their lower and
upper faces in order to preferentially make demands
on a transversal piezoelectric coupling (variation of
the sample length along the x-axis perpendicular to
the polarization direction). Thereafter, the Cartesian
coordinate system is chosen and its origin is put at the
center of the beam. Moreover, the i*? actuator ceram-
ics are located by the set of abscissae (2" , x,(fl)

The modelling of the beam dynamic is based on the
Classical Laminated Plate Theory (CLPT) (see e.g.
[8]) adapted to an one-dimensional problem. The
main hypothesis of this approach are reminded below
to which the electrical assumptions have been added.

The thicknesses of the beam h;, and the ceram-

ics (ht(;))ie[[l_’na]] are supposed to be small compared
to the main dimension of the beam.

The xz-plane is a symmetry plane for the prob-
lem geometry. Thus, all mechanical and electrical

quantities are independent of the space variable .
Furthermore, the displacement along the y-axis, u,,
the transverse strain, S, and the shear strains around
x- and z-axis, S, and S, respectively, are neglected
(uy = 0and Sy, = S,. = S, =0).

All cross-sections perpendicular to the neutral
axis remain planar and perpendicular after deforma-
tion. The shear in the zy-plane is implicitly neglected
(Sz2 = 0).

The normal extension is negligible during the
deformation. The deformed beam does not conse-
quently stretch along the z-axis resulting in zero nor-
mal strain (5., = 0).

The ceramics are perfectly bonded on the beam

and the thickness of the bonding layer is negligible
so it is not be taken into account. Moreover, the dis-
placements are supposed to be common to the beam
and the ceramics.

The beam is supposed to be free on its ends
which implies that the axial force /V, the bending mo-
ment M and the shear force ) = M, are null at
Tr = iLb/Q.

m The actuator ceramics being assumed reason-
ably thin and supplied by its lower and upper faces,
the electric feld E, deriving from the electric poten-
tial ¢, is supposed to be only orientated along the z-
axis so much that:

E=[0 0 -¢.]" (1)

where (.) , denotes a partial derivative with respect to
the variable « and a superscripted T indicates matrix
transposition.

The i*? actuator ceramic is supposed to be re-

spectively connected to the potential e (t) and the
ground on its lower and upper faces so that:

{¢(z,z = —hy/2— KD 1) = ol (2) @
d(x,z = —hp/2,t) =0

2.2 CONSTITUTIVE RELATIONSHIPS

The material of beam is supposed to be linear,
isotropic and homogeneous, therefore the strain S and
stress T vectors are linked by the Hooke’s law. From
the assumptions (M.2), (M.3) and (M.4), the consti-
tutive relationship reduces to the following equation:

T=[]S <= Tu=FESu, 3)

where Fj, is the Young’s modulus of the material con-
stituting the beam.

Due to the assumptions (M.2), (M.3), (M.4) and (E.1),
the equations decribing the piezoelectric behavior re-
duce to:

—_E —
TJ}J) = C1lszz - eBlEz

D, = €315.0 + ERE. )

where ¢F, €3, and 5, are respectively the transverse
stiffness at constant electric f eld, the piezoelectric co-
eff cient and the longitudinal permittivity at constant
strain. The bar symbol on these structural coeff cients
is a note to use the specifc value of the transverse
coupling mode. They are expressed as follows :

1 d

—E L5 M1 =5 _ T 2

L= fF1631= —F ;) €33= e33(1 —k31) (5)
511 11

where k3, is the transverse piezoelectric coupling fac-
tor.
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Fig. 1. Structure of a beam excited by n,, piezoelectric actuators

2.3  KINEMATIC AND ELECTRICAL QUANTITIES

The displacement corresponding to the mechanical
assumptions are [8] :

w(z, t)

where u and w characterize the displacement felds
in longitudinal extension and in f exure, respectively.
The strain vector S is deduced from the previous rela-
tionship by applying the displacement gradient in the
framework of linear elasticity so much that the only
nonzero component of this vector is written as fol-
lows:

Sea(®,2,t) = up(x,t) — 2w 40 (x,t)  (7)

Concerning the electrical quantities, for each actua-
tor ceramic, it follows from (1) ,(7) and (4) that the
electric displacement feld is given by :

D, =e31(ug — 2W4s) — €§3¢7Z ®)

Besides, since D is conservative, D, , = 0. Using
this condition and (2), the electric potential in the i‘"
actuator can be deduced and the z-axis component of
the electric feld is consequently written as follows:

(4) -
Va (t) €31 ;

= == (24 A W@t
h((lz) §§3 (Z ma) w, (1' ()9)

where hﬁ,?a = (hy + h,(li)) /2 is the average thickness
of the area where the i*® actuator ceramic is bonded.

EZ(I7Z7t) =

2.4 APPLICATION OF HAMILTON’S PRINCIPLE

According to [10], a general form of Hamilton’s prin-
ciple applied to a piezoelectric system is

to
/ ((SZ + 6Wezt)dt =0 (10)

ty

where 5 and §W,.,; are respectively the variations
on the time interval [t1, t2] of the modif ed Lagrangian
L and the work done by external forces and sources
which is expressed as follows:

MWezt = / noéudl’ +/ péwdI’ + Zit(zi)(;)‘z(j)
Ty Ty

=1 (1 1)
where n(x,t) and p(x,t) are respectively the linear
density of axial and normal forces. The modif ed La-
grangian £ is the sum of the Lagrangian £ of the
global structure to which Lagrange multipliers (for
more details see e.g. [12]) have been added in order
to respect the 3(INV — 1) kinematic conditions at the in-
terfaces between each section I';, which are expressed
as follows:

1) (12)

The Lagrangian £ of the studied system is the sum of
ng + 1 contributions corresponding to the actuators
and the beam so much that:

L=2Ly+Y LY (13)

i=1



where Ly, is the Lagrangian of the beam which is clas-
sically written as follows:

Ly = %/ [Mb(’llQ + 11')2) — chui; — wa?m] dr

a (14)
where 'y = Ugil I'x, symbolises the neutral axis of
the bare beam and My, K, and D, are respectively
the linear mass, axial stiffness and f exural rigidity of
the beam def ned by:

hS
My = pywphy ; Ky = criwphy ; Dy = 511%%

(15)

th actuator ceramic

and E,(l is the Lagrangian of the ¢
defned as follows:

| ,
J O / (MO @ +i?)
2 Jpw
— KWDu2 — 279D qw 40 — DD w2,

o [wgi)u,z " @gi)w,m] v@ 4 (”((f))ﬂ dr

(16)

where M) = pt(f)wah,(f) is the linear mass of the
b actuator ceramic and IC,(J), ,1(1), (z) are respec-
tively the linear axial stiffness, elastic couplmg factor,

f exural rigidity def ned by
K9 = 8w, hlD T = B w,h D8 (17)

DO — &5y, b0 (he)?

— _\fa ) (4) )2
C11Wall, 12(1 . k%l) + (hma) ] (18)

1/)@ , <,0aZ and Ct(li) are the linear axial and fexural
electromechanical coupling factors and the clamped
capacitance whose expression are respectively:

PO = Ez1w, 5 ol = ewahll), 5 €D = &5 e

ma7

Applying the rules of variational calculus [10], the
stationary of the defnite integral (10) leads to the
equations governing the system dynamic and addi-
tionally gives the 3(IN — 1) extra continuity relation-
ships by removing the Lagrange multipliers. These
foregoing equations affect the axial force NV, the
bending moment M and the shear force @ which may
be expressed in a general way on a section 'y, = F,(li)
where the i*! actuator ceramic is glued as follows:

e Continuity relationships at x = xj,

Ni_1(xk,t) = Np(zg,t) — N(l)(t)
M1 (2, t) = My(zp,t )—M()(t) (20)
Qr—1(wr,t) = Qr(xp,t)

e Continuity relationships at * = 2511
Ni(wi1,t) = N (1)
Mi(wppa,t) — M (2)
Qr(Th+1,1)

= Ni+1(Tk+1,1)
= Mk+1($k+1,t) (21)
= Qk+1($k+1at)

It should be noted that the beam vibration is locally
induced at the ends of each actuator ceramic by means

of an axial force N&” (t) = /S v{" (¢) and a bending
moment Mé )( t) = ,(11) ,(11)( t).

In a pure fexure case, where an uncoupling of the
axial v and fexural w motions has been acted (for
more details see [6], Sec. 2.2.2, p. 3290), the result-
ing mechanical equations are written on each section
(Cx)keq1,ny as follows:

Vo eTly, Mpw(a,t) + Drw gppe (2, t) = p(a,t)

(22)
where M, and D, are the linear mass and f exural
rigidity of the section I'j, given by

My+ MY it =18

= ) 23

e { M, , otherwise @3)
and

. 12 . )
= Dl(m)_ [ a()} /’Cl()a) 7ifrk:F1(1) (24)
Dy , otherwise
with ICI()Z) =Ky + Kgi) and DIEZ) =Dy + D,(li). From

the equation (22), the determination of eigenmodes is
carried out for a free beam with short circuited actua-
tor ceramics. Assuming that the mechanical and elec-
trical quantities harmonically evolve, which means
for the def ection that w(zx, t) = w(z) exp (jwt) with
j? = —1 and w the actuator ceramics AC voltage an-
gular frequency, it leads to:

Vo el » & zzzz(x) - (Oékkb)‘lw(,f) =0 (25)
where k;, = (w?M;/Dy)'/* is the wave vector re-
lated to the f exural modes of the bare beam and o, =
[(My/My)/(Dy/Dy)]Y/*. The general solution of
this system of equations is written as a linear combi-
nation of Duncan’s function defned for « = 1,2 by
[ci, 8] = [cosh+(—1)"*!cos, sinh +(—1)"!sin].
The use of the boundary conditions (M.6) and the
continuity relationships (12), (20) and (21) leads to
a system of 4V equations which degenerates for par-
ticular frequencies def ning the resonances. Further-
more, it enables to f nd the mode shapes up to a mul-
tiplicative constant which can be set using the modal
mass normalization criterion with the following rela-
tionship:

VneN*, é/r M, [Q<">(z)]2dz:1 (26)

3 SIMULATION

The initial aim of such a study is to quantify the in-
fuence of the ceramics on the fexural mode shapes,



both the impact of their dimensions, their constitu-
tion and one of their position, even if no damping
has been considered in the analytical modelling. The
case of a beam excited by two ceramics glued with
the same polarization direction is hold and the param-
eters used for the simulation are summarized in Ta-
ble I. In light of these considerations, a preliminary
parametric study has been carried out in order to de-
termine the ceramics positions on the host structure
optimizing the energy conversion (all others things
being equal). The idea was to study, for each mode
shape, the evolution of the effective electromechani-
cal coupling coeff cient (EEMCC) kég) against the set
W, <(12)) (x fll,),z,(i))/Lb def ning
the ceramics positions. In piezoelectricity, kég) is the
classical relevant parameter enabling to characterize
the energy conversion, acting in the present case be-
tween the ceramics and the host structure. It is def ned
by the IEEE standards [13] as follows:

of parameters (

27)

where fs(cn ) and f}g?) are the resonant frequencies of
the vibrating system while the actuator ceramics are
respectively in short-circuit and open circuit. For ex-
) is depicted in Fig. 2 as a function of §¢(11)

and 5,(12) for the f fth mode in f exure. The central band
correspond with the ceramics overlapping which has
no physical reality. The symmetry of the pattern is
due to the equivalent characteristics of both ceramics.

ample, kég

I. Geometrical and structural parameters

| | Def nition | Value [ Unit
Ly Length 100 mm
Wy Width 7 mm
hy Thickness 2 mm
Db Mass density 2700 kg/m?>
Ey Young’s modulus 69.0 GPa
LY || Length 11 mm
w” || Width 7 mm
hfli) Thickness 1 mm
o || Mass density 8000 kg/m?
st || Compliance 17x 1072 | m?/N
—ds31 || Piezo. coef. 260 x 10712 | m/V
ely || Permittivity 5000¢gq F/m
k31 Coupling factor 0.390

This f gure is used to deduce the location of the ce-
ramics promoting a particular mode. For instance, the
geometry defned by ( . 512)) (—0.240,0.150),
named thereafter (S1), specif cally promotes the fex-

ural mode of rank 5. For purpose of compari-

0.12

0.08
0.06

Yy 0.02
A %\\\'A 4

-0.5
*05 -04 -03 -02 —0.1 0.1 02 03 039

Fig. 2. EEMCC for the f fth f exural mode shape.

son, another geometry named (S2) and defned by
(5,1 , ¢ ) = (—0.115,0.005) globally promotes the
modes of rank 1,3 and 5. These geometries were
manufactured and the table IT shows the good agree-
ment between predicted and measured resonant fre-
quencies. The modelling developed in the paper can

II. Analytical and experimental resonant frequencies
of both structures (S1) and (S2).

| 1"z || Structure (1) || Structure (S2) |

| Mode rank || Th. | Exp. || Th. | Exp. |
1 1108 X 1136 | 1085
3 5644 | 5323 5864 | 5490
5 14414 | 13080 || 14238 | 13160

also be used to compare the mode shapes of both ge-
ometries (see Fig. 3). This f gure shows the f fth mode
in f exure for each structure (the one determined for a
bare beam has been moreover added in dotted line)
and highlights the fact that the mode shape is modi-
fed by the ceramics. However, in tactile applications,
the user can be sensible to modal deformation. In-
deed, the stimulation depends on the vibration ampli-
tude below the fngertip [3]. This infuence can be
quantifed in terms of homogeneity of the vibration
using the minimization of the following criterion, de-
fned forn € N\{0,1} by

"¢(n) lé(n)(x;) ‘
7ii’ —Z . o (28)
< < >kgﬁ}fzn &)

where (7) is the binomial coeff cient and (X},)ke[1,n]
is the vector of dimensionless abscissae matching the
local mode shape extrema.
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Fig. 3. Fifth mode shape for structures (S1) and (S2).

For both structures, og’) is respectively equal to 0.27

for (S1) and 0.15 for (S2) with an EEMCC pretty
much equal (kéif) ~ 0.10). Hence, the design which
optimizes the energy conversion for mode 5 is not for
the homogeneity. This conclusion can be generalized
for f exural mode shapes with a rank n > 3.

4 CONCLUSION

This paper has presented an unidimensional analyti-
cal modelling of a beam excited by actuator ceramics
of whatever number. This approach is a frst step in
view of an optimization of tactile devices using the
squeeze flm effect. This phenomenon is generated
between a vibrating plate, activated by piezoelectric
ceramics, and an user’s fnger. It is thus important to
precisely know the actuators impact on the dynamic
of such a structure. From the study of two struc-
tures composed of two actuator ceramics, this article
has highlighted a trade-off to act between the promo-
tion of a mechanical mode shape and its homogeneity
which may be unacceptable for tactile feedback de-
vices if it is not provided. For future works, it would
be interesting to study the infuence of the function
sensor accomplished by extra ceramics. An extension
to a 2D model is also envisaged.
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