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We consider general N-particle wave functions that have the form of a product of the Laughlin
state with filling factor 1/ℓ and an analytic function of the N variables. This is the most general form
of a wave function that can arise through a perturbation of the Laughlin state by external potentials
or impurities, while staying in the lowest Landau level and maintaining the strong correlations of
the original state. We show that the perturbation can only shift or lower the 1-particle density
but nowhere increase it above a maximum value. Regardless of the analytic prefactor, the density
satisfies the same bound as the Laughlin function itself, i.e. (πℓ)−1 in the limit of large particle
number. Consequences of this incompressibility bound for the response of the Laughlin state to
external fields are discussed. Our theorems apply equally to bosonic and fermionic states.

In theoretical studies of the fractional quantum Hall
effect (FQHE) [8–10, 30] Laughlin’s wave function(s) [12–
14] play a fundamental role. There is such a function for
every positive integer ℓ and it can be written, in appro-
priate units, as

ΨLau = cLau
∏

i<j

(zi − zj)
ℓe−

∑
N

i=1
|zi|

2/2 (1)

where the zi ∈ C are the positions of N particles moving
in R2, identified with the complex plane, and the constant
cLau is a normalization factor (depending on N and ℓ).
For fermions, ℓ is odd and≥ 3 (the case ℓ = 1 corresponds
to noninteracting fermions), while for bosons ℓ ≥ 2 is
even. Bosonic wave functions of this type are potentially
relevant for atomic gases in artificial magnetic fields [5,
7, 16, 22, 24, 31]. The analysis below applies equally to
Laughlin states of all symmetry types.
The Laughlin state (1) is a special kind of wave func-

tion in the Lowest Landau level (LLL) of a Hamiltonian
with a strong magnetic field perpendicular to the plane
where the particles move. The general form of such func-
tions is

Ψ(z1, . . . , zN) = A(z1, . . . , zN ) e−
∑

N

i=1
|zi|

2/2 (2)

with A analytic, antisymmetric for fermions and symmet-
ric for bosons. If there is strong repulsive two-body inter-
action between the particles, (1) is a natural variational
ansatz for low energy states because the factors (zi−zj)

ℓ

suppress the interactions. At the same time they produce
strong correlations between the particle positions.
The success of Laughlin’s theory of the FQHE fractions

1/ℓ, based on (1), depends on two crucial properties:

1. The Laughlin wave function is an approximate ground
state for the many-body Hamiltonian, separated from the
rest of the spectrum by an energy gap.

2. The Laughlin wave function behaves as an incompress-
ible liquid, whose response to perturbations and external
fields is extremely rigid.

Up to now, the main evidence for these facts has been
experimental and numerical. Property 1 ensures that
the Laughlin wave-function indeed emerges as a phase of
matter proper (the incompressible quantum fluid [13]).
Property 2 is somewhat more subtle, but also crucial for
Laughlin’s original argument supporting quantization of
the Hall conductivity [11, 14].
In this Letter, we report on recent, mathematically rig-

orous, estimates that demonstrate the validity of Prop-
erty 2. These are related to earlier partial results proved
in [28, 29]. The full proofs are lengthy and shall be pre-
sented elsewhere [19] but we sketch the main arguments
below, and discuss physical applications.

We first have to be more precise as to what, exactly, is
a reasonable perturbation of the Laughlin state. By this
we mean a state vector made only of LLL orbitals and
containing at least the same correlations as the Laughlin
state. These demands still leave considerable freedom for
the choice of trial states. Indeed, to allow for a response
of the Laughlin state to perturbations generated by im-
purities or external potentials it is natural to consider
normalized wave functions of the general form

ΨF (z1, . . . , zN ) = F (z1, . . . , zN )ΨLau(z1, . . . , zN ) (3)

with F analytic and symmetric under exchange of the zi.
This form exhausts the class of functions that minimize
the magnetic kinetic energy and at the same time avoid
repulsive interactions by vanishing at least as (zi−zj)

ℓ as
zi and zj come together. Assuming that the interaction
operator has a gap, it makes sense, for low energy per-
turbations, to restrict attention to the form (3), which
we shall refer to as fully correlated Quantum Hall states.
Our goal is to prove general density bounds within this
class. That is, roughly speaking, we assume Property 1

above and wish to argue for Property 2.
In his pioneering paper [12], Laughlin already argued

that the one-particle density of the state (1) has, for large
N , the form of a circular droplet of radius

√
ℓN where the
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density takes the constant value (πℓ)−1. The argument
was based on the plasma analogy, where the absolute
square of the wave function is written as the Gibbs dis-
tribution of a classical 2D Coulomb gas, and subsequently
treated by a mean-field approximation.
Previous rigorous mathematical analysis has confirmed

the validity of this approximation for the Laughlin states
and extended it to more general states of the form (3),
including Laughlin’s ‘quasi hole’ states where the prefac-
tor F is a product where each factor depends on a single
variable [26, 27]. This analysis was extended to other
prefactors of a special kind in [28]. A common feature
that emerged was an upper bound on the one-particle
density of magnitude (πℓ)−1 which is the density of the
Laughlin state itself. Such a bound was called an incom-

pressibility estimate in [28] because it is a manifestation
of the resistance of the Laughlin state against attempts
to compress its density. As long as one stays in the LLL
and maintains the correlation factors (zi − zj)

ℓ, the per-
turbation can increase or decrease the density profile, but
only in such a way that the new density is never greater
than (πℓ)−1 anywhere.
The mean-field methods of [26–28] are not applicable

to general prefactors F which, in the plasma analogy,
may correspond to genuine N particle interactions. The
question of a bound on the density for the general case
was treated in [29] with an entirely different technique,
rooted in 2D potential theory. The bound obtained was,
however, four times the expected optimal value (πℓ)−1.
In this Letter we show that an improved version of the
potential theoretic method leads to the correct optimal
bound for completely arbitrary F .
As indicated by numerical studies [6], the incompress-

ibility bound for the density cannot be expected to hold
pointwise for finite N . We prove, however, that for
N → ∞ it holds, at least in the weak sense of aver-
ages, over length scales larger than the magnetic length,
which is 1 in our units. Such a scale is much smaller
than the extension of the wave function, which is at least
O(N1/2).
In order to study the N → ∞ limit it is convenient

to change variables and consider the scaled N -particle
probability density

µF (ZN ) := NN
∣

∣

∣
ΨF

(√
N ZN

)∣

∣

∣

2

(4)

corresponding to the wave-function (3). This has an ex-
tension O(1) for the Laughlin states, i.e. for F = 1. Here
ZN stands for (z1, . . . , zN). Integrating over the N − 1
variables Z ′

N−1 = (z2, . . . , zN) we obtain the scaled 1-
particle probability density

µ
(1)
F (z) =

∫

µF (z, Z
′
N)dZ ′

N−1. (5)

The 1-particle density in the original variables is then

ρ
(1)
F (z) = µ

(1)
F (N−1/2 z).

To state our density bound precisely we pick an exter-
nal potential V , and define the energy EV (ℓ,N) as the
infimum of the potential energy over all fully correlated
states (3):

EV (ℓ,N) := inf {EV [ΨF ], ΨF of the form (3)} (6)

where

EV [ΨF ] =

∫

R2

V µ
(1)
F .

Note that, implicit in the choice of units above, is that
we consider the response of functions of the form (3) to
potentials living on the scale of the Laughlin state, that
is O(N1/2) in the physical variables.
We also define the ‘bathtub energy’ [18, Theorem 1.14]

Ebt
V (ℓ) := inf

{
∫

R2

V ρ
∣

∣

∣
0 ≤ ρ ≤ 1

πℓ
,

∫

R2

ρ = 1

}

. (7)

This is the infimum of the potential energy over all
densities ρ that satisfy the conjectured incompressibility
bound. We formulate our weak density bound on (3) as
a bound on the potential energy in terms of the bathtub
energy:

Theorem 1 (Potential energy of fully correlated

states). For any twice continuously differentiable poten-

tial V growing at infinity, we have,

lim inf
N→∞

EV (ℓ,N) ≥ Ebt
V (ℓ). (8)

Thus, any compression of the particle density above
the “magic value” (πℓ)−1 that one could imagine to ac-
commodate the variations of the external potential would
make us leave the class of fully correlated states, with cor-
responding increase in either the magnetic kinetic energy
or the interaction energy. Assuming the values of the lat-
ter are frozen (i.e. Property 1), no such density bump is
allowed. This property justifies two things a posteriori :

• That it is legitimate to neglect disorder in the sample
and/or small external electric fields, as is done as a first
approximation in the derivation of FQHE wave-functions.

• Laughlin’s argument [11, 13] (see also [10, Sections 4.4,
9.3 and 9.5]) that switching on an electric current moves
electrons transversally without creating any charge accu-
mulation, and generates a Hall conductivity of value 1/ℓ.

It has been proposed (see [5, 7, 31] for reviews) that
Laughlin wave functions could be created in cold atomic
gases, either by rapid rotation or by applying artificial
magnetic fields. In this context, the potential V can
model, for instance, the magneto-optical trap that con-
fines the gas. Some recent proposals to reach the Laugh-
lin state [22, 24] involve some non-trivial engineering of
the latter. How the Laughlin state responds to this is
therefore of importance for the experimental set-up.
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Moreover, the precursor of FQHE states in a rapidly
rotating Bose gas is a Bose-Einstein condensate (see [16,
21] and references therein). Observing the distinctively
flat profile of the Laughlin state, by time-of-flight tech-
niques, would already be a strong indication of the transi-
tion to the FQHE regime. A more complete probe could
be the response of the gas to variations of the trapping
potential: the Bose condensate follows the trap by taking
a Thomas-Fermi-like shape (see [1, 2, 4] and references
therein). The Laughlin state essentially does not respond
to such variations, as exemplified by our main theorem.
In this direction, we point out that a combination of

Theorem 1 and the methods of [26, 27] yields the follow-
ing improvement of [28, Corollary 2.3]:

Corollary 2 (Optimization of the energy in radial

traps). Let V be as in Theorem 1. Assume further that

it is radial increasing and has at most polynomial growth

at infinity. Then

lim
N→∞

EV (ℓ,N) = Ebt
V (ℓ) = lim

N→∞
EV [ΨLau]. (9)

It is remarkable that the Laughlin state stays an ap-
proximate minimizer in any radially increasing trap. No
matter how steep and narrow a potential well one im-
poses, it is impossible to compress the Laughlin state
while keeping the form (3). Extensions of Corollary 2 to
more general radial traps as in [28, Corollary 2.3] are also
possible.

We now turn to sketching the proof of Theorem 1,
postponing the details to a future publication [19]. The
first step is to write the N -particle density as a Gibbs
factor (plasma analogy),

µF (ZN ) = Z−1
N exp

(

− 1
T HN (ZN )

)

, (10)

with temperature T = N−1 and the Hamiltonian

HN(ZN ) =

N
∑

j=1

|zj |2−
2ℓ

N

∑

i<j

log |zi − zj|+W (ZN) (11)

with

W (ZN) = − 2

N
log

∣

∣

∣
F
(√

N ZN

)∣

∣

∣
. (12)

The term W (ZN ) has the important property of being
superharmonic in each variable:

−∇2
ziW (ZN) ≥ 0 for all i. (13)

This holds because F is analytic and is, in fact, the only
property of W that is used in our method.

A precursor of the desired bound for µ
(1)
N is the fact

that the local density of the points z0i in a minimiz-
ing configuration Z0

N for HN (Z) is everywhere bounded
above by N(πℓ)−1 for large N . To establish this fact,

which is the core of the proof of the theorem, we intro-
duce and study an auxiliary Thomas-Fermi (TF) model
of a special kind.
For K fixed points xi ∈ R2 (“nuclei”) we define an

energy for functions σ on R2 (“electron density”) by

ETF[σ] = −
∫

R2

V (x)σ(x) dx +D(σ, σ) (14)

with

Vnucl(x) = −
K
∑

i=1

log |x− xi| (15)

and

D(σ, σ′) = −1

2

∫∫

R2×R2

σ(x) log |x− x′|σ′(x′) dx dx′.

(16)
This functional is minimized under the subsidiary condi-
tions

0 ≤ σ(x) ≤ 1,

∫

σ(x)dx = K. (17)

In physical terms, this model describes a neutral 2D
molecule consisting of fixed nuclei and mobile electrons,
with Coulomb interactions. The interpretation of the
constraint 0 ≤ σ ≤ 1 is that the kinetic energy of the
electrons is zero for densities ≤ 1 and∞ for densities > 1.
The basic facts about this TF model are: (1) There

exists a unique minimizer, σTF. (2) The minimizer has
compact support. (3) Apart of a set of measure zero,
σTF takes only the values 0 or 1. (4) The Thomas-Fermi
equation holds:

ΦTF(x) =

{

≥ 0 if σTF(x) = 1

0 if σTF(x) = 0
(18)

where

ΦTF(x) = Vnuc(x) +

∫

R2

log |x− x′|σTF(x′)dx′

is the total electrostatic potential of the molecule.
The derivation of these properties requires some effort

because the TF model is of a singular type and standard
methods have to be modified, see [19].
According to the TF equation the support of σTF is the

same as the support of the potential ΦTF, which is contin-
uous away from the “nuclei”. Denote by ΣTF(x1, . . . , xK)
the open set where ΦTF is strictly larger than 0. Impor-
tant properties of these sets are:

(1) The area of ΣTF(x1, . . . , xK) is equal to K. (2)
ΣTF(x1, . . . , xK−1) ⊂ ΣTF(x1, . . . , xK). (3) For a single
nucleus at x1, ΣTF(x1) is the disc with center x1 and
radius π−1/2.
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Consider now a scaled version of (11),

H(XN) =
π

2

N
∑

i=1

|xi|2 −
∑

1≤i<j≤N

log |xi − xj |+W(XN),

(19)
with W symmetric and superharmonic in each variable
xi ∈ R2 and XN = (x1, . . . , xN ). A key property of
minimizing configurations of H is stated in the following:

Lemma 3 (Exclusion rule). Let X0
N = (x0

1, . . . , x
0
N )

be a minimizing configuration for H. For any subset

y1, . . . , yK , yK+1 ∈ X0
N ,

yK+1 /∈ ΣTF(y1, . . . , yK). (20)

Proof. By symmetry of the Hamiltonian we may, without
loss, choose yi = x0

i , 1 ≤ i ≤ K +1. Consider then fixing
all points but x0

K+1. The energy to consider is then

G(x) = H(x0
1, . . . , x

0
K , x, x0

K+2, · · ·x0
N ). (21)

We claim that if x ∈ ΣTF(x0
1, . . . , x

0
K) ≡ ΣTF then there

is an x̃ ∈ ∂ΣTF, the boundary of ΣTF, such that G(x̃) <
G(x). Thus the minimizing point x0

K+1 cannot lie in
ΣTF.
To prove the claim, we add and substract a term

−
∫

ΣTF log |x− x′|dx′ to write G(x) = Φ(x) +R(x) with

Φ(x) = −
K
∑

i=1

log |x− x0
i |+

∫

ΣTF

log |x− x′|dx′ (22)

and

R(x) =
π

2
|x|2 −

∫

ΣTF

log |x− x′|dx′

−
N
∑

i=K+2

log |x− x0
i |+W (x) + const. (23)

Now, Φ is precisely the TF potential corresponding to
‘nuclear charges’ at x0

i , . . . x
0
K . Hence, using (18), Φ > 0

on ΣTF and zero on the boundary ∂ΣTF. The first two
terms in R are harmonic on ΣTF when taken together.
(The Laplacian applied to the first term gives 2π and
to the second term −2π on ΣTF.) The other terms are
superharmonic on ΣTF. Thus, R takes its minimum on
the boundary, so there is a x̃ ∈ ∂ΣTF with R(x) ≥ R(x̃).
On the other hand, Φ(x) > 0 = Φ(x̃) so G(x) > G(x̃).

The particular caseK = 1 goes back to an unpublished
theorem due to Lieb, used in [29]: The minimal distance
between points in a minimizing configuration of H is not
less than 1/

√
π. This property shows that the density of

the points is in any case bounded above by 4. The general
exclusion rule for all K implies more. The density is, in
fact, asymptotically bounded above by 1:

Lemma 4 (Exclusion rule implies density bound).
For R > 0 let n(R) denote the maximum number of any

points {y1, . . . , yn} that a ball B(R) of radius R can ac-

commodate while respecting the exclusion rule (20). Then

lim sup
R→∞

n(R)

πR2
≤ 1. (24)

Proof. The proof is indirect, assuming that for some δ >
0 there are arbitrary large radii with the property that
the ball B(R) contains at least (1 + δ)πR2 points. We
will lead this to a contradiction with (20). Full details are
given in [19] and we present here only a sketch. By taking
the maximal δ (which is in any case ≤ 3) we may, without
restriction, assume that the density is also at least (1+δ)
in the annulus A of width δ · R around B(R).
Since the density is everywhere bounded above by 4,

apart from the points yi ∈ B(R), i = 1, . . . , n there must
be points yj ∈ A, j = n + 1, . . . ,m in the configuration
such that every point in A is at most a distance O(1) from
one of the yj . The TF potential ΦTF generated by the
yi and the corresponding exclusion set ΣTF(y1, . . . , yn)
must vanish at the yj by the exclusion rule and (18).
On the other hand, after scaling the variables by R−1

and extracting a factor R2 one can show that the gradient
of the TF potential is uniformly bounded in the scaled
annulus R−1A. The distance between the scaled yj is
now R−1 so the scaled potential goes to zero uniformly
onR−1A asR → ∞. The same holds then for the circular
average of the scaled potential.
We claim, however, that the latter is strictly bounded

away from zero close to the radius 1 (corresponding to ra-
dius R in the unscaled annulus). This follows from New-
ton’s theorem, because the nuclear charge in B(R), which
is (1+ δ)πR2 by assumption, is not fully screened by the
part of the negative charge density σTF lying in B(R),
which is at most equal to the area πR2 because σTF ≤ 1.
There is thus a contradiction for R large enough.

After scaling, x → z =
√

πℓ
N x, Lemma 2 applies to

the Hamiltonian (11) and implies that in any minimizing
configuration Z0

N = (z01 , . . . , z
0
N) of (11) the number of

points z0i contained in any disc of radius ≫ N−1/2 is
no larger than N(πℓ)−1 times the area of the disc. This
is the gist of the proof and already hints at a strong
incompressibility property. From there, two main steps
are left to conclude the proof of Theorem 1:

• Cover any reasonable region of side-length ≫ N−1/2

efficiently with balls in which the previous statement
applies. This uses the ‘cheese theorem’(see [20, Sec-
tion 14.4] or [17, Theorem 14]) which asserts that this
can be accomplished up to a residual set of extremely
small area. The upshot is that the empirical measure

ρ0(z) =
1

N

N
∑

j=1

δ(z − z0i )
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can be approximated in the weak sense by an absolutely
continuous distribution ρ̃0 of integral 1 satisfying for large
N the bound

ρ̃0(z) ≤ (πℓ)−1(1 + o(1)).

• Show that the above bound for ground states of (11)
applies also to the Gibbs state (10). Here we use crucially
that the temperature T in the latter scales asN−1 so that
the Gibbs measure charges mostly ground state configu-
rations for large N . Turning this intuition into a proof
follows the lines of [29, Section 3]. To access the 1-particle
density we prove free energy upper and lower bounds for
a perturbed version of the Hamiltonian. We show that
the latter satisfies approximately the same bounds as the
unperturbed (11) and then translate the free-energy esti-
mates into density estimates using a Feynman-Hellmann-
type argument.

We point out that our density upper bound holds down
to the finest possible scale for ground states of (11),
i.e. on length scales ≫ N−1/2, the typical interparti-
cle distance. Recently, it was proved that, for the purely
Coulombic Hamiltonian where F = 1 (i.e. W = 0), a
corresponding density lower bound also holds for ground
states [25] and low temperature Gibbs states [3, 15] (see
also [23] for ground states of higher dimensional Coulomb
and Riesz gases). We believe that, for the purely Coulom-
bic Hamiltonian, an extension of the method sketched
herein can yield a new proof of the charge distribution
results of [3, 15, 25]. This remains a question for future
investigations, as does extending Corollary 2 to more gen-
eral potentials V .
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