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Stability estimates for Navier-Stokes equations and

application to inverse problems

Mehdi Badra∗ Fabien Caubet† Jérémi Dardé‡

September 12, 2016

Abstract

In this work, we present some new Carleman inequalities for Stokes and Oseen
equations with non-homogeneous boundary conditions. These estimates lead to log
type stability inequalities for the problem of recovering the solution of the Stokes
and Navier-Stokes equations from both boundary and distributed observations. These
inequalities fit the well-known unique continuation result of Fabre and Lebeau [18]:
the distributed observation only depends on interior measurement of the velocity,
and the boundary observation only depends on the trace of the velocity and of the
Cauchy stress tensor measurements. Finally, we present two applications for such
inequalities. First, we apply these estimates to obtain stability inequalities for the
inverse problem of recovering Navier or Robin boundary coefficients from boundary
measurements. Next, we use these estimates to deduce the rate of convergence of two
reconstruction methods of the Stokes solution from the measurement of Cauchy data:
a quasi-reversibility method and a penalized Kohn-Vogelius method.

Keywords: Stability estimate, Navier-Stokes equations, Carleman inequality, Inverse
problems

AMS Classification: 35R30, 35Q30, 76D07, 76D05

1 Introduction and main results

For a nonempty bounded open subset Ω of R
N (N = 2 or N = 3), we consider a pair

velocity-pressure (v, p) ∈ H
2(Ω)×H1(Ω) solution of the following linearized Navier-Stokes

equations (also called Oseen equations):

{
−ν∆v + (z1 · ∇) v + (v · ∇)z2 +∇p = f in Ω,

div v = d in Ω.
(1.1)

Above and in the following, ν > 0 is a constant which represents the kinematic viscosity
of the fluid, f ∈ L

2(Ω), d ∈ H1(Ω) and

z1 ∈ L
∞(Ω) and z2 ∈ W

1,r(Ω) with

{
r > 2 if N = 2,
r = 3 if N = 3.

(1.2)

∗Laboratoire LMAP, UMR CNRS 5142, Université de Pau et des Pays de l’Adour, F-64013 Pau Cedex,

France. E-mail: mehdi.badra@univ-pau.fr
†Institut de Mathématiques de Toulouse ; UMR5219 ; Université de Toulouse ; CNRS ; UPS IMT,

F-31062 Toulouse Cedex 9, France. E-mail: fabien.caubet@math.univ-toulouse.fr
‡Institut de Mathématiques de Toulouse ; UMR5219 ; Université de Toulouse ; CNRS ; UPS IMT,

F-31062 Toulouse Cedex 9, France. E-mail: jdarde@math.univ-toulouse.fr

1



In the following, z1 and z2 will be two solutions of the Navier-Stokes equations in Ω. More
precisely, if z1 and z2 are two solutions of the Navier-Stokes equations, then their difference
v = z1 − z2 verifies (1.1).

The pair (v, p) is not completely determined by System (1.1). However, if we have some
additional observation, such as the value of the velocity v in a nonempty (and arbitrary
small) open subset ω ⊂ Ω, namely

v = vobs in ω, (1.3)

or the value of the Cauchy data (v, σ(v, p)n) on a nonempty open subset Γobs of ∂Ω,
namely {

v = gD on Γobs,
σ(v, p)n = gN on Γobs,

(1.4)

then Fabre and Lebeau’s Theorem guarantees the uniqueness of the corresponding pair
(v, p) (see [18]). However, the related stability inequality expressing the (conditional)
continuous dependence of (v, p) with respect to ‖f‖L2(Ω), ‖d‖H1(Ω) and to some norm
‖(v, p)‖Obs (corresponding to one of the above mentioned observation) are not yet proved
for system (1.1). Indeed, up to our knowledge, the most recent result quantifying the Fabre
and Lebeau’s unique continuation theorem in the Stokes case is the following one given
in [10, Theorem 1.4] by Boulakia et al.:

Theorem 1.1 (Boulakia et al. in [10]). Assume that Ω is of class C∞. There exists d0 > 0
such that for all d > d0 there exists C > 0 such that, for all solution (v, p) ∈ H

2(Ω)×H2(Ω)
of the Stokes equations {

−ν∆v +∇p = 0 in Ω,
div v = 0 in Ω,

we have

‖v‖
H

1(Ω) + ‖p‖H1(Ω) ≤ C
‖v‖H2(Ω) + ‖p‖H2(Ω)

(
ln

(
d
‖v‖H2(Ω) + ‖p‖H2(Ω)

‖v‖
H

1(ω) + ‖p‖H1(ω)

))1/2

and

‖v‖
H

1(Ω)+‖p‖H1(Ω) ≤ C
‖v‖H2(Ω) + ‖p‖H2(Ω)

(
ln

(
d

‖v‖H2(Ω) + ‖p‖H2(Ω)

‖v‖L2(Γobs) + ‖∂v∂n‖L2(Γobs) + ‖p‖L2(Γobs)
+ ‖ ∂p∂n‖L2(Γobs)

))1/2
.

As underlined by the authors themselves, this result does not depend exclusively on
the needed observations (1.3) or (1.4) and then does not fit the Fabre and Lebeau’s The-
orem. The first main results of the present paper are stability inequalities for the Oseen
equations (1.1) which are quantified versions of Fabre and Lebeau’s uniqueness Theorem
(see Theorem 1.2 below) and, in this sense, improve the previous work of Boulakia et al. It
allows to obtain analogous stability inequalities for the Navier-Stokes equations. Then, in
a second step, we give examples of applications for some parameter identification problems
as well as for some error estimates for numerical reconstruction methods.

Stability inequalities. In order to state our main theorem, we need some assumptions
and notations. Here and in the following, C > 0 denotes a generic constant which, unless
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otherwise stated, only depends on the geometry and which may change from line to line,
and K ≥ ee denotes a constant which satisfies:

max
{
1 , ‖z1‖L∞(Ω) , ‖∇z2‖Lr(Ω)

}
≤ ln(lnK). (1.5)

Moreover, ω denotes a nonempty open subset of Ω and Γobs denotes a nonempty open
subset of ∂Ω. In this paper, n is the outward unit normal to ∂Ω which is assumed to be of
class C2 and the stress tensor is defined by σ(u, p)

def

= 2νD(u)− p I, where I is the identity

matrix and D(y)
def

= 1
2

(
∇y + t∇y

)
is the symmetrized gradient.

We prove (see Subsections 3.1 and 3.2) the following

Theorem 1.2. Assume (1.2) and (1.5) and that (v, p) ∈ H
2(Ω) × H1(Ω) is a solution

of the Oseen equations (1.1). For any M > 0 such that ‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ M , the
following estimates hold:

‖v‖
L
2(Ω) ≤ CK

M

ln

(
1 +

M

‖f‖
L
2(Ω) + ‖d‖H1(Ω) + ‖v‖

L
2(ω)

) (1.6)

and

‖v‖
L
2(Ω) ≤ CK

M

ln

(
1 +

M

‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖
H3/2(Γobs)

+ ‖σ(v, p)n‖
H1/2(Γobs)

) .

(1.7)
Moreover, we have

‖curlv‖(L2(Ω))2N−3 + ‖p− div v‖L2(Ω)

≤ CK
M

(
ln

(
1 +

M

‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖
H3/2(Γobs)

+ ‖σ(v, p)n‖
H1/2(Γobs)

))1/2
. (1.8)

The above theorem allows us to obtain stability estimates for the Navier-Stokes equa-
tions. Let (zi, πi) ∈ H

2(Ω)×H1(Ω), i = 1, 2, satisfy

{
−ν∆zi + (zi · ∇)zi +∇πi = f in Ω,

div zi = d in Ω.
(1.9)

Note that the H
2 regularity of z1, z2 implies (1.2). We prove (see Subsection 3.3) the

following

Theorem 1.3. Suppose that (zi, πi) ∈ H
2(Ω)×H1(Ω), i = 1, 2, are two solutions of (1.9)

which satisfy (1.5) for some K > ee. Then, for any M > 0 such that ‖z1 − z2‖H2(Ω) +
‖π1 − π2‖H1(Ω) ≤M , the following estimates hold:

‖z1 − z2‖L2(Ω) ≤ CK
M

ln

(
1 +

M

‖z1 − z2‖L2(ω)

) (1.10)
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and

‖z1 − z2‖L2(Ω) ≤ CK
M

ln

(
1 +

M

‖z1 − z2‖H3/2(Γobs)
+ ‖σ(z1, π1)n− σ(z2, π2)n‖H1/2(Γobs)

) .

(1.11)
Moreover, we have

‖curl (z1 − z2)‖(L2(Ω))2N−3 + ‖π1 − π2‖L2(Ω)

≤ CK
M

(
ln

(
1 +

M

‖z1 − z2‖H3/2(Γobs)
+ ‖σ(z1, π1)n− σ(z2, π2)n‖H1/2(Γobs)

))1/2
. (1.12)

We stress that these stability estimates respect the well known unique continuation
result of Fabre and Lebeau (see [18]) since the observation in ω only concerns the velocity,
and since the observation on Γobs only concerns v Γobs

and σ(v, p)n Γobs
. Indeed, Fabre

and Lebeau’s Theorem states that every velocity v solution of
{

−∆v +∇p = 0 in Ω,
div v = 0 in Ω,

(1.13)

which is identically zero in ω must be zero in Ω (and then p is constant, see [18, Proposi-
tion 1.1] for precise statements). In particular, no information is required on p to obtain
this result. Moreover, as a direct consequence of the above mentioned uniqueness result,
we can easily deduce that, if a smooth solution (v, p) of System (1.13) satisfies v = 0

and σ(v, p)n = 0 on Γobs, then, v = 0 and p = 0 in Ω. Therefore, inequalities (1.6), (1.7)
and (1.8) are quantifications of Fabre and Lebeau’s uniqueness theorem.

The proof of Theorem 1.2 is based on global Carleman inequalities for the Oseen system
with non-homogeneous data. Quantitative results for unique continuation are classically
obtained thanks to Carleman inequalities and three-spheres inequalities. We refer to the
topical review of Alessandrini et al. [3] and to the references therein for elliptic cases; see
also the works of Le Rousseau et al. in [25]. However, there is not so much results available
on quantitative uniqueness for systems. About Stokes system we shall mention the works
of Boulakia et al. in [9, 10] for stability estimates and of Ballerini in [6] and Lin et al.
in [26] for some other connected results.

Applications to inverse problems. We obtain stability inequalities for the problem
of recovering Navier or Robin boundary coefficients. For this, we assume that Γobs and Γ0

are two nonempty open subsets of ∂Ω such that Γobs ∩Γ0 = ∅ and we consider on Γ0 a non
penetration condition given by z · n = 0 and a friction law given by 2ν [D(z)n]τ + αz = 0

(subscript τ denotes the tangential component). The aim is to reconstruct the friction
coefficient α from Cauchy data on Γobs. Thus, we consider two solutions (zi, πi) ∈ H

2(Ω)×
H1(Ω) (i = 1, 2) of the Navier-Stokes equations

{
−ν∆zi + (zi · ∇)zi +∇πi = f in Ω,

div zi = d in Ω,
(1.14)

associated to two friction coefficients αi ∈ H1/2(Γ0) ∩ L∞(Γ0) (i = 1, 2) in the Navier type
boundary conditions on Γ0:

{
zi · n = 0 on Γ0,

2ν [D(zi)n]τ + αizi = 0 on Γ0.
(1.15)
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We also consider the reconstruction of the Robin coefficient, still denoted α, in the case of
the classical Robin boundary conditions on Γ0 given by:

σ(zi, πi)n+ αizi = 0 on Γ0. (1.16)

Notice that the H1/2(Γ0)-regularity of αi is necessary to have a H
2(Ω)×H1(Ω)-regularity

of the solutions.

Theorem 1.4. Let αi ∈ H1/2(Γ0)∩L∞(Γ0), i = 1, 2 be two given coefficients. Let (zi, πi) ∈
H

2(Ω) × H1(Ω), i = 1, 2, be two pairs solution of the Navier-Stokes equations (1.14) with

the boundary conditions (1.15) or (1.16) which satisfy (1.5) for some K ≥ ee. Let N def
=

{x ∈ Γ0 , z1(x) = 0 and z2(x) = 0}, assume that K is a compact subset of Γ0\N with a
nonempty interior and let m > 0 be a constant such that max(|z1| , |z2|) ≥ m on K. Then,
for any M > 0 such that ‖z1 − z2‖H2(Ω) + ‖π1 − π2‖H1(Ω) ≤ M , the following inequality
holds:

‖α1 − α2‖L2(K)

≤ CK

m

M
(
ln

(
1 +

M

‖z1 − z2‖H3/2(Γobs)
+ ‖σ(z1, π1)n− σ(z2, π2)n‖H1/2(Γobs)

))1/4
.

(1.17)

Here, the constant C does not depend only on the geometry but also on ‖αi‖L∞(Γ0)
for

i = 1, 2.

Remark 1.5. We stress the fact that the previous estimate (1.17) depends on the solu-
tions z1 and z2 through the choice of the compact set K and the constant m. To complete
this result, it would be interesting to obtain a quantitative estimate of the vanishing rate
of z, like what is done in [4] in the case of the Laplace equation.

Remark 1.6. Note that the assumptions of Theorem 1.4 guarantee that z1, z1 are con-
tinuous. Then if K exists, the constant m > 0 exists and depends on z1, z1 on K. The
existence of K is known in the case of Robin boundary conditions (1.16) if z1 (or z2) is
not identically equal to zero in Ω. It is an easy consequence of Fabre and Lebeau’s theorem.
But in the case of Navier conditions (1.15) and if one of the zi is not trivial, the existence
of a nonempty open subset of Γ0 on which z1 and z2 both vanish is a difficult issue. Indeed,
it reduces to study the existence of a non trivial vector field v solution to an homogeneous
Oseen equation (see (4.1) below) and such that v = ∂nv = 0 on a nonempty open subset
of Γ0. The difficulty relies on the fact that, unlike the Robin case, no additional information
on the pressure is available.

Remark 1.7. We can obtain a better estimate assuming more regularity on (v, p). More
precisely, for k ≥ 2 and n ∈ N suppose that (v, p) ∈ H

k(Ω) × Hk−1(Ω), k ≥ 2 and
αi ∈ Hn(K), i = 1, 2. Then, using an interpolation argument, we can obtain for any
M > 0 and N > 0 such that ‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ M and ‖v‖Hk(Ω) + ‖p‖Hk−1(Ω) ≤ N
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that for all θ ∈ [0, 1] (see Remark 4.1):

‖α1 − α2‖Hθn(K)

≤
(
CK
m N

)1−θ ‖α1 − α2‖θHn(K)

(
ln

(
1 +

M

‖v1 − v2‖H3/2(Γobs)
+ ‖σ(v1, p1)n− σ(v2, p2)n‖H1/2(Γobs)

)) (2k−3)(1−θ)
2k

.

(1.18)

For k = 3 and θ = n = 0, we obtain a result similar to the one presented in [9, Theo-
rem 4.3].

Theorem 1.4, which completes the previous results given by Boulakia et al in [9, 10],
finds applications in the modeling of biological problems as blood flow in the cardiovascular
system (see [27] and [31]) or airflow in the lungs (see [5]). For the Laplace equation, these
kind of stability estimates for the Robin coefficient have been widely studied: see for
example the works of Chaabane et al. in [14, 13], Alessandrini et al. in [2], Sincich in [29],
Bellassoued et al. in [7] and Cheng et al. in [15].

Finally, we present another application of our stability estimates in the context of
numerical reconstruction methods. More precisely, we focus on the stable reconstruction
of the solution of a data completion problem (also known as Cauchy problem) for the Stokes
equations: for given (gD,gN ) ∈ H

3/2(Γobs)×H
1/2(Γobs), we search (v, p) ∈ H

2(Ω)×H1(Ω)
solution of {

−ν∆v +∇p = f in Ω,
div v = 0 in Ω,

(1.19)

and such that
v = gD and σ(v, p)n = gN on Γobs.

Estimates (1.7) and (1.8) imply the uniqueness of the solution of the data completion prob-
lem. However, there exists Cauchy data (gD,gN ) for which it does not admit any solution.
Hence, regularization methods are needed to stably reconstruct (v, p) from (gD,gN ). We
study two standard regularization methods: a quasi-reversibility regularization and a pe-
nalized Kohn-Vogelius regularization.

In the quasi-reversibility method, we consider, for ε > 0, the following variational
problem: find (vε, pε) ∈ H

2(Ω) × H1(Ω) such that vε = gD on Γobs, σ(vε, pε)n = gN
on Γobs, and for all (w, q) ∈ H

2(Ω) × H1(Ω) such that w = 0 and σ(w, q)n = 0 on Γobs,
we have

∫

Ω
(−ν∆vε +∇pε) · (−ν∆w +∇q) dx+

(
div(vε),div(w)

)
H1(Ω)

+ ε(vε,w)
H

2(Ω) + ε(pε, q)H1(Ω) =

∫

Ω
f · (−ν∆w +∇q) dx. (1.20)

The penalized Kohn-Vogelius approach that we consider here consists in, for ε > 0 and
ΓCobs

def

= ∂Ω\Γobs, defining the functional Fε : H1/2(ΓCobs)×H
3/2(ΓCobs) → R given by

Fε(ϕN ,ψD)
def

= |vϕN − vψD |2H2(Ω)
+ |vϕN − vψD |2H1(Ω)

+ ε‖vϕN , pϕN ‖2H2(Ω)×H1(Ω)
+ ε‖vψD , pψD‖2H2(Ω)×H1(Ω)

,
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where |.|
H
i(Ω) is the Hi-seminorm (i = 1, 2, see page 24 for definition) and where (vϕN , pϕN ) ∈

H
2(Ω)×H1(Ω) and (vψD , pψD) ∈ H

2(Ω)×H1(Ω) are the respective solutions of




−ν∆vϕN +∇pϕN = f in Ω,
div vϕN = 0 in Ω,

vϕN = gD on Γobs,
σ(vϕN , pϕ)n = ϕN on ΓCobs,

and





−ν∆vψD +∇pψD = f in Ω,
div vψD = 0 in Ω,

σ(vψD , pψD)n = gN on Γobs,
vψD = ψD on ΓCobs.

Then, we define (vε, pε)
def

= (vϕεN , pψ
ε
D
) where (ϕεN ,ψ

ε
D) ∈ H

1/2(ΓCobs)×H
3/2(ΓCobs) is such

that
Fε(ϕ

ε
N ,ψ

ε
D) = inf

(ϕN ,ψD)∈H1/2(ΓCobs)×H
3/2(ΓCobs)

Fε(ϕN ,ψD). (1.21)

For this second method, we specify that we assume Γobs ∩ΓCobs = ∅, for instance Γobs could
be one of the connected components of ∂Ω.

For any (gD,gN ) ∈ H
3/2(Γobs)×H

1/2(Γobs), both the quasi-reversibility problem (1.20)
and the Kohn-Vogelius minimization problem (1.21) admits a unique solution (vε, pε).
Moreover, if the initial data completion problem admits a solution (v, p), then vε con-
verges to v strongly in H

2(Ω) and pε converges to p strongly in H1(Ω). Furthermore, the
stability estimates we obtain in the present paper (proved in Section 5) provide the rate of
convergence of both methods (for a survey on the connection between stability estimates
and rates of convergence of regularization methods, we refer to [22]):

Theorem 1.8. For any M > 0 such that ‖v‖H2(Ω) + ‖p‖H1(Ω) ≤ M , where (v, p) is the
exact solution of the data completion problem (1.19), we have the following error estimates
for both quasi-reversibility method and penalized Kohn-Vogelius method:

‖vε − v‖L2(Ω) ≤
M

ln(1 + M√
ε
)
, ‖vε − v‖H1(Ω) ≤

M
(
ln(1 + M√

ε
)
)1/2

and

‖pε − p‖L2(Ω) ≤
M

(
ln(1 + M√

ε
)
)1/2 .

Notations. All along this paper, Ω is a nonempty bounded open subset of RN (N = 2
or N = 3) with a boundary ∂Ω of class C2, ω is a nonempty open subset of Ω, Γobs and Γ0

are nonempty open subsets of ∂Ω, Γobs∩Γ0 = ∅, and ΓCobs denotes the complement of Γobs,

namely ΓCobs
def

= ∂Ω\Γobs.
We here summarize the needed notations in the case N = 3 which can be easily

adapted for N = 2. We denote by n = t(n1,n2,n3) the outward unit normal to ∂Ω
which has a C1 extension to a neighborhood of ∂Ω. Above and in the following t de-
notes the transpose. For a scalar function w or a vector field y = t(y1, y2, y3), we define

∇w def

= t(∂x1w, ∂x2w, ∂x3w), ∇y def

= (∂xjyi)1≤i,j≤3 and divy
def

=
∑3

i=1 ∂xiyi. Moreover,

on ∂Ω, we define the normal derivatives ∂w
∂n

def

= (∇w) · n and ∂y
∂n

def

= (∇y)n and the tangen-

tial gradients ∇τw
def

= ∇w − ∂w
∂nn and ∇τy

def

= t(∇τy1,∇τy2,∇τy3). We also introduce the

notations yn
def

= (y · n)n and yτ
def

= y − yn for the normal and the tangential components

of y on ∂Ω. The divergence of y is defined by divy
def

=
∑3

j=1 ∂xjyj and the curl of w or y
is defined by

curly = ∂x1y2 − ∂x2y1 and curlw =

(
∂x2w
−∂x1w

)
if N = 2,

7



and

curly
def

=




∂x2y3 − ∂x3y2
∂x3y1 − ∂x1y3
∂x1y2 − ∂x2y1


 if N = 3.

We will also need to use the tangential divergence operator on ∂Ω that we denote by divτ .
We recall that D(y)

def

= 1
2

(
∇y + t∇y

)
denotes the symmetrized gradient and σ(y, p)

def

=
2νD(y) − p I the stress tensor, where I denotes the identity matrix and ν > 0 is the
constant which represents the kinematic viscosity of the fluid we consider.

For r ≥ 0 we denote by L2(Ω), L2(∂Ω), Hr(Ω), Hr(∂Ω), Hr0(Ω), the usual Lebesgue
and Sobolev spaces of scalar functions in Ω or in ∂Ω, and we write in bold the spaces of
vector-valued functions: L

2(Ω) = (L2(Ω))N , L2(∂Ω) = (L2(∂Ω))N , etc.
We recall that z1, z2 are vector fields satisfying (1.2). Moreover, we use the following

particular constant:

m(z1,z2)
def

= max
{
1 , ‖z1‖L∞(Ω) , ‖∇z2‖Lr(Ω)

}
. (1.22)

We also recall that C > 0 denotes a generic constant only depending on the geometry. In
particular, it is independent on z1, z2 and on the parameters s, λ appearing in Carleman
inequalities of sections 2 and 3.

Finally, for O1, O2 two open subsets of RN , the notation O1 ⋐ O2 means that there
exists a compact set K such that O1 ⊂ K ⊂ O2.

Organization of the paper. The paper is organized as follows. The Section 2 is dedi-
cated to the proof of Carleman inequalities for the non-homogeneous Oseen equations (see
Theorem 2.3). It is obtained by combining a domain extension argument with Carleman
inequalities for compactly supported solutions of the Stokes equations. Then in Section 3,
we deduce a Hölder type interior estimates for a distributed observation as well as log type
stability inequalities for both distributed and boundary observations. In particular, Theo-
rem 1.2 is proved in subsections 3.1 and 3.2 and Theorem 1.3 is proved in subsection 3.3.
Finally, we present some applications in the last sections. The Section 4 concerns the proof
of stability inequalities for the inverse problem of recovering Navier and Robin coefficients
(proof of Theorem 1.4) and Section 5 is dedicated to the proof of error estimates for some
numerical reconstruction methods (proof of Theorem 1.8).

2 Carleman Inequality for Stokes and Oseen equations

In this section, O is a non empty bounded open subset of RN (N = 2 or N = 3) of class C2,
ω is a non empty bounded open subset such that ω ⋐ O and ψ : O → R is a function
satisfying

ψ ∈ C2(O;R), ψ > c0 and |∇ψ| > 0 in O\ω
ψ = c0 on ∂O, (2.1)

for some positive constant c0 > 0. For the existence of such a function see for instance [19]
or [30, Appendix III]. Here, the set O plays the role of Ω or of an extension Ω̃ of Ω which
is used in Section 3 below.

The main aim of this section is to prove a Carleman inequality for the non homogeneous
Oseen equations. For that, we first prove a Carleman inequality for a pair velocity-pressure
in H

2
0(O) × H1

0(O) and then we use a domain extension argument to recover the non-
homogeneous case.

8



2.1 Carleman Inequality in the case of homogeneous boundary data

Let us first recall a standard Carleman inequality for the Laplace equation:

Theorem 2.1. Let k ∈ {0, 1}, F ∈ L2(O) and G ∈ L
2(O). There exist C > 0, λ̂ > 1 and

ŝ > 1 such that for all λ ≥ λ̂ and s ≥ ŝ, the solution u ∈ H1(O) of

{
−∆u = F + divG in O,

u = 0 on ∂O,

satisfies the following inequality:

∫

O

(
e(k−1)λψ |∇u|2 + s2λ2e(k+1)λψ |u|2

)
e2se

λψ
dx

≤ C

(∫

O

(
sekλψ|G|2 + s−1λ−2e(k−2)λψ |F |2

)
e2se

λψ
dx

+

∫

ω
s2λ2e(k+1)λψ |u|2e2seλψdx

)
. (2.2)

Proof. Inequality (2.2) for k = 1 is given for instance in [21, Theorem A.1] and (2.2)

for k = 0 is obtained by applying (2.2) with k = 1 to the equation satisfied by e−
λ
2
ψu.

Note that the above quoted result is stated for a function ψ that vanishes on ∂O. However,
if s̃, λ̃ denote the admissible parameters of [21, Theorem A.1], it suffices to choose (s, λ) =

(s̃eλ̃c0 , λ̃) to get (2.2).

We deduce the following Carleman inequality for Stokes equations:

Theorem 2.2. There exist C > 0, λ̂ > 1 and ŝ > 1 such that for all λ ≥ λ̂ and s ≥ ŝ, and
for all (v, p) ∈ H

2
0(O)×H1

0(O) the following inequalities hold:

∫

O

(
|∇v|2 + seλψ|curl v|2 + s2λ2e2λψ|v|2

)
e2se

λψ
dx

≤ C

(∫

O
(s−1λ−2e−λψ|∇div v|2 + λ−2|∇p−∆v|2)e2seλψdx+

∫

ω
s3λ2e3λψ |v|2e2seλψdx

)

(2.3)

and

∫

O
seλψ|div v − p|2e2seλψdx

≤ C

(∫

O
λ−2|∇p−∆v|2e2seλψdx+

∫

ω
seλψ|div v − p|2e2seλψdx

)
. (2.4)

Proof. First, we set f
def

= −∆v +∇p. Easy calculations yield:

−∆(curlv) = curlf in O, (2.5)

−∆(divv − p) = div f in O, (2.6)

−∆v = curl (curl v)−∇(div v) in O. (2.7)

Then, by applying (2.2) for k = 0 to (2.6) we obtain (2.4).
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Next, we introduce another open subset ω0 ⋐ ω and apply (2.2) for k = 0 to (2.5) to
obtain:

∫

O
s−1λ−2e−λψ|∇ (curlv) |2e2seλψdx+

∫

O
seλψ|curlv|2e2seλψdx

≤ C

(∫

ω0

seλψ|curlv|2e2seλψdx+

∫

O
λ−2|∇p−∆v|2e2seλψdx

)
. (2.8)

Let us replace the local term in curlv by a local term in v. For that, we introduce a
function ρ ∈ C∞

c (ω) such that 0 ≤ ρ ≤ 1 and ρ = 1 in ω0. Using an integration by parts
in ω, we get

∫

ω0

seλψ|curlv|2e2seλψdx ≤ s

∫

ω
ρeλψ|curlv|2e2seλψdx = s

∫

ω
curl

(
ρeλψe2se

λψ
curlv

)
v dx

≤ C

(∫

ω
s2λe2λψe2se

λψ |v| |curlv|dx+

∫

ω
seλψe2se

λψ |∇ (curlv)| |v| dx
)
,

and with Cauchy-Schwarz inequality:

∫

ω0

seλψ|curlv|2e2seλψdx ≤ ǫ

∫

O

(
s−1λ−2e−λψe2se

λψ |∇ (curlv)|2 + seλψe2se
λψ |curlv|2

)
dx

+
C

ǫ
s3λ2

∫

ω
e3λψe2se

λψ |v|2 dx.

By combining (2.8) with the above inequality for ǫ > 0 small enough, we obtain

∫

O
s−1λ−2e−λψ|∇ (curlv) |2e2seλψdx+

∫

O
seλψ|curlv|2e2seλψdx

≤ C

(∫

ω
s3λ2e3λψ|v|2e2seλψdx+

∫

O
λ−2|∇p−∆v|2e2seλψdx

)
. (2.9)

Finally, (2.3) is obtained by first applying (2.2) for k = 1 to (2.7) and next using the
estimate of curlv given by (2.9).

2.2 Carleman Inequality in the case of non-homogeneous boundary data

In this section, we prove a Carleman inequality for the Oseen equations:

{
−ν∆v + (z1 · ∇)v + (v · ∇)z2 +∇p = f in O,

div v = d in O. (2.10)

Above and in the following, z1 ∈ L
∞(O), z2 ∈ W

1,r(O) (with r > 2 if N = 2 and r = 3 if
N = 3) and we use the following notation for the particular constant:

m̃(z1,z2)
def

= max
{
1 , ‖z1‖L∞(O) , ‖∇z2‖Lr(O)

}
. (2.11)

We recall that C > 0 denote a generic constant only depending on the geometry and
independent on s, λ, z1, z2.
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Theorem 2.3. There exist C > 0, ĉ > 0 and ŝ > 1 such that for all z1 ∈ L
∞(O),

z2 ∈ W
1,r(O), all λ ≥ λ̂

def
= m̃(z1,z2)ĉ and all s ≥ ŝ every solution (v, p) ∈ H

2(O)×H1(O)
of (2.10) satisfies:

∫

O

(
|∇v|2 + seλψ|curl v|2 + s2λ2e2λψ|v|2

)
e2se

λψ
dx

≤ C

(∫

O
(s−1λ−2e−λψ|∇d|2 + λ−2|f |2)e2seλψdx+

∫

ω
s3λ2e3λψ|v|2e2seλψdx

+e2se
λc0
(
‖v‖2

H2(O) + ‖p‖2H1(O)

))
(2.12)

and
∫

O
seλψ|p − d|2e2seλψdx ≤ C

(∫

ω
(s3λ2e3λψ|v|2 + seλψ|p− d|2)e2seλψdx

+

∫

O
(s−1λ−2e−λψ |∇d|2 + λ−2|f |2)e2seλψdx+ e2se

λc0
(
‖v‖2

H2(O) + ‖p‖2H1(O)

))
.

(2.13)

Proof. Let Õ be a bounded domain of RN of class C2 such that O ⋐ Õ. We extend ψ to Õ
(while keeping the same name) in a such a way that:

ψ ∈ C2(Õ;R), ψ > 0 and |∇ψ| > 0 in Õ\ω,
ψ ≡ c0 on ∂O, 0 < ψ < c0 in Õ\O, c0 < ψ in O.

(2.14)

Let E : H2(O)×H1(O) → H
2
0(Õ)×H1

0(Õ) be a linear continuous map (given for example

by Stein’s theorem, see [1]), also continuous from H
1(O) × L2(O) into H

1
0(Õ) × L2(Õ),

such that E(v, p) ≡ (v, p) in O, and define (ṽ, p̃)
def

= E(v, p). We also denote by z̃1, z̃2
some continuous extensions of z1, z2 for the L

∞ and W
1,r norms in Õ respectively. The

pair (ṽ, p̃)
def

= E(v, p) is then solution to




−ν∆ṽ + (z̃1 · ∇) ṽ + (ṽ · ∇) z̃2 +∇p̃ = f̃ in Õ,
div ṽ = d̃ in Õ,

ṽ = 0 on ∂Õ,
∂ṽ

∂n
= 0 on ∂Õ,

p̃ = 0 on ∂Õ,

(2.15)

where f̃ ∈ L
2(Õ) and d̃ ∈ H1(Õ) are given by f̃ = f and d̃ = d in O and by f̃ =

−ν∆ṽ + (z̃1 · ∇) ṽ + (ṽ · ∇) z̃2 + ∇p̃ and d̃ = div ṽ in Õ\O. From the continuity of the
extension operator E we have:

‖f̃‖
L2(Õ) + ‖d̃‖H1(Õ) ≤ C m̃(z1,z2)

(
‖v‖H2(O) + ‖p‖H1(O)

)
. (2.16)

Next, by applying estimate (2.3) of Theorem 2.2:

∫

Õ

(
|∇ṽ|+ seλψ|curl ṽ|2 + s2λ2e2λψ |ṽ|2

)
e2se

λψ
dx

≤ C

(∫

Õ
(s−1λ−2e−λψ|∇d̃|2 + λ−2|f̃ − (z̃1 · ∇) ṽ − (ṽ · ∇) z̃2|2)e2se

λψ
dx

+

∫

ω
s3λ2e3λψ|ṽ|2e2seλψdx

)
. (2.17)
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Since z̃1 ∈ L
∞(Õ), we get

∫

Õ
λ−2 |(z̃1 · ∇) ṽ|2 e2seλψ ≤ ‖z̃1‖2

L
∞(Õ)

λ−2

∫

Õ
|∇ṽ|2 e2seλψ . (2.18)

Moreover, since z̃2 ∈ W
1,r(Õ), we use the Hölder’s inequality and the continuous embed-

ding H
1
0(Õ) →֒ L

2r
r−2 (Õ) to get:

∫

Õ
λ−2 |(ṽ · ∇) z̃2|2 e2se

λψ
dx ≤

∫

Õ
|∇z̃2|2

∣∣∣λ−1ṽese
λψ
∣∣∣
2
dx

≤ ‖∇z̃2‖2Lr(Õ)

∥∥∥λ−1ṽese
λψ
∥∥∥
2

L

2r
r−2 (Õ)

≤ C ‖∇z̃2‖2Lr(Õ)

∥∥∥∇(λ−1ṽese
λψ
)
∥∥∥
2

L2(Õ)

≤ C ‖∇z̃2‖2Lr(Õ)
λ−2

(∫

Õ
|∇ṽ|2 e2seλψdx+

∫

Õ
|ṽ|2 s2λ2e2λψe2seλψdx

)
.

(2.19)

Thus, gathering (2.17), (2.18) and (2.19) and choosing λ ≥ m̃(z1,z2) ĉ for ĉ large
enough (and depending only on the geometry), the terms in z̃1, z̃2 at the right hand side
of inequality (2.17) can be absorbed and we obtain

∫

Õ

(
|∇ṽ|2 + seλψ|curl ṽ|2 + s2λ2e2λψ|ṽ|2

)
e2se

λψ
dx

≤ C

(∫

Õ
(s−1λ−2e−λψ|∇d̃|2 + λ−2|f̃ |2)e2seλψdx+ s3λ2

∫

ω
e3λψ|ṽ|2e2seλψdx

)
. (2.20)

Moreover,

∫

Õ\O
(s−1λ−2e−λψ|∇d̃|2 + λ−2|f̃ |2)e2seλψdx

≤ λ−2e2se
λc0

∫

Õ\O
(|∇d̃|2 + |f̃ |2)dx ≤ Cλ−2e2se

λc0
m̃(z1,z2)

2
(
‖v‖2

H2(O) + ‖p‖2H1(O)

)
.

In above calculations, we have used the fact that ψ ≤ c0 in Õ\O and (2.16). Then (2.12)
follows by combining the above inequality with (2.20).

Finally, to prove (2.13), we first apply (2.4) to (ṽ, p̃) which gives:

∫

Õ
seλψ|div ṽ − p̃|2e2seλψdx

≤ C

(∫

ω
seλψ|div ṽ − p̃|2e2seλψdx+

∫

Õ
λ−2|f̃ − (z̃1 · ∇) ṽ − (ṽ · ∇) z̃2|2e2se

λψ
dx

)
.

Then, using (2.18) and (2.19) to estimate the last above integral, we obtain for ĉ large
enough and λ ≥ ĉ m̃(z1,z2),

∫

Õ
seλψ|div ṽ − p̃|2e2seλψdx ≤ C

(∫

ω
seλψ|div ṽ − p̃|2e2seλψdx+

∫

Õ
λ−2|f̃ |2e2seλψdx

)

+

∫

Õ
(|∇̃v|2 + s2λ2e2λψ |ṽ|2)e2seλψdx.

Hence, we use (2.20) and the rest of the proof is the same as for (2.12).
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3 Stability estimates for Oseen and Navier-Stokes Equations

In this section we use the Carleman inequalities given in Theorem 2.3 to obtain several
stability estimates for both distributed and boundary observation. In particular, we prove
Theorems 1.2 and 1.3. We first prove a Hölder type interior estimates and a global log
type estimates for a distributed observation. Then, we use an extension of the domain
procedure to obtain a global log type estimates for a boundary observation.

We recall that Ω is a nonempty bounded open subset of RN (N = 2 or N = 3) with
a boundary ∂Ω of class C2, that Γobs is a nonempty open subset of ∂Ω and that ω is a
nonempty open subset of Ω. Moreover, z1, z2 are vector fields satisfying (1.2) and we use
the following notation for the particular constant:

m(z1,z2)
def

= max
{
1 , ‖z1‖L∞(Ω) , ‖∇z2‖Lr(Ω)

}
. (3.1)

We also recall that C > 0 denotes a generic constant only depending on the geometry and
in particular independent on s, λ, z1, z2.

3.1 Stability estimates with a distributed observation

3.1.1 A Hölder type interior estimate

Theorem 3.1. Let Ω0 be an open subset such that ω ⋐ Ω0 ⋐ Ω. There exist ĉ > 0, ŝ > 1

and c∗1 > c∗2 > 0 such that for all z1,z2 satisfying (1.2), all λ ≥ λ̂
def
= m(z1,z2)ĉ and all

s ≥ ŝ, every solution (v, p) ∈ H
2(Ω)×H1(Ω) of the Oseen equations (1.1) satisfies:

‖v‖L2(Ω0) + ‖curlv‖(L2(Ω0))
2N−3 ≤ ese

c∗1λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω)

)

+ e−se
c∗2λ
(
‖v‖H2(Ω) + ‖p‖H1(Ω)

)
(3.2)

and

‖p− div v‖L2(Ω0) ≤ ese
c∗1λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω) + ‖p‖L2(ω)

)

+ e−se
c∗2λ
(
‖v‖H2(Ω) + ‖p‖H1(Ω)

)
. (3.3)

Proof. Let us introduce ψmin
def

= min
x∈Ω0

ψ(x) and ψmax
def

= max
x∈Ω

ψ(x). We apply (2.12) to (v, p)

to get, with λ̂ ≤ λ,
∫

Ω

(
s2λ2e2λψ|v|2 + seλψ|curlv|2

)
e2se

λψ
dx

≤ C

(∫

Ω
(|f |2 + |∇d|2)e2seλψmax

dx + s3λ2e3λψmaxe2se
λψmax ‖v‖2

L
2(ω)

+e2se
λc0
(
‖v‖2

H2(Ω) + ‖p‖2H1(Ω)

))
(3.4)

and then,

∫

Ω0

(
s2λ2e2λψmin |v|2 + seλψmin |curlv|2

)
e2se

λψmindx ≤ C

(∫

Ω
(|f |2 + |∇d|2)e2seλψmax

dx

+ s3λ2e3λψmaxe2se
λψmax ‖v‖2

L
2(ω) +e

2seλc0
(
‖v‖2

H2(Ω) + ‖p‖2H1(Ω)

))
.

Thus, by dividing the above inequality by e2se
λψmin we obtain (3.2) for some c∗1 > c∗2 > 0

independent on λ. Estimate (3.3) is obtained analogously.

13



As a consequence of Theorem 3.1, we have the following

Theorem 3.2. Let Ω0 be an open subset such that ω ⋐ Ω0 ⋐ Ω. There exists c∗ > 0 such

that for all z1,z2 satisfying (1.2), all λ ≥ λ̂
def
= m(z1,z2)ĉ, there exists β ∈ (0, 1/2) such

that every solution (v, p) ∈ H
2(Ω)×H1(Ω) of the Oseen equations (1.1) satisfies:

‖v‖
L
2(Ω0)

+ ‖curlv‖
(L2(Ω0))

2N−3

≤ ee
c∗λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω)

)β (
‖v‖H2(Ω) + ‖p‖H1(Ω)

)1−β

and

‖p− div v‖L2(Ω0)

≤ ee
c∗λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω) + ‖p‖L2(ω)

)β (
‖v‖H2(Ω) + ‖p‖H1(Ω)

)1−β
.

Proof. Since the proofs are analogous we only prove the first inequality. For that, we apply
Theorem 3.1 and, for s > ŝ, Inequality (3.2) rewrites ‖v‖L2(Ω0) + ‖curl v‖(L2(Ω0))

2N−3 ≤
esC

∗
1A + e−sC

∗
2B where C∗

i
def

= ec
∗
i λ for i = 1, 2. First, we suppose that 1

C∗
1+C

∗
2
ln
(
B
A

)
≥ ŝ

and we choose s = 1
C∗

1+C
∗
2
ln
(
B
A

)
. Hence, we obtain

‖v‖
L
2(Ω0)

+ ‖curlv‖
(L2(Ω0))

2N−3 ≤ 2A
C∗
2

C∗
1
+C∗

2 B
C∗
1

C∗
1
+C∗

2 . (3.5)

Secondly, if 1
C∗

1+C
∗
2
ln
(
B
A

)
< ŝ, then B < e(C

∗
1+C

∗
2 )ŝA. Hence, we also obtain (3.5) using

the existence of C > 0 such that ‖v‖
L
2(Ω0)

+ ‖curlv‖
L
2(Ω0)

≤ CB.

Remark 3.3. According to the proof of Theorem 3.2, we have β = β(λ) = ec
∗
2λ

ec
∗
1
λ+ec

∗
2
λ where

c∗1 > c∗2 > 0 are the constants given in Theorem 3.1 which only depend on the geometry.
Therefore, β(λ) ∈ (0, 1/2) and β(λ) → 0 as λ→ +∞.

3.1.2 A global logarithmic estimate

Theorem 3.4. There exist ĉ > 0, ŝ > 1 such that for all z1,z2 satisfying (1.2), all

λ ≥ λ̂
def
= m(z1,z2)ĉ and all s ≥ ŝ, every solution (v, p) ∈ H

2(Ω) × H1(Ω) of the Oseen
equations (1.1) satisfies:

‖v‖L2(Ω) ≤ ese
c∗λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω)

)
+

1

s

(
‖v‖H2(Ω) + ‖p‖H1(Ω)

)
, (3.6)

‖curlv‖(L2(Ω))2N−3 ≤ ese
c∗λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω)

)
+

1

s1/2

(
‖v‖H2(Ω) + ‖p‖H1(Ω)

)

(3.7)
and

‖p− div v‖L2(Ω) ≤ ese
c∗λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω) + ‖p‖L2(ω)

)

+
1

s1/2
(
‖v‖H2(Ω) + ‖p‖H1(Ω)

)
. (3.8)

14



Proof. We apply (2.12) to (v, p), with λ̂ ≤ λ, to get (3.4) as in Theorem 3.1. Thus, by

dividing inequality (3.4) by e2se
λc0 and using the fact that

e−2seλc0
∫

Ω
e2λψ |v|2e2seλψdx ≥

∫

Ω
|v|2dx

we obtain (3.6) and (3.7) for some c∗ > 0 large enough (independent on λ). Proceeding as
previously (but with (2.13) instead of (2.12)) we obtain (3.8).

Then, we deduce the following

Theorem 3.5. There exist ĉ > 0 and c∗ > 0 such that for all z1,z2 satisfying (1.2), all

λ ≥ λ̂
def
= m(z1,z2) ĉ, every solution (v, p) ∈ H

2(Ω) × H1(Ω) of the Oseen equations (1.1)
such that ‖v‖H2(Ω) + ‖p‖H1(Ω) ≤M for some M > 0 satisfies:

‖v‖
L
2(Ω) ≤

ee
c∗λ
M

ln

(
1 +

M

‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω)

) , (3.9)

‖curlv‖(L2(Ω))2N−3 ≤ ee
c∗λ
M

(
ln

(
1 +

M

‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω)

))1/2
(3.10)

and

‖p− div v‖L2(Ω) ≤
ee
c∗λ
M

(
ln

(
1 +

M

‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖L2(ω) + ‖p‖L2(ω)

))1/2
. (3.11)

Proof. We apply Theorem 3.4 and, for s > ŝ, we introduce A such that we rewrite (3.6) as

‖v‖
L
2(Ω) ≤ esC

∗
A + c∗

s M where C∗ def

= ec
∗λ. First, if A = 0, since the previous inequality

is true for all s, we obtain ‖v‖
L
2(Ω) = 0 and then (3.9) holds. In the following, we assume

A 6= 0.
Next, we suppose that 1

2C∗ ln(1 +
M
A ) ≥ ŝ and we choose s = 1

2C∗ ln(1 +
M
A ). It yields

‖v‖
L
2(Ω) ≤M

((
1 +

M

A

)1/2 A

M
+

2C∗c∗

ln(1 + M
A ))

)

and next, using the fact that 1
x ≤ 1

ln(1+x) if 0 < x < 1, i.e. M ≤ A and 1
x1/2

≤ 1
ln(1+x) if

x > 1, i.e. M > A, we obtain (3.9) (by choosing c∗ > 0 larger if necessary).

In the case 1
2C∗ ln(1 + M

A ) ≤ ŝ we have M ≤ ee
c∗λ
A for some (other) constant c∗ > 0

and (3.6) with s = ŝ gives ‖v‖
L
2(Ω) ≤ ee

c∗λ
A for some (other) constant c∗ > 0. Then the

conclusion follows from A =M A
M ≤M 1

ln(1+M
A
)

(since 1
x ≤ 1

ln(1+x) for all x > 0).

The proof of (3.10) and (3.11) are obtained in a similar way.
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3.2 Stability estimates with boundary observation

We now prove the following theorem from which we deduce the logarithm estimates stated
in Theorem 1.2 as in the proof of Theorem 3.5. Notice that the first estimate (1.6) is given
in the previous Theorem 3.5 (see (3.9)).

Theorem 3.6. There exists ĉ > 0, ŝ > 1 such that for all z1,z2 satisfying (1.2), all

λ ≥ λ̂
def
= m(z1,z2)ĉ and all s ≥ ŝ, every solution (v, p) ∈ H

2(Ω) × H1(Ω) of the Oseen
equations (1.1) satisfies:

‖v‖L2(Ω) ≤ ese
c∗λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖

H3/2(Γobs)
+ ‖σ(v, p)n‖

H1/2(Γobs)

)

+
1

s

(
‖v‖H2(Ω) + ‖p‖H1(Ω)

)
(3.12)

and

‖curlv‖
(L2(Ω))2N−3 + ‖p− div v‖L2(Ω)

≤ ese
c∗λ
(
‖f‖L2(Ω) + ‖d‖H1(Ω) + ‖v‖

H3/2(Γobs)
+ ‖σ(v, p)n‖

H1/2(Γobs)

)

+
1

s1/2

(
‖v‖H2(Ω) + ‖p‖H1(Ω)

)
. (3.13)

Let us begin by proving the following lemma which is a construction of an extension of
the domain Ω and of the solution (v, p) of Problem (1.1):

Lemma 3.7. Let Ω̃ be an extension of Ω of class C2 through Γobs (see Figure 1), namely

Ω̃ is of class C2, ∂Ω ∩ Ω̃ = Γobs.

There exists an extension (ṽ, p̃) ∈ H
2(Ω̃)×H1(Ω̃) of (v, p) ∈ H

2(Ω)×H1(Ω) such that

ṽ Γobs
= v Γobs

, ∂ṽ
∂n Γobs

= ∂v
∂n Γobs

, p̃ Γobs
= p Γobs

with the following estimate

‖ṽ‖2
H2(Ω̃\Ω)

+ ‖p̃‖2
H1(Ω̃\Ω)

≤ C

(
‖v‖2

H3/2(Γobs)
+

∥∥∥∥
∂v

∂n

∥∥∥∥
2

H1/2(Γobs)

+ ‖p‖2
H1/2(Γobs)

)
. (3.14)

In particular,

‖ṽ‖2
H2(Ω̃)

+ ‖p̃‖2
H1(Ω̃)

≤ C
(
‖v‖2

H2(Ω) + ‖p‖2H1(Ω)

)
. (3.15)

Proof. We consider the linear continuous trace-right inverse operator (see for example [20,
Theorem 1.5.1.2])

R : H
3/2(Γobs)×H

1/2(Γobs)×H1/2(Γobs) −→ H
2(Ω)×H1(Ω)

(gobs,hobs, kobs) 7−→ (w, q)

with (w, ∂w∂n , q) = (gobs,hobs, kobs) on Γobs. Then, let us denote by S the linear continuous
extension operator given by Stein’s theorem (see [1]):

S : H
2(Ω)×H1(Ω) −→ H

2(RN )×H1(RN )
(w, q) 7−→ (W , Q)

.
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We also denote by T the linear continuous operator of restriction to Ω̃:

T : H
2(RN )×H1(RN ) −→ H

2(Ω̃)×H1(Ω̃)
(W , Q) 7−→ (W

Ω̃
, Q

Ω̃
)

.

Finally, by denoting (w̃, q̃)
def

= T ◦ S ◦R (v, ∂nv, p), we conclude by defining

ṽ
def

=

{
v in Ω

w̃ in Ω̃\Ω and q̃
def

=

{
p in Ω

q̃ in Ω̃\Ω.

It is easily checked that (ṽ, p̃) ∈ H
2(Ω̃)×H1(Ω̃).

Proof of Theorem 3.6. In what follows, z̃1, z̃2 denote some continuous extensions to R
N

of z1, z2, for the L
∞ and the W

1,r norm respectively. Let us consider the extensions Ω̃
and (ṽ, q̃) ∈ H

2(Ω̃) × H1(Ω̃) given by Lemma 3.7. Let us consider ω ⋐ Ω̃\Ω a non empty
bounded open subset. We summarize these notations in Figure 1.

Ω̃

Ω

ω
Γobs

Figure 1: Notations

Next, we apply (2.12) and (2.13) to (ṽ, p̃) and, with λ̂ ≤ λ, we get:

∫

Ω̃

(
s2λ2e2λψ|ṽ|2 + seλψ|curl ṽ|2 + seλψ|p̃− div ṽ|2

)
e2se

λψ
dx

≤ C

(∫

Ω̃
(| − ν∆ṽ + (z̃1 · ∇) ṽ + (ṽ · ∇) z̃2 +∇p̃|2 + |∇div ṽ|2)e2seλψdx

+

∫

ω
(s3λ2e3λψ |ṽ|2 + seλψ|p̃− div ṽ|2)e2seλψdx+ e2se

λc0
(
‖v‖2

H2(Ω̃)
+ ‖p‖2

H1(Ω̃)

))
,
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and from (3.14), (3.15) and ω ⊂ Ω̃\Ω we deduce

∫

Ω

(
s2λ2e2λψ|v|2 + seλψ|curlv|2 + seλψ|p− div v|2

)
e2se

λψ
dx

≤ C

(∫

Ω

(
|∇d|2 + |f |2

)
e2se

λψ
dx+ e3λψmaxe2se

λψmax

∫

Ω̃\Ω

(
s3λ2|ṽ|2

+s|p̃− div ṽ|2 + |∆ṽ|2 + |(z̃1 · ∇) ṽ|2 + |(ṽ · ∇) z̃2|2 + |∇p̃|2 + |∇div ṽ|2
)
dx

+e2se
λc0
(
‖v‖2

H2(Ω) + ‖p‖2H1(Ω)

))

≤ C

(
s3λ2e3λψmaxe2se

λψmax
m(z1,z2)

2

(
‖v‖2

H3/2(Γobs)
+

∥∥∥∥
∂v

∂n

∥∥∥∥
2

H1/2(Γobs)

+ ‖p‖2
H1/2(Γobs)

)

∫

Ω

(
|∇d|2 + |f |2

)
e2se

λψ
dx+ e2se

λc0
(
‖v‖2

H2(Ω) + ‖p‖2H1(Ω)

))
.

Here, we have used the notation ψmax
def

= maxx∈Ω̃ ψ(x). Thus, by dividing the above

inequality by e2se
λc0 and using that

e−2seλc0
∫

Ω
e2λψ |v|2e2seλψdx ≥

∫

Ω
|v|2dx

and that λ ≥ m(z1,z2)ĉ, we obtain for some c∗ > 0 large enough (independent on λ),

‖v‖2
L2(Ω) ≤ ese

c∗λ

(
‖f‖2

L2(Ω) + ‖d‖2H1(Ω) + ‖v‖2
H3/2(Γobs)

+

∥∥∥∥
∂v

∂n

∥∥∥∥
2

H1/2(Γobs)

+ ‖p‖2
H1/2(Γobs)

)

+
1

s2

(
‖v‖2

H2(Ω) + ‖p‖2H1(Ω)

)
. (3.16)

With a similar argument,

‖curlv‖2
(L2(Ω))2N−3 + ‖p− div v‖2L2(Ω) ≤ ese

c∗λ
(
‖f‖2

L2(Ω) + ‖d‖2H1(Ω) + ‖v‖2
H3/2(Γobs)

+

∥∥∥∥
∂v

∂n

∥∥∥∥
2

H1/2(Γobs)

+ ‖p‖2H1/2(Γobs)

)
+

1

s

(
‖v‖2

H2(Ω) + ‖p‖2H1(Ω)

)
. (3.17)

Now, to conclude, it remains to replace the term
∥∥∂v
∂n

∥∥2
H1/2(Γobs)

+ ‖p‖2
H1/2(Γobs)

by

‖σ(v, p)n‖2
H1/2(Γobs)

. First, from

d = div v =
∂v

∂n
· n+ divτ vτ + (divn)(v · n) on Γobs,

we deduce that
∥∥∥∥
∂v

∂n
· n
∥∥∥∥
2

H1/2(Γobs)

≤ C
(
‖v‖2

H3/2(Γobs)
+ ‖d‖2H1(Ω)

)
. (3.18)

The above inequality with the following computations

ν
∂v

∂n
= σ(v, p)n+ pn− ν t∇vn
= σ(v, p)n+ pn− ν∇(v · n) + ν(∇n)v

= σ(v, p)n+ pn− ν

(
∂v

∂n
· n
)
n− ν∇τ (v · n) + ν(∇n)v,
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yields

∥∥∥∥
∂v

∂n

∥∥∥∥
2

H1/2(Γobs)

≤ C
(
‖σ(v, p)n‖2

H1/2(Γobs)
+ ‖p‖2H1/2(Γobs)

+ ‖v‖2
H3/2(Γobs)

+ ‖d‖2H1(Ω)

)
.

Finally, from p = 2ν ∂v∂n · n− σ(v, p)n · n and (3.18) we deduce that

‖p‖2H1/2(Γobs)
≤ C

(
‖σ(v, p)n‖2

H1/2(Γobs)
+ ‖v‖2

H3/2(Γobs)
+ ‖d‖2H1(Ω)

)

and then

∥∥∥∥
∂v

∂n

∥∥∥∥
2

H1/2(Γobs)

+ ‖p‖2H1/2(Γobs)
≤ C

(
‖σ(v, p)n‖2

H1/2(Γobs)
+ ‖v‖2

H3/2(Γobs)
+ ‖d‖2H1(Ω)

)
.

(3.19)
Then, (3.12) and (3.13) follow from (3.16), (3.17) and (3.19).

3.3 Proof of the stability estimates for the Navier-Stokes equations

Theorem 1.3 is a simple consequence of Theorem 1.2 applied to the pair (v , p)
def

= (z1 −
z2 , π1 − π2) which is solution of:





−ν∆v + (z1 · ∇)v + (v · ∇) z2 +∇p = 0 in Ω,
div v = 0 in Ω,

v = z1 − z2 on Γobs,
σ(v, p)n = σ(z1, π1)n− σ(z2, π2)n on Γobs.

Note that in the same way, we can also obtain the same estimates as in Theorem 3.2
and Theorem 3.5 for a distributed observation.

4 Application: stability estimates for boundary coefficients

inverse problems

In the present section, we focus on the proof of Theorem 1.4. We begin by considering the
Navier boundary conditions. One can first notice that the pair (v , p)

def

= (z1−z2 , π1−π2)
satisfies 




−ν∆v + (z1 · ∇)v + (v · ∇) z2 +∇p = 0 in Ω,
div v = 0 in Ω,
v · n = 0 on Γ0,

2ν [D(v)n]τ + α1z1 − α2z2 = 0 on Γ0.

(4.1)

Without loss of generality, we can assume that |z1| ≥ m on K. Then, since (α2 − α1)z1 =
α2v + 2ν [D(v)n]τ on Γ0, we have

‖α1 − α2‖L2(K) ≤
C

m

(
‖v‖

L
2(Γ0)

+ ‖∇v‖L2(Γ0)

)
. (4.2)

To estimate the above right hand side, we use the following inequalities:

‖v‖
L
2(Γ0)

≤ C ‖v‖1/2
L
2(Ω)

‖v‖1/2
H

1(Ω)
and ‖∇v‖L2(Γ0)

≤ C ‖v‖1/2
H

1(Ω)
‖v‖1/2

H
2(Ω)

. (4.3)
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Note that the above inequalities are an immediate consequence of the interpolation inequal-
ity ‖·‖2L2(∂Ω) ≤ C ‖·‖H1(Ω) ‖·‖L2(Ω) which can be obtained for instance by first applying [20,

Theorem 1.5.1.10] to get C > 0 such that for all u ∈ H1(∂Ω) and all 0 < ε < 1,

‖u‖2L2(∂Ω) ≤ C
(
ε1/2 ‖∇u‖2

L
2(Ω) + ε−1/2 ‖u‖2L2(Ω)

)
,

and next by taking ε = ‖u‖2L2(Ω) / ‖u‖2H1(Ω). Combining the interpolation inequality

‖v‖
H

1(Ω) ≤ ‖v‖1/2
L
2(Ω)

‖v‖1/2
H

2(Ω)
with the second inequality in (4.3), we deduce that

‖∇v‖L2(Γ0)
≤ C ‖v‖1/4

L
2(Ω)

‖v‖3/4
H

2(Ω)
.

Hence, from (4.2) we obtain:

‖α1 − α2‖L2(K) ≤
C

m
‖v‖1/4

L
2(Ω)

‖v‖3/4
H

2(Ω)
(4.4)

and we conclude using the estimate on ‖v‖
L
2(Ω) given by Theorem 1.3.

For the Robin boundary conditions, we proceed in exactly the same way to obtain

‖α1 − α2‖L2(K) ≤
C

m

(
‖v‖

L
2(Γ0)

+ ‖∇v‖L2(Γ0)
+ ‖p‖L2(Γ0)

)

and conclude using the estimate on ‖v‖
L
2(Ω) and on ‖p‖L2(Ω) given by Theorem 1.3

Remark 4.1. We can obtain a better estimate assuming more regularity on (v, p). For
example, if (v, p) ∈ H

k(Ω)×Hk−1(Ω), k ≥ 2, we can use an interpolation inequality in (4.4)
to obtain

‖α1 − α2‖L2(K) ≤
C

m
‖v‖1/4

L
2(Ω)

(
‖v‖1−2/k

L
2(Ω)

‖v‖2/k
H
k(Ω)

)3/4
=
C

m
‖v‖1−3/(2k)

L
2(Ω)

‖v‖3/(2k)
H
k(Ω)

. (4.5)

Then (1.18) follows from (4.5) with the interpolation inequality ‖·‖Hθn(K) ≤ C ‖·‖1−θL2(K) ‖·‖
θ
Hn(K).

Remark 4.2. Concerning the Navier boundary conditions, we can obtain the same result
in a different way, by writing [D(v)n]τ in terms of curlv on Γ0. Indeed, since v · n = 0

on Γ0, ∇(v · n) = ∂(v · n)
∂n

n and then,

curlv × n = (∇v − t∇v)n =
∂v

∂n
−∇(v · n) + (∇n)v

=
∂(vτ + (v · n)n)

∂n
− ∂(v · n)

∂n
n+ (∇n)vτ =

∂vτ
∂n

+ (∇n)vτ .

On the other hand, using the same kind of computations, we have

2D(v)n = (∇v + t∇v)n =
∂v

∂n
+ ∇(v · n) − (∇n)v =

∂vτ
∂n

+ 2
∂(v · n)
∂n

n − (∇n)vτ .

Hence, we obtain that
curlv × n = [2D(v)n]τ + 2(∇n)vτ .

Thus, in the previous proof, we can write

(α2 − α1)v1 = α2v + 2ν [D(v)n]τ = α2v + ν curlv × n− 2ν(∇n)vτ

and conclude using the estimates (1.11) and (1.12) on ‖v‖
L
2(Ω) and ‖curlv‖(L2(Ω))2N−3

given by Theorem 1.3.
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5 Application to error estimates

In this section, we consider the reconstruction of (v, p), solution of the Stokes system in Ω,
knowing v and σ(v, p)n on Γobs. In other words, we consider the data completion problem
for the Stokes system, that is: from given data gD ∈ H

3/2(Γobs) and gN ∈ H
1/2(Γobs),

reconstruct (v, p) ∈ H
2(Ω)×H1(Ω) verifying




−ν∆v +∇p = f in Ω,
div v = 0 in Ω,

v = gD on Γobs,
σ(v, p)n = gN on Γobs.

(5.1)

As the problem is ill-posed, it is mandatory to use a stabilization method to stably recon-
struct (v, p) from the data f , gD and gN .

Such a stabilization method usually depends on a parameter of regularization ε > 0, and
it must fulfill the two following requirements: it must have a solution for any data f , gD
and gN , regardless of the existence of a solution to the corresponding Stokes problem (5.1).
And its solution should converge to the solution of (5.1) when the parameter ε goes to zero,
when such a solution exists.

We study below two standard methods of regularization: a quasi-reversibility method
and a penalized Kohn-Vogelius method. In particular, we obtained the convergence rates of
these methods directly from the estimates obtained previously.

In the following, we denote
(
(v, p), (w, q)

)
H

2(Ω)×H1(Ω)

def

= (v,w)
H

2(Ω)+(p, q)H1(Ω) which

is obviously a scalar product on the Hilbert space H
2(Ω)×H1(Ω), and ‖(v, p)‖

H
2(Ω)×H1(Ω)

the corresponding norm.

5.1 Error estimates for the quasi-reversibility method

The quasi-reversibility method has been introduced in [24] by Lattès et al. to stabilize
elliptic, parabolic and hyperbolic ill-posed problem. The main idea of the method is to
solve well-posed variational fourth-order problem, depending on ε.

More precisely, for ε > 0, we define the following quasi-reversibility variational problem:
find (vε, pε) ∈ H

2(Ω) × H1(Ω) such that vε = gD on Γobs, σ(vε, pε)n = gN on Γobs and
for all (w, q) ∈ H

2(Ω)×H1(Ω) with w = 0 and σ(w, q)n = 0 on Γobs, we have:

∫

Ω
(−ν∆vε +∇pε) · (−ν∆w +∇q) dx+

(
div(vε),div(w)

)
H1(Ω)

+ ε(vε,w)
H

2(Ω) + ε(pε, q)H1(Ω) =

∫

Ω
f · (−ν∆w +∇q) dx. (5.2)

We start by proving that the quasi-reversibility problem is well-posed:

Proposition 5.1. For any (f ,gD,gN ) ∈ L
2(Ω)×H

3/2(Γobs)×H
1/2(Γobs), there exists a

unique solution (vε, pε) ∈ H
2(Ω)×H1(Ω) to the quasi-reversibility problem (5.2).

Proof. Let us first note that there exists (V , P ) ∈ H
2(Ω)×H1(Ω) such that V |Γobs

= gD,
σ(V , P )n|Γobs

= gN and

‖(V , P )‖
H

2(Ω)×H1(Ω) ≤ C‖(gD,gN )‖H3/2(Γobs)×H
1/2(Γobs)

.

Indeed, since σ(V , P )n · n = 2ν ∂V∂n · n− P and

[σ(V , P )n]τ = ν

(
∂V τ

∂n
+∇τ (V · n)− (∇n)V τ

)
= ν

(
∂V τ

∂n
+ (∇τV )n

)
,
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it suffices to choose P = 0 and a continuous lifting V which satisfies V = gD and ν ∂V∂n =
1
2(gN · n)n+ gNτ − ν(∇τgD)n on Γobs.

Defining (ṽε , p̃ε)
def

= (vε − V , pε − P ), we see that ṽε = 0 and σ(ṽε, p̃ε)n = 0 on Γobs

and, for all (w, q) ∈ H
2(Ω)×H1(Ω) such that w = 0 and σ(w, q)n = 0 on Γobs, we have

∫

Ω
(−ν∆ṽε +∇p̃ε) · (−ν∆w +∇q) dx+

(
div(ṽε),div(w)

)
H1(Ω)

+ ε(ṽε,w)
H

2(Ω) + ε(p̃ε, q)H1(Ω) =

∫

Ω
f̃ · (−ν∆w +∇q) dx−

∫

Ω
div(V ) div(w) dx

− ε(V ,w)
H

2(Ω) − ε(P, q)H1(Ω),

where f̃
def

= f + ν∆V −∇P . The Lax-Milgram theorem gives then the result.

Suppose now that the initial data completion problem admits a (necessarily unique)
solution (v, p) ∈ H

2(Ω)×H1(Ω). Then, we have the following

Theorem 5.2. The solution (vε, pε) ∈ H
2(Ω) × H1(Ω) of the quasi-reversibility prob-

lem (5.2) converges to (v, p) ∈ H
2(Ω)×H1(Ω) solution of the data completion problem for

the Stokes problem (5.1) when ε tends to zero, strongly in H
2(Ω)×H1(Ω). We furthermore

have the estimate

‖ − ν∆vε +∇pε − f‖2L2(Ω)
+ ‖div(vε)‖2H1(Ω) ≤ ε‖(v, p)‖2

H
2(Ω)×H1(Ω)

. (5.3)

Proof. Using (w, q)
def

= (vε − v pε − p) as test functions in the quasi-reversibility prob-
lem (5.2), which is admissible as they verify the boundary conditions, we directly obtain

‖ − ν∆vε +∇pε− f‖2L2(Ω)
+ ‖div(vε)‖2H1(Ω) + ε

(
(vε, pε), (vε − v, pε − p)

)
H

2(Ω)×H1(Ω)
= 0.

(5.4)

We hence have
(
(vε, pε), (vε − v, pε − p)

)
H

2(Ω)×H1(Ω)
≤ 0 which implies

‖(vε, pε)‖H2(Ω)×H1(Ω) ≤ ‖(v, p)‖
H

2(Ω)×H1(Ω). (5.5)

Subtracting ε
(
(v, p), (vε − v, pε − p)

)
H

2(Ω)×H1(Ω)
to equation (5.4), we obtain

‖(vε − v, pε − p)‖2
H

2(Ω)×H1(Ω)
≤ −

(
(v, p), (vε − v, pε − p)

)
H

2(Ω)×H1(Ω)
(5.6)

implying
‖(vε − v, pε − p)‖

H
2(Ω)×H1(Ω) ≤ ‖(v, p)‖

H
2(Ω)×H1(Ω). (5.7)

Going back to equation (5.4), we finally obtain

‖ − ν∆vε +∇pε − f‖2L2(Ω)
+ ‖div(vε)‖2H1(Ω) ≤ ε

∣∣∣∣
(
(vε, pε), (vε − v, pε − p)

)
H

2(Ω)×H1(Ω)

∣∣∣∣

which, using (5.5) and (5.7), directly leads to the estimate (5.3).
Now, suppose that vε and pε do not converge to v and p. Then there exist ρ > 0

and εn, sequence of strictly positive real numbers verifying εn −−−→
n→∞

0, such that the

couple (vn
def

= vεn , pn
def

= pεn) satisfies

‖vn − v, pn − p‖
H

2(Ω)×H1(Ω) > ρ.
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By equation (5.5), we know that (vn, pn) is a bounded sequence in H
2(Ω)×H1(Ω). Hence,

up to a subsequence (that we still denote (vn, pn)) the sequence converges to some (w, q)
weakly in H

2(Ω) × H1(Ω). Then equation (5.3) and the boundary conditions verified by
(vn, pn) directly imply that (w, q) verifies the Stokes data completion problem (5.1), which
in turn implies by uniqueness of such solution that w = v and q = p. Therefore, vn weakly
converges to v in H

2(Ω) and pn weakly converges to p in H1(Ω). But Equation (5.5)
implies then that (vn, pn) strongly converges to (v, p), which is a direct contradiction with
the definition of the sequence, and therefore ends the proof.

Remark 5.3. It is not difficult to obtain the following complement to the theorem: if the
initial data completion problem for the Stokes system does not admit a solution, then

‖(vε, pε)‖H2(Ω)×H1(Ω) −−−→ε→0
+∞.

Otherwise, we would have a sequence of strictly positive real numbers (εn)n∈N verifying
εn −−−→

n→∞
0 and ‖(vεn , pεn)‖H2(Ω)×H1(Ω) ≤ C. But using the same arguments as in the last

paragraph of the proof of theorem 5.2, extracting a subsequence and passing to the limit, we
would obtain a solution to the data completion problem for the Stokes system, in obvious
contradiction with the assumption.

Proposition 5.1 and Theorem 5.2 clearly show that the proposed quasi-reversibility
method (5.2) is a regularization method for problem (5.1). However, if Theorem 5.2 assures
the convergence of the approximated solution to the exact one, it does not give any rate
of convergence. Actually, it is known (see [23, section 2.5] and the references therein)
that Carleman estimates are the key argument to derive convergence rates for the quasi-
reversibility method. This is the case for the quasi-reversibility method proposed above
and we now prove Theorem 1.8 for this method:

Proof of Theorem 1.8 for the quasi-reversibility method. Defining (u , q)
def

= (vε − v , pε −
p), we notice that we have u = 0 and σ(u, q)n = 0 on Γobs and that the following estimates
hold (see Inequalities (5.3) and (5.7)):

‖(u, q)‖
H

2(Ω)×H1(Ω) ≤ ‖(v, p)‖
H

2(Ω)×H1(Ω)

‖ − ν∆u+∇q‖
L
2(Ω) ≤ √

ε‖(v, p)‖
H

2(Ω)×H1(Ω)

‖div(u)‖L2(Ω) ≤ √
ε‖(v, p)‖

H
2(Ω)×H1(Ω).

Hence, applying estimates (1.7) and (1.8), we directly obtain the result.

Remark 5.4. Suppose that instead of exact data (f ,gD,gN ) ∈ L
2(Ωobs) ×H

3/2(Γobs) ×
H

1/2(Γobs), with corresponding solution (v, p) ∈ H
2(Ω) × H1(Ω), we have noisy data

(f δ,gδD,g
δ
n) ∈ L

2(Ω)×H
3/2(Γobs)×H

1/2(Γobs), such that

‖f δ − f‖
L

2(Ω) ≤ δ, ‖gδD − gD‖H3/2(Γobs)
≤ δ and ‖gδN − gN‖H1/2(Γobs)

≤ δ.

Due to the ill-posedness of the data completion problem (5.1), there might be no solution
corresponding to this noisy data. However, the quasi-reversibility problem (5.2) has a cor-
responding solution, denoted vδε and pδε. We also denote vε and pε the solution of the
quasi-reversibility problem with exact data. It is not difficult to verify that there exists a
constant C > 0, depending only on the geometry of the domain, such that

‖(vδε − vε, pδε − pε)‖H2(Ω)×H1(Ω) ≤ C
δ√
ε
.
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Combining this result with the previous estimates, we therefore obtain

‖(vδε − v, pδε − p)‖
H

1(Ω)×L2(Ω) ≤ C




δ√
ε
+

M
(
ln(1 + M√

ε
)
)1/2


 ,

where M > 0 is such that ‖v‖H2(Ω)+ ‖p‖H1(Ω) ≤M . Such estimate highlights the competi-
tion between regularization and noise, which leads to the question of the optimal choice of
the regularization parameter ε with respect to the amplitude of the noise δ. On this subject
of the optimal choice of the regularization parameter for the quasi-reversibility method for
elliptic equations, see [11, 12] and the references therein.

5.2 Error estimates for the Kohn-Vogelius method

The quasi-reversibility method proposed in the previous section regularizes the data com-
pletion problem for the Stokes system by solving approximately the first two equations
of (5.1) (see the estimate in Theorem 5.2) while verifying exactly the boundary conditions.
The Kohn-Vogelius method we study now is somehow a symmetric method, in the sense
that it solves exactly the equations in Ω with approximated boundary conditions. And
again, we obtain the rate of convergence of the method using the same estimates (1.7)
and (1.8).

We recall that ΓCobs
def

= ∂Ω \ Γobs and that we here assume that Γobs ∩ ΓCobs = ∅. For

ϕN ∈ H
1/2(ΓCobs) and ψD ∈ H

3/2(ΓCobs), we denote (vϕN , pϕN ) ∈ H
2(Ω) × H1(Ω) and

(vψD , pψD) ∈ H
2(Ω)×H1(Ω) the respective solutions of





−ν∆vϕN +∇pϕN = f in Ω,
div vϕN = 0 in Ω,

vϕN = gD on Γobs,
σ(vϕN , pϕN )n = ϕN on ΓCobs,

and





−ν∆vψD +∇pψD = f in Ω,
div vψD = 0 in Ω,

σ(vψD , pψD)n = gN on Γobs,
vψD = ψD on ΓCobs.

(5.8)
We define the non-negative functional

F : (ϕN ,ψD) ∈ H
1/2(ΓCobs)×H

3/2(ΓCobs) 7→ |vϕN − vψD |2H2(Ω)
+ |vϕN − vψD |2H1(Ω)

∈ R,

where | · |
H

1(Ω)
def

= ‖∇(·)‖
L
2(Ω) and | · |

H
2(Ω)

def

=
∥∥∇2(·)

∥∥
L
2(Ω)

are the respective H
1 and H

2-

seminorm.

Remark 5.5. For this Kohn-Vogelius method, we have to impose Γobs ∩ ΓCobs = ∅ in order
to guarantee that the functional is well-defined and more precisely that the pairs (vϕN , pϕN )

and (vψD , pψD) belong to H
2(Ω)×H1(Ω) for all (ϕN ,ψD) ∈ H

1/2(ΓCobs)×H
3/2(ΓCobs) . In

the case Γobs ∩ ΓCobs 6= ∅, one cannot guarantee that the solutions belong to H
2(Ω)×H1(Ω)

(see for example [28]).

It is not difficult to verify that the two following propositions are equivalent:

• there exists (ϕN ,ψD) ∈ H
1/2(ΓCobs)×H

3/2(ΓCobs) such that F (ϕN ,ψD) = 0;

• there exists a (necessarily unique) solution to the data completion problem (5.1).

Hence one could try to reconstruct the solution of problem (5.1) by minimizing F . However,
this is not a stable strategy: indeed, the infimum of F is always 0 even if (5.1) does not
admit a solution, but in this case there are minimizing sequences (ϕmN ,ψ

m
D) such that

lim
m→∞

‖(ϕmN ,ψmD)‖H1/2(ΓCobs)×H
3/2(ΓCobs)

= +∞. (5.9)
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Let us briefly explain why. Due to the denseness of the admissible data (see [8] or [16,
section 2]), for all ε > 0, there exists

(
fε,gDε ,gNε

)
∈ L

2(Ω) × H
3/2(Γobs) × H

1/2(Γobs)
such that the corresponding Stokes problem (5.1) has a solution (vε, pε) and

‖f ε − f‖ ≤ ε ,
∥∥gDε − gD

∥∥ ≤ ε and
∥∥gNε − gN

∥∥ ≤ ε.

Therefore, choosing ϕNε = σ(vε, pε)n and ψDε = vε on ΓCobs, it is not difficult to see that

0 ≤ F (ϕNε ,ψDε) ≤ Cε. (5.10)

Hence, the infimum of F is 0. Furthermore, if the above sequence (ϕNε ,ψDε) is bounded

in H
1/2(ΓCobs)×H

3/2(ΓCobs), one can extract a weakly convergent subsequence which leads
to the existence of a solution of the Cauchy problem (5.1) using Problems (5.8) and In-
equality (5.10).

Thus, to regularize the problem, we add a penalization term: for ε > 0, we introduce
the functional Fε : H1/2(ΓCobs)×H

3/2(ΓCobs) → R defined by

Fε(ϕN ,ψD) = F (ϕN ,ψD) + ε‖(vϕN , pϕN )‖2H2(Ω)×H1(Ω)
+ ε‖(vψD , pψD)‖2H2(Ω)×H1(Ω)

.

We have the following result:

Proposition 5.6. For any (f ,gD,gN ) ∈ L
2(Ω)×H

3/2(Γobs)×H
1/2(Γobs), there exists a

unique (ϕεN ,ψ
ε
D) ∈ H

1/2(ΓCobs)×H
3/2(ΓCobs) such that

Fε(ϕ
ε
N ,ψ

ε
D) = min

(ϕN ,ψD)∈H1/2(ΓCobs)×H
3/2(ΓCobs)

Fε(ϕN ,ψD).

Proof. Obviously, the functional Fε is continuous and strictly convex. Furthermore, it is
coercive. Indeed, suppose it is not. Then there exists a sequence (ϕmN ,ψ

m
D) and a constant

C > 0 such that

lim
m→∞

‖(ϕmN ,ψmD)‖H1/2(ΓCobs)×H
3/2(ΓCobs)

= +∞ and Fε(ϕ
m
N ,ψ

m
D) < C.

This directly implies ‖(vϕmN , pϕmN )‖H2(Ω)×H1(Ω) < C and ‖(vψmD , pψmD )‖H2(Ω)×H1(Ω) < C,
which directly implies ‖(ϕmN ,ψmD)‖H1/2(ΓCobs)×H

3/2(ΓCobs)
< C by continuity of trace and

normal derivative operators, which is a contradiction with the initial assumptions.
Therefore Fε is continuous, strictly convex and coercive, which implies the result

(see [17]).

Suppose now that the initial data completion problem admits a (necessarily unique)
solution (v, p) ∈ H

2(Ω)×H1(Ω). Then, we have the following

Theorem 5.7. The solution (vϕεN , pψ
ε
D
) ∈ H

2(Ω)×H1(Ω) converges to (v, p) ∈ H
2(Ω)×

H1(Ω) solution of the data completion problem for the Stokes problem (5.1) when ε tends
to zero, strongly in H

2(Ω)×H1(Ω).

Proof. We denote ϕex
N

def

= σ(v, p)n|ΓCobs
and ψex

D
def

= v|ΓCobs
. By definition, we have (vϕex

N
, pϕex

N
) =

(vψex
D
, pψex

D
) = (v, p) and F (ϕex

N ,ψ
ex
D ) = 0. Therefore, by definition of ϕεN and ψεD, we have

|vϕεN−vψεD |
2
H

2(Ω)
+|vϕεN−vψεD |

2
H

1(Ω)
+ε‖(vϕεN , pϕεN )‖

2
H

2(Ω)×H1(Ω)
+ε‖(vψεD , pψεD)‖

2
H

2(Ω)×H1(Ω)

≤ Fε(ϕ
ex
N ,ψ

ex
D ) = 2ε‖(v, p)‖2

H
2(Ω)×H1(Ω)
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which directly implies

|vϕεN − vψεD |
2
H

2(Ω)
+ |vϕεN − vψεD |

2
H

1(Ω)
≤ 2ε‖(v, p)‖2

H
2(Ω)×H1(Ω)

(5.11)

and

‖(vϕεN , pϕεN )‖
2
H

2(Ω)×H1(Ω)
+ ‖(vψεD , pψεD)‖

2
H

2(Ω)×H1(Ω)
≤ 2‖(v, p)‖2

H
2(Ω)×H1(Ω)

. (5.12)

Let us consider now an arbitrary sequence of positive real numbers εm such that
lim
m→∞

εm = 0. From (5.12), we see that

(vϕmN , pϕ
m
N
)

def

= (vϕNεm
, pϕNεm

) and (vψmD , pψ
m
D
)

def

= (vψDεm
, pψDεm

)

are bounded in H
2(Ω) × H1(Ω). Therefore, up to a subsequence, we have the following

weak convergences in H
2(Ω)

vψmD ⇀ vψD∞
, vϕmN ⇀ vϕN∞

and the following weak convergences in H1(Ω)

pψmD ⇀ pψD∞
, pϕmN ⇀ pϕN∞

.

But Equation (5.11) implies directly that vψD∞
= vϕN∞

+ c, with c ∈ R
N , and passing to

the limit in the first equations in each Stokes problem of (5.8), we get pψD∞
= pϕN∞

+ c,
with c ∈ R. In particular, passing to the limit gives vϕN∞

= gD and σ(vϕN∞
, pψD∞

)n =
σ(vψD∞

, pψD∞
)n = gN on Γobs by weak continuity of the trace and normal derivative

on Γobs. Therefore (vϕN∞
, pψD∞

) = (v, p). Hence, we have the following weak convergences

in H
2(Ω)

vψmD ⇀ v + c, vϕmN ⇀ v

and the following weak convergences in H1(Ω)

pψmD ⇀ p, pϕmN ⇀ p+ c.

Now, we see that F (ϕex
N ,ψ

ex
D ) = 0 = F (ϕex

N + cn,ψex
D + c) for any c ∈ R and c ∈ R

N .
Therefore, similarly has previously, we have Fε(ϕ

m
N ,ψ

m
D) ≤ Fε(ϕ

ex
N + cn,ψex

D + c) which
implies

‖(vϕεN , pϕεN )‖
2
H

2(Ω)×H1(Ω)
+ ‖(vψεD , pψεD)‖

2
H

2(Ω)×H1(Ω)
≤ ‖(v, p + c)‖2

H
2(Ω)×H1(Ω)

+ ‖(v + c, p)‖2
H

2(Ω)×H1(Ω)

directly implying that the weak convergences are actually strong convergences.
Finally, a standard argument ad absurdum ends the proof as in the end of the proof of

Theorem 5.2.

We now prove Theorem 1.8 for this penalized Kohn-Vogelius method, recalling that
(vε, pε)

def

= (vϕεN , pψ
ε
D
).

Proof of Theorem 1.8 for the penalized Kohn-Vogelius method. It is not difficult to verify
that we have the a priori bounds (see (5.12))

‖vε − v‖H2(Ω) ≤ C(v, p), ‖pε − p‖H1(Ω) ≤ C̃(v, p)
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where C(v, p) and C̃(v, p) are constants depending only on the H
2(Ω) × H1(Ω) norm

of (v, p). Furthermore, thanks to (5.11), we see that

‖σ(vε, pε)n− gN‖H1/2(Γobs)
= ‖σ(vϕεN , pψεD)n− σ(vψεD , pψ

ε
D
)n‖

H
1/2(Γobs)

≤ |vε − vψεD |H2(Ω) + |vε − vψεD |H1(Ω) (5.13)

≤ √
εC(v, p)

where C(v, p) is another constant depending only on H
2(Ω)×H1(Ω) norm of (v, p).

Hence, applying again estimates (1.7) and (1.8), we directly obtain the announced
result.

Remark 5.8. The Kohn-Vogelius functional is classically defined by F(ϕN ,ψD) = |vϕN −
vψD |2H1(Ω)

instead of F (ϕN ,ψD) = |vϕN − vψD |2H2(Ω)
+ |vϕN − vψD |2H1(Ω)

. Notice that

Proposition 5.6 is also valid for the associated functional Fε. The only point where the
H

2-seminorm is needed is Inequality (5.13).
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