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Abstract

We devise a method for generalizing proofs in Gentzen’s sequent calculus LK,
presented in a typed λ-calculus flavor. A constrained version LKc of the calculus
is introduced, aiming at collecting a second order constraint ensuring that all the
inference steps occurring in a proof are syntactically correct. A semantics is provided
for LKc, extending the standard semantics of LK. It is then established that LK-
proofs correspond to LKc-proofs with valid constraint thanks to the use of eigenterms
replacing LK’s eigenvariables. Next, a lifting theorem shows how a valid LKc-proof
can be lifted to a most general proof, yielding a non-trivial constraint together with a
solution. An algorithm is then provided that minimizes this solution of the constraint.
The result, applied to the most general proof, yields a valid proof that translates to
an LK-proof more general than the initial one. Finally, clues are given for extending
this method to other logics with due care on proof lifting.

Keywords Sequent calculus Generalization Second order unification Constraints

Mathematical Subject Classification F.4.1

1 Introduction

Generalization, as the process of inducing general properties or patterns from particular
cases, is a most essential aspect of human reasoning which is usually left aside by automated
reasoning tools. In this paper, we are interested in generalizing proofs: given a proof P of
some assertion (e.g., sequent) φ, we aim at computing a new proof Q of a new assertion
ψ that is as general as possible and at least more general than φ in the sense that there
exists a (second order) substitution θ such that ψθ is identical to φ (up to usual properties
such as αβη-equivalence). Applications are numerous and obvious, i.e., proof reuse, proof
structuring and compression (to detect repeating patterns in a proof and replace them by
appropriate lemmata), program generalization (when applied on assertions stating proper-
ties of programs), proof by analogy, etc. This might also be useful for pruning the search
space of theorem proving procedures (by generalizing previously generated subproofs to
close other branches).

Our method can be informally summarized as follows. First, a constrained sequent
calculus (called LKc) is introduced. In this calculus, the conditions that allow for the
application of the inference rules are not checked “statically” during the construction of the
proof, but instead are “asserted” and collected as a conjunction of higher-order constraints
attached to the proof. Any solution of the constraints gives rise to an LK-proof (under
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some conditions). We provide a semantics for LKc, extending the standard semantics of
LK, then we show that LKc is logically sound, and that every LK-proof can be transformed
into an LKc-proof with exactly the same size and structure. Next, we prove that for any
LKc-proof P , there exists an “abstract” proof P a that is more general than P , and also
more general than any generalization of P ; P a can thus be viewed as the (unique) minimal
generalization of P in LKc. The proof P a is not an LK-proof because its constraints are
not valid (but they are satisfiable). Finally, we show how to reconstruct a generalized
LK-proof from P a. In principle, this can be done by computing most general solutions of
the constraints of P a, however, since higher-order unification is undecidable, this is not
always feasible. We therefore devise a minimization algorithm computing a solution that
is always more general than the substitution corresponding to the initial LK-proof (the
solution is however not necessarily a most general one). The principle of this algorithm is
to use the latter substitution as a “witness” in order to guide the application of higher-order
unification rules.

1.1 Related work

The idea of using constrained sequent or tableaux calculus is not new: it has been con-
sidered for instance in [9] to avoid backtracking in free-variable tableaux, and also in [24]
to define proof procedures for reasoning with first order formulæ in Presburger arithmetic.
The idea is similar – namely to collect constraints enabling the application of logical infer-
ence rules – but we apply it in a more general setting: in [9] or [24] the constraints only
state properties of terms (elements of the domain of a first order interpretation or arith-
metic terms respectively), whereas we use them to express properties of formulæ. Another
essential difference is that [24] uses arithmetic quantifiers to take care of the eigenvariable
condition (by introducing a universal quantifier for every eigenvariable), whereas we prefer
to encode this condition by using a specific constructor ι (as explained in Section 3). The
reason for this choice is that the handling of higher-order constraints with arbitrary quan-
tifier alternation is difficult from a computational point of view (see [14] for undecidability
results). The drawback is that LKc-proofs cannot always be expressed in LK as we shall
see in Section 5. The idea of separating the structure of the proof tree from the unification
conditions has been used in other contexts, for instance in [11], for analyzing sequent proofs
and reducing the complexity of the derivations, in [6] for reasoning modulo theories, or in
[3, 22] for building models of clause sets.

The notion of abstract proof is also related to a result by Parikh (Lemma A in [21])
concerning so-called schematic systems and devoted to the study of Kreisel’s Conjecture
(or KC, a conjecture on proofs in Peano Arithmetic, see [4] for a survey). This result allows
the representation of a family of proofs by a “proof analysis” (or “proof skeleton” in the
terminology of [7]) together with a unification problem and a set of restrictions. Besides the
fact that we can dispense with these restrictions thanks to our encoding of eigenvariables
through ι, our abstract proofs carry slightly more information than proof skeletons, for
the simple reason that we do not treat LK as a schematic system, thus following [13] or
[2] (see Section 6 for more details). We show in Section 9 how LK could be treated as a
schematic system in our setting. Other important differences with [21] are our use of λ-
calculus which allows a more standard treatment of bound variables, and that we make no
difference between formulæ and “concrete formulæ” since we may introduce second-order
variables (“meta-notations” in [21]) in our generalized proofs. This departs from the works
on KC which is very sensitive on the language used to represent PA (see [4]).

In [10], an algorithm is proposed to generalize statements in a typed λ-calculus aimed
to represent inductive proofs. This language extends usual logical frameworks by arith-
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metic variables and primitive recursive definitions. The approach in [10] is targeted at
constructing, from a sequence of proofs of statements P (0), P (1), . . . , an inductive proof
of the statement ∀xP (x). This is done by computing common patterns in the proofs
of P (i) (ignoring the difference between arithmetic terms) using a form of higher-order
anti-unification [23] combined with an ad-hoc algorithm for generating suitable recursion
steps from instances. This approach shares some similarities with ours, namely the use of
λ-terms to represent proofs, but it is very different both in its scope and purposes. Our
method focuses on the generalization of LK-proofs and only uses higher-order terms to
express and compute such generalizations. Hagiya’s approach focuses on the construction
of iterated sequences of proofs from particular examples. In our context, induction could
be performed by trying to generalize a single proof P (i) ` P (i + 1) (for a fixed i ∈ N),
into a proof of P ′(x) ` P ′(x+ 1) (where x is a variable, and where P ′ is more general than
P (x)). If such a generalization is feasible, then it is clear that an inductive proof of ∀xP (x)
can be constructed (if P ′(0) is provable).

Generalization is often handled in proof assistants by replaying tactics (see, e.g., [8, 12]):
a tactic (sequence of proof steps) or proof term (describing the structure of the proof)
corresponding to some assertion can be replayed on another one, and in case of success
may yield a new proof with the same structure as the initial one. The advantage of our
technique is that it computes an explicit description of the generalized theorems, using the
same language as the original one.

Generalization has also been considered in the context of analogical reasoning (see e.g.,
[26, 15]). It is often performed by renaming different occurrences of the same symbol, in
case these occurrences turn out to be unrelated in the context, i.e., if all logical inferences
can be performed without assuming that these occurrences are equal. Our method has
a wider scope, in the sense that it allows for richer transformations and produces more
general proofs and formulæ, as evidenced by the following example.

Example 1. We consider the following LK-proof1

(Axiom)
P (x0, a) ` P (x0, a)

(∀-L)
∀xP (x, a) ` P (x0, a)

(∨-R1)
∀xP (x, a) ` P (x0, a) ∨Q(x0, a)

(∃-R)
∀xP (x, a) ` ∃y (P (x0, y) ∨Q(x0, y))

(Axiom)
Q(x0, a) ` Q(x0, a)

(∀-L)
∀y Q(y, a) ` Q(x0, a)

(∨-R1)
∀y Q(y, a) ` P (x0, a) ∨Q(x0, a)

(∃-R)
∀y Q(y, a) ` ∃y(P (x0, y) ∨Q(x0, y))

(∨-L)
∀xP (x, a) ∨ ∀y Q(y, a) ` ∃y (P (x0, y) ∨Q(x0, y))

(∀-R)
∀xP (x, a) ∨ ∀y Q(y, a) ` ∀x∃y (P (x, y) ∨Q(x, y))

It is intuitively clear that the fact that the two occurrences of a in the end-sequent
are equal plays no role in the proof, hence the end-sequent can be safely replaced by, e.g.,
∀xP (x, a) ∨ ∀y Q(y, b) ` ∀x∃y (P (x, y) ∨ Q(x, y)) (replacing all occurrences of a in the
right branch of the above proof by b). Using our approach, we can detect that a and b can
actually be replaced by something that depends on the variables x and y respectively, and
that this proof can be generalized to a proof of the sequent ∀x p(x, f(x)) ∨ ∀y q(y, g(y)) `
∀x∃y (p(x, y) ∨ q(x, y)), where p, q, f and g are second order variables. It is clear that
the obtained sequent is strictly more general than the previous ones (in the sense that it
matches more expressions).

1Formal definitions are given in Section 2, see in particular Figure 1 for the inference rules.
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2 LK on Typed λ-Terms

We first give a definition of LK where terms and formulæ are members of the same language
and are only distinguished by their types. Furthermore, bound variables are treated in a
uniform way with the binder λ. We thus use a fragment of typed λ-calculus to represent
terms and formulæ; hence term constructors are the standard abstraction and application
constructors, but atoms are separated into constants (for logical symbols and the elements
of a first order signature) and variables. We also use an extra term constructor ι for
eigenterms (as explained in Section 1) though we will only use it in Section 3 and forth.

Definition 2. Let ı and o be symbols denoting respectively the type of individuals (or
terms) and the type of booleans (or formulæ). A type is inductively defined as either a
basic type ı or o, or τ → τ ′ where τ and τ ′ are types. The order of types is inductively
defined as order(o)

def
= order(ı)

def
= 1 and order(τ → τ ′)

def
= max(1 + order(τ), order(τ ′)).

For n ∈ N and τ ′, τ1, . . . , τn types, we write τ1, . . . , τn → τ ′ for the type τ ′ if n = 0 and
for τ1 → (· · · (τn → τ ′) · · · ) if n > 0. If τ1 = · · · = τn = τ then this type is written τn → τ ′.

Let V be a set of variables containing infinitely many variables of each type of the form
ın → ı and ın → o for n ≥ 0 (which we call V-types), and no other. Let C be a set of
constants containing the logical symbols ∃,∀ : (ı → o) → o, ¬ : o → o, ∨,∧,⇒: o2 → o,
': ı2 → o and a finite number of symbols of V-types (this part corresponds to a first order
signature).

The set T of terms together with their types and sets of free variables (denoted by
FV(t)) is inductively defined by:

• V ⊆ T , C ⊆ T , and as terms they have the same type as variables or constants; a
variable is free in itself and a constant has no free variables;

• for all x ∈ V of type ı and t ∈ T of type τ , (λx t) ∈ T and has type ı → τ ;

FV((λx t))
def
= FV(t) \ {x};

• for all s ∈ T of type τ → τ ′ and t ∈ T of type τ , (s t) ∈ T and has type τ ′;

FV((s t))
def
= FV(s) ∪ FV(t);

• for all n ∈ N, n > 0, terms φ1, . . . , φn ∈ T of type o, (ι φ1 · · ·φn) ∈ T is an eigenterm

of type ı; FV((ι φ1 · · ·φn))
def
=
⋃n
i=1 FV(φi).

An atom is an element of V ∪ C. For any term t ∈ T we write t : τ if t has type τ . The
order of a term of type τ is the order of τ . For any sequence t1, . . . , tn of terms in T , let
FV(t1, . . . , tn) =

⋃n
i=1 FV(ti).

The language of standard terms is the set S of terms in T without any occurrence of
eigenterms. The language of fair terms is the set F of terms in T whose atoms are only
variables and logical symbols.

For any language L ⊆ T such that V ⊆ L, an L-substitution (or substitution if L = T )

is a type-preserving function σ from V to L whose domain Dom(σ)
def
= {x ∈ V | σ(x) 6= x}

is finite. The identity on V is a substitution denoted by id. For v ∈ V and t ∈ L of the same
type, σ[v 7→ t] is the L-substitution identical to σ but on v where it yields t. The notion

of free variables is extended to substitutions by FV(σ)
def
= Dom(σ) ∪

⋃
x∈Dom(σ) FV(σ(x)).

A substitution σ of domain {x1, . . . , xn} and such that σ(xi) = ti for 1 ≤ i ≤ n is written
σ = [t1/x1, . . . , tn/xn].

Applying a substitution σ to a term t ∈ T yields a term tσ ∈ T inductively defined on
t by
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• vσ
def
= σ(v) for any v ∈ V ,

• cσ
def
= c for any c ∈ C,

• (s t)σ
def
= (sσ tσ) for any s, t ∈ L,

• (λx t)σ
def
= (λy tσ[x 7→ y]) for any x ∈ V , t ∈ L and y : ı ∈ V \ FV(tσ).

• (ι φ1 · · ·φn)σ
def
= (ι φ1σ · · ·φnσ) for any n ∈ N, n > 0 and φ1, . . . , φn ∈ T of type o.

A language L is substitutive if it is closed under L-substitutions; the languages T , S and
F are substitutive. Any two L-substitutions σ and µ can be composed by σµ(x)

def
= σ(x)µ

for all x ∈ V , which is guaranteed to be an L-substitution if L is substitutive.
We consider on T the equational theory generated by the following rules:

(λx l) →α (λy l[y/x]) if y 6∈ FV(l)

((λx l) t) →β l[t/x]

(λx (l x)) →η l if x 6∈ FV(l).

The restriction of this theory to S is obviously a fragment of typed λ-calculus which is
well-known to be strongly normalizing, and since there is no rule for ι, it is obvious that
βη-reduction is again strongly normalizing on T , and every t ∈ T has a βη-normal form
t↓βη∈ T . We write ≡αβη for αβη-equivalence. Note that the languages T , S and F are
closed under αβη-reduction.

As usual we often omit parentheses and associate to the left: (l t1 . . . tn) stands for
(· · · (l t1) · · · tn) if n > 0 and for l if n = 0. We write t ⇒ s, ∃x t,. . . for the applications
(⇒ t s), (∃ λx t), . . . respectively.

An L-sequent (or sequent if L = T ) is an expression of the form Γ ` ∆ where Γ
and ∆ are sequences of terms in L of type o. We write FV(Γ ` ∆) for FV(Γ,∆). We
apply substitutions to sequences or sets of terms in the standard way, and to sequents
by (Γ ` ∆)σ

def
= Γσ ` ∆σ. If L is closed under αβη-reduction the relation ≡αβη and

βη-normalization are similarly extended in a standard way to sequences of L-terms and
to L-sequents; we also extend ≡αβη to L-substitutions σ, θ by σ ≡αβη θ if xσ ≡αβη xθ for
all x ∈ V , and we say that σ is in βη-normal form if for all x ∈ Dom(σ) the terms xσ
are reduced to βη-normal form. Note that σ ≡αβη θ entails tσ ≡αβη tθ for any term t,
Γσ ≡αβη Γθ for any sequence Γ of terms, etc.

The rules of LK are given in Figure 1. The meta-variables s, t denote terms of type ı, φ,
ψ denote terms of type o, ξ denotes a term of type ı→ o, x denotes a variable of type ı and
Γ, ∆, Σ, Π denote sequences of terms of type o. An inference between sequents holds by a
rule (R) if these sequents are αβη-equivalent to those obtained from the meta-sequents of
rule (R) in Figure 1 by some instantiation of their meta-variables, and if the side condition
holds with the same instantiation.

If L is closed under αβη-reduction, an L-LK-proof is an LK-proof built only with L-
sequents. A standard sequent (resp. LK-proof, substitution, etc.) is an S-sequent (resp.
S-LK-proof, S-substitution, etc.) and similarly a fair sequent, (resp. LK-proof, etc.) is
an F -sequent (resp. F -LK-proof, etc.)

In order to handle proofs in a convenient way we adopt some simple notations. Proofs
will be referred to by symbols derived from P and Q. The notation P : s means that s
is the end sequent of the proof P (hence that P is a proof of s). We will also decompose
proofs into subproofs by writing

P =
P 1 : s1 · · · P n : sn

s
(R),
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Γ ` ∆

Γ, φ ` ∆
(W-L)

Γ ` ∆

Γ ` ∆, φ
(W-R)

Γ, φ, φ ` ∆

Γ, φ ` ∆
(C-L)

Γ ` ∆, φ, φ

Γ ` ∆, φ
(C-R)

Γ, ψ, φ, Σ ` ∆

Γ, φ, ψ, Σ ` ∆
(P-L)

Γ ` ∆, ψ, φ, Π

Γ ` ∆, φ, ψ, Π
(P-R)

φ ` φ
(Axiom)

` t ' t
(Ref)

Γ, t ' s, (ξ t) ` ∆

Γ, t ' s, (ξ s) ` ∆
(Param-L)

Γ, t ' s ` ∆, (ξ t)

Γ, t ' s ` ∆, (ξ s)
(Param-R)

Γ, s ' t ` ∆

Γ, t ' s ` ∆
(Com-L)

Γ ` ∆, φ Σ, φ ` Π

Γ, Σ ` ∆, Π
(Cut)

Γ, φ ` ∆

Γ, φ ∧ ψ ` ∆
(∧-L1)

Γ ` ∆, φ

Γ ` ∆, φ ∨ ψ
(∨-R1)

Γ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
(∧-L2)

Γ ` ∆, ψ

Γ ` ∆, φ ∨ ψ
(∨-R2)

Γ, φ ` ∆ Σ, ψ ` Π

Γ, Σ, φ ∨ ψ ` ∆, Π
(∨-L)

Γ ` ∆, φ Σ ` Π, ψ

Γ, Σ ` ∆, Π, φ ∧ ψ
(∧-R)

Γ ` ∆, φ Σ, ψ ` Π

Γ, Σ, φ⇒ ψ ` ∆, Π
(⇒-L)

Γ, φ ` ∆, ψ

Γ ` ∆, φ⇒ ψ
(⇒-R)

Γ ` ∆, φ

Γ, ¬φ ` ∆
(¬-L)

Γ, φ ` ∆

Γ ` ∆, ¬φ
(¬-R)

Γ, (ξ t) ` ∆

Γ, ∀ξ ` ∆
(∀-L)

Γ ` ∆, (ξ t)

Γ ` ∆, ∃ξ
(∃-R)

Γ, (ξ x) ` ∆

Γ, ∃ξ ` ∆
(∃-L)

Γ ` ∆, (ξ x)

Γ ` ∆, ∀ξ
(∀-R)

Where x 6∈ FV(Γ,∆, ξ) (eigenvariable condition).

Figure 1: The sequent calculus LK

meaning that P ends with the inference
s1 · · · sn

s
by rule (R). We write FV(P ) for FV(s)∪⋃n

i=1 FV(P i).
Normalization of LK-proofs is defined inductively by

P↓βη=
P 1↓βη: s1↓βη · · · P n↓βη: sn↓βη

s↓βη
(R) if P =

P 1 : s1 · · · P n : sn
s

(R).

Note that P ↓βη is an LK-proof since the eigenvariable condition is preserved by βη-
reduction (FV(t↓βη) ⊆ FV(t) for every term t). The fact that inferences are defined only up
to ≡αβη-classes departs from standard practice and requires some explanations. It is made
necessary by the fact that (ξ t) corresponds to the replacement of a bound variable by t,
as it should be according to Gentzen’s calculus, only if ξ is instantiated by an abstraction
λxφ and the term ((λxφ) t) is rewritten to φ[t/x] by the β-rule.

For instance, an inference
(p y) ` φ

∃(λx (p x)) ` φ
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(where p : ı→ o is a constant) holds by rule (∃-L) if y 6∈ FV(φ), since ((λx (p x)) y) ≡αβη
(p y). This inference exactly corresponds to the standard inference in Gentzen’s calculus

p(y) ` φ
∃x p(x) ` φ

It should thus be clear that proofs in Gentzen’s calculus correspond to βη-normal S-
LK-proofs. We allow non-normal proofs for sake of simplicity, and also because we will
consider L-LK-proofs for other languages than S (provided such languages are stable under
βη-reduction).

Example 3. We will use as a recurring illustrative example the following LK-proof P .

(Axiom)
(p a a) ` (p a a)

(∀-L)
∀x (p x a) ` (p a a)

(∃-R)
∀x (p x a) ` ∃y (p y a)

3 A Calculus with Explicit Constraints

We now wish to adapt the rules of Figure 1 in order to collect automatically all the
syntactic constraints that make a proof valid, instead of checking them on the fly during
proof construction. For most rules it is easy to express these constraints as a unification
problem pertaining to the principal formulæ. However, eigenvariables are replaced by
suitable eigenterms so that eigenvariable conditions may also be expressed as unification
problems.

Definition 4. Let L ⊆ T such that V ⊆ L. An L-constraint (or constraint if L = T )
is inductively defined as ⊥, >, t

.
= s where t, s denote terms in L of the same type, or

X f Y , where X ,Y are two L-constraints. A substitution σ is a solution of a constraint
X if X = > or (X = (t

.
= s) and tσ ≡αβη sσ) or (X = (X1 f X2) and σ is a solution of

X1 and X2). The set of solutions of a constraint X is written sol(X ). A constraint X is
satisfiable if sol(X ) 6= ∅; it is valid if every substitution belongs to sol(X ) (equivalently, if
id ∈ sol(X )). We say that two constraints X and Y are equivalent and we write X ≡ Y
if sol(X ) = sol(Y). Xσ is obtained from X by replacing every t

.
= s in it by tσ

.
= sσ.

The equivalence ≡αβη is inductively extended to constraints by ⊥ ≡αβη ⊥, > ≡αβη >,
(t
.
= s) ≡αβη (t′

.
= s′) if t ≡αβη t′ and s ≡αβη s′, (X f Y) ≡αβη (X ′ f Y ′) if X ≡αβη X ′ and

Y ≡αβη Y ′. It is clear that X ≡αβη Y ⇒ X ≡ Y .
A constrained L-sequent is an expression of the form Γ ` ∆ | X where Γ ` ∆ is an

L-sequent and X an L-constraint. For any substitution σ, (Γ ` ∆ | X )σ
def
= Γσ ` ∆σ | Xσ.

The relation ≡αβη is extended to constrained sequents by Γ ` ∆ | X ≡αβη Γ′ ` ∆′ | X ′ if
Γ ` ∆ ≡αβη Γ′ ` ∆′ and X ≡αβη X ′.

The rules of LKc are given in Figure 2 in a condensed way; a rule of the form

Γ1 ` ∆1 · · ·Γn ` ∆n

Γ ` ∆ | X
stands for

Γ1 ` ∆1 | X1 · · ·Γn ` ∆n | Xn
Γ ` ∆ | X1 f · · ·f Xn f X

.

Γ,∆,Σ,Π are sequences of terms of type o, χ, φ, ψ, ϕ are terms of type o, ξ is a term of
type ı→ o and s, t are terms of type ı.

For any L ⊆ T we call L-LKc-proofs all proofs built with the rules of Figure 2 and
containing only constrained L-sequents. The constraint of an LKc-proof P is the constraint
of its last constrained sequent. P is valid if its constraint is valid. For any substitution
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Γ ` ∆

Γ, φ ` ∆ | >
(W-Lc)

Γ ` ∆

Γ ` ∆, φ | >
(W-Rc)

Γ, φ, ψ ` ∆

Γ, χ ` ∆ | χ .
= φf χ

.
= ψ

(C-Lc)
Γ ` ∆, φ, ψ

Γ ` ∆, χ | χ .
= φf χ

.
= ψ

(C-Rc)

Γ, ψ, φ, Σ ` ∆

Γ, χ, ϕ, Σ ` ∆ | χ .
= φf ϕ

.
= ψ

(P-Lc)
Γ ` ∆, ψ, φ, Π

Γ ` ∆, χ, ϕ, Π | χ .
= φf ϕ

.
= ψ

(P-Rc)

φ ` ψ | φ .
= ψ

(Axiomc)
` φ | φ .

= t ' t
(Refc)

Γ, χ, ψ ` ∆

Γ, χ, φ ` ∆ | χ .
= t ' sf φ .

= (ξ s)f ψ
.
= (ξ t)

(Param-Lc)

Γ, χ ` ∆, ψ

Γ, χ ` ∆, φ | χ .
= t ' sf φ .

= (ξ s)f ψ
.
= (ξ t)

(Param-Rc)

Γ, φ ` ∆

Γ, χ ` ∆ | φ .
= s ' tf χ .

= t ' s
(Com-Lc)

Γ ` ∆, φ Σ, ψ ` Π

Γ, Σ ` ∆, Π | φ .
= ψ

(Cutc)

Γ, φ ` ∆

Γ, χ ` ∆ | χ .
= φ ∧ ψ

(∧-L1c)
Γ ` ∆, φ

Γ ` ∆, χ | χ .
= φ ∨ ψ

(∨-R1c)

Γ, ψ ` ∆

Γ, χ ` ∆ | χ .
= φ ∧ ψ

(∧-L2c)
Γ ` ∆, ψ

Γ ` ∆, χ | χ .
= φ ∨ ψ

(∨-R2c)

Γ, φ ` ∆ Σ, ψ ` Π

Γ, Σ, χ ` ∆, Π | χ .
= φ ∨ ψ

(∨-Lc)
Γ ` ∆, φ Σ ` Π, ψ

Γ, Σ ` ∆, Π, χ | χ .
= φ ∧ ψ

(∧-Rc)

Γ ` ∆, φ Σ, ψ ` Π

Γ, Σ, χ ` ∆, Π | χ .
= φ⇒ ψ

(⇒-Lc)
Γ, φ ` ∆, ψ

Γ ` ∆, χ | χ .
= φ⇒ ψ

(⇒-Rc)

Γ ` ∆, φ

Γ, χ ` ∆ | χ .
= ¬φ

(¬-Lc)
Γ, φ ` ∆

Γ ` ∆, χ | χ .
= ¬φ

(¬-Rc)

Γ, φ ` ∆

Γ, χ ` ∆ | χ .
= ∀ξ f φ .

= (ξ t)
(∀-Lc)

Γ ` ∆, φ

Γ ` ∆, χ | χ .
= ∃ξ f φ .

= (ξ t)
(∃-Rc)

Γ, φ ` ∆

Γ, χ ` ∆ | χ .
= ∃ξ f φ .

= (ξ (ιΓ∆χ))
(∃-Lc)

Γ ` ∆, φ

Γ ` ∆, χ | χ .
= ∀ξ f φ .

= (ξ (ιΓ∆χ))
(∀-Rc)

Figure 2: The constrained sequent calculus LKc

σ, Pσ is obtained by applying σ to the constrained sequents in P . The relation ≡αβη is
inductively extended to LKc-proofs by

P 1 : s1 · · ·P n : sn
s

(R) ≡αβη
Q1 : s′1 · · ·Qn : s′n

s′
(R)

if s ≡αβη s′ and P i ≡αβη Qi for all 1 ≤ i ≤ n. The length of an LKc- or LK-proof is the
number of inferences occurring in it.

For any substitution σ and object O on which Oσ is defined, we write O � Oσ and
say that Oσ is an instance of O. The relation � is a quasiorder since Oid = O and
O(σµ) = (Oσ)µ always hold.
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If furthermore the relation ≡αβη is defined between objects O and O′, we write O - O′

(and say that O is more general than O′), if there is a substitution ρ such that Oρ ≡αβη O′.
The relation - is a quasiorder since, as is well known in λ-calculus, the relation ≡αβη is
substitutive, i.e., O ≡αβη O′ entails Oρ ≡αβη O′ρ for any substitution ρ. An object O that
verifies some property P is most general w.r.t. P if all objects O′ verifying P also verify
O - O′; and O is minimal w.r.t. P if all O′ verifying P and O′ - O also verify O′ ≡αβη O.

Example 5. The following is an LKc-proof Q with the same end-sequent as in Example
3 (discarding the constraints). Symbols u, v, ξ, ψ are variables of type ı, ı, ı → o and o
respectively.

(Axiomc)
ψ ` (p v a) | X1

(∀-Lc)
∀x (p x a) ` (p v a) | X2

(∃-Rc)
∀x (p x a) ` ∃y (p y a) | X3

where
X1

def
= ψ

.
= (p v a),

X2
def
= X1 f ∀x (p x a)

.
= ∀ξ f ψ .

= (ξ u),

X3
def
= X2 f ∃y (p y a)

.
= ∃y (p y a)f (p v a)

.
= (λy (p y a) v).

It is clear that X3 ≡ ψ
.
= (p v a) f ξ

.
= λx (p x a) f u

.
= v. Note that in the above

LKc-proof, some of the meta-variables of Figure 2 are instantiated by usual formulæ or
terms, i.e., built solely with symbols from the signature C and variables of type ı (e.g,
∀x (p x a)), and others contain other variables (ψ : o, ξ : ı→ o). The proof is not valid: to
get an LK-proof one has to instantiate all the variables in such a way that X3 is fulfilled,
for instance with ρ

def
= [a/u, a/v, λx (p x a)/ξ, (p a a)/ψ].

Contrary to LK the rules are strictly syntactic; the constrained sequents occurring in a
proof cannot be replaced by αβη-equivalent constrained sequents. This is possible because
αβη-equivalence is taken care of in the constraints.

Another essential difference between LK and LKc is that the latter introduces eigen-
terms instead of eigenvariables. An important though trivial consequence is substitutivity
of LKc-proofs.

Proposition 6. For any substitutive L ⊆ T , L-LKc-proof P and L-substitution σ, Pσ is
an L-LKc-proof.

Proof. The inference rules are all expressed with meta-variables and the only side conditions
pertain to their type (including sequences of terms of type o and constraints). Since these
types, as well as membership in L, are preserved by L-substitutions then so are the inference
rules and therefore the proofs.

Since the relation≡αβη is defined on LKc-proofs we can now deduce that σ ≡αβη θ entails
Pσ ≡αβη P θ for any LKc-proof P and substitutions σ, θ. Proposition 6 would also hold
on LK-proofs if substitutions were applied with a form of α-conversion of eigenvariables in
order to avoid their “capture” (as in the definition of (λx t)σ above). This would allow a
notion of more general proofs in LK, but we have chosen to dispense with such developments
since they are not essential to this generalization method.
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4 Semantics of LKc

Example 5 shows that LKc offers much freedom in building proofs, including proofs with
unsatisfiable constraints which are meaningless. But even proofs with valid constraints may
look strange compared to LK-proofs. In particular, the possibility in LKc to paramodulate
in eigenterms has no equivalence in LK, and it is not obvious that LKc is sound. We prove
in this section that this is the case by providing a semantics for sequents provable in LKc.
We first extend the usual definition of an interpretation. The main difference with the
standard definition is that we need to interpret eigenterms. The constructor ι cannot be
interpreted in the usual way, by mapping sequences of booleans to elements of the domain:
it is clear that the value of (ι φ1 · · ·φn) depends on the formulæ φ1, . . . , φn and not only on
their truth values.

Definition 7. Let D be any2 non-empty set, we write TD for the set of D-terms, which
is inductively defined exactly as T except that elements of D are allowed as constants of
type ı.

An interpretation I is defined by providing:

• a non-empty set D, called the domain of I,

• a function mapping every variable or constant f (distinct from ') of type ın → ı
(resp. ın → o) to a function f I from Dn to D (resp. {true, false}),

• a function mapping every connective ? ∈ {∨,∧,⇒,¬,∀,∃,'} to the usual function
?I (for instance x ∨I y = true iff x = true or y = true; ∀Ip = true iff p(x) = true

for all x ∈ D; etc.),

• a function ιI mapping every non-empty sequence of D-terms of type o to an element
of D.

Any interpretation I of domain D can be extended to an evaluation tI of D-terms t in
the following way:

• for x ∈ D, xI = x,

• for s, t ∈ TD, where s : τ → τ ′ and t : τ , (s t)I is the value of the function sI at tI ,

• for t ∈ TD, x ∈ V where t : ı → τ and x : ı, (λx t)I is the function that maps every
e ∈ D to (t[e/x])I ,

• for n ∈ N, n > 0, φ1, . . . , φn ∈ (TD)n where φi : o for 1 ≤ i ≤ n, (ι φ1 · · ·φn)I =
ιI(φ1 · · ·φn).

For every term t ∈ TD, |t| denotes the size of t, inductively defined as follows: |u| def
= 1

if u ∈ V ∪ C ∪ D, |λx t| def
= 1 + |t|, |(l t)| def

= |l| + |t| and |(ι φ1 · · ·φn)| = 1 +
∑n

i=1 |φi|. If

Γ = t1 · · · tn is a sequence of terms, then |Γ| def= maxni=1 |ti|, with |Γ| def= 0 if n = 0.
The usual notions of models, satisfiability, logical consequence |=,. . . can be extended

accordingly. We write Γ |=s ∆ if every model of the formulæ in Γ is a model of some
formula in ∆.

2We assume w.l.o.g. that D ∩ (C ∪ V) = ∅ and that D contains no non-atomic terms in TD.
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Note that this semantics coincides with the usual one for closed standard terms. The
previous definition is similar to the interpretation of ε-terms in the ε-calculus (see, e.g.,
[19, 20]), which depends on the formulæ themselves3 and not only on their interpretation.
However, our definition departs from the semantics of the ε-calculus because the interpre-
tation of the operator ι is arbitrary. This is due to the fact that the operator ι does not
separate the considered existential formula from the other elements of the context. Fur-
thermore, it is intended to be used only as a tool for writing proofs and not as a logical
construct in the language.

Lemma 8. Let I, J be two interpretations on the same domain D and identical on V and
C. For all t ∈ TD, if

(*) for every non-empty sequence Γ ∈ (TD)+ of D-terms of type o such that |Γ| < |t|,
ιI(Γ) = ιJ(Γ),

then tI = tJ .

Proof. By induction on t. This is trivial if t ∈ V ∪ C ∪ D, by the fact that I and J then
coincide on t. Note that if we assume (*) on a term (s t) then it holds both for s and t
since |s| < |(s t)| an |t| < |(s t)|, hence by induction hypothesis we get sI = sJ and tI = tJ ,
from which (s t)I = (s t)J is obvious. Similarly, if we assume (*) on (λx t) then for all
e ∈ D, (*) holds on t[e/x] since |t[e/x]| = |t| < |(λx t)|, hence by induction hypothesis we
get (t[e/x])I = (t[e/x])J , and therefore (λx t)I = (λx t)J . Finally, if t = (ι φ1 · · ·φn) then
|φ1 · · ·φn| < |t| hence by (*) we get tI = ιI(φ1 · · ·φn) = ιJ(φ1 · · ·φn) = tJ .

The next theorem states that LKc is sound.

Theorem 9. Let P be an LKc-proof of constrained end-sequent Γ ` ∆ | X , then for every
substitution σ ∈ sol(X ), Γσ |=s ∆σ holds.

Proof. By induction on P ; we only consider one axiom and one inference rule.
If

P =
` φ | φ .

= t ' t
(Refc)

and σ ∈ sol(φ
.
= t ' t), then for any interpretation I, (φσ)I = (tσ ' tσ)I = true, hence

|=s φσ.
The proof is similar for all rules except the strong quantifier rules: let

P =
P 1 : Γ, φ ` ∆ | X

Γ, χ ` ∆ | X f χ .
= ∃ξ f φ .

= (ξ (ιΓ∆χ))
(∃-Lc)

and σ ∈ sol(X f χ .
= ∃ξ f φ .

= (ξ (ιΓ∆χ))). Let ζ = ξσ and Π = Γσ∆σχσ. Assume that
Γσ, χσ 6|=s ∆σ, then there is an interpretation I with domain D such that I |= Γσ, I |= χσ
and I 6|=s ∆σ. Since χσ = ∃ζ, there exists an element e ∈ D such that ζI(e) = true. Let
J be the interpretation of domain D that is identical to I except that ιJ(Π) = e. For all
D-terms t such that |t| ≤ |Π|, it is obvious by construction of J that ιJ(Γ′) = ιI(Γ′) for
every Γ′ ∈ (TD)+ such that |Γ′| < |t| (since then Γ′ 6= Π), hence by Lemma 8 that tJ = tI .
In particular, |Γσ| ≤ |Π| and |∆σ| ≤ |Π|, hence J |= Γσ and J 6|=s ∆σ. Furthermore,
|ζ| < |∃ζ| = |χσ| ≤ |Π|, hence

(φσ)J = (ζ (ιΠ))J = ζJ(e) = ζI(e) = true,

so that J |= φσ. Hence Γσ, φσ 6|=s ∆σ, in contradiction with the induction hypothesis on
P 1. Therefore, Γσ, χσ |=s ∆σ must hold.

In particular, if Γ ` ∆ is a standard sequent such that some Γ ` ∆ | X is provable in
LKc with X ≡ >, then Γ |=s ∆ holds in the standard semantics of first order logic.

3More precisely on a special kind of formulæ called “matrices”.
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5 Proof Translations

It is important to notice that, although LKc is sound, not all LKc-proofs can be directly
transformed into LK-proofs, as illustrated by the following example.

Example 10. Consider for instance the following LKc-proof of a statement a '
b,∃x(p a x) ∨ ∃x(p b x) ` φ.

P (W-Lc)
a ' b, (p a ska) ` φ | >

(∃-Lc)
a ' b,∃x(p a x) ` φ | >

P (W-Lc)
a ' b, (p a ska) ` φ | >

(Param-Lc)
a ' b, (p b sk b) ` φ | >

(∃-Lc)
a ' b,∃x(p b x) ` φ | >

(∨-Lc)
a ' b,∃x(p a x) ∨ ∃x(p b x) ` φ | >

The term sku (with u = a, b) denotes the eigenterm (ι a ' b ∃x(p u x)φ). The symbol
P denotes some proof of (p a ska) ` φ | >. For sake of conciseness valid constraints are
abstracted as >.

It is easy to see that this proof cannot be (directly) translated into an LK-proof, because
of the paramodulation step occurring inside the eigenterm in the right branch (replacing
(p b sk b) by (p a ska), while ska and sk b would be distinct eigenvariables in the corresponding
LK-proof). In order to transform the above proof into an LK-proof one has to perform a
non-trivial reorganization of the inferences, e.g., to apply the paramodulation step on the
non-skolemized version of the formula (replacing (∃x(p b x) by (∃x(p a x)). It is unclear
whether such a transformation can be done in a systematic and purely automatic way, thus
from a practical point of view we prefer to add restrictions that dismiss such inferences.

A straightforward solution to this problem would be to dismiss strong quantifiers en-
tirely, by assuming that all statements are skolemized. However, this would significantly
reduce the scope of our generalization algorithm, especially when applied to proofs pro-
duced by humans (who rarely consider skolemized statements). This remark is particularly
relevant for proofs containing cuts, because in this case strong quantifiers may occur even if
the end-sequent is skolemized. Worse, applying the generalization algorithm on a skolem-
ized version of a proof may yield a statement that is not necessarily more general than the
initial one (although it is of course more general than its skolemized version), since the
quantifier structure is destroyed by the transformation.

A similar solution would be to use the ε-calculus (see, e.g., [19, 27]), in which quantifiers
are replaced by a special operator εx mapping each formula φ(x) to an individual e such
that φ(e) holds (if such an element exists, otherwise εx(φ(x)) is arbitrary). Again, the
relation between generalized proofs in the ε-calculus and standard LK-proofs is unclear.
Note that, unlike the ε-calculus or calculi operating on skolemized formulæ the LKc calculus
is not intended to be used to construct proofs (i.e., as an alternative to LK), but rather as a
theoretical tool to generalize existing LK-proofs. Our operator ι shares obvious similarities
with the εx operator, since a witness of some existential quantified formula is returned
in both cases. However, ι has additional arguments encoding the context in which the
existential formula occurs. Removing these arguments would make the calculus unsound
(for instance the sequent ∃x(p x) ` p(ι(∃x(p x))) would be provable although it is not valid)
unless ι is interpreted as an existential witness. Furthermore, the translation of the obtained
proofs into LK would be more problematic, because of the additional constraints induced by
the quantifier structure. For instance, in order to prove the sequent ∀x((p x)∧∃y¬(p y)) `,
the variable x has to be instantiated twice in LK, once with an arbitrary term to get the
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formula ∃y¬(p y), and once with the witness of ∃y¬(p y). Using ι-terms without context
arguments, it would be possible to instantiate x directly with the witness of ∃y¬(p y).

In order to avoid this, we need to restrict LKc-proofs to a language that allow them to
be translated into LK-proofs.

Definition 11. Let K be the set of terms t ∈ T in which the eigenterms (ι φ1 · · ·φn) do
not occur in the scope of λ-abstractions binding one of their free variables (in other words,
every free occurrence of a variable in any φi is also free in t). We will refer to K-sequents,
K-substitutions, K-constraints, K-LK-proofs and K-LKc-proofs if they only contain terms
in K.

Remark 12. In the definition of K above, the restriction on the special symbol ι is essen-
tially identical to the restriction introduced in [17] in order to ensure the soundness of the
skolemization operation in higher order logic. Indeed, a direct use of the standard skolem-
ization operator (as done in [1]) turns out to be unsound in second order logic, since the
axiom of choice is not provable. In order to recover soundness, restrictions have been added
in [16, 17, 18] to ensure that the Skolem symbols are used only to express dependencies
between terms, and not as actual functions in the signature. While the restriction we use
is similar, our purpose is different. Indeed, soundness is always guaranteed in our context,
as it is shown by Theorem 9. However, the explicit use of the function ι, mapping formulæ
to existential witnesses, allows one to express reasonings that cannot be expressed in LK,
although they are sound at the meta-level, such as the fact that two formulæ that are
equivalent can be associated with the same witness (see Example 10). In order to ensure
that LKc-proofs can be translated in LK, we need to keep the witness symbol apart, so that
it cannot be used to construct new terms, beside those corresponding to the eigenvariables.

We now investigate the properties of K. Obviously, S ⊂ K ⊂ T and K is closed under
→α.

Lemma 13. If t, s ∈ K then t[s/x] ∈ K for every variable x of appropriate type.

Proof. Any occurrence of an eigenterm in t[s/x] comes either from t or s. If it comes from
s then it occurs there as a subterm l = (ι φ1 · · ·φn) whose free variables are free in s; thus
l is again a subterm of t[s/x] and since the free variables of s are not captured in the
substitution then the free variables of l are free in t[s/x] as required.

If it comes from t then it occurs there as a subterm (ι φ1 · · ·φn) whose free variables
are free in t and must therefore be preserved in the substitution (not α-converted); thus
the considered eigenterm is of the form (ι φ1[s/x] . . . φn[s/x]). Its free variables are either
free in some φi (but other than x) and therefore free in t and hence in t[s/x], or they are
free in s and then also free in t[s/x] (by absence of capture).

Proposition 14. K is substitutive and closed under αβη-reduction.

Proof. It is obvious from Lemma 13 that K is substitutive, and from Definition 11 that if
s is a subterm of t ∈ K then s ∈ K, i.e., that K is closed for subterms. If (λx (l x)) ∈ K
and x 6∈ FV(l), then l ∈ K, hence K is closed under →η. If ((λx l) t) ∈ K, then l, t ∈ K,
hence t[l/x] ∈ K by Lemma 13 and K is therefore also closed under →β.
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This means that, for any K-LKc-proof P and K-substitution σ, Pσ is a K-LKc-proof
by Propositions 6 and 14. We now prove that standard LK-proofs can be translated into
valid K-LKc-proofs.

Theorem 15. For any standard LK-proof P : Γ ` ∆ there exists a valid K-LKc-proof
Q : Γ ` ∆ | X of the same length as P .

Proof. We assume w.l.o.g. that P is in βη-normal form, and we proceed by induction on
P .

If
P =

` t ' t
(Ref)

then t ∈ S; let
Q =

` t ' t | t ' t
.
= t ' t

(Refc)

which is clearly a valid K-LKc-proof.
All other cases are similar, the only difficulty lies with the translation of eigenvariables

into eigenterms, hence we examine one more rule.
If

P =
P 1 : Γ, φ ` ∆

Γ,∃ξ ` ∆
(∃-L)

then there is an eigenvariable y such that φ ≡αβη (ξ y) and y 6∈ FV(Γ,∆, ξ), so that
replacing φ by (ξ y) in the last sequent of P 1 yields an LK-proof P ′1 : Γ, (ξ y) ` ∆. By
induction hypothesis there is a K-LKc-proof Q1 : Γ, (ξ y) ` ∆ | X1 where X1 is a valid
K-LKc-proof. Let σ = [(ιΓ∆∃ξ)/y], obviously Γ,∆, ξ are fixpoints of σ. Let

Q =
Q1σ : Γ, (ξ (ιΓ∆∃ξ)) ` ∆ | X1σ

Γ,∃ξ ` ∆ | X1σ f ∃ξ
.
= ∃ξ f (ξ (ιΓ∆∃ξ)) .

= (ξ (ιΓ∆∃ξ))
(∃-Lc)

which is a K-LKc-proof by Propositions 6 and 14 and is obviously valid.

This translation provides the first step in our generalization procedure; we also need a
reverse translation in its last step. In order to translate valid K-LKc-proofs into standard
LK-proofs, we first need to replace eigenterms (ι φ1 · · ·φn) by eigenvariables x (of type
ı). This replacement cannot take place within LKc since eigenterms are mandatory in
LKc-proofs, hence we will perform them within LK and therefore use K-LK-proofs. This
requires to investigate the behavior of such replacements with respect to ≡αβη.

By abuse of notation, for any t ∈ K we write t[x/(ι φ1 · · ·φn)] for the term obtained
from t after every occurrence of (ι φ1 · · ·φn) has been replaced by x; this is clearly not a
substitution.

Lemma 16. Let t = (ι φ1 · · ·φn) ∈ K in β-normal form, let l,m ∈ K such that l →β m
and let x : ı be a variable that does not occur in l or m, then l[x/t]→β m[x/t].

Proof. By induction on l. Obviously l cannot be a variable, a constant or t since it must
contain a β-redex. If l = (λy l′) for some variable y : ı and l′ ∈ K, then m = (λym′) with
l′ →β m

′, hence by induction hypothesis l′[x/t]→β m
′[x/t], hence

l[x/t] = (λy l′[x/t])→β (λym′[x/t]) = m[x/t].
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If l = (ι ψ1 · · ·ψm) then there exist 1 ≤ i ≤ m and a term ψ′i such that ψi →β ψ
′
i and

m = (ι ψ1 · · ·ψ′i · · ·ψm). By induction hypothesis ψi[x/t]→β ψ
′
i[x/t], hence

l[x/t] = (ι ψ1[x/t] · · ·ψm[x/t])→β (ι ψ1[x/t] · · ·ψ′i[x/t] · · ·ψm[x/t]) = m[x/t].

If l = (l′ s) with l′, s ∈ K and this is not the redex used to obtain m, then this redex
must occur either in l′ or in s, hence l[x/t] = (l′[x/t] s[x/t]) and we prove as above that
l[x/t]→β m[x/t].

Otherwise l = (l′ s) is the redex used to obtain m, in which case l′ = (λym′) for some
variable y : ı distinct from x and m′ ∈ K, so that m = m′[s/y]. Obviously

l[x/t] = ((λym′[x/t]) s[x/t])→β m
′[x/t][s[x/t]/y].

Assume this last term is different from m[x/t] = m′[s/y][x/t], then there must be in
m′[x/t][s[x/t]/y] an occurrence of t left. This means that there is in m′[x/t] a subterm t′

other than t or y such that t′[s[x/t]/y] = t, hence t′ is some (ι φ′1 · · ·φ′n) and contains a
free occurrence of y, which is impossible since (λym′[x/t]) = l′[x/t] ∈ K. Hence l[x/t]→β

m[x/t], which completes the induction.

Lemma 17. Let t = (ι φ1 · · ·φn) ∈ K in η-normal form, let l,m ∈ K such that l →η m
and let x : ı be a variable that does not occur in l or m, then l[x/t]→η m[x/t].

Proof. We only consider the case where l is an η-redex (λy (m y)) where y 6∈ FV(m), then
l[x/t] = (λy (m[x/t] y)) →η m[x/t] since obviously y 6∈ FV(m[x/t]). The other cases can
be handled by a straightforward inductive decomposition as in the proof of Lemma 16.

Corollary 18. Let t = (ι φ1 · · ·φn) ∈ K in βη-normal form, let l,m ∈ K such that l ≡αβη m
and let x : ı be a variable that does not occur in l or m, then l[x/t] ≡αβη m[x/t].

We can now start removing eigenterms from K-LK-proofs, one at a time.

Lemma 19. If P is a K-LK-proof in βη-normal form, (ι φ1 · · ·φn) ∈ K is in βη-normal
form and x : ı is a variable that does not occur in P , then P [x/(ι φ1 · · ·φn)] is a K-LK-proof
of the same length as P .

Proof. The proof is by induction on P ; we let l = (ι φ1 · · ·φn) and only consider one axiom
and two inference rules.

If
P =

` t ' t
(Ref)

with t ∈ K, since x does not occur in t we deduce that t[x/l] ∈ K, and since (t ' t)[x/l] =
t[x/l] ' t[x/l], then obviously

P [x/l] :=
` t[x/l] ' t[x/l]

(Ref)

is a K-LK-proof. All propositional rules can be handled similarly.
If

P =
P 1 : Γ, t ' s, φ ` ∆

Γ, t ' s, ψ ` ∆
(Param-L)

then there is a term ξ : ı→ o in K such that φ ≡αβη (ξ t) and ψ ≡αβη (ξ s). By induction
hypothesis

P 1[x/l] : Γ[x/l], t[x/l] ' s[x/l], φ[x/l] ` ∆[x/l]
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is a K-LK-proof, and by Corollary 18 we know that φ[x/l] ≡αβη (ξ t)[x/l] = (ξ[x/l] t[x/l])
(since (ξ t) 6= l by type mismatch) and ψ[x/l] ≡αβη (ξ[x/l] s[x/l]), hence

P [x/l] : Γ[x/l], t[x/l] ' s[x/l], ψ[x/l] ` ∆[x/l]

is an LK-proof since its last inference is an instance of (Param-L). The other rules are
similar but we still need to check whether the eigenvariable condition is preserved.

If

P =
P 1 : Γ, φ ` ∆

Γ,∃ξ ` ∆
(∃-L)

then there is a variable y 6∈ FV(Γ,∆, ξ) such that φ ≡αβη (ξ y). Note that if y 6∈ FV(φ)
then x = y is possible (since in this case y does not occur in P ), in which case y can be
replaced by another suitable variable without affecting P , so that we may assume y 6= x.
By induction hypothesis

P 1[x/l] : Γ[x/l], φ[x/l] ` ∆[x/l]

is a K-LK-proof, and by Corollary 18 φ[x/l] ≡αβη (ξ y)[x/l] = (ξ[x/l] y). Since obviously
y 6∈ FV(Γ[x/l],∆[x/l], ξ[x/l]) (and these terms are in βη-normal form) then

P [x/l] : Γ[x/l], ∃ξ[x/l] ` ∆[x/l]

is a K-LK-proof.

Lemma 20. If P : Γ ` ∆ is a K-LK-proof then there is a standard LK-proof Q : Γ′ ` ∆′

of the same length as P such that Γ′ ` ∆′ � Γ↓βη` ∆↓βη. If furthermore P is fair then so
is Q.

Proof. By Proposition 14 P↓βη: Γ↓βη` ∆↓βη is a K-LK-proof. By Lemma 19 we can replace
all eigenterms in P↓βη by new variables and thus obtain a standard LK-proof Q : Γ′ ` ∆′

of the same length as P , and it is obvious that there is a substitution σ, replacing these
new variables by their corresponding eigenterms, such that (Γ′ ` ∆′)σ = Γ↓βη` ∆↓βη. If
P is fair then so is P ↓βη, and replacing eigenterms by variables preserves that property,
hence Q is fair.

This means that the presence of eigenterms has no influence on provability of standard
sequents in LK, as long as the terms are in K. There only remains to translate valid
K-LKc-proofs into K-LK-proofs. This requires to replace eigenterms not simply by foreign
variables as in Lemma 19 but by eigenvariables of the LK-proof, a task that validates the
use of eigenterms.

Lemma 21. For any valid K-LKc-proof P : Γ ` ∆ | X there exists a K-LK-proof Q : Γ ` ∆
of the same length as P . If P is fair then so is Q.

Proof. By induction on P . If

P =
` φ | φ .

= t ' t
(Refc)

and this constraint is valid, then φ ≡αβη t ' t and t ∈ K (resp. t ∈ K ∩ F if P is fair), so
that there is an obvious (resp. fair) K-LK-proof of ` φ.

If

P =
P 1 : Γ, φ ` ∆ | X

Γ, χ ` ∆ | X f χ .
= ∃ξ f φ .

= (ξ (ιΓ∆χ))
(∃-Lc)

and this constraint is valid, hence so is X and χ ≡αβη ∃ξ, φ ≡αβη (ξ (ιΓ∆χ)). By induction
hypothesis there is a K-LK-proof Q1 : Γ, φ ` ∆. Let Γ′, ξ′, φ′, ∆′ and Q′1 be the respective
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βη-normal forms of Γ, ξ, φ, ∆ and Q1, so that Q′1 : Γ′, φ′ ` ∆′ is a K-LK-proof. Let
t = (ιΓ′∆′∃ξ′) be the βη-normal form of (ιΓ∆χ), so that φ′ ≡αβη (ξ′ t), and let y : ı be
a variable not occurring in Q′1 or ξ′. Since ξ′ and the members of Γ′ and ∆′ are strict
subterms of t, then t cannot be a subterm of ξ′ or of any member of Γ′ or ∆′, hence
ξ′[y/t] = ξ′, Γ′[y/t] = Γ′ and ∆′[y/t] = ∆′. We finally let

Q =
Q′1[y/t] : Γ′, φ′[y/t]′ ` ∆′

Γ, χ ` ∆
(∃-L).

By Lemma 19 Q′1[y/t] is a K-LK-proof, and by Corollary 18 φ′[y/t] ≡αβη (ξ′ t)[y/t] = (ξ′ y).
Since Γ ≡αβη Γ′, χ ≡αβη ∃ξ′, ∆′ ≡αβη ∆ and y is not free in Γ′, ∆′ (since they occur in Q′1)
or ξ′, then this last inference is correct and therefore Q is a K-LK-proof.

If P is fair then so are Γ, ξ, φ, ∆ and P 1, hence so is Q1 by induction hypothesis, as
are their normal forms Γ′, ξ′, φ′, ∆′ and Q′1. Therefore Q′1[y/t] and Q are fair.

All other rules can be treated similarly.

Theorem 22. For any valid K-LKc-proof P : Γ ` ∆ | X there exists a standard LK-proof
Q : Γ′ ` ∆′ of the same length as P such that Γ′ ` ∆′ � Γ↓βη` ∆↓βη. If P is fair then so
is Q.

Proof. By Lemma 21 and 20.

Together with Theorem 15, this shows that standard LK-proofs correspond to valid
K-LKc-proofs.

6 Abstract Proofs and Proof Lifting in LKc

We now prove a result in LKc that is very similar to the well-known lifting lemma in
resolution calculus: a proof of an instance is an instance of a “lifted” proof. One difference is
that the initial proof does not need to be ground (propositional) and may involve quantifier
inference rules. Another difference is that the lifted proof can use as many distinct variables
as it may contain, i.e., up to a maximum defined below as a class of LKc-proofs, called
abstract, in which, intuitively, all meta-variables are associated with distinct variables.

In the following, we treat sequences of pairwise distinct elements as sets, and using a
sequence as a set always means that its elements are assumed to be pairwise distinct.

Definition 23. Let n ∈ N and

P =
P 1 : Γ1 ` ∆1 | X1 · · · P n : Γn ` ∆n | Xn

Γ ` ∆ | X1 f · · ·f Xn f X
(R)

be some LKc-proof, then P is an abstract proof if the following conditions hold:

• the subproofs P i are abstract for all 1 ≤ i ≤ n,

• (local variables condition, or lvc) the last inference is drawn by instantiating the meta-
variables4 of rule (R) by variables or sets of variables, and distinct meta-variables are
instantiated by distinct variables or disjoint sets of variables (see Example 24 below),

• (split variables condition, or svc) FV(P i) ∩ FV(P j) = ∅ for all 1 ≤ i < j ≤ n, i.e.,
distinct subproofs have disjoint variables,

4note that the Xi’s are not part of these meta-variables.
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• (constraint variables condition, or cvc) FV(X )∩FV(P i) ⊆ Γi ∪∆i for all 1 ≤ i ≤ n,
i.e., the constraint X only applies to variables in each subproof that are local to this
last inference.

Example 24.
P 1 : Γ ` ∆, u | X1 P 2 : Σ, v ` Π | X1

Γ,Σ ` ∆,Π | X1 f X2 f u
.
= v

(Cutc)

is abstract if

• P 1 and P 2 are abstract,

• (lvc) u, v are distinct variables, Γ, Σ, ∆ and Π are sequences of distinct variables
and have no variable in common or equal to u or v.

• (svc) FV(P 1) ∩ FV(P 2) = ∅,

• and (cvc) {u, v}∩FV(P 1) ⊆ Γ∪∆∪{u}, i.e., v 6∈ FV(P 1) and similarly u 6∈ FV(P 2).

Here the cvc is a consequence of the svc, but this is not the case for (most) unary rules.

Note that the lvc entails that abstract proofs are fair K-LKc-proofs. We now prove
that every LKc-proof can be lifted to a more general abstract proof. The proof is con-
structive, i.e., it provides an algorithm for computing such an abstract proof together with
a substitution that instantiates this abstract proof to the original one. Furthermore, this
algorithm is deterministic (up to a renaming of the variables that it introduces).

Theorem 25 (proof lifting). For any LKc-proof P : Γ ` ∆ | X , for any Γ′,∆′, σ and finite
set V of variables such that {

Γ′σ = Γ and ∆′σ = ∆,
FV(Γ′,∆′) ⊆ V,

there exist an LKc-proof Q : Γ′ ` ∆′ | X ′ and a substitution θ such that

1. θ is equal to σ on V ,

2. V ∩ (FV(Q) \ FV(Γ′,∆′)) = ∅,

3. Qθ = P ,

4. if Γ′ and ∆′ are disjoint sets of variables, then Q is abstract.

Proof. By induction on P . We examine in detail only three cases: one axiom, one unary
and one binary inference rules.

1. We first assume
P =

` φ | φ .
= t ' t

(Refc)

and that φ′, σ, V are such that FV(φ′) ⊆ V and φ′σ = φ. Let x be a variable of type
ı that does not belong to V , which always exists since V is finite. Let θ = σ[x 7→ t]
and

Q =
` φ′ | φ′ .= x ' x

(Refc),

then FV(Q) = FV(φ′) ] {x}, so that

V ∩ (FV(Q) \ FV(φ′)) = V ∩ {x} = ∅.

It is easy to check that Qθ = P .

If φ′ is a variable then the lvc holds and Q is thus abstract (the svc and cvc are
trivially valid since there is no subproof).
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2. Next, we assume that

P =
P 1 : Γ, φ ` ∆ | X

Γ, χ ` ∆ | X f χ .
= ∃ξ f φ .

= (ξ ιΓ∆χ)
(∃-Lc)

and that Γ′, χ′,∆′, σ, V are such that FV(Γ′, χ′,∆′) ⊆ V , Γ′σ = Γ, χ′σ = χ and
∆′σ = ∆. Let u : o and f : ı→ o be variables that do not belong to V , V ′ = V ]{u, f}
and σ′ = σ[u 7→ φ, f 7→ ξ]. Obviously FV(Γ′, u,∆′) ⊆ V ′, Γ′σ′ = Γ, uσ′ = φ and
∆′σ′ = ∆, hence we obtain by the induction hypothesis on P 1 that there exist
a proof Q1 : Γ′, u ` ∆′ | X ′ and a substitution θ equal to σ′ on V ′ such that
V ′ ∩ (FV(Q1) \ FV(Γ′, u,∆′)) = ∅ and Q1θ = P 1 (in particular X ′θ = X ). Let

Q =
Q1 : Γ′, u ` ∆′ | X ′

Γ′, χ′ ` ∆′ | X ′ f χ′ .= ∃f f u .
= (f (ιΓ′∆′χ′))

(∃-Lc).

Obviously χ′θ = χ′σ = χ, uθ = φ and fθ = ξ, hence Qθ = P . Since FV(Q) =
FV(Q1, χ

′, f) then

V ∩ (FV(Q) \ FV(Γ′, χ′,∆′)) = V ∩ (FV(Q1, f) \ FV(Γ′,∆′))
= V ′ ∩ (FV(Q1, f) \ FV(Γ′,∆′, u, f)) = ∅.

If Γ′χ′ and ∆′ are disjoint sets of variables, by definition u 6∈ Γ′ ∪∆′, hence Γ′u and
∆′ are disjoint sets of variables and by induction hypothesis Q1 must be abstract.
Obviously the lvc holds and the svc is trivial, hence there remains to check that
(Γ′ ∪ ∆′ ∪ {χ′, f, u}) ∩ FV(Q1) ⊆ Γ′ ∪ {u} ∪ ∆′, i.e., χ′, f 6∈ FV(Q1), which is true
since χ′, f ∈ V1. Hence the cvc condition holds and Q is abstract.

3. Finally, we assume that

P =
P 1 : Γ ` ∆, φ | X1 P 2 : Σ, ψ ` Π | X2

Γ,Σ ` ∆,Π | X1 f X2 f φ
.
= ψ

(Cutc)

with Γ′,Σ′,∆′,Π′, σ, V such that FV(Γ′,Σ′,∆′,Π′) ⊆ V , Γ′σ = Γ, Σ′σ = Σ, ∆′σ = ∆
and Π′σ = Π. Let u : o and v : o be distinct variables that do not belong to
V , V1 = V ] {u, v} and σ′ = σ[u 7→ φ, v 7→ ψ]. Obviously FV(Γ′,∆′, u) ⊆ V1,
Γ′σ′ = Γ, uσ′ = φ and ∆′σ′ = ∆, hence we obtain by the induction hypothesis on
P 1 that there exist a proof Q1 : Γ′ ` ∆′, u | X ′1 and θ′ equal to σ′ on V1 such that
V1 ∩ (FV(Q1) \ FV(Γ′,∆′, u)) = ∅ and Q1θ

′ = P 1.

As above ∆′θ′ = ∆, vθ′ = ψ and Π′θ′ = Π, hence with V2 = V1 ∪ FV(Q1), then
FV(∆′,Π′, v) ⊆ V2 and we obtain by the induction hypothesis on P 2 that there exist
a proof Q2 : Σ′, v ` Π′ | X ′2 and θ equal to θ′ on V2 (hence to σ on V , and uθ = φ,
vθ = ψ) such that V2 ∩ (FV(Q2) \ FV(Σ′, v,Π′)) = ∅ and Q2θ = P 2 (in particular
X ′2θ = X2). Let

Q =
Q1 : Γ′ ` ∆′, u | X ′1 Q2 : Σ′, v ` Π′ | X ′2

Γ′,Σ′ ` ∆′,Π′ | X ′1 f X ′2 f u
.
= v

(Cutc).

19



Since FV(Q1) ⊆ V2 then Q1θ = Q1θ
′ = P 1, so that Γ′θ = Γ, ∆′θ = ∆ and X ′1θ = X1,

hence Qθ = P . Furthermore

V ∩ (FV(Q) \ FV(Γ′,Σ′,∆′,Π′))
= V ∩ (FV(Q1,Q2) \ FV(Γ′,Σ′,∆′,Π′))
= V2 ∩ (FV(Q1,Q2) \ FV(Γ′,Σ′,∆′,Π′, u, v,Q1))
= V2 ∩ (FV(Q2) \ FV(Γ′,Σ′,∆′,Π′, u, v)) = ∅.

If the sequences Γ′Σ′ and ∆′Π′ are disjoint sets of variables, then so are Γ′, Σ′, ∆′ and
Π′; and by definition of u and v it is trivial that the lvc holds on Q. Besides, Γ′ and
∆′]{u} are disjoint sets of variables, and similarly Σ′]{v} and Π′, hence by induction
hypothesis Q1 and Q2 are abstract proofs. It is obvious that {u, v} ∩ FV(Q1) ⊆
Γ′∪∆′∪{u} since v ∈ V1 hence v 6∈ FV(Q1). Similarly {u, v}∩FV(Q2) ⊆ Σ′∪{v}∪Π′

holds since u ∈ V2 hence u 6∈ FV(Q2), so that the cvc holds.

Finally, since FV(Q1) ⊆ V2, then FV(Q1) ∩ (FV(Q2) \ Σ′ ∪ {v} ∪ Π′) = ∅, hence
FV(Q1) ∩ FV(Q2) ⊆ Σ′ ∪ {v} ∪ Π′. But v 6∈ FV(Q1), and since Σ′ ∪ Π′ ⊆ V1, then
(Σ′ ∪Π′)∩ (FV(Q1) \ Γ′ ∪∆′ ∪ {u}) = ∅, hence (Σ′ ∪Π′)∩FV(Q1) = ∅ (by the lvc),
and therefore FV(Q1) ∩ FV(Q2) = ∅. This establishes the svc and hence that Q is
abstract.

Corollary 26. Under the conditions of Theorem 25 and if furthermore P is valid then θ
is a solution of X ′ and for every solution µ - θ of X ′, Qµ is a valid proof more general
than P .

Example 27. The following is an abstract LKc-proof Qa obtained by lifting the proof Q of
Example 5 with the end sequent φ1 ` φ2, the substitution σ = [∀x (p x a)/φ1, ∃y (p y a)/φ2]
and V = {φ1, φ2}. Symbols z1, z2 are variables of type ı, φ1, φ2, φ3, φ4 are variables of type
o and ξ1, ξ2 are variables of type ı→ o.

(Axiomc)
φ4 ` φ3 | Y1

(∀-Lc)
φ1 ` φ3 | Y2

(∃-Rc)
φ1 ` φ2 | Y3

where

Y1
def
= φ4

.
= φ3,

Y2
def
= Y1 f φ1

.
= ∀ξ2 f φ4

.
= (ξ2 z2),

Y3
def
= Y2 f φ2

.
= ∃ξ1 f φ3

.
= (ξ1 z1).

It is easy to check that the proof Q of Example 3 is an instance of this proof, corre-
sponding to the substitution:

θ
def
= [λy (p y a)/ξ1, (p v a)/φ3, v/z1, ξ/ξ2, ψ/φ4, u/z2]σ,

and in particular Y3θ = X3.

Corollary 28. Under the conditions of Theorem 25 and assuming that Q is abstract then
any sequent Γ′′ ` ∆′′ has a valid LKc-proof less general than Q iff there is a solution θ of
X ′ such that (Γ′ ` ∆′)θ = Γ′′ ` ∆′′.

This is a translation of Lemma A in [21] where the notion of proof skeleton (or proof
analysis) has been replaced by that of abstract proof. This suggests that an abstract proof
is nothing else than a proof skeleton, but this is not the case. More precisely, a proof
skeleton is what remains of a proof when all formulæ have been removed: a tree labelled
by inference rules. We can thus see it as a term in the signature of inference rules, e.g., the
skeleton of the proof in Example 27 is ∃-Rc(∀-Lc(Axiomc)). But contrary to the schematic
systems of [21] it is not generally possible to build the abstract constraint X ′ from the
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proof skeleton. One problematic rule is (P-Lc), because in order to generate a constraint
on formulæ φ and ψ we need to know where exactly they occur in the left part of any given
sequent. This is why in [13] an integer is attached to every occurrence of a (P-L) or (P-R)
rule in a proof skeleton, in a rather ad-hoc way. This integer can of course be read out
from an abstract proof which looks like

x1, . . . , xn ` y1, . . . , ym | X1

x1, . . . , xi+1, xi, . . . , xn ` y1, . . . , ym | X2

(P-Lc)

The binary rules we have chosen are also problematic since we need to know where both
sides of the end sequent are split between the left and right premiss. Consequently in [2] a
pair of integers is added to all occurrences of binary rules5 in proof skeletons. It is easy to
see that a skeleton enriched with this extra information is equivalent to an abstract proof
in the sense that both allow to compute the other (including the lengths n and m at each
inference). The notion of abstract proof naturally extends to other inference systems and
meets the original notion of proof skeleton on schematic systems as illustrated in Section
9.

The next proposition states that an abstract proof is minimal w.r.t. the generalization
ordering, i.e., it admits no strictly more general LKc-proof.

Proposition 29. If P , P a and Q are LKc-proofs such that P a is abstract, P a - P and
Q - P , then P a � Q.

Proof. By induction on P a. There exist σ and µ such that P aσ ≡αβη P and Qµ ≡αβη P .
We examine the details in two cases: one axiom and one binary inference rule.

1. If
P a =

` u | u .
= x ' x

(Refc)

where u and x are variables, then

P ≡αβη P aσ =
` uσ | uσ .

= xσ ' xσ
(Refc)

and since Qµ ≡αβη P aσ then

Q =
` φ | φ .

= t ' t
(Refc)

where φµ ≡αβη uσ and tµ ≡αβη xσ. We now define the substitution θ = [φ/u, t/x],
then obviously P aθ = Q.

2. If P a is the proof (with variables ui, u
′
i′ , vj, v

′
j′)

P a
1 : u1 · · ·un ` v1 · · · vm+1 | X a

1 P a
2 : u′1 · · ·u′n′+1 ` v′1 · · · v′m′ | X a

2

u1 · · ·unu′1 · · ·u′n′ ` v1 · · · vmv′1 · · · v′m′ | X a
1 f X a

2 f vm+1
.
= u′n′+1

(Cutc)

and since Qµ ≡αβη P aσ then Q must be a proof

Q1 : φ1 · · ·φn ` ψ1 · · ·ψm+1 | X1 Q2 : φ′1 · · ·φ′n′+1 ` ψ′1 · · ·ψ′m′ | X2

φ1 · · ·φnφ′1 · · ·φ′n′ ` ψ1 · · ·ψmψ′1 · · ·ψ′m′ | X1 f X2 f ψm+1
.
= φ′n′+1

(Cutc)

where Qiµ ≡αβη P a
iσ for i = 1, 2. Since P a

1 and P a
2 are abstract, by induction

hypothesis there exist θ1 and θ2 such that P a
i θi = Qi for i = 1, 2, and we may assume

that Dom(θi) ⊆ FV(P a
i ). By the svc we deduce that Dom(θ1) ∩Dom(θ2) = ∅, hence

we let θ be the substitution equal to θ1 on Dom(θ1) and to θ2 elsewhere, so that
X a

1 θ = X a
1 θ1 = X1, X a

2 θ = X a
2 θ2 = X2, vm+1θ = vm+1θ1 = ψm+1, u

′
n′+1θ = u′n′+1θ2 =

φ′n′+1, and similarly for the ui’s, u
′
i′ ’s, vj’s and v′j′ ’s, which finally yields P aθ = Q.

5In all rigor the same should be done in [13] for the (⇒-L) rule from [25].
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Note that this implies that, for any LKc-proofs P and P a, if P a is abstract then
P a - P is equivalent to P a � P (by taking Q = P ). This theorem thus shows that the
abstract proof P a obtained by lifting P is most general among the generalizations of P .
However, this is still an LKc-proof and our aim is to generalize LK-proofs, hence to obtain
valid generalizations of valid LKc-proofs.

Proposition 30. If P a is abstract, P and Q are valid, P a � P , Q - P and σ is a most
general solution of P a’s constraint, then P aσ - Q.

Proof. By Proposition 29 there exists a substitution θ such that P aθ = Q, and since Q
is valid then θ is a solution of P a’s constraint, hence there is a substitution ρ such that
σρ ≡αβη θ, and therefore P aσρ ≡αβη Q, that is P aσ - Q.

This means that in this case P aσ is most general among the valid generalizations of P .
However, there may not be a most general unifier of the abstract constraint since it may
have second order variables. But we may still be able to find minimal unifiers and we can
show that this property extends to the corresponding valid proofs.

Proposition 31. If P a is abstract and σ is a minimal solution of P a’s constraint then
P aσ is a minimal valid proof.

Proof. We may assume that Dom(σ) ⊆ FV(P a). Suppose that there is a valid proof
Q - P aσ, then by Proposition 29 there is a θ such that P aθ = Q and we may assume
that Dom(θ) ⊆ FV(P a). Hence P aθ - P aσ and it is then easy to see that θ - σ. But θ
is a solution of the abstract constraint (since P aθ is valid), hence θ ≡αβη σ by minimality
of σ and therefore Q ≡αβη P aσ.

7 The Unifier Minimization Algorithm

Lifting a valid K-LKc-proof P to an abstract proof P a yields a substitution θ such that
P aθ = P , hence θ is a solution of the constraint X of P a (which may not be valid) and is
a K-substitution. As explained in Section 1, we now need an algorithm to compute, given
X and θ, a solution σ of X such that σ - θ, which according to Corollary 26 yields a valid
proof P aσ - P . Such a substitution always exists since θ fulfills the desired property; our
goal is to find a solution that is as general as possible. In the present section we define and
illustrate such an algorithm, and also prove a few lemmas to be used in Section 8 devoted
to the basic properties of this algorithm. We first introduce the notion of a controlled
unification problem, which is a second order unification problem (in the standard sense)
associated with a particular solution:

Definition 32. A unification problem is a pair (X , σ) where:

• X is a K-constraint.

• σ is an idempotent K-substitution such that Dom(σ) ∩ FV(X ) = ∅.
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A K-substitution γ is a solution of (X , σ) if σ - γ and γ is a solution of X . Note that
σ is a solution of (>, σ). The set of solutions of (X , σ) is denoted by sol(X , σ).

A controlled unification problem is a triple (X , σ, θ), where (X , σ) is a unification prob-
lem and θ is a solution of (X , σ). A substitution γ is a solution of (X , σ, θ) if it is a solution
of (X , σ) such that γ - θ. (X , σ, θ) is fair if both X and σ are fair. The triple (X , σ, θ) is
solved if X = > (and then σ is a solution).

The algorithm presented in this section consists in rewriting controlled unification prob-
lems (X , σ, θ) by applying second order unification rules. The algorithm starts with σ = id
and instantiates it by solving equations in X . It is sometimes necessary to introduce new
variables in X and to extend θ accordingly. Since second order unification is undecidable,
we use a specific strategy to preserve θ as a solution of X , which ensures that all the
obtained solutions will be more general than θ. Furthermore, we show in Section 8 that
the unification rules eventually decrease the size of the image by θ of the set of variables
occurring in the considered problem. This allows us to propose a terminating algorithm
but not to guarantee that a minimal unifier is found. Yet we will ensure an elementary
form of generality, i.e., that the algorithm always reaches a fair solution (even when θ is
not fair, i.e., when it is “committed” to a particular signature).

As usual in this kind of algorithm (see [5]), we use slightly different representatives
of βη-classes than the βη-normal forms. Obviously, any β-normal term can be uniquely
written in the form λx1 · · ·λxn (v t1 · · · tm) where n ≥ 0, m ≥ 0, the ti’s are β-normal
terms and v is either a β-normal eigenterm (in which case it has type ı and hence m = 0)
or v ∈ V ∪ C. We now transform this term according to its type.

Definition 33. If t = λx1 · · ·λxn (v t1 · · · tm) is a term in β-normal form, with n,m ≥ 0
and has type ıp → τ where v ∈ V ∪ C and τ is basic (hence p ≥ n), let

t�
def
= λx1 · · ·λxp(v t1� · · · tm�xn+1 · · ·xp)

where xn+1, . . . , xp are variables that do not occur in t.
If t = λx1 · · ·λxn (ι t1 · · · tm) is a term in β-normal form with n ≥ 0,m > 0, let

t�
def
= λx1 · · ·λxn(ι t1� · · · tm�).

For any term t we write t�
def
= (t↓βη)� and call it the long normal form (or lnf ) of t.

The lnf X� of a constraint X is obtained by transforming to lnf both members of every
equation in X .

Note that t� ∈ K whenever t ∈ K, t�→η
∗ t↓βη and t� is only defined up to α-conversion.

It is therefore clear that two terms s and t belong to the same αβη-equivalence class if
and only if t� and s� are α-equivalent. Furthermore, since free variables and constants are
preserved by both η-reduction and its inverse, then FV(t�) ⊆ FV(t) and if a constraint X
is fair then so is X�.

The following definition shows that every non atomic normal term of some V-type
can be written of the form uγ, where u is of some specific form. The motivation for
such a definition is that, when solving a controlled unification problem (X , γ, θ), one often
has to instantiate a variable x ∈ FV(X ) by a new non atomic term u to enable further
decomposition or simplification steps. Since we must keep the solution θ during the solving
process, u must be more general than the term xθ, and since we want the solution to be as
general as possible u must be �-minimal (useless instantiations should be avoided). The
next definition shows how u and γ can be computed from t = xθ.

Definition 34. For every βη-reduced term t ∈ K \ (V ∪ C) of some V-type, δ(t) denotes
the pair (u, γ) defined as follows.
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Case t δ(t) = (u , γ)
1 λxx (λxx , id)
2 λx a (λx y , [a/y])
3 λx (ι∃y (p y)) (λx (ι z) , [∃y (p y)/z])
4 λx (∃y (p x y)) (λx (∃(z x)) , [λxλy (p x y)/z])
5 λx (p a x) (λx (y (z1 x) (z2 x)) , [p/y, λx a/z1, λx x/z2])

Figure 3: Examples of application of Definition 34

1. If t is of the form λx1 · · ·λxn xi where n ≥ 1 and 1 ≤ i ≤ n then: (u, γ)
def
= (t, id),

where id is the identity substitution.

2. If t = λx1 · · ·λxn v, where n ≥ 1 and v ∈ C ∪ V \ {x1, . . . xn} then (u, γ)
def
=

(λx1 · · ·λxn y, [v/y]), where y is an arbitrarily chosen variable of the same type as v
(which is a V-type) distinct from x1, . . . , xn, v.

3. If t = λx1 · · ·λxn (ι t1 · · · tm) (with m > 0 and n ≥ 0) then:

u
def
= λx1 · · ·λxn (ι y1 · · · ym)

γ
def
= [t1/y1, . . . , tm/ym]

where y1, . . . , ym are arbitrarily chosen distinct variables of type o not occurring in
FV(t1, . . . , tm, x1, . . . , xn).

4. If t = λx1 · · ·λxn (v t1 · · · tm) with m > 0, n ≥ 0 and v∈{∀,∃,¬,∧,∨,⇒}6 then:

u
def
= λx1 · · ·λxn (v (z1 x1 · · ·xn) · · · (zm x1 · · · xn))

γ
def
= [λx1 · · ·λxn t1/z1, . . . , λx1 · · ·λxn tm/zm]

where z1, . . . , zm are arbitrarily chosen distinct variables of the appropriate types7,
not occurring in FV(t1, . . . , tm, x1, . . . , xn).

5. If t = λx1 · · ·λxn (v t1 · · · tm) with m > 0, n ≥ 0 and v 6∈ {∀,∃,¬,∧,∨,⇒} then:

u
def
= λx1 · · ·λxn (y (z1 x1 · · ·xn) · · · (zm x1 · · ·xn))

γ
def
= [v/y, λx1 · · ·λxn t1/z1, . . . , λx1 · · ·λxn tm/zm]

where y, z1, . . . , zm are arbitrarily chosen distinct variables of the appropriate types,
not occurring in FV(v, t1, . . . , tm, x1, . . . , xn).

Note that δ(t) is only defined up to a renaming of variables not free in t. See Figure
3 for an illustrating example of each case. The following propositions state immediate
consequences of the definition.

Proposition 35. The pair δ(t) is well-defined, for every βη-reduced term t ∈ K \ (V ∪ C)
of some V-type.

6These constants cannot be generalized simply because there is no variable of the corresponding types.
The equality predicate could be generalized if its specific properties are not used in the proof, i.e., if no
paramodulation inference is applied on it. Of course, if no ∧-rule is applied on a formula (∧ t1 t2) then it
can be generalized by a variable of type o.

7In particular, if v ∈ {∀,∃} then m = 1 and z1 has type ın+1 → o. If v is a binary connective then
m = 2 since t has V-type.
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Proof. It is straightforward to check that the 5 items of Definition 34 do not overlap
and cover all possible cases. Indeed, every βη-reduced term t must be of the form
λx1 · · ·λxn (v t1 . . . tm) (with possibly n = 0 and m = 0), for variables x1, . . . , xn of type
ı and terms v, t1, . . . , tm such that (v t1 . . . tm) has V-type and v is either a variable, a
constant or an eigenterm. If m > 0 then we are in Case 4 if v ∈ {∀,∃,¬,∧,∨,⇒} and in
Case 5 otherwise. If m = 0, then v has V-type; it may be an eigenterm and we are in Case
3, or v ∈ V ∪ C and then n ≥ 1 (otherwise t = v). If v is a constant then we are in Case
2, otherwise it is a variable and then we are in Case 1 if v = xi for some 1 ≤ i ≤ n, and in
Case 2 otherwise.

Lemma 36. Let t ∈ K\ (V ∪C) be a βη-reduced term of some V-type and let (u, γ) = δ(t).
Then u ∈ K, γ is a K-substitution, uγ↓βη= t, FV(t) ∩ FV(u) = ∅ and |xγ| < |t| for every
variable x ∈ Dom(γ).

Proof. The proof is immediate in Case 1 since then u = t, γ = id, FV(t) = ∅ and Dom(γ) =
∅. In Case 2, uγ = (λx1 · · ·λxn y)[v/y] = λx1 · · ·λxn v = t, FV(u) = {y} and by definition
y cannot occur in FV(t) ⊆ {v}, thus FV(t)∩FV(u) = ∅. Furthermore, |yγ| = 1 < |t| = n+1
(since n ≥ 1, see Definition 7 for the definition of |t|).

In Case 3, u ∈ K is obvious by the restriction on the yi’s and since all ti’s are in
K then γ is a K-substitution. uγ = t is obvious, FV(u) = {y1, . . . , ym} is disjoint from
FV(t1, . . . , tm) by definition and FV(t1, . . . , tm) = FV(t) since t ∈ K, hence FV(u) ∩
FV(t) = ∅. Furthermore, yiγ = ti for all 1 ≤ i ≤ m, and |ti| < 1 +

∑m
j=1 |tj| = |t|.

In Case 5, u ∈ K is obvious and as above t ∈ K entails u ∈ K and λx1 · · ·λxn ti ∈ K
for all 1 ≤ i ≤ m, hence γ is a K-substitution. Since yγ = v and (ziγ x1 · · · xn)↓βη=
((λx1 · · ·λxn ti) x1 · · ·xn)↓βη= ti, then

uγ↓βη = λx1 · · ·λxn (yγ (z1γ x1 · · ·xn) · · · (zmγ x1 · · ·xn))↓βη
= λx1 · · ·λxn (v t1 · · · tm) = t.

Obviously FV(u) = {y, z1, . . . , zm} and by definition y, z1, . . . , zm 6∈ FV(t), hence FV(t) ∩
FV(u) = ∅. Finally, |yγ| = |u| > 0, |ziγ| = n+ |ti| and |t| = n+ |u|+ Σm

i=1|ti| with m > 0
and |t1| > 0, thus |yγ|, |z1γ|, . . . , |zmγ| < |t|. Case 4 is similar.

A first algorithm for finding solutions of fair controlled unification problems is defined
by the set of rules R

def
= {→i| 1 ≤ i ≤ 8} given in Figure 4. The rules apply modulo

the commutativity of
.
=, the associativity and commutativity of f, the fact that > is the

identity of f, and modulo α-equivalence (i.e., bound variables can be renamed to allow
for the application of the rules). The constraint is assumed to be in long normal form
and the unifier θ to be βη-reduced. When applying Rule →8 we assume that δ(xθ) is
renamed so that u shares no variable with the considered problem. The notation y denotes
possibly empty sequences of variables (with λy t

def
= t if y is empty and λy t

def
= λy1 · · ·λyn t

if y = y1 · · · yn with n > 0). We also consider an extended algorithm defined by the set of

rules R′
def
= R ∪ {→9}. We write t→R s (resp. t→R′ s) if t→i s for some 1 ≤ i ≤ 8 (resp.

1 ≤ i ≤ 9).
Rule →1 merely removes trivial equations. Rule →2 removes useless λ-abstractions.

Rule→3 is the usual replacement rule of the standard unification algorithms, which simply
replaces a variable x by its value once it is known. The value of the variable is stored into
the second component of the problem to ensure that equivalence is preserved. Note that
→3 applies also to second order variables, which, since we consider problems in lnf, always
occur in the scope of a λ-abstraction (e.g., an equation x = y is written λz (x z) = λz (y z)
if x, y are of type ı→ ı). Rules →4, →5, →6 and →7 are usual decomposition rules. Note
that Rules →1, →2, →3 →4, →5 and →7 preserve the set of solutions of the problem (the
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(t
.
= tf X , σ, θ) →1 (X , σ, θ)

(λy t
.
= λy sf X , σ, θ) →2 (t

.
= sf X , σ, θ)

if y 6∈ FV(t, s),

(λy (x y)
.
= λy sf X , σ, θ) →3 (Xγ�, σγ, θ)

if x ∈ V, x 6∈ FV(s) and γ = [λy s/x],

((ι t1 · · · tn)
.
= (ι s1 · · · sn)f X , σ, θ) →4 (fni=1ti

.
= si f X , σ, θ)

(λy (c t1 · · · tn)
.
= λy (c s1 · · · sn)f X , σ, θ) →5 (fni=1λy ti

.
= λy si f X , σ, θ)

if n ≥ 1 and c ∈ C,

(λy (x t1 · · · tn)
.
= λy (z s1 · · · sn)f X , σ, θ) →6 ((fni=1λy ti

.
= λy si f X )γ, σγ, θ)

if n ≥ 1, x, z ∈ V, xθ, zθ ∈ V ∪ C and γ = [x/z],

(λy (x t1 t2)
.
= λy (' s1 s2)f X , σ, θ) →7 ((f2

i=1λy ti
.
= λy si f X )γ, σγ, θ)

if x ∈ V, xθ is ' and γ = [' /x],

(λy (x t1 · · · tn)
.
= λy sf X , σ, θ) →8 ((λy (x t1 · · · tn)

.
= λy sf X )γ′�, σγ′, θγ)

if n ≥ 0, x ∈ V, xθ 6∈ V ∪ C, (u, γ) = δ(xθ) and γ′ = [u/x],

(λy (x t1 · · · tn)
.
= λy (z s1 · · · sn)f X , σ, θ) →9 ((fni=1λy ti

.
= λy si f X )γ, σγ, θ)

if n ≥ 1, x, z ∈ V, xθ ≡αβη zθ, (λy ti)θ ≡αβη (λy si)θ for all 1 ≤ i ≤ n and γ = [x/z].

Figure 4: The unifier minimization rules

obtained problem is always equivalent to the initial one). However, this is not the case for
Rules →6, →8 and →9, for which some of the solutions may be lost (e.g., in Rule →6, if x
and z are constant functions the terms (x t1 · · · tn) and (z s1 · · · sn) may be equal even if ti
and si are distinct). However, the application conditions ensure that the specific solution
θ associated with the controlled unification problem (third component) is preserved.

Rules →8 and →9 are different ways of using the solution θ as a guide toward a gen-
eralized solution of the constraint. In Rule →8 the choice is to make a minimal copy of
the value xθ for a variable x (as explained before Definition 34). In Rule →9 the choice is
to assert as constraints some equalities that happen to hold on θ (but the common value
xθ↓βη= zθ↓βη is not used as such). The same choice motivates Rule→6, but it is postponed
until atomic values are reached for xθ and zθ (which implies that xθ ≡αβη zθ and therefore
Rule→6 is a restriction of Rule→9), when Rule→8 can no longer be applied. In contrast,
Rules →8 and →9 overlap and both may entail some loss of generality, since the set of
solutions is not preserved, and it is easy to construct examples showing that neither of the
rules is uniformly superior to the other. There does not seem to be any easy way to decide
which rule should preferably be applied in any given context (other than computing and
comparing all normal forms, but this is not practical). The algorithm R circumvents the
dilemma.

In the following example, we adopt algorithm R and apply the rules that preserve
equivalence with the highest priority.

Example 37. We consider the fair constraint Y3 of Example 27. In order to obtain a
solution of Y3, since Y3µ = X3 we may compose µ (obtained by lifting) with the solution
ρ of X3 defined in Example 5; that is

µρ = [λy (p y a)/ξ1, (p v a)/φ3, v/z1, ξ/ξ2, ψ/φ4, u/z2,∀x (p x a)/φ1,

∃y (p y a)/φ2][a/u, a/v, λx (p x a)/ξ, (p a a)/ψ],

of which we discard the variables not occurring in Y3; with the suitable normalizations,
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this yields

Y3� = φ4
.
= φ3 f φ1

.
= ∀x (ξ2 x)f φ4

.
= (ξ2 z2)f φ2

.
= ∃x (ξ1 x)f

φ3
.
= (ξ1 z1),

θ
def
= [∀x (p x a)/φ1, ∃y (p y a)/φ2, (p a a)/φ3, (p a a)/φ4,

λy (p y a)/ξ1, λx (p x a)/ξ2, a/z1, a/z2].

We thus start the unifier minimization algorithm on the fair controlled unification problem
(Y3�, id, θ). The first four equations can be discarded by applying Rule →3 four times,
which yields the controlled unification problem

((ξ2 z2)
.
= (ξ1 z1), [∀x (ξ2 x)/φ1,∃x (ξ1 x)/φ2, (ξ2 z2)/φ3, (ξ2 z2)/φ4], θ).

Since ξ1θ 6∈ V ∪ C only Rule →8 applies, for instance with δ(ξ1θ) = δ(λy (p y a)) = (u1, γ1),

where (by Case 5 of Definition 34) u1
def
= λy (ξ3 (f1 y) (f2 y)), γ1

def
= [p/ξ3, λy y/f1, λy a/f2]

and ξ3 : ı → ı → o, f1, f2 : ı → ı are new variables. The result of applying the rule is
obtained by using the substitutions [u1/ξ1] (and normalizing) and γ1, yielding ((ξ2 z2)

.
=

(ξ3 (f1 z1) (f2 z1)), σ1, θ1), where σ1 is

[∀x (ξ2 x)/φ1,∃x (ξ1 x)/φ2, (ξ2 z2)/φ3, (ξ2 z2)/φ4][λy (ξ3 (f1 y) (f2 y))/ξ1]

and θ1
def
= θγ1. Again only Rule →8 applies, for instance with δ(ξ2θ1) = δ(λx (p x a)) =

(u2, γ2), where u2
def
= λx (ξ4 (f3 x) (f4 x)), γ2

def
= [p/ξ4, λx x/f3, λx a/f4] and ξ4 : ı → ı → o,

f3, f4 : ı→ ı are new variables. Applying the rule yields

((ξ4 (f3 z2) (f4 z2))
.
= (ξ3 (f1 z1) (f2 z1)), σ2, θ2)

where σ2
def
= σ1[λx (ξ4 (f3 x) (f4 x))/ξ2] and θ2

def
= θ1γ2. Now ξ4θ2 = ξ4γ2 = p and ξ3θ2 =

ξ3γ1 = p are both (necessarily the same) constant, hence Rule →6 applies, yielding

((f3 z2)
.
= (f1 z1)f (f4 z2)

.
= (f2 z1), σ2[ξ4/ξ3], θ2).

Rule →6 cannot be applied, we select the first equation to apply Rule →8 with δ(f3θ2) =
(λxx, id) (by Case 1), thus applying [λxx/f3] which yields

(z2
.
= (f1 z1)f (f4 z2)

.
= (f2 z1), σ2[ξ4/ξ3][λxx/f3], θ2).

Now Rule →3 applies on the first equation, which yields

((f4 (f1 z1))
.
= (f2 z1), σ2[ξ4/ξ3][λxx/f3][(f1 z1)/z2], θ2).

Since f4θ2 = λx a by Rule →8 with δ(f4θ2) = (λx z3, [a/z3]) (by Case 2) we obtain

(z3
.
= (f2 z1), σ2[ξ4/ξ3][λxx/f3][(f1 z1)/z2][λx z3/f4], θ3)

with θ3 = θ2[a/z3] and finally Rule →3 yields

(>, σ2[ξ4/ξ3][λxx/f3][(f1 z1)/z2][λx z3/f4][(f2 z1)/z3], θ3).

The result is

σ3
def
= σ2[ξ4/ξ3][λxx/f3][(f1 z1)/z2][λx z3/f4][(f2 z1)/z3]

= [∀x (ξ4 x (f2 z1))/φ1,∃x (ξ4 (f1 x) (f2 x))/φ2, (ξ4 (f1 z1) (f2 z1))/φ3,

(ξ4 (f1 z1) (f2 z1))/φ4, λy (ξ4 (f1 y) (f2 y))/ξ1, λx (ξ4 x (f2 z1))/ξ2,

ξ4/ξ3, λx x/f3, (f1 z1)/z2, λx (f2 z1)/f4, (f2 z1)/z3].

27



It is easy to check that σ3 is a solution of Y3 and that it is more general than θ4. Indeed,
we find that σ3γ1γ2[a/z1, a/z2, a/z3] ≡αβη θ3. Hence the restriction of σ3 to FV(Y3) is more
general than θ. Note that the solution σ3 is fair even though the solution θ is not.

This algorithm is nondeterministic; the reader may check that if we change the orienta-
tion of the equation on which we first apply Rule→8, i.e., if we apply it to (f1 z1)

.
= (f3 z2)

we reach the following solution:

σ′3 = [∀x (ξ4 (f3 x) (f4 x))/φ1,∃x (ξ4 x (f4 z2))/φ2, (ξ4 (f3 z2) (f4 z2))/φ3,

(ξ4 (f3 z2) (f4 z2))/φ4, λy (ξ4 y (f4 z2))/ξ1, λx (ξ4 (f3 x) (f4 x))/ξ2,

ξ4/ξ3, λy y/f1, (f3 z2)/z1, λy (f4 z2)/f2, (f4 z2)/z3]

and none of σ3, σ
′
3 is more general than the other. The reader may check that Rule →9

yields extra solutions, but they are instances of those already found.

We next prove that these algorithms always produce a fair solution more general than
the given unifier.

8 Properties and Consequences

We first state that the obtained triple is always a fair controlled unification problem and
that all its solutions are also solutions of the original problem.

Lemma 38. If (Y , σ, θ) is a fair controlled unification problem, where Y is in lnf and θ
is βη-reduced, and (Y , σ, θ) →R′ (Y ′, σ′, θ′) then (Y ′, σ′, θ′) is a fair controlled unification
problem, Y ′ is in lnf, θ′ is a βη-reduced extension of θ and sol(Y ′, σ′) ⊆ sol(Y , σ).

Proof. • We consider Rule→2 by assuming that Y ≡ λy t
.
= λy sfX , Y ′ ≡ t

.
= sfX ,

with y 6∈ FV(t, s) and σ′ = σ, θ′ = θ. Since Y is a fairK-constraint in lnf, then so is Y ′.
Similarly σ′ is a fair idempotent K-substitution, and since FV(Y ′) = FV(t, s,X ) =
FV(λy t, λy s,X ) = FV(Y), then Dom(σ′)∩FV(Y ′) = Dom(σ)∩FV(Y) = ∅. σ′ - θ′

is obvious, and since θ is a solution of Y , then (λy t)θ ≡αβη (λy s)θ. Let x ∈ V \
FV(tθ, sθ) of type ı, then (λy t)θ = λx tθ[y 7→ x] = λx tθ since y 6∈ FV(t), and
similarly (λy t)θ = λx sθ, hence λx tθ ≡αβη λx sθ and therefore tθ ≡αβη sθ. Thus
θ′ is a solution of Y ′, hence (Y ′, σ′, θ′) is a fair controlled unification problem. θ′

is obviously a βη-reduced extension of θ. Furthermore, it is clear that for every
substitution µ, tµ ≡αβη sµ implies (λy t)µ ≡αβη (λy s)µ thus sol(Y , σ) ⊆ sol(Y ′, σ).

• We examine Rule →8, hence we assume that Y ≡ λy (x t1 · · · tn)
.
= λy s f X with

n ≥ 1, x ∈ V , xθ 6∈ V ∪C, (u, γ) = δ(xθ), γ′ = [u/x], Y ′ = Yγ′�, σ′ = σγ′ and θ′ = θγ.
By inspecting Definition 34 we see that only in Case 4 does u contain a constant, and
it is a logical symbol; hence u is fair and therefore so are Y ′ and σ′. By the condition
given on Page 25 for applying Rule →8 we also know that FV(u) ∩ FV(Y , σ, θ) = ∅,
and Definition 34 yields Dom(γ) = FV(u). This first implies that Dom(γ)∩FV(θ) = ∅
and hence that θ′ is an extension of θ. Since γ is clearly βη-reduced then so is θ′.

By Lemma 36 uγ ≡αβη xθ, u ∈ K, γ is a K-substitution and so is γ′, hence by
Proposition 14 so are σ′ and θ′, and Y ′ is a K-constraint. Since FV(u)∩Dom(θ) = ∅,
then xγ′θγ = uθγ = uγ ≡αβη xθ. Besides, for any z ∈ FV(Y) other than x,
zγ′θγ = zθγ = zθ since FV(zθ) ⊆ FV(Y , θ) is disjoint from Dom(γ). Hence Y ′θ′ =
Yγ′θγ ≡ Yθ ≡ >, so that θ′ ∈ sol(Y ′).
Since (Y , σ, θ) is a controlled unification problem then σ2 = σ and Dom(σ)∩FV(Y) =
∅. But Dom(σ′) = Dom(σ) ] {x} and FV(Y ′) = (FV(Y) ∪ FV(u)) \ {x}, hence
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Dom(σ′) ∩ FV(Y ′) = Dom(σ) ∩ FV(u) = ∅. Hence uσ′ = u and since xσ′ = u then
xσ′2 = u = xσ′. Furthermore, for every z ∈ Dom(σ), zσ′2 = zσσ′ = zσ2γ′ = zσ′.
Therefore σ′2 = σ′.

We also know that σ - θ, thus there exists a ρ such that, for every variable z,
zσρ ≡αβη zθ. Let ρ′ be the substitution coinciding with γ on FV(u) and with ρ
elsewhere. If z ∈ FV(u) then zσ′ρ′ = zρ′ = zγ = zθ′. If z 6∈ FV(u) let z′ ∈ FV(zσ),
then z′ 6∈ FV(u) and z′ 6∈ Dom(σ) (since σ2 = σ). If z′ 6= x then z′σ′ρ′ = z′γρ′ =
z′ρ′ = z′ρ = z′σρ. Furthermore, xσ′ρ′ = uρ′ = uγ ≡αβη xθ ≡αβη xσρ. This proves
that (zσ)σ′ρ′ ≡αβη (zσ)σρ, but zσσ′ρ′ = zσ′ρ′ and zσ2ρ = zσρ ≡αβη zθ = zθ′, hence
zσ′ρ′ ≡αβη zθ′ holds for every variable z, thus σ′ - θ′ and we have proved that
(Y ′, σ′, θ′) is a controlled unification problem.

For any µ ∈ sol(Y ′, σ′) by definition µ ∈ sol(Y ′) and σ′ - µ, hence there is a ρ such
that µ ≡αβη σ′ρ = σγ′ρ. Since Dom(σ) ∩ FV(Y ′) ⊆ Dom(σ) ∩ FV(Y , u) = ∅, then
Y ′σ = Y ′ as well as Yσ = Y , and since γ′2 = γ′ then Y ′µ ≡ Y ′γ′ρ ≡ Yγ′ρ = Yσγ′ρ ≡
Yµ. But Y ′µ ≡ >, which proves that µ ∈ sol(Y , σ).

• We now consider Rule →9, hence Y ≡ λy (x t1 · · · tn)
.
= λy (z s1 · · · sn) f X , n ≥

1, x, z ∈ V , xθ ≡αβη zθ, (λy ti)θ ≡αβη (λy si)θ for all 1 ≤ i ≤ n, γ = [x/z],
Y ′ ≡ (fni=1λy ti

.
= λy si f X )γ, σ′ = σγ and θ′ = θ. Obviously Y ′ is a fair K-

constraint in lnf and σ′ is a fair K-constraint. Since Dom(σ) ∩ FV(Y) = ∅ then
x, z 6∈ Dom(σ), hence Dom(σ′) = Dom(σ)∪{z}, and since FV(Y ′) = FV(Y)\{z} then
Dom(σ′) ∩ FV(Y ′) = ∅. This also implies that γσγ = σγ and since σ is idempotent
then so is σ′.

Since σ - θ there is a ρ such that σρ ≡αβη θ. Then

zσ′ρ = zσγρ = zγρ = xρ = xσρ ≡αβη xθ ≡αβη zθ.

Furthermore, for every variable z′ 6= z, z′σ′ρ = z′σρ ≡αβη z′θ. Thus σ′ - θ.

Since xθ ≡αβη zθ, then tγθ ≡αβη tθ for any term t, hence (λy ti)γθ ≡αβη (λy ti)θ for
all 1 ≤ i ≤ n, and similarly for si so that θ is clearly a solution of (λy ti)γ

.
= (λy si)γ

and similarly of Xγ, hence (Y ′, σ′, θ′) is a controlled unification problem.

Finally we prove that sol(Y ′, σ′) ⊆ sol(Y , σ). Let µ ∈ sol(Y ′, σ′), by definition there
is a ρ such that µ ≡αβη σ′ρ = σγρ (hence σ - µ) and (λy ti)γµ ≡αβη (λy si)γµ for
all 1 ≤ i ≤ n. But zµ ≡αβη zσγρ = xρ = xσγρ ≡αβη xµ, hence tγµ ≡αβη tµ for
any term t; in particular Xµ ≡ Xγµ ≡ >. Let t = (x t1 · · · tn), s = (z s1 · · · sn)
and y′ be a sequence of variables of type ı such that y′ ∩ FV(tγµ, sγµ) = ∅, then
(λy ti)γµ = λy′ tiγµ[y 7→ y′] and similarly for si, hence tiγµ[y 7→ y′] ≡αβη siγµ[y 7→ y′]
for all 1 ≤ i ≤ n, and since xγ = zγ then tγµ[y 7→ y′] ≡αβη sγµ[y 7→ y′]. This yields

(λy t)µ ≡αβη (λy t)γµ = λy′ tγµ[y 7→ y′]
≡αβη λy′ sγµ[y 7→ y′] = (λy s)γµ ≡αβη (λy s)µ

hence µ ∈ sol(Y , σ).

• Rule→1 is trivial, Rule→3 is the standard replacement rule, Rules→4, →5 and→7

are standard decomposition rules and can be treated as above.

• We finally consider Rule →6, thus Y ≡ λy (x t1 · · · tn)
.
= λy (z s1 · · · sn) f X , n ≥ 1,

x, z ∈ V , xθ, zθ ∈ V ∪ C, γ = [x/z], Y ′ ≡ (fni=1λy ti
.
= λy si f X )γ, σ′ = σγ and

θ′ = θ. Let t = (x t1 · · · tn), s = (z s1 · · · sn) and y′ be a sequence of variables of type
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ı such that y′ ∩ FV(tθ, sθ) = ∅, then (λy t)θ = λy′ tθ[y 7→ y′] and similarly for s, and
since θ is a solution of λy t

.
= λy s then tθ[y 7→ y′] ≡αβη sθ[y 7→ y′].

But xθ[y 7→ y′] = xθ ∈ V ∪ C, hence

tθ[y 7→ y′]↓βη= (xθ t1θ[y 7→ y′]↓βη · · · tnθ[y 7→ y′]↓βη)

and similarly for s, hence xθ = zθ and tiθ[y 7→ y′] ≡αβη siθ[y 7→ y′] for all 1 ≤ i ≤ n,
so that (λy ti)θ ≡αβη (λy si)θ. This shows that the conditions of Rule →9 hold and
we can therefore conclude as above.

The last item of the previous proof shows that Rule→6 is a restriction of Rule→9 and
can therefore be removed from R′. Next, we prove that R′ terminates.

Proposition 39. R′ is terminating.

Proof. We consider the measure ` on controlled unification problems defined as follows.
For every problem P = (X , σ, θ), `(P)

def
= (`1(P), `2(P)), where:

• `1(P)
def
= {|xθ| | x ∈ FV(X )}.

• `2(P)
def
= {{|t|, |s|} | t .= s occurs in X}.

The measures `1 and `2 are ordered by the multiset extensions of the standard ordering
on natural numbers, and ` is ordered by the lexicographic extension of the measures on
`1 and `2. We show that ` decreases strictly each time a rule in R′ is applied. Rule →1

cannot increase `1 and strictly decreases `2 (since one equation is removed). Rule→2 does
not affect `1 (the set of free variables does not change) and strictly decreases `2. Rule →3

replaces a variable in FV(X ) by a term λy s. Since x 6∈ FV(λy s), x does not occur freely in
the obtained constraint, thus (since no new variable is introduced) `1 must be decreasing.
Rule →4 does not affect `1 and replaces an equation λy (ι t1 · · · tn)

.
= λy (ι s1 · · · sn) by n

equations λy ti
.
= λy si. Since |t1|, . . . , |tn| ≤

∑n
i=1 |ti| < |(ι t1 · · · tn)| and similarly for the

si’s, then `2 decreases strictly. The proof for Rules →5, →6, →7 and →9 is similar since
the substitution of a variable by another one does not affect `2 (`1 also decreases in the
last two rules).

In Rule →8 a variable x is replaced by a term u in the constraint X before it is
transformed to lnf, and θ is replaced by θγ. Note that u is not a variable and contains
no variable in X (thus zθγ = zθ for every z ∈ FV(X )). Furthermore, for every variable
y ∈ Dom(γ), y occurs in u hence by strategy (last condition) y 6∈ Dom(θ) and therefore
|yθγ| = |yγ| < |xθ| by Lemma 36. Consequently, `1 must be strictly decreasing after the
replacement of x by u, since the element |xθ| is deleted and replaced by strictly smaller
elements |yθγ|. Then it is obvious that the reduction to lnf cannot increase `1 since it may
remove (by β-reduction) but not add free variables to the constraint.

The two previous results obviously hold also for R. The following lemma states that
all R-irreducible fair problems are solved.

Lemma 40. All R-irreducible fair controlled unification problems with a constraint in lnf
and a βη-reduced solution θ are of the form (>, σ, θ).

Proof. Let (Y , σ, θ) be an irreducible fair controlled unification problem where Y is in lnf
and θ is βη-reduced. Since θ ∈ sol(Y), Y cannot be ⊥. Assume that Y is not >, we
show that (Y , σ, θ) is not irreducible, in contradiction with the hypothesis. By suitable
α-conversion we can assume that Y contains an equation λy t

.
= λy s where y has no
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common variable with FV(θ) and, due to the lnf, t and s are terms of order 1. Thus
λy tθ ≡αβη (λy t)θ ≡αβη (λy s)θ ≡αβη λy sθ, hence tθ ≡αβη sθ, and neither t nor s is an
abstraction. Let X be the remaining constraint, i.e., such that Y ≡ λy t

.
= λy sfX . Since

Y is fair and there is no logical symbol of order 1, neither t nor s is a constant; hence they
are either variables, applications or eigenterms.

Suppose t and s are both variables. If y is empty then either t = s and then Rule →1

applies; or t 6= s and then Rule →3 applies. If y is not empty and one of t or s, say t,
belongs to y then (λy t)θ = (λy t) ≡αβη (λy s)θ, which means that s must be the same
variable as t, hence Rule →1 applies. If none belong to the non empty y, then the first
variable of y does not belong to FV(t, s) = {t, s} and Rule →2 applies. Since (Y , σ, θ) is
irreducible then t and s cannot both be variables.

Suppose one of t or s, say t, is a variable x; then s is not a variable. If xθ 6∈ V ∪ C
then Rule →8 applies, hence xθ ∈ V ∪ C. This means that sθ↓βη is equal to xθ, hence
sθ↓βη∈ V ∪ C. But s 6∈ V ∪ C hence s must be an application (z s1 · · · sn) with n ≥ 1
(which only can be eliminated by β-reduction) and zθ must be an abstraction. Since s is
in lnf then z must be a variable, hence Rule→8 applies (to the same equation with reverse
orientation). We conclude that neither t nor s can be a variable.

If one of t or s, say t, is an eigenterm (ι t1 · · · tn), then so are tθ and sθ. If s is an
eigenterm (ι s1 · · · sm), then (ι t1θ ↓βη · · · tnθ ↓βη) = tθ ↓βη= sθ ↓βη= (ι s1θ ↓βη · · · smθ ↓βη
), hence n = m. If y is not empty then its first variable does not belong to FV(t, s)
by definition of K hence Rule →2 applies; otherwise y is empty and Rule →4 applies.
Thus s cannot be an eigenterm or a variable, hence as above it must be an application
(z s1 · · · sm) with m ≥ 1, z ∈ V and zθ is an abstraction, hence Rule →8 applies (with
reverse orientation). We conclude that neither t nor s can be an eigenterm.

Hence t and s must both be applications; let (v t1 · · · tn) = t and (w s1 · · · sm) = s
where n,m ≥ 1 and v, w are either variables or constants. If they are both constants,
then tθ↓βη= (v t1θ↓βη · · · tnθ↓βη) and sθ↓βη= (w s1θ↓βη · · · smθ↓βη) are equal, hence n = m,
v = w and Rule →5 applies. Hence one of v or w, say v, is a variable. If vθ 6∈ V ∪ C
then Rule →8 applies, hence vθ ∈ V ∪ C and therefore tθ↓βη= (vθ t1θ↓βη · · · tnθ↓βη). If w
is also a variable then either wθ 6∈ V ∪ C and Rule →8 applies (with reverse orientation),
or wθ ∈ V ∪ C and therefore sθ↓βη= (wθ t1θ↓βη · · · tnθ↓βη), n = m and Rule →6 applies.
w must therefore be a constant, so that sθ↓βη= (w s1θ↓βη · · · smθ↓βη), n = m and vθ = w.
But X is fair, hence w is a logical symbol of V-type, i.e., w is ' and therefore Rule →7

applies, a contradiction.

This entails that both R- and R′-normal forms are exactly the solved problems. This
also means that, starting from a given controlled unification problem, R′ may reach more
solutions than R; hence we adopt R′ as our minimization algorithm and we denote by P↓R′

an arbitrarily chosen R′-normal form of P . By putting together all the previous results,
we immediately infer the correction of this minimization algorithm:

Theorem 41. Let X be a fair K-constraint in lnf, θ a βη-reduced K-substitution such
that θ ∈ sol(X ) and (Y , σ, θ′) = (X , id, θ)↓R′, then θ′ is an extension of θ and σ is a fair
K-substitution such that σ ∈ sol(X ) and σ - θ′.

Proof. (X , id, θ) is obviously a fair controlled unification problem, by Proposition 39 any
R′-normal form (Y , σ, θ′) exists and by Lemma 38 it is a fair controlled unification problem
(hence σ - θ′) such that θ′ is an extension of θ and sol(Y , σ) ⊆ sol(X , id), and Y is in lnf
according to the strategy. But Y ≡ > by Lemma 40, hence σ ∈ sol(Y , σ) and therefore
σ ∈ sol(X ).
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Input: a standard LK-proof P : Γ ` ∆.

1. Translate P into a valid K-LKc-proof Q : Γ ` ∆ | X .

2. Compute an abstract proof Qa : Γa ` ∆a | X a and a K-substitution θ
such that Qaθ = Q.

3. Compute an R′-normal form (>, σ, θ′) of the fair controlled unification
problem (X a�, id, θ↓βη).
4. Translate Qaσ into a standard LK-proof P ′ : Γ′ ` ∆′ such that Γ′ `
∆′ � Γaσ↓βη` ∆aσ↓βη and output P ′.

Figure 5: The generalization algorithm

Note that, if σ′ is the restriction of σ to FV(X ), σ′ is still a solution of X , σ′ � σ and
by construction θ′ is equal to θ on FV(X ), hence σ′ - θ and therefore σ′ is a solution of
the initial controlled unification problem (X , id, θ).

We can now collect the results of the previous and present sections into an algorithm
performing proof generalization in LK, see Figure 5.

Theorem 42. Given any standard LK-proof P : Γ ` ∆, the generalization algorithm
terminates and outputs a standard and fair LK-proof P ′ : Γ′ ` ∆′ of the same length as P
such that Γ′ ` ∆′ - Γ ` ∆.

Proof. The first step is performed according to Theorem 15, which provides the valid K-
LKc-proof Q : Γ ` ∆ | X of the same length as P . For the second step, we first build Γa

and ∆a as disjoint sequences of new variables (w.r.t. FV(Q)) of the same length as Γ and
∆ respectively. We let V = Γa ∪ ∆a and build the substitution ρ of domain V such that
Γaρ = Γ and ∆aρ = ∆. Then Theorem 25 provides an abstract proof Qa : Γa ` ∆a | X a and
a substitution θ that is an extension of ρ such that Qaθ = Q, hence Γaθ = Γ, ∆aθ = ∆,
Γa ∪ ∆a ⊆ Dom(θ) and Qa has the same length as P . We may assume w.l.o.g. that
Dom(θ) ⊆ FV(Qa). Qa is abstract hence is a fair K-LKc-proof, and since Qaθ is also
a K-LKc-proof then θ is a K-substitution. Since Qaθ is valid, θ is a solution of X a and
therefore (X a�, id, θ↓βη) is a fair controlled unification problem. By Proposition 39 an R′-
normal form can be computed in finite time, and by Theorem 41 it must be some (>, σ, θ′)
where θ′ is an extension of θ↓βη and σ is a fair K-substitution such that σ ∈ sol(X a) (hence
Qaσ is fair and valid) and σ - θ′, which completes the third step. There is a substitution
ρ′ such that σρ′ ≡αβη θ′, hence Γaσρ′ ≡αβη Γaθ′ = Γaθ↓βη≡αβη Γ, so that Γaσ - Γ and
similarly ∆aσ - ∆. By Theorem 22 Qaσ can be translated into a standard and fair LK-
proof P ′ : Γ′ ` ∆′ of the same length as P such that Γ′ ` ∆′ - Γaσ ` ∆aσ - Γ ` ∆,
which completes the fourth step.

Example 43. It is easy to see that translating the proof P of Example 3 into a valid LKc-
proof and then lifting this proof to an abstract proof yields a variant of Qa of Example
27 together with the substitution θ of Example 37. Translating the proof Qaσ3 into an
LK-proof yields

(Axiom)
(ξ4 (f1 z1) (f2 z1)) ` (ξ4 (f1 z1) (f2 z1))

(∀-L)
∀x (ξ4 x (f2 z1)) ` (ξ4 (f1 z1) (f2 z1))

(∃-R)
∀x (ξ4 x (f2 z1)) ` ∃x (ξ4 (f1 x) (f2 x))

Note that if p is replaced by the predicate ' in P then the result is exactly the same,
even though ' is a logical symbol. The reason is that no equality rule is used in the proof
and therefore the constant ' does not occur in the constraint Y3, and therefore Rule →7

cannot be applied.
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Similarly, translating the proof Qaσ′3 into an LK-proof yields

(Axiom)
(ξ4 (f3 z2) (f4 z2)) ` (ξ4 (f3 z2) (f4 z2))

(∀-L)
∀x (ξ4 (f3 x) (f4 x)) ` (ξ4 (f3 z2) (f4 z2))

(∃-R)
∀x (ξ4 (f3 x) (f4 x)) ` ∃x (ξ4 x (f4 z2))

which is another possible generalization of P .

9 Conclusion

Most of the methods and results in this paper apply to other logics whose inference rules
can be expressed with λ-terms, as long as the side conditions can themselves be expressed
solely as constraints. This expression can be somewhat twisted as we have seen with the
eigenvariable condition. The main point is of course to build a constrained inference system
suitable for lifting any proof to an abstract proof and constraint.

One particularity of our version of LK is that formulæ can only be duplicated (from
conclusion to premisses) by the contraction rules (C-L) and (C-R), and we have been careful
in designing their constrained versions with linear premisses so that abstract proofs can
always be obtained. Other versions of LK, especially those dispensing with the weakening
rules, allow for duplications in binary rules. For instance, the (∨-L) rule in [25] is:

φ,Γ ` ∆ ψ,Γ ` ∆

φ ∨ ψ,Γ ` ∆

where the formulæ in the end sequent are duplicated in each premiss. The constrained
version of this rule cannot be

φ,Γ ` ∆ ψ,Γ ` ∆

χ,Γ ` ∆ | χ .
= φ ∨ ψ

because it would then be impossible to satisfy the split variable condition in abstract proofs.
Hence a correct “liftable” constrained version of this rule could be

φ,Γ ` ∆ ψ,Γ′ ` ∆′

χ,Γ ` ∆ | χ .
= φ ∨ ψ f Γ

.
= Γ′ f∆

.
= ∆′

where of course φ1 · · ·φn
.
= ψ1 · · ·ψn stands for the constraint φ1

.
= ψ1 f · · · f φn

.
= ψn.

Then the sequences Γ, Γ′, ∆ and ∆′ can be disjoint sets of variables. It is therefore possible
to transcribe our method to a version of LK where, except for the (P-L), (P-R) and cut
rules, the premisses of an inference rule is always determined by its conclusion (as in [13]).
As explained in Section 6 the structure of abstract proofs would consequently be simplified.

In order to simplify abstract proofs to the point that they become nothing more than
proof skeletons, we need to treat LK as a schematic system in the sense of [21] and therefore
treat the symbols Γ,∆, . . . as variables. An easy way to do this is to add two basic types,
∗ for sequences of formulæ and s for sequents, and three constants, the comma of type
o → ∗ → ∗, the constant ` of type ∗ → ∗ → s (both written in infix notation) and a
constant of type ∗ for the empty sequence. The constrained version of the (P-L) rule would
then be

s

s′ | s .
= (Γ φ, (ψ,Σ)) ` ∆f s′

.
= (Γ ψ, (φ,Σ)) ` ∆

(P-Lc)

where s, s′ are variables of type s, φ, ψ variables of type o, Σ, ∆ variables of type ∗
and Γ a variable of type ∗ → ∗. It is then obvious that an abstract proof is nothing
more than a proof skeleton decorated with its resulting constraint (and then Proposition
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29 becomes obvious). The reader has probably noticed that this permutation rule is not
strictly equivalent to the original rule since it encompasses (when Γ is instantiated by a
constant function) the identity inference, which is only derived in LK. We can see this as an
extension of the general permutation rule, just as specifying a position for the permutation
of formulæ is a restriction of the general rule. Such extensions could make proofs more
general as they allow for more inferences at each rule.

As a rule of thumb we may presume that longer proofs mean more constraints and
therefore less freedom for generalization, hence that only easy theorems (those with short
proofs) are prone to generalization. It would be surprising that textbook theorems could
be generalized in non-trivial ways; our method is probably more relevant to the context
of interactive proofs of “real-world” conjectures. It is anyway sensible to adopt inference
systems in which proofs are shorter.

One common way of shortening proofs is to use sequents in which the left and right
parts of the turnstile are multisets of formulæ. This allows to dispense with the permu-
tation rules (P-L) and (P-R) and therefore with the logistics of moving formulæ around
in the right positions for the next move8. In this case, the comma in the rules should be
interpreted as a multiset sum. The proof of Theorem 25 can then easily be adapted so
that such LK-proofs can still be lifted to abstract proofs. However, there is a fundamental
ambiguity in the process since any occurrence of a formula can be chosen as the principal
formula (occurrence) of an inference. For instance, assuming the “weakening-less” axiom

Γ, φ ` ∆, φ
and the cut rule we can build the following proof:

p ` p, q p, p ` p
p, p ` p, q

There is an ambiguity as to which occurrence of p on the left of the sequent p, p ` p
is involved in the axiom and in the cut. If both involve the same occurrence, the abstract
proof is

u ` v, w | u .
= w u′, v′ ` w′ | u′ .= w′

u, v′ ` w,w′ | u .
= w f u′

.
= w′ f v

.
= u′

If they involve distinct occurrences of p, then the abstract proof is

u ` v, w | u .
= w u′, v′ ` w′ | u′ .= w′

u, v′ ` w,w′ | u .
= w f u′

.
= w′ f v

.
= v′

and none of these abstract proofs is an instance of the other. In this case the lifting
procedure is non-deterministic and Propositions 29, 30 and 31 do not hold. Of course the
generalization algorithm can still be used (there is no guarantee that a most general proof
can eventually be obtained anyway).

8Another way to do this is to allow principal formulæ to occur anywhere in the conclusions of the rules.

For instance, the (¬-L) rule would be
Γ,Σ ` ∆, φ

Γ,¬φ,Σ ` ∆
.
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9.1 Future work

The present work raises several interesting theoretical issues. The first one concerns the
decidability of the satisfiability problem for LKc-proofs: given a proof P in LKc, is there
a substitution σ such that Pσ is valid? This amounts to checking whether the constraint
X corresponding to P is satisfiable. It is easy to see that this problem is undecidable in
general but particular cases deserve to be investigated, e.g., the case in which P is abstract
(in the sense of Definition 23). Also, the possibility of computing a maximal solution for all
LKc-constraints is an open question (the fact that second order unification is undecidable
is not sufficient to answer negatively since the generated constraints are more specific – for
instance they are always satisfiable). The properties of the minimization algorithm need
further investigations. From a more practical point of view, we also plan to implement the
devised generalization procedure.
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