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Abstract—Event-based control techniques are investigated
for output reference tracking in the case of linear time-invariant
systems. In event-based control, the controller remains at rest if
the system is behaving according to some predefined conditions,
the feedback loop being closed only when the system states
violate these conditions. In this work a reference system, which
consists in the continuously-controlled version of the system
under study, is employed. Based on the difference between the
state of the event-triggered system and that of the reference
system, we define a Lyapunov-like function, and show that if we
can keep this function confined to a certain region, the tracking
error would also be bounded. The trespassing of this function
outside of the desired region is used as an event-triggering
condition.

I. INTRODUCTION

Event-based control is a control strategy in which the
control law is updated following the occurence of an event
related to the state of the system under study. It has
appeared in the last decades as an appealing alternative to
periodic control. The ever-growing number of publications
on the topic ( [1], [2], [3], [4], [5] and references therein)
testifies of this shift of interest away from periodic control.

By periodic control, we refer to the classical approach
that consists in uniformly sampling a control law in order to
transfer it onto a digital platform. The discretization is thus
carried out by taking a sample value of the continuous-time
signal at fixed time intervals. Of course, the popularity of
this approach is due, apart from its orderly nature, to the
fact that it has been exhaustively investigated for several
decades.

However, lately, the control community has been pon-
dering over the shortcomings of the periodic implementa-
tion in modern control facilities. First, periodic sampling
requires the use of a very small time-step in order to
satisfy the Nyquist–Shannon sampling theorem and keep
the properties of the original, continuous-time signal. But,
this is often met with hardware limitations, as the sampling
period can only get as small as the hardware resolution
allows it to. Then, in a modern industrial environment,
applications are often set to communicate through a band-
limited (sometimes wireless) network, where transferring
data at a very high rate may lead to the congestion of the
network [6], possibly resulting in disastrous consequences
on the behavior of the interconnected systems. It also
represents a considerable waste of energy, along with all

its environmental and economical implications.
From such conclusions stemmed the idea that control

should only be applied when needed. In event-triggered
control, the value of the control signal is kept constant
as long as the system does not undergo any significant
change. A new sample of the control signal is taken when
the state of the system reaches unacceptable values or when
some stability condition is violated. During the time the
control is held unchanged, the controller is at rest, and no
state measurement is fed back to it, reducing thus energy
consumption and reducing the load on the communication
channels. It has also the merit of being a more intuitive
approach, as humans tend to turn their attention on tasks
that need intervention rather than on those which are run-
ning smoothly. However, it does present the disadvantage
of having to monitor the state of the system continually.

Up to now, the research on event-based strategies has
been focused on stability and stabilization issues ( [7], [8],
[9], to name a few). Inspired by results developed in the
literature, we introduce an event-based approach for output
tracking of a reference trajectory by a linear time-invariant
(LTI) system.

A few works on event-based control for reference track-
ing do exist throughout the literature. For instance, in [10],
an event-based LQR controller is implemented, while the
reference tracking is achieved through integral action. In
[11], [12], [13], an additional fictitious system that generates
the desired trajectory is defined. The event-triggering con-
ditions are then established according to the error between
the state of the reference system and that of the actual
system.

In all these approaches, the reference system is chosen
to be an external system, that would suit the purpose of
analysis. In this work though, we propose to select the
reference system as the continuously-controlled version of
the event-triggered system being considered. It is indeed
reasonable to assume that the behavior of the continuously-
controlled system should serve as a role model for the per-
formance of the event-based algorithm. Our main objective
then would be to maintain the tracking error between the
states of the two systems under a certain bound. This is
done by noticing that this error can be viewed as the state of
a new virtual system, and will ultimately decay to zero if the
system is stable. The practical stability of the error-related
system is then guaranteed by associating a Lyapunov-like



function to it, which would be kept from increasing above
a certain level, defining thus our triggering conditions.

This work is organized as follows: in the next section
we expose the mathematical framework of the problem at
hand by explaining the event-based scheme. In section III,
we define the event-triggering conditions that ensure the
boundedness of the error. Some simulation results are then
presented in section VI.

II. PROBLEM STATEMENT

Let us consider the LTI system described as follows

ẋ(t ) = Ax(t )+Bu(t ),

y(t ) =C x(t ),
(1)

x(t ) ∈ Rn is the state vector, y(t ) ∈ Rp is the system output
and u(t ) ∈Rm is the control input.

We wish to drive the output of system (1) to asymp-
totically follow a trajectory determined by an exogenous
signal r (t ), denoted as the reference input. We first define
the reference system which consists in system (1) for which
the control law is classically defined as

ur (t ) =−K x(t )+Gr (t ), (2)

where K ∈ Rm×n is the feedback gain and G ∈ Rm×p is a
calibration matrix, where G = (−C (A−BK )−1B)−1.
As a result, we obtain the following closed-loop system

ẋr (t ) = (A−BK )xr (t )+BGr (t ),

yr (t ) =C xr (t ),
(3)

such that

1) (A−BK ) is Hurwitz with desired eigenvalues,
2) limt→∞‖yr (t )− r (t )‖ = 0.

The control law ur (t ) is applied continuously to system (1)
and classical control theory affirms that achieving 1) and 2)
is always possible when the pair (A,B) is controllable. We
assume in what follows that it is the case for system (1).

In event-based control, however, the control is updated
only at some time instants tk , k ∈ N, when certain condi-
tions on the behavior of the plant are no longer satisfied,
resulting in time instants tk which are not necessarily evenly
spaced. The control input, now denoted by ū(t ), is defined
at time tk by

ū(tk ) =−K x(tk )+Gr (tk ). (4)

It is maintained constant on time intervals [tk , tk+1):

ū(t ) = ū(tk ) ∀t ∈ [tk , tk+1). (5)

Then system (1) becomes{
ẋ(t ) = Ax(t )+Bū(tk ),

y(t ) =C x(t ), t ∈ [tk , tk+1), k ∈N.
(6)

As mentioned previously, we consider the continuously-
controlled system (3) as a reference system, meaning that,
at each time instant, the behavior of the event-based
system will be compared to that of the reference system.
From this comparison, we will determine whether the
behavior of system (6) is acceptable or whether the control
should be updated.

Remark 1. The principle of a reference system in the event-
based scheme has also been used in references [11], [12],
[13]. Our approach differs in the fact that the reference
system is provided within the method, whereas in [11] and
[12] the choice of the reference system is left for the user
to make. The work presented in [13] deals with a stability
problem since the states are driven to zero.

Since we have assumed that all the conditions are
united to achieve limt→∞‖yr (t )− r (t )‖ = 0, it is sufficient
to guarantee that limt→∞‖y(t )− yr (t )‖ = 0, to ensure that
the output y(t ) of the event-triggered system follows the
trajectory of r (t ).

In this work, however, we consider the more general
problem of driving the state error ‖x(t ) − xr (t )‖ to zero
as time t tends to ∞. This principle is depicted in Fig.
1. From the relationship between x(t ) and y(t ) shown in
system (1), we deduce that limt→∞‖x(t )−xr (t )‖ = 0 implies
limt→∞‖y(t )− yr (t )‖ = 0.

Notice that for the plants where the states are not
available for measurement, techniques for obtaining an
estimation of these states (such as observers) do exist and
can be used alongside our approach with only a small
modification.

Defining the event-triggering conditions is the topic of
the next section.

III. EVENT-TRIGGERING CONDITIONS FOR TRACKING A

REFERENCE INPUT

In this section, we define a new system based on the
reference and the event-based systems. The state of this
new system, the error between the real state x(t ) and the
reference state xr (t ),

e(t ) = x(t )−xr (t ), (7)

will serve as a basis for updating the control ū(t ). The
behavior of the error signal e can be described as follows

1) when t ∈ (tk , tk+1)

ė(t ) = (A−BK )e(t )−BK∆k x(t )+BG∆k r (t ), (8a)

where ∆k x(t ) = x(tk )−x(t ), ∆k r (t ) = r (tk )− r (t ),

2) when t = tk , k = 0,1,2, . . .

ė(t ) = (A−BK )e(t ). (8b)

Remark 2. Throughout this work, we allow the exogenous
signal r (t ) to be only piecewise Lipschitz, and we authorize
it to contain jumps, provided that there exists a minimum
interval of time between two successive jumps where r (t )
is continuous. Moreover, we require the signals used as
exogenous inputs r (t ) to be uniformly bounded.

Remark 3. Note also that despite the jumps in r (t ), the
states xr (t ), x(t ) and e(t ) remain Lipschitz. However, their
first derivatives do exhibit jumps. Indeed, jumps in ẋ(t )
occur when an event happens and jumps in ẋr (t ) are due
to jumps in r (t ). Therefore ė(t ) exhibits jumps both when
either ẋ(t ) or ẋr (t ) exhibit jumps.
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Fig. 1. Schematic of the proposed event-based tracking controller.

Based on equation (8b), we can associate to the system
(8) a Lyapunov-like function of the following form

V (e(t )) = e(t )T P e(t ), (9)

where P , a symmetric positive-definite matrix, is a solution
to the Lyapunov equation

(A−BK )T P +P (A−BK ) =−Q, (10)

where Q is a positive-definite matrix.
Equations (9) and (10) stem from the fact that V (e)

should be a positive-definite function, whose first time-
derivative is non-positive. These conditions, according to
Lyapunov’s theory, are sufficient to guarantee the stability
of system (8).

In our approach though, we do not try to prevent
V (e) from increasing, but we show that we are capable of
maintaining V (e) confined within a certain region. In other
words, between two time instants tk and tk+1, V (e) may
increase; but, whenever V (e) reaches a certain upper bound,
the control is updated, forcing V (e) back inside the chosen
region. This concept is illustrated in Fig. 2.

Let δ> 0 be the upper limit that we want to achieve on
V (e),

0 ≤V (e) ≤ δ. (11)

From equation (9) we can deduce that the Lyapunov-like
function V (e) is naturally bounded as follows

λmin
P ‖e(t )‖2 ≤V (e) ≤λmax

P ‖e(t )‖2, (12)

where λmin
P and λmax

P are, respectively, the smallest and
largest eigenvalues of matrix P . Since P is positive-definite,
its eigenvalues are real and positive.

By requiring that V (e) be bounded from above, and from
inequality (12), we can guarantee an upper bound on the
error e(t ), expressed as

‖e(t )‖ ≤
√

δ

λmin
P

= ε. (13)

Consequently we can define our triggering conditions
based on this premise.

Definition 1. We define the time-instant tk+1 (k ∈ N) at
which the control-law ū(t ) is updated as the minimum time

time
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Fig. 2. Example of the evolution of the Lyapunov equation under our
triggering conditions.

instant t > tk for which V (e(t )) = δ:

tk+1 = inf{t > tk ,V (e(t )) = δ}. (14)

Theorem 1. If the event-based control ū(t ) is updated
according to the event-triggering condition defined in (14),
then the tracking error e(t ) remains confined in the ball of
radius ε, i.e.

‖e(t )‖ ≤ ε, (15)

for ε defined by (13).

Proof: To prove Theorem 1, we study the time derivative
of the Lyapunov-like function V defined by equation (9).
Since the matrix P is positive-definite, for all e ∈Rn , V (e) ≥
0. At time t0, e(t ) is chosen to be zero (we assume x(t0) =
xr (t0)). Then, at time t = tk , when V (e(t )) reaches the value
δ the control is updated such that

V̇ (e(t ))|t=tk = (
ė(t )T Pe(t )+e(t )T Pė(t )

)
|t=tk

= e(tk )T (A−BK )T Pe(tk )

+e(tk )T P (A−BK )e(tk )

= −e(tk )T Qe(tk ).

From equation (10), the matrix Q is symmetric positive-
definite, meaning that V̇ (e) is negative-definite, V (e(t ))
decreases at time t = tk and is pushed back to the region



comprised between the lines V (e(t )) = 0 and V (e(t )) = δ.
Since Q is a positive-definite matrix, its largest and small-
est eigenvalues, λmax

Q and λmin
Q , respectively, are real and

positive. Then, we can set an upper and lower limit on the
descent of V (e(t )),

−λmax
Q ‖e(tk )‖2 ≤−e(tk )T Qe(tk ) ≤−λmin

Q ‖e(tk )‖2. (16)

We have demonstrated earlier that in this region ‖e(t )‖ ≤ ε.
Thus V̇ (e(t ))|t=tk ≤−λmin

Q ε2 for all k.

However, the boundedness of the tracking error e(t ) is
not sufficient to deem the triggering condition in Defini-
tion 1 appropriate. We need also to guarantee that under
these triggering conditions, there exists a minimum time
lapse between two update instants. This extra requirement
avoids, to borrow the terminology of hybrid systems, Zeno
phenomena, where an infinite number of updates is needed
within a finite interval of time. This also allows to give
an estimation of the number of necessary updates of the
control, for the purpose of minimizing the communication
cost of the event-triggered control.
We can prove the existence of this minimum delay in the
case when r (t ) is Lipschitz.

Theorem 2. Let r (t ) be a Lipschitz input signal. Then, there
exists a minimum time τmin > 0, independent of k, such that

∀k ∈N, tk+1 − tk > τmin,

where the tk , k ∈N are defined in Definition 1.

Remark 4. Assuming that r is Lipschitz is not a very strong
assumption, since in practice, a low-pass filter is used on
the reference input to handle the abrupt changes that it may
contain and avoid actuator saturation, eventually rendering
it Lipschitz.

Proof: We show that there exists τ independent of k
such that V̇ (e(t )) remains negative in the interval t ∈ [tk , tk+
τ). We will necessarily end up having τ< τmin. For t > tk ,

V̇ (e(t )) = −e(t )T Qe(t )

−2∆k x(t )T K T B T Pe(t )+2∆k r (t )T GT B T Pe(t )

≡ −e(t )T Qe(t )+Rk (t ).

We prove that there exist β> 0 and τ1 > 0, independent of
k, such that for all t ∈ (tk , tk +τ1), −e(t )T Qe(t ) < −β, and
0 < τ2 < τ1 such that for all t ∈ (tk , tk + τ2), |Rk (t )| < β/2.
Hence for t ∈ (tk , tk + τ2), V̇ (e(t )) is uniformly bounded
from above by −β/2.
To determine τ1, we have to prove that ‖e(t )‖2 remains
relatively large on some time interval.

From equations (11), (12), and (16)

−e(tk )T Qe(tk ) ≤−
λmin

Q δ

λmax
P

.

We therefore consider β=λmin
Q δ/2λmax

P .

To have −e(t )T Qe(t ) < −β it suffices to show that ‖e(t )‖ >√
β/λmin

Q =
√
δ/2λmax

P .
We can rewrite ė(t ) as

ė(t ) = (A−BK )e(t )+Fk (t ), (17)

where

Fk (t ) =−BK∆k x(t )+BG∆k r (t ).

In order to find a bound on Fk (t ), we need the following
lemma.

Lemma 1. If r (t ) is an Lr -Lipschitz function, then the
following assumptions are verified.

(i) There exists Lr > 0 such that

‖∆k r (t )‖ ≤ Lr (t − tk ). (18)

(ii) As noticed in Remark 3, x is Lipschitz. Let Lx be its
Lipschitz constant. Therefore,

‖∆k x(t )‖ ≤ Lx (t − tk ). (19)

From Lemma 1, we can state that

‖Fk (t )‖ ≤ �BK�Lx (t − tk )+�BG�Lr (t − tk ) ≤Cτ1,

�·� being the subordinated matrix-norm in Rn×n and Rn×p ,
and C constant. For t ∈ (tk , tk +τ1), we can also write an
integral formula for (17), namely

e(t ) = e(A−BK )(t−tk )e(tk )+
∫ t

tk

e(A−BK )(t−s)Fk (s)d s.

Since A−BK is Hurwitz,

‖e(t )‖ ≥ ‖e(tk )‖−Cτ1
2.

From (12) we also know that ‖e(tk )‖ ≥
√
δ/λmax

P . Therefore
for a sufficiently small τ1, which does not depend on k, we
can ensure that

‖e(t )‖ ≥
√
δ/2λmax

P

and hence −e(t )T Qe(t ) <−β.
We then move on to prove that |Rk (t )| is bounded from the
above by β/2.

|Rk (t )| ≤ 2�PBK�‖e(t )‖‖∆k x(t )‖
+2�PBG�‖e(t )‖‖∆k r (t )‖

≤ 2

√
δ

λmin
P

τ2 (‖|PBK ‖|Lx +�PBG�Lr ) ,

and it is easy to choose τ2 small enough such that |Rk (t )| <
β/2 for t ∈ (tk , tk +τ2).

Remark 5. The proof of Theorem 2 uses in a crucial way
the hypothesis that r is Lipschitz. If r experiences jumps
as will be the case in our numerical experiments, it is no
more possible to give a lower bound of the delay between
two samples. Indeed, although we can estimate |V̇ (e(t ))| by
2�PBK�‖e(t )‖‖∆k x(t )‖+2�PBG�‖e(t )‖‖∆k r (t )‖ which can
also be bounded by a constant on the time interval [tk , tk +
τ1], we do not master the times at which jumps in r take
place. Typically if it happens very shortly after tk , when
V (e(t )) is very close to δ, the time for V (e(t )) to reach δ
again can be very short and cannot be estimated in terms
of the parameters of the system.



IV. SIMULATION RESULTS

A. Yaw damper example

As an application to our approach, we consider the
example introduced in [14]. It is a simplified model of a
jet aircraft during cruise flight, with two inputs: rudder and
aileron deflections; and two outputs: yaw rate and bank
angle. The state-space representation is given in the form
of system (1), where

A =


−0.0558 −0.9968 0.0802 0.0415
0.5980 −1150 −0.0318 0
−3.0500 0.3880 −0.4650 0

0 0.0805 1.0000 0

 ,

B =


0.0729 0.0000
−4.7500 0.00775
0.15300 0.1430

0 0

 ,

C =
(

0 1 0 0
0 0 0 1

)
.

We want the outputs to track a certain reference signal
r (t ) ∈ R2, which consists in two step signals that start at
some value and remain constant for half the simulation
time, then both jump at half-time to a different value. So,
through pole-placement, we design a state feedback control
of the form (4) with

K =
(

0.3235 −0.6325 0.1891 0.2561
−12.5446 −0.7213 25.9652 27.2314

)

and

G =
( −11.7069 0.7115
−202.0659 35.3351

)
.

We choose the positive-definite matrix P describing the
Lyapunov-like function (9) as

P =


4.6408 −0.8446 −0.1942 −0.1980
−0.8446 0.9479 0.2071 0.3299
−0.1942 0.2071 0.6457 0.5917
−0.1980 0.3299 0.5917 4.6188

 .

For a maximum tolerance on the error of ε = 0.5, and the
selected Lyapunov function, we find δ= 0.1233.
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Fig. 3. The evolution of the two output signals along with their respective
reference signals
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Fig.3 shows the evolution of the two outputs with
respect to time, with each output represented with the
reference signal it is supposed to track. We can see that
for a relatively large value of δ, the system is able to track
the reference, even though the first output y(1) exhibits
some ripples. This is due to the large value of δ which
results in the fact that the individual updates of the control
law are rather spaced in time as shown in Fig.5. However,
from Fig. 4, it is obvious that the overall behavior of the
system is similar to that of the continuously-controlled
reference system. This also shows that the large overshoot
experienced by the first output is due to the dynamics of
the system and not the event-based scheme.

From Fig.5 we can see that the control updates are
unevenly spaced in time. Indeed, during the transient
period or when there is an abrupt change in the value of
the reference, the control is updated quite often, whereas
when the reference settles at a constant value, the updates
become less frequent and rather regular in time.

time
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Fig. 6. The evolution of the Lyapunov function

Fig.6 shows the evolution of the Lyapunov-like function
V (e(t )) with respect to time. We can notice that it remains
enclosed within the region bounded from above by δ.
Fig.7 is a zoom on the graph of V (e) around t = 15, when r
jumps to a new value. It can be noticed that V (e) trespasses
the boundary set by δ in some instants. This is due to the
fact that computer simulations run in discrete-time rather
than continuous-time, and therefore, detecting the time at
which V (e(t )) reaches the value δ is not possible.

B. Comment on the Discrete Implementation of the System

For obvious practical reasons our simulations are per-
formed using an underlying discrete time. For the above
simulation this sampling time is ts = 10−4. Besides a nu-
merical scheme is used to solve the differential equation,
namely a second order Adams–Bashforth scheme (two-step
explicit scheme).

For the sake of simplicity let us assume that we use
a simple explicit Euler scheme instead. Let t n , n ∈ N be
the uniform time sampling at which the computation is

time

14 14.5 15 15.5 16
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δ

Fig. 7. Behavior of the Lyapunov function when a jump in r occurs

performed. Then e(t n) is approximated by en and

en+1 −en

ts
= (A−BK )en −BK∆k xn

+BG∆k r (t n), t n ∈ (tk , tk+1).
(20)

Hence, using the Hurwitz property on A −BK , and that in

the worst case ‖en‖ =
√
δ/λmax

P

‖en+1‖ ≤ (1+ ts )
√
δ/λmax

P + ts�BK�Lx (t n − tk )+ ts�BG�Br .

This yields an upper bound on the worst value of V (en+1) ≤
λmax

P ‖en+1‖2, which can be bigger than δ. This explains
the fact that the Lyapunov function exceeds δ on Fig. 7.
We cannot avoid such overflows with explicit numerical
schemes. When this happens, t n+1 is chosen as tk+1, and
for the computation of en+2 equation (8b) is used. Then

V (en+2) =V (en+1)− ts en+1T
Qen+1

+ t 2
s V ((A−BK )en+1),

(21)

Which can still be above δ. A few iterations can be necessary
to recover V (en) < δ.

C. Comparing the number of control updates for different
values of δ

The number of updates of the control law in a given
time interval depends directly on the value of δ. Selecting a
rather large δ implies that we are allowing a large tolerance
on the value of the tracking error e(t ), and consequently,
the control law will not need to be updated very often.
On the other hand, if we require a smaller tolerance on
the error e(t ), the control law will have to be updated
more frequently, and this is associated with a small δ. The
latter case converges to the continuous-control scheme if
we require zero tolerance on the tracking error.

TABLE I illustrates the variations of the number of
updates in the control signal for the previous example as
we change δ. We run the simulation for a fixed time-span
in each case (Tfinal = 30). We have run the simulation at a
time-step of 10−4, thus ending up with 300,000 simulation
instants.

The table shows that even for very small values of ε
and δ, the number of necessary updates in the value of
the control remains relatively small compared to the overall
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Fig. 8. Output signals for ε= 0.05 and δ= 0.0012

ε δ Number of Updates
0.8 0.316 66
0.5 0.1233 71

0.05 0.0012 304
0.001 4.93×10−7 19088

TABLE I. NUMBER OF UPDATES OF THE CONTROL SIGNAL FOR DIFFERENT

VALUES OF ε AND δ

number of simulation instants.
For example, for ε= 0.05, the number of updates is only

304 which is still very small for 300,000 simulation instants,
or a ratio of 1/1000. However, the quality of the tracking is
much improved for such value of the tolerance ε and its
corresponding δ, as depicted in Fig. 8.

V. CONCLUSION

In this work, we have proposed an event-based imple-
mentation for an output tracking problem. We have shown
that if we update the control only when the value of a
defined Lyapunov-like function reaches an upper limit, we
can guarantee a good tracking of the reference signal, with a
relatively small number of updates. We can thus reduce the
communications between the controller and process as well
as the number of operations performed by the controller.

As further work, it would be interesting to consider a
variable value of δ. Indeed, if we assume that we have a
prior knowledge of the reference input, we can adapt the
value of δ accordingly, allowing a larger tolerance when r
experiences abrupt changes, and decreasing the tolerance
when r is smoother, thus allowing more time for the
controller to adapt to the changes in r .

Another idea to explore would be the self-triggered
approach. In event-triggered control, even though the con-
trol is not updated continuously, the triggering condition
is monitored continuously. On the other hand, in a self-
triggered scheme, at each update instant we compute not
only the control, but also the next instant at which the
control would have to be updated, removing thus the
obligation to monitor a condition continuously.
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