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The familiar 1D barrier-tunneling problem, when converted to a trough-scattering problem instead, leads
us to the strong-phase-object deBroglie phase-lag. This in turn reminds us of the exact Coulomb-scattering
solution to the Schrödinger equation, and opens the door to real-time online electron-optic simulations with
which students may discover: (a) ways to acquire and interpret data from modern multi-million dollar tools
of electron-optics, (b) nano-characterization of matter on the atomic scale, (c) visualizations intermediate
between direct and reciprocal space for harmonic-analysis of spatial-periodicities, and (d) important modern
uses for crystal defects, including crystal surfaces themselves.
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I. INTRODUCTION

The one-dimensional barrier-tunneling problem is very
popular in modern physics texts because it is: (a) analyt-
ically solvable, (b) connected to practical problems like
alpha-decay, and (c) a beautiful illustration of the role
of uncertainty in behaviors that would be classically dis-
allowed. What is seldom mentioned, however, is that the
same piecewise-constant potential setup, using a poten-
tial trough instead of a barrier, also makes contact with
emerging science and technology. We show further that
the exact Schrödinger-equation solution to the Coulomb-
scattering problem (approximated classically by Ruther-
ford) can similarly be inverted to reinforce this result.
In this note, in particular, we describe how that

piecewise-constant potential-trough calculation gives rise
to the strong-phase-object deBroglie phase-lag. We then
show how calculations using this phase-lag are being used

a)Electronic mail: pfraundorf@umsl.edu

(with help from modern electronic technology) to provide
students with a real-time window on the world of nano-
materials, as well as on ways currently under develop-
ment for exploring that world with help from high-speed
electrons.

II. THE DEBROGLIE PHASE-LAG

This is the classic one-dimensional problem: Define the
vacuum wavevector k = 2π/λv =

√
2mU/~ and the spec-

imen wavevector K = 2π/λs =
√

2m(U − V )/~, where
U is the incident particle energy and V is potential-
energy associated with our particle in the “specimen-
region” e.g. of width L.
In the barrier-tunneling case 0 < U < V , so as to

make the wave classically disallowed in the specimen re-
gion. In the trough-scattering case, V < 0 < U so that
wave-vector (hence momentum p = ~k = h/λ) of our
particle actually increases in the specimen-region, and
therefore our particle’s wavelength (e.g. in [meters per
cycle]) decreases. It’s not surprising then that the size of
this wavelength decrease is directly related to the number
of deBroglie phase cycles which take place in traversing
a specimen-region of thickness L.

One can of course also calculate the various reflected
and transmitted wave amplitudes (relative the amplitude
incident from the left) by equating wavefunctions and
wavefunction spatial 1st-derivatives at specimen-region
entry and exit points. This has been done for a wide
range of V/U values in Figure 1. The diagonal bands
in the lower right quadrant show clearly the deBroglie
phase-lag running in the negative z-direction roughly in
proportion to V/U for V < 0.

For application to high energy (U = 60 to 300 [keV])
electrons, condensed-matter attractive-potentials (like
work functions) are in the negative tens of Volts so that
|V/U | ≪ 1. The exact phase shift relative to V = 0
case is plotted (solid line) for unit-arguments in Fig. 2,
along with two approximations. The first approximation
(dashed) is simply the difference in wave-numbers (e.g.
in [radians per meter]) times the “specimen-thickness” L,
which assumes that the first order effect on the transmit-
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FIG. 1. One-dimensional wavefunctions (in logarithmic complex-color online) of an energy U wave incident from the left on
a variable-V/U barrier/trough between 0 < z < 1. In each of these panels, the horizontal axis runs (left to right) from
−6 ≤ z ≤ +6; if we set particle mass and Planck’s constant to 1, while the vertical axis shows step-potentials ranging (bottom
up) from −6 ≤ V/U ≤ +6. In the rightmost panel, the dotted horizontal-band is the region of positive barrier still lower than
the particle energy (transmission still classically allowed), while the dotted vertical-band marks the barrier/trough region itself.

ted phase is simply the wavelength shift during traversal.
This in turn can be Taylor-expanded around the high

particle-energy U limit of V/U → 0 to get the phase-

shift of ∆φ ≃ −(V/U)
√

mU/2L/~. This gives us the
straight line (dot-dashed) in Fig. 2 which is proportional
to ”projected-potential” Φ = V L e.g. in [eV-m].
For a specimen-potential which varies along a beam-

path in the z-direction, this might be written as Φ =
∫ L

0
V [z]dz. This prompts us to ask, however, whether

such a phase-lag (with lateral variation in x and y)
will also emerge if the trough for a plane-wave flowing
through a three-dimensional solid is not flat, but in-
stead shaped like the attractive Coulomb-potential for
electrons passing through a set of atomic-nuclei. Amaz-
ingly, another of the rare classical exact-solutions to the
Schrdinger equation, with a potential appropriately in-
verted, comes to the rescue once again.

III. COULOMB/RUTHERFORD SCATTERING

It’s often forgotten that the classical Rutherford scat-
tering problem is connected to an exact quantum-
mechanical solution to the Schrödinger equation in three-
dimensions, which perhaps by accident1 gives the same
result as the classical calculation e.g. for atomic-number
(Z) dependent nuclear back-scatttering. As in the case
of the tunneling example discussed above, however, this
problem is generally framed as a barrier-problem i.e. for
predicting what happens when a positive-ion encounters
a positively-charged atomic nucleus.
Once again, something also interesting emerges when

we look at the “attractive” or “potential-well” version of
the same calculation. As shown in Fig. 3, just as in the
1D case the interaction e.g. of an incoming electron with
a localized positive charge also gives rise to a deBroglie

FIG. 2. Phase-shift estimates using (solid) an exact piecewise-
continuous potential example, (dashed) the wavenumber-
difference approximation, and (dot-dashed) the first term in
the approximation’s Taylor series around the V/U ≃ 0 or
“high-energy U particle” approximation.

phase-lag. Of course the Coulomb potential of atomic
nuclei in condensed matter is screened at Ångström dis-
tances by the field of the electron cloud, but the principle
underlying the observed phase-lag none-the-less remains
that seen in our trough-scattering calculation above.

IV. ELECTRON-OPTICS SIMULATION

Thus introductory quantum-mechanics predicts an
exit-surface deBroglie phase-lag, which varies depending
on the projected-potential of atoms along the electron-
trajectory, when an electron passes through a thin slice of
condensed matter. Several issues remain, however. First,
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FIG. 3. Coulomb scattering (in complex-color online) of a
negative charge’s deBroglie extended wavefield by a fixed pos-
itive charge, from one of those rare regular solutions of the
Schrödinger equation.

how can we convert that phase lag into a ’“detected” map
of projected-potential across the transverse coherence-
width of an ’“individual” electron’s wave-packet! Sec-
ondly, how does this projected-potential model fare both
qualitatively and quantitatively as the specimen’s thick-
ness increases?
The answers to these questions are well established

in the technical literature3–5, so we won’t elaborate on
them here except to illustrate the “Scherzer defocus”
condition6 (Fig. 4) for converting the phase-lag map at
the exit surface into an intensity-map downstream, and
then to mention two calculations that physics undergrad-
uates might enjoy.
The “Scherzer strategy” yields useful image intensi-

ties for spatial-frequencies out to the “point-resolution
maximum”. It does this primarily by moving the first
dark/light intensity Fourier-phase inversion away from
the origin in frequency-space (the “DC-peak”), associ-
ated with “spherical-aberration transfer-function zeros”
of a convex magnetic lens, until a new pair of transfer-
function zeros begins to insert itself into the region be-
tween DC-peak and that first-zero.
For sufficiently thin (weak phase-object) specimens,

where the deBroglie phase lag is much less than 2π,
Scherzer-defocus yields intensities that are inversely pro-
portional to projected-potential i.e. where openings be-
tween atoms are bright and columns of atoms in pro-
jection look dark. The strong phase-object (arbitrary
phase-lag) analysis discussed in addition shows a subset
of thickness effects, but only incompletely considers mul-
tiple scattering.
The first enjoyable calculation may be to verify that

electron-phase contrast is obtained from individual elec-
trons. Not only are electrons fermions that obey Pauli
exclusion, making them unwilling to share a single co-
herent state like photons do in a LASER, but typi-

cal high-energy transmission-electron-microscope (TEM)
specimen-currents are quite low i.e. in the nano-Ampere
range.
Students might in that context use electron-energy to

determine the speed of e.g. typical 100[keV] microscope
electrons, and show that individual electrons in a nano-
Ampere beam will be something like an inch apart in the
direction of propagation. An electron-energy spread and
hence energy-uncertainty at the parts-per-million level
will increase the longitudinal coherence-length’ of these
electrons, but not nearly enough to allow them to overlap
in the specimen even if we had a way to get them to share
a common deBroglie phase. Hence on average there is
only one electron traversing the specimen at a time, so all
wave-interference (including diffraction effects) is being
done with a single quantum-particle.
In order to map projected-potential laterally across

multiple atom-columns in a condensed-matter specimen,
of course, the transverse coherence-width of individual
electrons must be expanded to many times the distance
between atoms as well. This is done in modern electron-
optical systems by reducing the transverse-momentum
uncertainty of electrons at the specimen, largely by choice
of a locally bright electron-source (like a LaB6 or field-
emission gun) to begin with.
The second calculation involves the difference in

calculation-time between strong-phase-object and more-
quantitative “multi-slice” image simulation. The strong-
phase-object approach, as we’ll see, simulates a wide
range of phenomena qualitatively. For quantitative sim-
ulation, however, one must propagate the incident beam
through multiple slices of the specimen.
For an n × n pixel image field this is generally done

in an n× n complex-coefficient ”reciprocal space”. This
means that each slice past the first requires that one do n2

more strong-phase-object calculations. For a minimally
useful 256× 256 pixel field, this means that simulations
will take some integral multiple of 65, 536 times longer,
and hence be difficult to do in real time even on systems
with relatively fast processors.

V. NANO-WORLDS ONLINE

The simplicity of the deBroglie phase-lag and the
power of the resulting strong-phase-object approxima-
tion, combined with the speed of fast-Fourier-transform
(FFT) algorithms implemented in javascript on modern
processors, gives us an ability to simulate online in real-
time the exploration of nanomaterials with high energy
electrons. This article is not the place to detail the many
types of explorations that are now possible online, in
part because they make contact (beyond the worlds of
electron scattering and electron optics) with condensed
matter topics like: (a) crystallography and bulk/surface
defect-crystallography, (b) pair and pair-pair correlations
in non-crystalline materials, as well as (c) the behavior
of individual molecules in the neighborhood of surfaces,
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FIG. 4. Electron phase contrast transfer function and wavefield image analysis: At left find maps of contrast-transfer versus
spatial-frequency without (left-half) and with (right-half) spherical aberration, as a function of imaging-system defocus in
the vertical direction. At right find images (left-half) and image power-spectra (right-half) showing contrast transfer zeros at
Gaussian and Scherzer defocus. In the thin-specimen limit, cyan bands (color online) in the panel at left show specimen-regions
of increased projected-potential as darker, while red bands show contrast as reversed.

FIG. 5. Fig. 5: Brightfield high-resolution TEM (phase) and darkfield scanning-TEM (amplitude) screenshots of an “unknown”
specimen in an online simulator2, with the same defocus, orientation, and darkfield-aperture.
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FIG. 6. A hemoglobin molecule in an online simulator, with a
likely alpha-helix (circle at top) viewed end on in the absence
of the vacuum re-arrangement, beam damage, and the need
for a “support” that might get “in the way” experimentally.

of vacuum, of high energy electrons. Such explorations
will be discussed by ourselves and others under separate
cover.

However this does not make these developments irrele-
vant to undergraduate physics students and teachers. Far
from it, since such simulators give students phenomeno-
logical access (at least qualitatively) to a wide range
of phenomena, including small-wavelength (flat Ewald-
sphere) diffraction from three-dimensional single and
poly crystalline unknowns, strain imaging tools (includ-
ing both diffraction contrast and digital darkfield inter-
ferometry), an ability to form darkfield images of selected
periodicities, to switch between deBroglie phase-contrast
and Z-contrast imaging modes, to get 2D “Fourier-phase
information” about specimens that is impossible to ob-
tain directly from diffraction, etc.

Figure 5, for example, shows two-screen shots of
a near-Scherzer-focused online simulator examining an
Au/ZnO2 bi-crystal tilted so that the phase-interface is
side-on. The left-half of the figure provides a strong-
phase-object approximation deBroglie phase-contrast im-
age of atom columns in projection down that orientation
(top-left), and diffraction pattern of the crystal (top-
right), a power-spectrum of the phase-contrast image
(bottom-right), and the complex-color digital-darkfield
image (obtained from the image Fourier transform) of
periodicities selected by an aperture (white circle) in the
power spectrum.

The right-half of the figure in effect reverses the path
of electrons through the electron-optic system, which by

reciprocity allows us to record (with comparable reso-
lution) an incoherently-illuminated high-angle annular
darkfield image of the same specimen. The physics of this
type of image is somewhat different, and not the topic of
this paper here. Nonetheless students and teachers can
get a visceral feel for the qualitative differences between
these imaging modes, whether or not they later learn to
understand, and/or apply, such tools for nanoworld de-
tective work of their own downstream.

VI. DISCUSSION

As discussed above, the piecewise-constant potential
calculation used in undergraduate physics courses to ex-
plain quantum tunneling can also yield for us insight
into the deBroglie phase-lag which is central to modern
electron-based tools for experimental study of condensed
matter. We try to make this connection here so that
teachers, and textbook authors in the future, can put
the connection to use.
There is also an exciting future in physics education

for the kinds of electron-image simulators to which this
deBroglie phase-lag connects. Students already get some
visceral experience with electron-diffraction and electron-
imaging as it is used today to provide insight into a wide
range of condensed matter challenges in the physical and
life sciences. In the latter context Fig. 6 shows what
the alpha-helix in a hemoglobin molecule might look like
edge-on, if we can find a way to either average over or
lessen the effects of vacuum and ionization damage in
real electron microscopes.
A wide range of other interesting “nano-specimens”

remain yet to be assembled. In addition to specimen-
tilting, future incarnations of these online simulators
will allow for other imaging and analysis modes, spec-
imen translation, and even zooming from nanometer to
millimeter field-widths on procedurally-generated speci-
mens.
Today’s physics teachers and students can help apply

their own skills to these developments, which mainly re-
quire access to the internet through a web-browser. In
fact, these developments in turn will help with develop-
ment of improved-interfaces to the modern multi-million
dollar aberration-corrected instruments now available
at selected facilities for researchers with interesting
nanoworld puzzles to solve.

Appendix A: underlying math

In order to increase assessibility, in the main body
of this paper we’ve tried to illustrate using quantita-
tive graphical techniques like complex-color, which lets
us show the amplitude and phase of a complex number
with a single pixel. In this appendix, however, we at-
tempt to connect interested readers to the underlying
models and approximations.
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FIG. 7. Plots of electron potential V [x, y, z] for electron tra-
jectories along two different “columns” through the specimen.

1. phase-lag and projected potential

This is a standard homework exercise e.g. for modern
physics, but it might not hurt to outline some details
here. Consider a one-dimensional potential of the form:

V [z] =











0 if z < 0 (region 1: upstream)

−eΦ if 0 ≤ z ≤ T (region 2: specimen)

0 if z > T (region 3: downstream)

(A1)
where Φ is an average projected-potential in the specimen
column of interest. This average potential (cf. Fig. 7)
depends strongly on the proximity of atomic nuclei in
the specimen to the selected column, and will e.g. be
much less if the column follows a tunnel between atoms

through the structure. Our objective is to examine ways
that the transmitted wave reflects changes, from column-
to-column, in this projected-potential.
For incident plane waves of the form Ψ[z, t] =

Aeı(kz−ωt) in the positive z-direction with electron ki-
netic energy Er = eVr, write out the Schrödinger equa-
tion for regions 1, 2 and 3 with parameters specified in
terms of the quantities given above. The one-dimensional
non-relativistic free-particle Schrödinger wave equation,
for instance, may be written:

− ~
2

2m

∂2ψ

∂z2
+ V [z]ψ = ı~

∂ψ

∂t
, (A2)

where ψ is the wave function whose amplitude squared
yields a probability density as a function of position and
time, the expression ı~∂/∂t on the right is the “energy
operator”, and the first term on the left represents the

classical kinetic-energy operator i.e. the “momentum op-
erator” ı~∂/∂z squared over 2m. The Schrödinger equa-
tion basically differs from region to region here only by
the addition of the negative but piecewise-constant work-
function potential energy−eΦ which multiplies the wave-
function in region 2.
Next write out the form for wavefunction solutions of

that equation in each of these regions, in terms of some
yet undetermined constants. The high-energy electron
wave in the first two regions might be described for region
1 (upstream) as ψ1[z] = Aeıkz + Be−ıkz , and for region
2 (specimen) as ψ1[z] = Ceıkz +De−ıkz . Here the “’vac-
uum wavevector” k = 2π/λv =

√
2meVr/~ while the

“specimen wavevector” K = 2π/λs =
√

2me(Φ + Vr)/~
is larger (implying a smaller electron wavelength λs in
the specimen) because the solid attracts electrons. We’ll
leave it as an exercise for the reader to do the same for
region 3 (downstream), using say F and G for the forward
and reverse wave coefficients in each case.
Following this, write out boundary conditions that

these constants obey at the boundaries between re-
gion 1, 2, and 3. For instance at the z = 0 bound-
ary between regions 1 and 2, equating ψ values gives
A + B = C + D while equating ∂ψ/∂z values gives
ık(A−B) = ıK(C −D). Do the same thing then for the
z=T boundary between regions 2 and 3, and then solve
for the “amplitude” of the transmitted wave at z = T as
a function of the incident amplitude A, and wave vectors
k and K in regions 1 and 2. Also show how this simplifies
when Vr ≫ Φ. The results are discussed in the text.
At relativistic speeds, electron momentum goes from

p ≃
√
2meEk to p =

√

2Ek(Eo + Ek)/c. Here rest en-
ergy Eo ≡ mec

2, where c and me are lightspeed and elec-
tron rest-mass, respectively. Hence wavenumber k = 2π

λ

is changed via the dependence of wavelength on mo-
mentum λ = h/p. Also, the ratio between wavelength
outside the specimen to wavelength inside the specimen
(i.e. the specimen’s refractive index) changes subtly as
well. Therefore the factor of 1

2Vr
, which multiplies pro-

jected potential to get the optical path difference, be-
comes 1

Vr

Eo+Ek

2Eo+Ek
. Otherwise, the above analysis of phase

shift remains intact3,4.

2. point-charge scattering

Following e.g. Messiah’s Chapter XI on the Coulomb
Interactiont1, a naked-charge wavefield model may be ob-
tained if the 1/r Coulomb potential term is inserted into
Schrödinger’s partial differential equation:

(

− ~
2

2m
∇2 +

Z1Z2e
2

r

)

ψ[~r] = Eψ[~r]. (A3)

This is of course the hydrogen atom potential, but here
we’d like the solution in a form that can be broken
down into incident and scattered plane wave components.
Such a solution may be expressed in terms of the three-
argument confluent hypergeometric function 1F1[u|v|w]
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as:

ψc = Aeıkz1F1

[

− ı

ka
|1| ık(r − z)

]

, (A4)

whereA is an adjustable constant and a ≡ ~
2/(Z1Z2me

2)
is inversely proportional to the interaction strength. This
wave function is the one that is plotted in Fig. 3.
The above differential equation might be modified for

addition of a neutralizing charge sphere at radius R, by
merely stepping the potential for r > R down to zero.
Solutions for no potential of course generally look some-
thing like Aeıkz . Since the solutions for both potentials
in standalone form are known, one might take the next
step with a composite wave model for the neutralized
charge by simply joining those two solutions up at the
spherical r = R boundary.
Spherically-symmetric atomic-scattering-factors are

often used instead to propagate a planar (or conver-
gent/divergent) wavefront though the specimen. For
quantitative work, multislice strategies5 consider the se-
quential evolution of a scattered wave through atomically
thin slices of specimen in sequence.
Regardless, to first order the electron wavefunction

(whose transverse coherence is many atoms in width)
will exhibit a deBroglie phase-shift (relative to nearby
columns) which is from section A1 proportional to the
projected-potential at the exit surface of the specimen.
The problem is that an image of the phase-contrast in
the exit wave-function cannot be detected directly, and
so in the next section we turn to electron optics for a
solution to that problem.
For sufficiently thick specimens and/or with incoher-

ent illumination, atomic columns will also exhibit an
amplitude decrease due to scattering which is a mono-
tone increasing-function of projected potential. Given
the projected-potential this too is relatively easy to ap-
proximate roughly.

3. electron-optics phase/amplitude contrast

Scattering in quantum mechanics results in an elec-
tron wave which is both phase shifted, and changed in
direction. A classic use of the Born approximation, the
WKB method, and partial wave analyses has been calcu-
lating the angular dependence of scattering from single
atoms, based on the details of charge distribution within
– Rutherford’s famous discovery of the nucleus was an
early consequence thereof. Fortunately for the electrons
discussed here, these angular issues are less important
because scattering angles are well under 10 milliradians.
If one uses apertures which are large enough to in-

clude both scattered and unscattered beams (e.g. in the
back focal plane of the objective lens, where exit surface
waves are separated according to direction rather than
amplitude), then one can imagine imaging the amplitude-
added unscattered and scattered wavefields together (at

FIG. 8. An electron phase contrast image of the internal
structure of a 15 wall carbon nanotube, the innermost 6
atomic layers of which form an internal closure.

least over specimen distances less than the transverse co-
herence width of incident electrons). Hence the first prac-
tical requirements for electron phase contrast imaging are
thin specimens, moderate coherence width illumination,
and large objective apertures.
Under these conditions, the imaged exit surface wave

from a thin crystal looks like the incident wave, mul-
tiplied by e+iσ, where σ[x, y] ≃ k

2Vr
Φ[x, y] varies with

lateral coordinate values x and y across the specimen.
If the phase angle is small (i.e. much less than π), the
multiplying factor can be approximated by e+iσ ≃ 1+iσ.
Imagine a one dimensional specimen with only spatial

frequency q = 1/Λ, where Λ is the repeat distance, e.g.
so that σ[x] = σocos[2πqx]. At the exit surface, the wave-
field will have been multiplied by ψ[x] = 1+iσocos[2πqx].
Note that, as long as σo << 1, the amplitude of the com-
posite wave field is hardly affected by the specimen’s pe-
riodicity. In light microscopy, this problem is overcome
by inserting a Zernike phase plate4 for shifting the scat-
tered beam only by an additional π/2, resulting (when
recombined) in first order amplitude effects.
In the absence of a suitable phase plate, one can in-

stead defocus one’s imaging optics so as to sample the
wavefield downstream (or virtually, upstream as well)
from the exit surface of the specimen, at a point where
phase differences at the exit surface interfere with one
another to create ripples in intensity which may be pho-
tographed. What defocus setting is appropriate depends
on the spatial frequencies of interest.
Physically, the scattered wavefield evolves by convo-

lution with the Fresnel propagator, which is oft written

(apart from a constant factor3) as e
iπ(x2+y2)

λ∆z . Here ∆z is
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the distance from the exit-surface along the beam direc-
tion, or the “defocus setting”, defined so as to be pos-
itive in the downstream (underfocus) direction. In fre-
quency space, this is equivalent to multiplying the wave-
field by the propagator’s Fourier transform, the transfer
function e−iW defined here in terms of the “defocus func-
tion” W [∆z] = πλ∆z(q2x + q2y). For our single frequency
specimen, the imaged amplitude is thus modulated by
ψ = 1 + ie−iWσocos[2πqx]. The intensity found in the
image becomes I ≡ ψ∗ψ = 1 + 2sin[W ]σocos[2πqx].
The factor sin[W ], a function of both defocus ∆z and

spatial frequency q, thus determines both the strength
and sign of intensity ripples corresponding to specimen
structure, in the captured image. It predicts dark spots
in the neighborhood of large phase shifts (e.g. atom
columns), for example when W is near −π/2. We also
might want to choose defocus ∆z so that the images are
simplest to interpret, e.g. so that sin[W ] is finite and
constant for as wide a range of frequencies as possible.
To assist with this, we’ve plotted sin[W ] as a function of
transverse spatial frequency q, and defocus ∆z, for unit
wavelength on the left hand side of Figure 4.
Spherical aberration in the objective lens also affects

the image. The effect is shown graphically on the right
hand side of Figure 4. Since zeros in sin[W ] correspond
to phase reversals for the corresponding periodicity, a
traditional goal has been to select a defocus for which
these zero’s are moved outward to as high a frequency as
possible. As illustrated in the diagram, Scherzer defocus
is the setting of choice in this regard.
Recent work has concentrated on focussed-probe il-

lumination in which the aberrations occur upstream of
the specimen, which probe in “scanning transmission”
(STEM) is rastered across the specimen, resulting gener-
ally in more amplitude rather than phase contrast, and
on “aberration-correction” which uses controllable aber-
rations to correct uncorrectable aberrations (like spher-
ical) in one focus plane only. The latter requires more
work in focusing, but has allowed sub-Angstrom lat-
eral resolutions, even at beam voltages which are below

the knock-on threshold from important light atoms like
carbon7.

For quantitative microscopy of thicker specimens in
real microscopes, of course, other issues must be con-
sidered as well: e.g. vibration and electrical instabilities,
knowledge of specimen thickness, astigmatism, and the
range of illumination angles in the beam. Even then the
theory remains quite elegant, and except for the effects
of specimen thickness can be visualized by changes in the
fingerprint of Fig 4.

Of course, this analysis might seem abstract. Au con-
traire! Recall that amorphous materials in projection
are, unlike crystals, likely to show a uniform distribution
of periodicities. As a result, the zeros of the imaginary
part of the Fresnel transfer function, for the current de-
focus setting in the right side of Fig 4, show up as rings
in the power spectrum from amorphous material in every

HREM image.
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