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RIGIDITY OF THE LAUGHLIN LIQUID

ELLIOTT H. LIEB, NICOLAS ROUGERIE, AND JAKOB YNGVASON

Abstract. We consider general N-particle wave functions that have the form of a product
of the Laughlin state with filling factor 1/ℓ and an analytic function of the N variables.
This is the most general form of a wave function that can arise through a perturbation of
the Laughlin state by external potentials or impurities, while staying in the lowest Landau
level and maintaining the strong correlations of the original state. We show that the
perturbation can only shift or lower the 1-particle density but nowhere increase it above
a maximum value. Consequences of this bound for the response of the Laughlin state to
external fields are discussed.

Dedicated to Jürg Fröhlich, Thomas Spencer, and Herbert Spohn

1. The Laughlin phase

In theoretical studies of the fractional quantum Hall effect (FQHE) [11, 12, 9, 10, 14, 40]
Laughlin’s wave function(s) [16, 17, 18] play a fundamental role. There is such a function
for every positive integer ℓ and it can be written, in units where the magnetic length is
1/
√
2, as

ΨLau = cLau
∏

i<j

(zi − zj)
ℓe−

∑
N

i=1 |zi|
2/2 (1.1)

where the zi ∈ C are the positions of N particles moving in R
2, identified with the complex

plane, and the constant cLau is a normalization factor (depending on N and ℓ). For fermions,
ℓ is odd and ≥ 3 (the case ℓ = 1 corresponds to noninteracting fermions), while for bosons
ℓ ≥ 2 is even. Bosonic wave functions of this type are potentially relevant for atomic gases
in artificial magnetic fields [8, 6, 21, 30, 33, 42]. The analysis below applies to Laughlin
states of both symmetry types.

The Laughlin state (1.1) is a special kind of wave function in the Lowest Landau level
(LLL) of a Hamiltonian with a strong magnetic field perpendicular to the plane where the
particles move. The general form of such functions is

Ψ(z1, . . . , zN ) = A(z1, . . . , zN ) e−
∑

N

i=1 |zi|
2/2 (1.2)

with A analytic, antisymmetric for fermions and symmetric for bosons. Also square integra-
bility is required, butA is not restricted to polynomials. If there is strong repulsive two-body
interaction between the particles, the Laughlin function (1.1) is a natural trial function for
low energy states. The factors (zi − zj)

ℓ indeed suppress interactions by producing strong
correlations between the particle positions. For certain zero-range interactions, (1.1) is even
an exact ground state [13, 41, 31].
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The success of Laughlin’s theory of the FQHE fractions 1/ℓ, based on (1.1), depends
crucially on the fact that the Laughlin wave function behaves as an incompressible liquid,
whose response to perturbations and external fields is extremely rigid. This in fact has two
distinct aspects:

1. The Laughlin wave function is an approximate ground state for the many-body Hamil-
tonian, and its energy is separated from the rest of the spectrum by a gap.

2. Modifications of the Laughlin wave function that stay within the ground eigenspace of
the many-body Hamiltonian cannot increase the local one-particle density beyond a fixed
value.

The main evidence for these facts is experimental and numerical. For model zero-range
interactions, the justification of Property 1 would amount to a proof of an N -independent
spectral gap, see e.g. [21, Section 2.2] or [36, Section 2.1] and references therein. We are
not aware of a solution to this important problem, but some exact results for low values of
N can be found in [28, 29].

Property 2 is not always recognized as a separate issue, but is also crucial for Laughlin’s
original argument supporting quantization of the Hall conductivity [15, 18] and for FQHE
physics in general. Its importance lies in understanding the effect of an external potential
that would try to concentrate the density as much as possible in energetically favorable
places.

If the energy gap in Property 1 is sufficiently large we can exclude a jump across it
and restrict attention to wave functions with the same interaction energy as the Laughlin
function. We are thus led to study the set of all normalized wave functions of the form

ΨF (z1, . . . , zN ) = F (z1, . . . , zN )ΨLau(z1, . . . , zN ) (1.3)

with F analytic and symmetric under exchange of the zi. This form exhausts the class of
functions that minimize the magnetic kinetic energy and at the same time avoid repulsive
interactions by vanishing at least as (zi − zj)

ℓ as zi and zj come together. In the bosonic
case and with ℓ = 2 these are exactly the ground states of the contact interaction [36,
Section 2.1]. We shall refer to the class of states of the form (1.3) as fully correlated states.

Physically, (1.3) includes the addition of ‘quasi-holes’ (zeros of the wave-function) to
the Laughlin state, essentially arbitrary correlations between the particles’ and quasi-holes’
locations being allowed. It is intuitive that this leads to a decrease of the global density.
It is far from obvious, however, that no local increase of the density can occur anywhere.
Several quasi-holes arranged tightly on a circle could, perhaps, increase the density inside
the circle. Moreover, F need not contain any zeros at all like, e.g., exp(c

∑

i z
2
i ), which

stretches the support of the density in one direction and shrinks it in another.
In this paper, we report on recent density bounds for fully correlated states that demon-

strate the validity of Property 2 without invoking Property 1. They hold essentially on
length scales O(N1/4), much smaller than the full extent of the liquid, which is of order

N1/2, and are related to earlier partial results proved in [37, 38]. The full proofs are some-
what involved and presented elsewhere [25], but we sketch the main arguments below and
discuss physical applications.
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2. Incompressibility estimates

In his pioneering paper [16], Laughlin already argued that the one-particle density of the

state (1.1) has the form of a circular droplet of radius
√
ℓN where the density takes the

constant value (πℓ)−1. The argument was based on the plasma analogy, where the absolute
square of the wave function is written as the Gibbs distribution of a classical 2D Coulomb
gas, and subsequently treated by a mean-field approximation.

Recent mathematical analysis [35, 36, 39] has confirmed the validity of this approximation
for the Laughlin states and Laughlin’s quasi-hole states where the prefactor F is a product
in which each factor depends on a single variable, i.e., wave functions of the special form

Ψf⊗N (z1, . . . , zN ) =
∏

j=1

f(zj)ΨLau(z1, . . . , zN ) (2.1)

with f being a polynomial. These results however do not imply density bounds for the
general state (1.3). The latter could, in particular, be a linear superposition of functions of
the form (2.1), and the density of a linear superposition needs not coincide with the linear
superposition of the densities, because of quantum-mechanical interferences.

The analysis of [35, 36] was generalized to other prefactors of a special kind in [37]. A
common feature that emerged was an upper bound on the one-particle density of magni-
tude (πℓ)−1, which is the density of the Laughlin state itself. Such a bound was called
an incompressibility estimate in [37] because it is a manifestation of the resistance of the
Laughlin state against attempts to compress its density. It relies essentially on the strong
correlations of the Laughlin function and the analyticity of F in (1.3) which, physically, is
due to the strong magnetic field confining the particles to the LLL. Without such a field
and with weak correlations, the electron density in a crystal can be arbitrarily high locally,
due to constructive interference of Bloch waves.

The mean-field methods of [35, 36, 37] are not applicable to general prefactors F . The
question of a bound on the density for the general case was treated in [38] with an entirely
different technique, rooted in 2D potential theory. The bound obtained was four times the
expected optimal value (πℓ)−1 however. In this paper we explain that an improved version
of the potential theoretic method leads to the correct optimal bound for arbitrary F .

As indicated by numerical studies [7], the incompressibility bound for the density cannot
be expected to hold pointwise for finite N . We prove, however, that it holds for local
averages. Denote

ρF (z) = N

∫

R2(N−1)

|ΨF (z, z2, . . . , zN )|2 dz2 . . . dzN (2.2)

the particle density of the state (1.3). Our main result is

Theorem 1 (Density bound).
For any α > 1/4 and any disk D of radius Nα we have, uniformly in the choice of F ,

∫

D
ρF ≤ 1

πℓ
|D|(1 + o(1)) (2.3)

where |D| is the area of the disk and o(1) tends to zero as N → ∞.

Recall that the magnetic length is 1/
√
2. The average can thus be taken on “mesoscopic

scales”, O(N1/4+ε), much smaller than the full extent of the state, O(N1/2), but not quite
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down to the expected finest scale, O(1). For realistic numbers [40] one can have Quantum
Hall systems with N of the order of 109, in which case the ratio between the length scales
N1/4 and N1/2 is about 10−2. A simple covering argument (reminiscent of the ‘cheese
theorem’, see [26, Section 14.4] or [22, Theorem 14]) shows that (2.3) implies the analogous
result for any open set, not just a disk.

It follows that, for a continuous confining potential V , the smallest potential energy
obtainable with a fully correlated state, i.e.,

EV (ℓ,N) := min

{
∫

R2

V ρF , ΨF of the form (1.3)

}

, (2.4)

is bounded below by the “bathtub energy” [24, Theorem 1.14]

Ebt
V (ℓ) := min

{
∫

R2

V ρ
∣

∣

∣
0 ≤ ρ ≤ 1

πℓ
,

∫

R2

ρ = N

}

, (2.5)

i.e. the minimum of the potential energy over all densities ρ bounded by (πℓ)−1. This lower
bound

EV (ℓ,N) ' Ebt
V (ℓ) (2.6)

holds for large N provided V varies only on scales much larger than N1/4.
The bound (2.3) means that any compression of the particle density above the “magic

value” (πℓ)−1 that one could imagine to accommodate the variations of an external potential
would make us leave the class of fully correlated states, with corresponding increase in either
the magnetic kinetic energy or the interaction energy. Assuming the spectral gap mentioned
in Property 1, no such density bump is allowed. This justifies two things a posteriori :

• That it is legitimate to neglect disorder in the sample and/or small external electric fields,
as is done as a first approximation in the derivation of FQHE wave-functions.

• Laughlin’s argument [15, 17] (see also [14, Sections 4.4, 9.3 and 9.5]) that switching on
an electric current moves electrons transversally without creating any charge accumulation,
and generates a Hall conductivity of value 1/ℓ.

It has been proposed (see [8, 6, 42] for reviews) that Laughlin wave functions could be
created in cold atomic gases, either by rapid rotation or by applying artificial magnetic fields.
In this context, a magneto-optical trap confines the gas. Some recent proposals to reach
the Laughlin state [30, 33] involve some non-trivial engineering of the trapping potential.
How the Laughlin state responds is, therefore, of importance for the experimental set-up.

In addition, the precursor of FQHE states in a rapidly rotating Bose gas is a Bose-Einstein
condensate (see [21, 27] and references therein). Observing the distinctly flat profile of the
Laughlin state would already be a strong indication of the transition to the FQHE regime. A
more complete probe could be the response of the gas to variations of the trapping potential:
the Bose condensate follows the trap by taking a Thomas-Fermi-like shape (see [1, 2, 5] and
references therein). The Laughlin state essentially does not respond to such variations, as
exemplified by our main theorem.

We also point out that a combination of Theorem 1 with estimates obtained in [35, 36]
leads to the following improvement of [37, Corollary 2.3]:

Corollary 2 (Optimization of the energy in radial traps).
Let V (x) = |x|s with s > 0. Then the potential energy within the class (1.3) is minimized



RIGIDITY OF THE LAUGHLIN LIQUID 5

by the Laughlin state (F = 1):

lim
N→∞

∫

R2 V ρ1

EV (ℓ,N)
= lim

N→∞

Ebt
V (ℓ)

EV (ℓ,N)
= 1 (2.7)

where EV (N, ℓ) and Ebt
V (ℓ) are defined in (2.4) and (2.5) respectively.

It is remarkable that the Laughlin state stays an approximate minimizer in any power-law
trap (the result actually holds for more general radial increasing potentials). No matter how
steep and narrow a potential well one imposes, it is impossible to compress the Laughlin
state while keeping the form (1.3), i.e., without jumping across the spectral gap. Extensions
of Corollary 2 to general traps were recently proved in [39]: For a trap of arbitrary shape, the
minimal energy is asymptotically equal to the bathtub energy and can always be achieved by
adding uncorrelated quasi-holes on top of Laughlin’s function, i.e., by using wave functions
of the form (2.1).

3. Proof strategy: the exclusion rule

We now turn to sketching the proof of Theorem 1. Details are given in the longer
paper [25]. It is convenient to change variables and consider the scaledN -particle probability
density

µF (ZN ) := NN
∣

∣

∣
ΨF

(√
N ZN

)∣

∣

∣

2
(3.1)

corresponding to the wave-function (1.3). This has an extension O(1) for the Laughlin
state, F = 1. Here ZN stands for (z1, . . . , zN ). The scaled 1-particle probability density is

µ
(1)
F (z) =

∫

R2(N−1)
µF (z, z2, . . . , zN )dz2 . . . dzN = ρF

(√
Nz

)

(3.2)

The first step is to write the N -particle density as a Gibbs factor (Laughlin’s plasma
analogy),

µF (ZN ) = Z−1
N exp

(

− 1
T HN(ZN )

)

, (3.3)

with effective “temperature” T = N−1 and the ‘Hamiltonian’

HN (ZN ) =
N
∑

j=1

|zj |2 −
2ℓ

N

∑

i<j

log |zi − zj |+WN (ZN ), (3.4)

where

WN (ZN ) = − 2

N
log

∣

∣

∣
F
(√

N ZN

)
∣

∣

∣
. (3.5)

The term WN (ZN ) has the important property of being superharmonic in each variable:

−∇2
ziWN (ZN ) ≥ 0 for all i. (3.6)

This holds simply because F is analytic and is, in fact, the only property of WN that is
used in our method.

A precursor of the desired bound (2.3) for ρF is the fact that the local density of points
in a minimizing configuration for HN (ZN ) is everywhere bounded above by N(πℓ)−1 for
large N . This is the core of the proof of the theorem, and a signature of screening properties
of the effective plasma. To establish it, we introduce and study an auxiliary minimization
problem, which is, mathematically, a cousin of the Thomas-Fermi energy minimization
problem for molecules [23].
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For K fixed points xi ∈ R
2 (“nuclei”) we define an energy for functions σ on R

2 (“electron
density”) by

ETF[σ] = −
∫

R2

Vnucl(x)σ(x) dx +D(σ, σ) (3.7)

with

Vnucl(x) = −
K
∑

i=1

log |x− xi| (3.8)

and

D(σ, σ′) = −1

2

∫∫

R2×R2

σ(x) log |x− x′|σ′(x′) dx dx′. (3.9)

This functional is to be minimized under the subsidiary conditions

0 ≤ σ ≤ 1,

∫

R2

σ = K. (3.10)

In physical terms, this model describes a neutral 2D molecule consisting of fixed nuclei and
mobile electrons, with Coulomb interactions. The interpretation of the constraint 0 ≤ σ ≤ 1
is that the kinetic energy of the electrons is zero for densities ≤ 1 and ∞ for densities > 1.

The basic facts about this TF model are:

(1) There exists a unique minimizer, σTF.
(2) The minimizer has compact support.
(3) Apart from a set of measure zero, σTF takes only the values 0 or 1.
(4) The Thomas-Fermi equation holds:

ΦTF(x) =

{

≥ 0 if σTF(x) = 1

0 if σTF(x) = 0
(3.11)

where

ΦTF(x) = Vnuc(x) +

∫

R2

log |x− x′|σTF(x′)dx′

is the total electrostatic potential of the molecule.

According to the TF equation the support of σTF is the same as the support of the
potential ΦTF, which is continuous away from the “nuclei”. Denote by ΣTF(x1, . . . , xK) the
open set where ΦTF is strictly larger than 0. Some important properties are:

(1) The area of ΣTF(x1, . . . , xK) is equal to K.
(2) ΣTF(x1, . . . , xK−1) ⊂ ΣTF(x1, . . . , xK).
(3) For a single nucleus at x1, Σ

TF(x1) is the disc with center x1 and radius π−1/2.

Consider now a scaled version of (3.4),

H(XN ) =
π

2

N
∑

i=1

|xi|2 −
∑

1≤i<j≤N

log |xi − xj |+W(XN ), (3.12)

with W symmetric and superharmonic in each variable xi ∈ R
2 and XN = (x1, . . . , xN ). A

key property of minimizing configurations of H is stated in the following:
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Lemma 3 (Exclusion rule).
Let X0

N = {x01, . . . , x0N} be a minimizing configuration of points for H. For any subset of
points y1, . . . , yK , yK+1 ∈ X0

N ,

yK+1 /∈ ΣTF(y1, . . . , yK). (3.13)

The proof of this exclusion rule is sketched in the Appendix. To make the result plausible,
observe the following: the first term in (3.12) is the electrostatic potential generated by a
constant background of charge density−1. Using Equation (3.11), the electrostatic potential
generated by the points y1, . . . , yK is completely screened by the part of the background
potential generated by the region ΣTF(y1, . . . , yK). What the exclusion rule says is that no
other point of a minimizing configuration can lie inside this screening region. The reason is
two-fold:

• if another point yK+1 lay inside the screening region one could decrease the sum of the
first two terms in (3.12) by moving yK+1 to any position on the boundary.
• the last term W in (3.12), being superharmonic, is generated by a positive charge distri-
bution. One can thus always decrease W by moving yK+1 to some point on the boundary.
Such a move decreases at the same time the sum of the first two terms.

The particular case K = 1 of Lemma 3 goes back to an unpublished theorem of Lieb,
used in [38]: The minimal distance between points in a minimizing configuration of H is
not less than 1/

√
π. This property shows that the density of points is in any case bounded

above by 4. The general exclusion rule for all K implies more. The density is, in fact,
asymptotically bounded above by 1:

Lemma 4 (Exclusion rule implies density bound).
For R > 0 let n(R) denote the maximum number of any points {y1, . . . , yn} that a disk
D(R) of radius R can accommodate while respecting the exclusion rule (3.13). Then

lim sup
R→∞

n(R)

πR2
≤ 1. (3.14)

We sketch a proof in the Appendix. The main point is that if a large region contains a
density of points > 1 we can reach a contradiction by considering two facts:

• the potential ΦTF generated by the points yi contained in D(R) and the corresponding
exclusion set ΣTF(y1, . . . , yn) must vanish at all the points yj lying outside of D(R), by the

exclusion rule and (3.11). This leads to a uniform upper bound on ΦTF outside of D(R).
• the same potential is generated by an overall positive charge density, because the total
nuclear charge in D(R), which is > πR2 by assumption, is not fully screened by the part
of the negative charge density σTF lying in D(R), at most equal to the area πR2 because
σTF ≤ 1. A lower bound on the circular average of ΦTF outside of D(R) follows.

It turns out that, for R large enough, the two estimates obtained in this way, if (3.14)
fails, will contradict one another. Consequently, (3.14) must hold.

After scaling, x → z =
√

πℓ
N x, Lemma 2 applies to the Hamiltonian (3.4) and implies

that in any minimizing configuration {z01 , . . . , z0N} of (3.4) the number of points z0i contained

in any disc of radius R ≫ N−1/2 is not larger than N(πℓ)−1 times the area of the disc.
This is the gist of the proof. From there, the main argument left to conclude the proof of
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Theorem 1 is to show that the density bound for ground states of (3.4) applies also to the
Gibbs state (3.3).

In this argument, we use crucially that the temperature T in (3.3) scales as N−1 so that
the Gibbs measure charges mostly ground state configurations for large N . Turning this
intuition into a proof follows the lines of [38, Section 3], see [25, Section 5] for the details. In
brief, to access the 1-particle density we rely on the fact that a Gibbs state minimizes the free
energy of the corresponding Hamiltonian and use a Feynman-Hellmann-type argument: We
perturb the Hamiltonian (3.4) by adding a term ε

∑

i U(zi) with U of compact support and
prove free energy upper and lower bounds for this perturbed Hamiltonian. After dividing
by ε we obtain a bound on

∫

U(z)ρε(z)dz where ρε is the 1-particle density of the Gibbs
state for the perturbed Hamiltonian and show that this tends to

∫

U(z)ρ0(z)dz in the limit
ε → 0, where ρ0 is the empirical measure of the ground state.

Strictly speaking, this strategy requires an priori bound ensuring that ΨF lives on length
scales of order N1/2, e.g.,

〈ΨF , LNΨF 〉 ≤ CN2, (3.15)

where LN is the total angular momentum operator and C is independent of N and F .
This asumption is very reasonable physically, and can in fact be eliminated using a suitable
localization procedure ([25], Section 5.2).

We point out that our density upper bound holds down to the finest possible scale for
ground states of the plasma Hamiltonian (3.4), i.e., on length scales ≫ N−1/2 (see [34]
where the corresponding lower bound is proved in the purely Coulombic case W = 0). Note
that we are here referring to the scaled variables as in (3.1). When applying this result
to Gibbs states of (3.4) we have to restrict ourselves to length scales ≫ N−1/4 to control
the error terms arising from the entropic contribution to the free energy in the Feynman-
Hellmann type argument, but this is likely to be due to a technical limitation of our method.
It was, indeed, recently proved that, for the purely Coulombic Hamiltonian, the expected
microscopic density estimate holds for low temperature Gibbs states [4, 3, 19, 20] (see
also [32] for ground states of higher dimensional Coulomb and Riesz gases). It remains
to be seen whether a combination of our methods with those of [4, 19] could improve our
results.

4. Conclusion

We have considered perturbations of the Laughlin state that may arise to accommodate
external potentials, while keeping the system in the lowest Landau band and preserving
the original correlations. We proved rigorously that no such perturbation can raise the
particle density anywhere beyond the Laughlin value 1/(πℓ). This is one of the criteria

for the rigidity of the Laughlin state. Our theorem holds on length scales ≫ N1/4 (in the
original, physical variables) which, while large compared to the magnetic length O(1), are
microscopic compared to the system’s macroscopic size, N1/2.

Acknowledgments: We received financial support from the French ANR project ANR-13-
JS01-0005-01 (N. Rougerie), the US NSF grant PHY-1265118 (E. H. Lieb) and the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement CORFRONMAT No 758620).
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Appendix A. Proof of the main Lemmas

Here, for completeness, we sketch the proofs of Lemmas 3 and 4. The arguments are kept
short; full details may be found in the longer paper [25].

Proof of Lemma 3. By symmetry of the Hamiltonian we may, without loss, choose yi =
x0i , 1 ≤ i ≤ K+1. Consider then fixing all points but x0K+1. The energy to consider is then

G(x) = H(x01, . . . , x
0
K , x, x0K+2, · · · x0N ). (A.1)

We claim that if x ∈ ΣTF(x01, . . . , x
0
K) ≡ ΣTF then there is an x̃ ∈ ∂ΣTF, the boundary of

ΣTF, such that G(x̃) < G(x). Thus the minimizing point x0K+1 cannot lie in ΣTF.

To prove the claim, we add and substract a term −
∫

ΣTF log |x− x′|dx′ to write G(x) =
Φ(x) +R(x) with

Φ(x) = −
K
∑

i=1

log |x− x0i |+
∫

ΣTF

log |x− x′|dx′ (A.2)

and

R(x) =
π

2
|x|2 −

∫

ΣTF

log |x− x′|dx′ −
N
∑

i=K+2

log |x− x0i |+W (x) + const. (A.3)

Now, Φ is precisely the TF potential corresponding to ‘nuclear charges’ at x0i , . . . x
0
K . Hence,

using (3.11), Φ > 0 on ΣTF and zero on the boundary ∂ΣTF. The first two terms in R are
harmonic on ΣTF when taken together. (The Laplacian applied to the first term gives 2π
and to the second term −2π on ΣTF.) The other terms are superharmonic on ΣTF. Thus,
R takes its minimum on the boundary, so there is a x̃ ∈ ∂ΣTF with R(x) ≥ R(x̃). On the
other hand, Φ(x) > 0 = Φ(x̃), so G(x) > G(x̃). �

Proof of Lemma 4. The proof is by contradiction. Assume that, for some δ > 0, there are
arbitrary large radii with the property that the diskD(R) contains at least (1+δ)πR2 points.
This leads to a contradiction with (3.13) and we present here a sketch of the argument. Full
details are given in [25].

By taking the maximal δ (which is in any case ≤ 3) we may, without restriction, assume
that the density is also at least (1 + δ) in the annulus A of width δ ·R around D(R). Since
the density is everywhere bounded above by 4, apart from the points yi ∈ D(R), i = 1, . . . , n
there must be points yj ∈ A, j = n+1, . . . ,m in the configuration such that every point in
A is at most a distance O(1) from one of the yj. The TF potential ΦTF generated by the yi
and the corresponding exclusion set ΣTF(y1, . . . , yn) must vanish at the yj by the exclusion
rule and (3.11).

On the other hand, after scaling the variables by R−1 and extracting a factor R2 one
can show that the gradient of the TF potential is uniformly bounded in the scaled annulus
R−1A. The distance between the scaled yj is now R−1 so the scaled potential goes to zero
uniformly on R−1A as R → ∞. The same holds, then, for the circular average of the scaled
potential.

We claim, however, that the latter is strictly bounded away from zero close to the radius 1
(corresponding to radius R in the unscaled annulus). This follows from Newton’s theorem,
because the nuclear charge in D(R), which is (1+δ)πR2 by assumption, is not fully screened
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by the part of the negative charge density σTF lying in D(R). This negative charge is at
most equal to the area πR2 because σTF ≤ 1. There is thus a contradiction for R large
enough. �
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