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We devise a method for generalizing proofs in Gentzen's sequent calculus LK, presented in a typed λ-calculus flavor. A constrained version LK c of the calculus is introduced, aiming at collecting a second order constraint ensuring that all the inference steps occurring in a proof are syntactically correct. A semantics is provided for LK c , extending the standard semantics of LK. It is then established that LKproofs correspond to LK c -proofs with valid constraint thanks to the use of eigenterms replacing LK's eigenvariables. Next, a lifting theorem shows how a valid LK c -proof can be lifted to a most general proof, yielding a non-trivial constraint together with a solution. An algorithm is then provided that minimizes this solution of the constraint. The result, applied to the most general proof, yields a valid proof that translates to an LK-proof more general than the initial one. Finally, clues are given for extending this method to other logics with due care on proof lifting.

Introduction

Generalization, as the process of inducing general properties or patterns from particular cases, is a most essential aspect of human reasoning which is usually left aside by automated reasoning tools. In this paper, we are interested in generalizing proofs: given a proof P of some assertion (e.g., sequent) φ, we aim at computing a new proof Q of a new assertion ψ that is as general as possible and at least more general than φ in the sense that there exists a (second order) substitution θ such that ψθ is identical to φ (up to usual properties such as αβη-equivalence). Applications are numerous and obvious, i.e., proof reuse, proof structuring and compression (to detect repeating patterns in a proof and replace them by appropriate lemmata), program generalization (when applied on assertions stating properties of programs), proof by analogy, etc. This might also be useful for pruning the search space of theorem proving procedures (by generalizing previously generated subproofs to close other branches).

Our method can be informally summarized as follows. First, a constrained sequent calculus (called LK c ) is introduced. In this calculus, the conditions that allow for the application of the inference rules are not checked "statically" during the construction of the proof, but instead are "asserted" and collected as a conjunction of higher-order constraints attached to the proof. Any solution of the constraints gives rise to an LK-proof (under some conditions). We provide a semantics for LK c , extending the standard semantics of LK, then we show that LK c is logically sound, and that every LK-proof can be transformed into an LK c -proof with exactly the same size and structure. Next, we prove that for any LK c -proof P , there exists an "abstract" proof P a that is more general than P , and also more general than any generalization of P ; P a can thus be viewed as the (unique) minimal generalization of P in LK c . The proof P a is not an LK-proof because its constraints are not valid (but they are satisfiable). Finally, we show how to reconstruct a generalized LK-proof from P a . In principle, this can be done by computing most general solutions of the constraints of P a , however, since higher-order unification is undecidable, this is not always feasible. We therefore devise a minimization algorithm computing a solution that is always more general than the substitution corresponding to the initial LK-proof (the solution is however not necessarily a most general one). The principle of this algorithm is to use the latter substitution as a "witness" in order to guide the application of higher-order unification rules.

Related work

The idea of using constrained sequent or tableaux calculus is not new: it has been considered for instance in [START_REF] Giese | Incremental Closure of Free Variable Tableaux[END_REF] to avoid backtracking in free-variable tableaux, and also in [START_REF] Rümmer | A constraint sequent calculus for first-order logic with linear integer arithmetic[END_REF] to define proof procedures for reasoning with first order formulae in Presburger arithmetic. The idea is similar -namely to collect constraints enabling the application of logical inference rules -but we apply it in a more general setting: in [START_REF] Giese | Incremental Closure of Free Variable Tableaux[END_REF] or [START_REF] Rümmer | A constraint sequent calculus for first-order logic with linear integer arithmetic[END_REF] the constraints only state properties of terms (elements of the domain of a first order interpretation or arithmetic terms respectively), whereas we use them to express properties of formulae. Another essential difference is that [START_REF] Rümmer | A constraint sequent calculus for first-order logic with linear integer arithmetic[END_REF] uses arithmetic quantifiers to take care of the eigenvariable condition (by introducing a universal quantifier for every eigenvariable), whereas we prefer to encode this condition by using a specific constructor ι (as explained in Section 3). The reason for this choice is that the handling of higher-order constraints with arbitrary quantifier alternation is difficult from a computational point of view (see [START_REF] Lugiez | Positive and negative results for higher-order disunification[END_REF] for undecidability results). The drawback is that LK c -proofs cannot always be expressed in LK as we shall see in Section 5. The idea of separating the structure of the proof tree from the unification conditions has been used in other contexts, for instance in [START_REF] Hetzl | A sequent calculus with implicit term representation[END_REF], for analyzing sequent proofs and reducing the complexity of the derivations, in [START_REF] Dowek | Theorem proving modulo[END_REF] for reasoning modulo theories, or in [START_REF] Caferra | Building models by using tableaux extended by equational problems[END_REF][START_REF] Peltier | Pruning the search space and extracting more models in tableaux[END_REF] for building models of clause sets.

The notion of abstract proof is also related to a result by Parikh (Lemma A in [START_REF] Parikh | Some results on the length of proofs[END_REF]) concerning so-called schematic systems and devoted to the study of Kreisel's Conjecture (or KC, a conjecture on proofs in Peano Arithmetic, see [START_REF] Cavagnetto | The lengths of proofs: Kreisel's conjecture and Gödel's speed-up theorem[END_REF] for a survey). This result allows the representation of a family of proofs by a "proof analysis" (or "proof skeleton" in the terminology of [START_REF] Farmer | A unification-theoretic method for investigating the k-provability problem[END_REF]) together with a unification problem and a set of restrictions. Besides the fact that we can dispense with these restrictions thanks to our encoding of eigenvariables through ι, our abstract proofs carry slightly more information than proof skeletons, for the simple reason that we do not treat LK as a schematic system, thus following [START_REF] Krajíček | The number of proof lines and the size of proofs in first order logic[END_REF] or [START_REF] Baaz | Generalizing proofs in monadic languages[END_REF] (see Section 6 for more details). We show in Section 9 how LK could be treated as a schematic system in our setting. Other important differences with [START_REF] Parikh | Some results on the length of proofs[END_REF] are our use of λcalculus which allows a more standard treatment of bound variables, and that we make no difference between formulae and "concrete formulae" since we may introduce second-order variables ("meta-notations" in [START_REF] Parikh | Some results on the length of proofs[END_REF]) in our generalized proofs. This departs from the works on KC which is very sensitive on the language used to represent PA (see [START_REF] Cavagnetto | The lengths of proofs: Kreisel's conjecture and Gödel's speed-up theorem[END_REF]).

In [START_REF] Hagiya | A typed lambda-calculus for proving-by-example and bottom-up generalization procedure[END_REF], an algorithm is proposed to generalize statements in a typed λ-calculus aimed to represent inductive proofs. This language extends usual logical frameworks by arith-metic variables and primitive recursive definitions. The approach in [START_REF] Hagiya | A typed lambda-calculus for proving-by-example and bottom-up generalization procedure[END_REF] is targeted at constructing, from a sequence of proofs of statements P (0), P (1), . . . , an inductive proof of the statement ∀x P (x). This is done by computing common patterns in the proofs of P (i) (ignoring the difference between arithmetic terms) using a form of higher-order anti-unification [START_REF] Pfenning | Unification and anti-unification in the calculus of constructions[END_REF] combined with an ad-hoc algorithm for generating suitable recursion steps from instances. This approach shares some similarities with ours, namely the use of λ-terms to represent proofs, but it is very different both in its scope and purposes. Our method focuses on the generalization of LK-proofs and only uses higher-order terms to express and compute such generalizations. Hagiya's approach focuses on the construction of iterated sequences of proofs from particular examples. In our context, induction could be performed by trying to generalize a single proof P (i) P (i + 1) (for a fixed i ∈ N), into a proof of P (x) P (x + 1) (where x is a variable, and where P is more general than P (x)). If such a generalization is feasible, then it is clear that an inductive proof of ∀xP (x) can be constructed (if P (0) is provable).

Generalization is often handled in proof assistants by replaying tactics (see, e.g., [START_REF] Felty | Generalization and reuse of tactic proofs[END_REF][START_REF] Johnsen | Theorem reuse by proof term transformation[END_REF]): a tactic (sequence of proof steps) or proof term (describing the structure of the proof) corresponding to some assertion can be replayed on another one, and in case of success may yield a new proof with the same structure as the initial one. The advantage of our technique is that it computes an explicit description of the generalized theorems, using the same language as the original one.

Generalization has also been considered in the context of analogical reasoning (see e.g., [START_REF] Walther | Proving theorems by reuse[END_REF][START_REF] Melis | Analogy in inductive theorem proving[END_REF]). It is often performed by renaming different occurrences of the same symbol, in case these occurrences turn out to be unrelated in the context, i.e., if all logical inferences can be performed without assuming that these occurrences are equal. Our method has a wider scope, in the sense that it allows for richer transformations and produces more general proofs and formulae, as evidenced by the following example.

Example 1. We consider the following LK-proof1 (Axiom) P (x 0 , a) P (x 0 , a)

(∀-L) ∀x P (x, a) P (x 0 , a) (∨-R1) ∀x P (x, a) P (x 0 , a) ∨ Q(x 0 , a) (∃-R) ∀x P (x, a) ∃y (P (x 0 , y) ∨ Q(x 0 , y)) (Axiom) Q(x 0 , a) Q(x 0 , a) (∀-L) ∀y Q(y, a) Q(x 0 , a) (∨-R1) ∀y Q(y, a) P (x 0 , a) ∨ Q(x 0 , a) (∃-R) ∀y Q(y, a) ∃y(P (x 0 , y) ∨ Q(x 0 , y)) (∨-L) ∀x P (x, a) ∨ ∀y Q(y, a) ∃y (P (x 0 , y) ∨ Q(x 0 , y)) (∀-R) ∀x P (x, a) ∨ ∀y Q(y, a) ∀x∃y (P (x, y) ∨ Q(x, y))
It is intuitively clear that the fact that the two occurrences of a in the end-sequent are equal plays no role in the proof, hence the end-sequent can be safely replaced by, e.g., ∀x P (x, a) ∨ ∀y Q(y, b) ∀x∃y (P (x, y) ∨ Q(x, y)) (replacing all occurrences of a in the right branch of the above proof by b). Using our approach, we can detect that a and b can actually be replaced by something that depends on the variables x and y respectively, and that this proof can be generalized to a proof of the sequent ∀x p(x, f (x)) ∨ ∀y q(y, g(y)) ∀x∃y (p(x, y) ∨ q(x, y)), where p, q, f and g are second order variables. It is clear that the obtained sequent is strictly more general than the previous ones (in the sense that it matches more expressions).

LK on Typed λ-Terms

We first give a definition of LK where terms and formulae are members of the same language and are only distinguished by their types. Furthermore, bound variables are treated in a uniform way with the binder λ. We thus use a fragment of typed λ-calculus to represent terms and formulae; hence term constructors are the standard abstraction and application constructors, but atoms are separated into constants (for logical symbols and the elements of a first order signature) and variables. We also use an extra term constructor ι for eigenterms (as explained in Section 1) though we will only use it in Section 3 and forth. Definition 2. Let ı and o be symbols denoting respectively the type of individuals (or terms) and the type of booleans (or formulae). A type is inductively defined as either a basic type ı or o, or τ → τ where τ and τ are types. The order of types is inductively defined as order(o) def = order(ı) def = 1 and order(τ → τ ) def = max(1 + order(τ ), order(τ )).

For n ∈ N and τ , τ 1 , . . . , τ n types, we write τ 1 , . . . , τ n → τ for the type τ if n = 0 and for

τ 1 → (• • • (τ n → τ ) • • • ) if n > 0. If τ 1 = • • • = τ n = τ then this type is written τ n → τ .
Let V be a set of variables containing infinitely many variables of each type of the form ı n → ı and ı n → o for n ≥ 0 (which we call V-types), and no other. Let C be a set of constants containing the logical symbols ∃, ∀ :

(ı → o) → o, ¬ : o → o, ∨, ∧, ⇒: o 2 → o,
: ı 2 → o and a finite number of symbols of V-types (this part corresponds to a first order signature).

The set T of terms together with their types and sets of free variables (denoted by FV(t)) is inductively defined by:

• V ⊆ T , C ⊆ T , and as terms they have the same type as variables or constants; a variable is free in itself and a constant has no free variables;

• for all x ∈ V of type ı and t ∈ T of type τ , (λx t) ∈ T and has type ı → τ ; FV((λx t)) def = FV(t) \ {x};

• for all s ∈ T of type τ → τ and t ∈ T of type τ , (s t) ∈ T and has type τ ; FV((s t))

def = FV(s) ∪ FV(t); • for all n ∈ N, n > 0, terms φ 1 , . . . , φ n ∈ T of type o, (ι φ 1 • • • φ n ) ∈ T is an eigenterm of type ı; FV((ι φ 1 • • • φ n )) def = n i=1 FV(φ i ).
An atom is an element of V ∪ C. For any term t ∈ T we write t : τ if t has type τ . The order of a term of type τ is the order of τ . For any sequence t 1 , . . . , t n of terms in T , let FV(t 1 , . . . , t n ) = n i=1 FV(t i ). The language of standard terms is the set S of terms in T without any occurrence of eigenterms. The language of fair terms is the set F of terms in T whose atoms are only variables and logical symbols.

For any language L ⊆ T such that V ⊆ L, an L-substitution (or

substitution if L = T ) is a type-preserving function σ from V to L whose domain Dom(σ) def = {x ∈ V | σ(x) = x} is finite.
The identity on V is a substitution denoted by id. For v ∈ V and t ∈ L of the same type, σ[v → t] is the L-substitution identical to σ but on v where it yields t. The notion of free variables is extended to substitutions by FV(σ)

def = Dom(σ) ∪ x∈Dom(σ) FV(σ(x)). A substitution σ of domain {x 1 , . . . , x n } and such that σ(x i ) = t i for 1 ≤ i ≤ n is written σ = [t 1 /x 1 , . . . , t n /x n ].
Applying a substitution σ to a term t ∈ T yields a term tσ ∈ T inductively defined on t by

• vσ def = σ(v) for any v ∈ V, • cσ def = c for any c ∈ C, • (s t)σ def = (sσ tσ) for any s, t ∈ L, • (λx t)σ def = (λy tσ[x → y]) for any x ∈ V, t ∈ L and y : ı ∈ V \ FV(tσ). • (ι φ 1 • • • φ n )σ def = (ι φ 1 σ • • • φ n σ) for any n ∈ N, n > 0 and φ 1 , . . . , φ n ∈ T of type o.
A language L is substitutive if it is closed under L-substitutions; the languages T , S and F are substitutive. Any two L-substitutions σ and µ can be composed by σµ(x) def = σ(x)µ for all x ∈ V, which is guaranteed to be an L-substitution if L is substitutive.

We consider on T the equational theory generated by the following rules:

(λx l) → α (λy l[y/x]) if y ∈ FV(l) ((λx l) t) → β l[t/x] (λx (l x)) → η l if x ∈ FV(l).
The restriction of this theory to S is obviously a fragment of typed λ-calculus which is well-known to be strongly normalizing, and since there is no rule for ι, it is obvious that βη-reduction is again strongly normalizing on T , and every t ∈ T has a βη-normal form t↓ βη ∈ T . We write ≡ αβη for αβη-equivalence. Note that the languages T , S and F are closed under αβη-reduction.

As usual we often omit parentheses and associate to the left:

(l t 1 . . . t n ) stands for (• • • (l t 1 ) • • • t n ) if n >
0 and for l if n = 0. We write t ⇒ s, ∃x t,. . . for the applications (⇒ t s), (∃ λx t), . . . respectively.

An L-sequent (or sequent if L = T ) is an expression of the form Γ ∆ where Γ and ∆ are sequences of terms in L of type o. We write FV(Γ ∆) for FV(Γ, ∆). We apply substitutions to sequences or sets of terms in the standard way, and to sequents by (Γ ∆)σ def = Γσ ∆σ. If L is closed under αβη-reduction the relation ≡ αβη and βη-normalization are similarly extended in a standard way to sequences of L-terms and to L-sequents; we also extend ≡ αβη to L-substitutions σ, θ by σ ≡ αβη θ if xσ ≡ αβη xθ for all x ∈ V, and we say that σ is in βη-normal form if for all x ∈ Dom(σ) the terms xσ are reduced to βη-normal form. Note that σ ≡ αβη θ entails tσ ≡ αβη tθ for any term t, Γσ ≡ αβη Γθ for any sequence Γ of terms, etc.

The rules of LK are given in Figure 1. The meta-variables s, t denote terms of type ı, φ, ψ denote terms of type o, ξ denotes a term of type ı → o, x denotes a variable of type ı and Γ, ∆, Σ, Π denote sequences of terms of type o. An inference between sequents holds by a rule (R) if these sequents are αβη-equivalent to those obtained from the meta-sequents of rule (R) in Figure 1 by some instantiation of their meta-variables, and if the side condition holds with the same instantiation.

If L is closed under αβη-reduction, an L-LK-proof is an LK-proof built only with Lsequents. A standard sequent (resp. LK-proof, substitution, etc.) is an S-sequent (resp. S-LK-proof, S-substitution, etc.) and similarly a fair sequent, (resp. LK-proof, etc.) is an F-sequent (resp. F-LK-proof, etc.)

In order to handle proofs in a convenient way we adopt some simple notations. Proofs will be referred to by symbols derived from P and Q. The notation P : s means that s is the end sequent of the proof P (hence that P is a proof of s). We will also decompose proofs into subproofs by writing

P = P 1 : s 1 • • • P n : s n s (R), Γ ∆ Γ, φ ∆ (W-L) Γ ∆ Γ ∆, φ (W-R) Γ, φ, φ ∆ Γ, φ ∆ (C-L) Γ ∆, φ, φ Γ ∆, φ (C-R) Γ, ψ, φ, Σ ∆ Γ, φ, ψ, Σ ∆ (P-L) Γ ∆, ψ, φ, Π Γ ∆, φ, ψ, Π (P-R) φ φ (Axiom) t t (Ref) Γ, t s, (ξ t) ∆ Γ, t s, (ξ s) ∆ (Param-L) Γ, t s ∆, (ξ t) Γ, t s ∆, (ξ s) (Param-R) Γ, s t ∆ Γ, t s ∆ (Com-L) Γ, (ξ x) ∆ Γ, ∃ξ ∆ (∃-L) Γ ∆, (ξ x) Γ ∆, ∀ξ (∀-R)
Where x ∈ FV(Γ, ∆, ξ) (eigenvariable condition). Normalization of LK-proofs is defined inductively by

P ↓ βη = P 1 ↓ βη : s 1 ↓ βη • • • P n ↓ βη : s n ↓ βη s↓ βη (R) if P = P 1 : s 1 • • • P n : s n s (R).
Note that P ↓ βη is an LK-proof since the eigenvariable condition is preserved by βηreduction (FV(t↓ βη ) ⊆ FV(t) for every term t). The fact that inferences are defined only up to ≡ αβη -classes departs from standard practice and requires some explanations. It is made necessary by the fact that (ξ t) corresponds to the replacement of a bound variable by t, as it should be according to Gentzen's calculus, only if ξ is instantiated by an abstraction λx φ and the term ((λx φ) t) is rewritten to φ[t/x] by the β-rule.

For instance, an inference (p y) φ ∃(λx (p x)) φ (where p : ı → o is a constant) holds by rule (∃-L) if y ∈ FV(φ), since ((λx (p x)) y) ≡ αβη (p y). This inference exactly corresponds to the standard inference in Gentzen's calculus p(y) φ ∃x p(x) φ It should thus be clear that proofs in Gentzen's calculus correspond to βη-normal S-LK-proofs. We allow non-normal proofs for sake of simplicity, and also because we will consider L-LK-proofs for other languages than S (provided such languages are stable under βη-reduction).

Example 3. We will use as a recurring illustrative example the following LK-proof P . 

A Calculus with Explicit Constraints

We now wish to adapt the rules of Figure 1 in order to collect automatically all the syntactic constraints that make a proof valid, instead of checking them on the fly during proof construction. For most rules it is easy to express these constraints as a unification problem pertaining to the principal formulae. However, eigenvariables are replaced by suitable eigenterms so that eigenvariable conditions may also be expressed as unification problems.

Definition 4. Let L ⊆ T such that V ⊆ L. An L-constraint (or constraint if L = T ) is inductively defined as ⊥, , t . = s where t, s denote terms in L of the same type, or X Y, where X , Y are two L-constraints. A substitution σ is a solution of a constraint X if X = or (X = (t . = s) and tσ ≡ αβη sσ) or (X = (X 1 X 2 ) and σ is a solution of X 1 and X 2 ). The set of solutions of a constraint X is written sol(X ). A constraint X is satisfiable if sol(X ) = ∅; it is valid if every substitution belongs to sol(X ) (equivalently, if id ∈ sol(X )). We say that two constraints X and Y are equivalent and we write X ≡ Y if sol(X ) = sol(Y). X σ is obtained from X by replacing every t . = s in it by tσ . = sσ. The equivalence ≡ αβη is inductively extended to constraints by ⊥ ≡ αβη ⊥, ≡ αβη , (t

. = s) ≡ αβη (t . = s ) if t ≡ αβη t and s ≡ αβη s , (X Y) ≡ αβη (X Y ) if X ≡ αβη X and Y ≡ αβη Y . It is clear that X ≡ αβη Y ⇒ X ≡ Y.
A constrained L-sequent is an expression of the form Γ ∆ | X where Γ ∆ is an L-sequent and X an L-constraint. For any substitution σ,

(Γ ∆ | X )σ Γ ∆ Γ, φ ∆ | (W-L c ) Γ ∆ Γ ∆, φ | (W-R c ) Γ, φ, ψ ∆ Γ, χ ∆ | χ . = φ χ . = ψ (C-L c ) Γ ∆, φ, ψ Γ ∆, χ | χ . = φ χ . = ψ (C-R c ) Γ, ψ, φ, Σ ∆ Γ, χ, ϕ, Σ ∆ | χ . = φ ϕ . = ψ (P-L c ) Γ ∆, ψ, φ, Π Γ ∆, χ, ϕ, Π | χ . = φ ϕ . = ψ (P-R c ) φ ψ | φ . = ψ (Axiom c ) φ | φ . = t t (Ref c ) Γ, χ, ψ ∆ Γ, χ, φ ∆ | χ . = t s φ . = (ξ s) ψ . = (ξ t) (Param-L c ) Γ, χ ∆, ψ Γ, χ ∆, φ | χ . = t s φ . = (ξ s) ψ . = (ξ t) (Param-R c ) Γ, φ ∆ Γ, χ ∆ | φ . = s t χ . = t s (Com-L c ) Γ ∆, φ Σ, ψ Π Γ, Σ ∆, Π | φ . = ψ (Cut c ) Γ, φ ∆ Γ, χ ∆ | χ . = φ ∧ ψ (∧-L1 c ) Γ ∆, φ Γ ∆, χ | χ . = φ ∨ ψ (∨-R1 c ) Γ, ψ ∆ Γ, χ ∆ | χ . = φ ∧ ψ (∧-L2 c ) Γ ∆, ψ Γ ∆, χ | χ . = φ ∨ ψ (∨-R2 c ) Γ, φ ∆ Σ, ψ Π Γ, Σ, χ ∆, Π | χ . = φ ∨ ψ (∨-L c ) Γ ∆, φ Σ Π, ψ Γ, Σ ∆, Π, χ | χ . = φ ∧ ψ (∧-R c ) Γ ∆, φ Σ, ψ Π Γ, Σ, χ ∆, Π | χ . = φ ⇒ ψ (⇒-L c ) Γ, φ ∆, ψ Γ ∆, χ | χ . = φ ⇒ ψ (⇒-R c ) Γ ∆, φ Γ, χ ∆ | χ . = ¬φ (¬-L c ) Γ, φ ∆ Γ ∆, χ | χ . = ¬φ (¬-R c ) Γ, φ ∆ Γ, χ ∆ | χ . = ∀ξ φ . = (ξ t) (∀-L c ) Γ ∆, φ Γ ∆, χ | χ . = ∃ξ φ . = (ξ t) (∃-R c ) Γ, φ ∆ Γ, χ ∆ | χ . = ∃ξ φ . = (ξ (ι Γ∆χ)) (∃-L c ) Γ ∆, φ Γ ∆, χ | χ . = ∀ξ φ . = (ξ (ι Γ∆χ)) (∀-R c ) Figure 2:
The constrained sequent calculus LK c σ, P σ is obtained by applying σ to the constrained sequents in P . The relation ≡ αβη is inductively extended to LK c -proofs by 

P 1 : s 1 • • • P n : s n s (R) ≡ αβη Q 1 : s 1 • • • Q n : s n s (R) if s ≡ αβη s and P i ≡ αβη Q i for all 1 ≤ i ≤ n.
(Axiom c ) ψ (p v a) | X 1 (∀-L c ) ∀x (p x a) (p v a) | X 2 (∃-R c ) ∀x (p x a) ∃y (p y a) | X 3 where X 1 def = ψ . = (p v a), X 2 def = X 1 ∀x (p x a) . = ∀ξ ψ . = (ξ u), X 3 def = X 2 ∃y (p y a) . = ∃y (p y a) (p v a) . = (λy (p y a) v).
It is clear that

X 3 ≡ ψ . = (p v a) ξ . = λx (p x a) u . = v.
Note that in the above LK c -proof, some of the meta-variables of Figure 2 are instantiated by usual formulae or terms, i.e., built solely with symbols from the signature C and variables of type ı (e.g, ∀x (p x a)), and others contain other variables (ψ : o, ξ : ı → o). The proof is not valid: to get an LK-proof one has to instantiate all the variables in such a way that X 3 is fulfilled, for instance with

ρ def = [a/u, a/v, λx (p x a)/ξ, (p a a)/ψ].
Contrary to LK the rules are strictly syntactic; the constrained sequents occurring in a proof cannot be replaced by αβη-equivalent constrained sequents. This is possible because αβη-equivalence is taken care of in the constraints.

Another essential difference between LK and LK c is that the latter introduces eigenterms instead of eigenvariables. An important though trivial consequence is substitutivity of LK c -proofs. Proposition 6. For any substitutive L ⊆ T , L-LK c -proof P and L-substitution σ, P σ is an L-LK c -proof.

Proof. The inference rules are all expressed with meta-variables and the only side conditions pertain to their type (including sequences of terms of type o and constraints). Since these types, as well as membership in L, are preserved by L-substitutions then so are the inference rules and therefore the proofs.

Since the relation ≡ αβη is defined on LK c -proofs we can now deduce that σ ≡ αβη θ entails P σ ≡ αβη P θ for any LK c -proof P and substitutions σ, θ. Proposition 6 would also hold on LK-proofs if substitutions were applied with a form of α-conversion of eigenvariables in order to avoid their "capture" (as in the definition of (λx t)σ above). This would allow a notion of more general proofs in LK, but we have chosen to dispense with such developments since they are not essential to this generalization method.

Semantics of LK c

Example 5 shows that LK c offers much freedom in building proofs, including proofs with unsatisfiable constraints which are meaningless. But even proofs with valid constraints may look strange compared to LK-proofs. In particular, the possibility in LK c to paramodulate in eigenterms has no equivalence in LK, and it is not obvious that LK c is sound. We prove in this section that this is the case by providing a semantics for sequents provable in LK c . We first extend the usual definition of an interpretation. The main difference with the standard definition is that we need to interpret eigenterms. The constructor ι cannot be interpreted in the usual way, by mapping sequences of booleans to elements of the domain: it is clear that the value of (ι φ 1 • • • φ n ) depends on the formulae φ 1 , . . . , φ n and not only on their truth values. Definition 7. Let D be any2 non-empty set, we write T D for the set of D-terms, which is inductively defined exactly as T except that elements of D are allowed as constants of type ı.

An interpretation I is defined by providing:

• a non-empty set D, called the domain of I,

• a function mapping every variable or constant f (distinct from ) of type

ı n → ı (resp. ı n → o) to a function f I from D n to D (resp. {true, false}),
• a function mapping every connective ∈ {∨, ∧, ⇒, ¬, ∀, ∃, } to the usual function I (for instance x ∨ I y = true iff x = true or y = true; ∀ I p = true iff p(x) = true for all x ∈ D; etc.),

• a function ι I mapping every non-empty sequence of D-terms of type o to an element of D.

Any interpretation I of domain D can be extended to an evaluation t I of D-terms t in the following way:

• for x ∈ D, x I = x,
• for s, t ∈ T D , where s : τ → τ and t : τ , (s t) I is the value of the function s I at t I ,

• for t ∈ T D , x ∈ V where t : ı → τ and x : ı, (λx t) I is the function that maps every e ∈ D to (t[e/x]) I ,

• for n ∈ N, n > 0, φ 1 , . . . , φ n ∈ (T D ) n where φ i : o for 1 ≤ i ≤ n, (ι φ 1 • • • φ n ) I = ι I (φ 1 • • • φ n ).
For every term t ∈ T D , |t| denotes the size of t, inductively defined as follows:

|u| def = 1 if u ∈ V ∪ C ∪ D, |λx t| def = 1 + |t|, |(l t)| def = |l| + |t| and |(ι φ 1 • • • φ n )| = 1 + n i=1 |φ i |. If Γ = t 1 • • • t n is a sequence of terms, then |Γ| def = max n i=1 |t i |, with |Γ| def = 0 if n = 0.
The usual notions of models, satisfiability, logical consequence |=,. . . can be extended accordingly. We write Γ |= s ∆ if every model of the formulae in Γ is a model of some formula in ∆.

Note that this semantics coincides with the usual one for closed standard terms. The previous definition is similar to the interpretation of -terms in the -calculus (see, e.g., [START_REF] Moser | The epsilon calculus (tutorial)[END_REF][START_REF] Moser | The epsilon calculus and Herbrand complexity[END_REF]), which depends on the formulae themselves 3 and not only on their interpretation. However, our definition departs from the semantics of the -calculus because the interpretation of the operator ι is arbitrary. This is due to the fact that the operator ι does not separate the considered existential formula from the other elements of the context. Furthermore, it is intended to be used only as a tool for writing proofs and not as a logical construct in the language. Lemma 8. Let I, J be two interpretations on the same domain D and identical on V and C. For all t ∈ T D , if 

(*) for every non-empty sequence Γ ∈ (T D ) + of D-terms of type o such that |Γ| < |t|, ι I (Γ) = ι J (Γ), then t I = t J . Proof. By induction on t. This is trivial if t ∈ V ∪ C ∪ D,
= (λx t) J . Finally, if t = (ι φ 1 • • • φ n ) then |φ 1 • • • φ n | < |t| hence by (*) we get t I = ι I (φ 1 • • • φ n ) = ι J (φ 1 • • • φ n ) = t J .
The next theorem states that LK c is sound.

Theorem 9. Let P be an LK c -proof of constrained end-sequent Γ ∆ | X , then for every substitution σ ∈ sol(X ), Γσ |= s ∆σ holds.

Proof. By induction on P ; we only consider one axiom and one inference rule.

If P = φ | φ . = t t (Ref c )
and σ ∈ sol(φ . = t t), then for any interpretation I, (φσ) I = (tσ tσ) I = true, hence |= s φσ.

The proof is similar for all rules except the strong quantifier rules: let In particular, if Γ ∆ is a standard sequent such that some Γ ∆ | X is provable in LK c with X ≡ , then Γ |= s ∆ holds in the standard semantics of first order logic.

P = P 1 : Γ, φ ∆ | X Γ, χ ∆ | X χ . = ∃ξ φ . = (ξ (ι Γ∆χ)) (∃-L c ) and σ ∈ sol(X χ . = ∃ξ φ . = (ξ (ι Γ∆χ))). Let ζ =

Proof Translations

It is important to notice that, although LK c is sound, not all LK c -proofs can be directly transformed into LK-proofs, as illustrated by the following example.

Example 10. Consider for instance the following LK c -proof of a statement a b, ∃x(p a x) ∨ ∃x(p b x) φ.

P (W-L c ) a b, (p a sk a ) φ | (∃-L c ) a b, ∃x(p a x) φ | P (W-L c ) a b, (p a sk a ) φ | (Param-L c ) a b, (p b sk b ) φ | (∃-L c ) a b, ∃x(p b x) φ | (∨-L c ) a b, ∃x(p a x) ∨ ∃x(p b x) φ |
The term sk u (with u = a, b) denotes the eigenterm (ι a b ∃x(p u x) φ). The symbol P denotes some proof of (p a sk a ) φ | . For sake of conciseness valid constraints are abstracted as .

It is easy to see that this proof cannot be (directly) translated into an LK-proof, because of the paramodulation step occurring inside the eigenterm in the right branch (replacing (p b sk b ) by (p a sk a ), while sk a and sk b would be distinct eigenvariables in the corresponding LK-proof). In order to transform the above proof into an LK-proof one has to perform a non-trivial reorganization of the inferences, e.g., to apply the paramodulation step on the non-skolemized version of the formula (replacing (∃x(p b x) by (∃x(p a x)). It is unclear whether such a transformation can be done in a systematic and purely automatic way, thus from a practical point of view we prefer to add restrictions that dismiss such inferences.

A straightforward solution to this problem would be to dismiss strong quantifiers entirely, by assuming that all statements are skolemized. However, this would significantly reduce the scope of our generalization algorithm, especially when applied to proofs produced by humans (who rarely consider skolemized statements). This remark is particularly relevant for proofs containing cuts, because in this case strong quantifiers may occur even if the end-sequent is skolemized. Worse, applying the generalization algorithm on a skolemized version of a proof may yield a statement that is not necessarily more general than the initial one (although it is of course more general than its skolemized version), since the quantifier structure is destroyed by the transformation.

A similar solution would be to use the -calculus (see, e.g., [START_REF] Moser | The epsilon calculus (tutorial)[END_REF][START_REF] Zach | The practice of finitism: Epsilon calculus and consistency proofs in Hilbert's program[END_REF]), in which quantifiers are replaced by a special operator x mapping each formula φ(x) to an individual e such that φ(e) holds (if such an element exists, otherwise x (φ(x)) is arbitrary). Again, the relation between generalized proofs in the -calculus and standard LK-proofs is unclear. Note that, unlike the -calculus or calculi operating on skolemized formulae the LK c calculus is not intended to be used to construct proofs (i.e., as an alternative to LK), but rather as a theoretical tool to generalize existing LK-proofs. Our operator ι shares obvious similarities with the x operator, since a witness of some existential quantified formula is returned in both cases. However, ι has additional arguments encoding the context in which the existential formula occurs. Removing these arguments would make the calculus unsound (for instance the sequent ∃x(p x) p(ι(∃x(p x))) would be provable although it is not valid) unless ι is interpreted as an existential witness. Furthermore, the translation of the obtained proofs into LK would be more problematic, because of the additional constraints induced by the quantifier structure. For instance, in order to prove the sequent ∀x((p x)∧∃y¬(p y)) , the variable x has to be instantiated twice in LK, once with an arbitrary term to get the formula ∃y¬(p y), and once with the witness of ∃y¬(p y). Using ι-terms without context arguments, it would be possible to instantiate x directly with the witness of ∃y¬(p y).

In order to avoid this, we need to restrict LK c -proofs to a language that allow them to be translated into LK-proofs. Definition 11. Let K be the set of terms t ∈ T in which the eigenterms (ι φ 1 • • • φ n ) do not occur in the scope of λ-abstractions binding one of their free variables (in other words, every free occurrence of a variable in any φ i is also free in t). We will refer to K-sequents, K-substitutions, K-constraints, K-LK-proofs and K-LK c -proofs if they only contain terms in K.

Remark 12. In the definition of K above, the restriction on the special symbol ι is essentially identical to the restriction introduced in [START_REF] Miller | A compact representation of proofs[END_REF] in order to ensure the soundness of the skolemization operation in higher order logic. Indeed, a direct use of the standard skolemization operator (as done in [START_REF] Andrews | Resolution in type theory[END_REF]) turns out to be unsound in second order logic, since the axiom of choice is not provable. In order to recover soundness, restrictions have been added in [START_REF] Miller | Proofs in Higher-Order Logic[END_REF][START_REF] Miller | A compact representation of proofs[END_REF][START_REF] Miller | Unification under a mixed prefix[END_REF] to ensure that the Skolem symbols are used only to express dependencies between terms, and not as actual functions in the signature. While the restriction we use is similar, our purpose is different. Indeed, soundness is always guaranteed in our context, as it is shown by Theorem 9. However, the explicit use of the function ι, mapping formulae to existential witnesses, allows one to express reasonings that cannot be expressed in LK, although they are sound at the meta-level, such as the fact that two formulae that are equivalent can be associated with the same witness (see Example 10). In order to ensure that LK c -proofs can be translated in LK, we need to keep the witness symbol apart, so that it cannot be used to construct new terms, beside those corresponding to the eigenvariables.

We now investigate the properties of K. Obviously, S ⊂ K ⊂ T and K is closed under → α .

Lemma 13. If t, s ∈ K then t[s/x] ∈ K for every variable x of appropriate type.

Proof. Any occurrence of an eigenterm in t[s/x] comes either from t or s. If it comes from s then it occurs there as a subterm l = (ι φ 1 • • • φ n ) whose free variables are free in s; thus l is again a subterm of t[s/x] and since the free variables of s are not captured in the substitution then the free variables of l are free in t[s/x] as required.

If it comes from t then it occurs there as a subterm (ι φ 1 • • • φ n ) whose free variables are free in t and must therefore be preserved in the substitution (not α-converted); thus the considered eigenterm is of the form (ι φ 1 [s/x] . . . φ n [s/x]). Its free variables are either free in some φ i (but other than x) and therefore free in t and hence in t[s/x], or they are free in s and then also free in t[s/x] (by absence of capture). Proposition 14. K is substitutive and closed under αβη-reduction.

Proof. It is obvious from Lemma 13 that K is substitutive, and from Definition 11 that if s is a subterm of t ∈ K then s ∈ K, i.e., that K is closed for subterms. If (λx (l x)) ∈ K and x ∈ FV(l), then l ∈ K, hence K is closed under → η . If ((λx l) t) ∈ K, then l, t ∈ K, hence t[l/x] ∈ K by Lemma 13 and K is therefore also closed under → β . This means that, for any K-LK c -proof P and K-substitution σ, P σ is a K-LK c -proof by Propositions 6 and 14. We now prove that standard LK-proofs can be translated into valid K-LK c -proofs.

Theorem 15. For any standard LK-proof P : Γ ∆ there exists a valid K-LK c -proof Q : Γ ∆ | X of the same length as P .

Proof. We assume w.l.o.g. that P is in βη-normal form, and we proceed by induction on P .

If

P = t t (Ref) then t ∈ S; let Q = t t | t t . = t t (Ref c )
which is clearly a valid K-LK c -proof. All other cases are similar, the only difficulty lies with the translation of eigenvariables into eigenterms, hence we examine one more rule.

If

P = P 1 : Γ, φ ∆ Γ, ∃ξ ∆ (∃-L)
then there is an eigenvariable y such that φ ≡ αβη (ξ y) and y ∈ FV(Γ, ∆, ξ), so that replacing φ by (ξ y) in the last sequent of P 1 yields an LK-proof P 1 : Γ, (ξ y) ∆. By induction hypothesis there is a

K-LK c -proof Q 1 : Γ, (ξ y) ∆ | X 1 where X 1 is a valid K-LK c -proof. Let σ = [(ι Γ∆∃ξ)/y], obviously Γ, ∆, ξ are fixpoints of σ. Let Q = Q 1 σ : Γ, (ξ (ι Γ∆∃ξ)) ∆ | X 1 σ Γ, ∃ξ ∆ | X 1 σ ∃ξ . = ∃ξ (ξ (ι Γ∆∃ξ)) . = (ξ (ι Γ∆∃ξ)) (∃-L c )
which is a K-LK c -proof by Propositions 6 and 14 and is obviously valid.

This translation provides the first step in our generalization procedure; we also need a reverse translation in its last step. In order to translate valid K-LK c -proofs into standard LK-proofs, we first need to replace eigenterms (ι φ 1 • • • φ n ) by eigenvariables x (of type ı). This replacement cannot take place within LK c since eigenterms are mandatory in LK c -proofs, hence we will perform them within LK and therefore use K-LK-proofs. This requires to investigate the behavior of such replacements with respect to ≡ αβη .

By abuse of notation, for any t ∈ K we write t

[x/(ι φ 1 • • • φ n )]
for the term obtained from t after every occurrence of (ι φ 1 • • • φ n ) has been replaced by x; this is clearly not a substitution.

Lemma 16. Let t = (ι φ 1 • • • φ n ) ∈ K in β-normal form, let l, m ∈ K such that l → β m
and let x : ı be a variable that does not occur in l or m, then l

[x/t] → β m[x/t].
Proof. By induction on l. Obviously l cannot be a variable, a constant or t since it must contain a β-redex. If l = (λy l ) for some variable y : ı and l ∈ K, then m = (λy m ) with l → β m , hence by induction hypothesis l

[x/t] → β m [x/t], hence l[x/t] = (λy l [x/t]) → β (λy m [x/t]) = m[x/t]. If l = (ι ψ 1 • • • ψ m ) then there exist 1 ≤ i ≤ m and a term ψ i such that ψ i → β ψ i and m = (ι ψ 1 • • • ψ i • • • ψ m ). By induction hypothesis ψ i [x/t] → β ψ i [x/t], hence l[x/t] = (ι ψ 1 [x/t] • • • ψ m [x/t]) → β (ι ψ 1 [x/t] • • • ψ i [x/t] • • • ψ m [x/t]) = m[x/t].
If l = (l s) with l , s ∈ K and this is not the redex used to obtain m, then this redex must occur either in l or in s, hence l[x/t] = (l [x/t] s[x/t]) and we prove as above that l

[x/t] → β m[x/t].
Otherwise l = (l s) is the redex used to obtain m, in which case l = (λy m ) for some variable y : ı distinct from x and m ∈ K, so that m = m [s/y]. Obviously 

l[x/t] = ((λy m [x/t]) s[x/t]) → β m [x/t][s[x/t]/y]. Assume this last term is different from m[x/t] = m [s/y][x/t],
(λy m [x/t]) = l [x/t] ∈ K. Hence l[x/t] → β m[x/t], which completes the induction. Lemma 17. Let t = (ι φ 1 • • • φ n ) ∈ K in η-normal form, let l, m ∈ K such that l → η m
and let x : ı be a variable that does not occur in l or m, then l

[x/t] → η m[x/t].
Proof. We only consider the case where l is an η-redex (λy (m y)) where y ∈ FV(m), then l

[x/t] = (λy (m[x/t] y)) → η m[x/t] since obviously y ∈ FV(m[x/t]
). The other cases can be handled by a straightforward inductive decomposition as in the proof of Lemma 16.

Corollary 18. Let t = (ι φ 1 • • • φ n ) ∈ K in βη-normal form, let l, m ∈ K such that l ≡ αβη m
and let x : ı be a variable that does not occur in l or m, then l[x/t] ≡ αβη m[x/t].

We can now start removing eigenterms from K-LK-proofs, one at a time.

Lemma 19. If P is a K-LK-proof in βη-normal form, (ι φ 1 • • • φ n ) ∈ K is in βη-normal form and x : ı is a variable that does not occur in P , then P [x/(ι φ 1 • • • φ n )] is a K-LK-proof of the same length as P .
Proof. The proof is by induction on P ; we let l = (ι φ 1 

P [x/l] := t[x/l] t[x/l] (Ref)
is a K-LK-proof. All propositional rules can be handled similarly.

If P = P 1 : Γ, t s, φ ∆ Γ, t s, ψ ∆ (Param-L)
then there is a term ξ : ı → o in K such that φ ≡ αβη (ξ t) and ψ ≡ αβη (ξ s). By induction hypothesis

P 1 [x/l] : Γ[x/l], t[x/l] s[x/l], φ[x/l] ∆[x/l]
is a K-LK-proof, and by Corollary 18 we know that φ

[x/l] ≡ αβη (ξ t)[x/l] = (ξ[x/l] t[x/l]) (since (ξ t) = l by type mismatch) and ψ[x/l] ≡ αβη (ξ[x/l] s[x/l]), hence P [x/l] : Γ[x/l], t[x/l] s[x/l], ψ[x/l] ∆[x/l]
is an LK-proof since its last inference is an instance of (Param-L). The other rules are similar but we still need to check whether the eigenvariable condition is preserved.

If P = P 1 : Γ, φ ∆ Γ, ∃ξ ∆ (∃-L)
then there is a variable y ∈ FV(Γ, ∆, ξ) such that φ ≡ αβη (ξ y). Note that if y ∈ FV(φ) then x = y is possible (since in this case y does not occur in P ), in which case y can be replaced by another suitable variable without affecting P , so that we may assume y = x. By induction hypothesis 

P 1 [x/l] : Γ[x/l], φ[x/l] ∆[x/l] is a K-LK-proof,
P [x/l] : Γ[x/l], ∃ξ[x/l] ∆[x/l] is a K-LK-proof.
Lemma 20. If P : Γ ∆ is a K-LK-proof then there is a standard LK-proof Q : Γ ∆ of the same length as P such that Γ ∆ Γ↓ βη ∆↓ βη . If furthermore P is fair then so is Q.

Proof. By Proposition 14 P ↓ βη : Γ↓ βη ∆↓ βη is a K-LK-proof. By Lemma 19 we can replace all eigenterms in P ↓ βη by new variables and thus obtain a standard LK-proof Q : Γ ∆ of the same length as P , and it is obvious that there is a substitution σ, replacing these new variables by their corresponding eigenterms, such that (Γ ∆ )σ = Γ↓ βη ∆↓ βη . If P is fair then so is P ↓ βη , and replacing eigenterms by variables preserves that property, hence Q is fair. This means that the presence of eigenterms has no influence on provability of standard sequents in LK, as long as the terms are in K. There only remains to translate valid K-LK c -proofs into K-LK-proofs. This requires to replace eigenterms not simply by foreign variables as in Lemma 19 but by eigenvariables of the LK-proof, a task that validates the use of eigenterms.

Lemma 21. For any valid K-LK c -proof P : Γ ∆ | X there exists a K-LK-proof Q : Γ ∆ of the same length as P . If P is fair then so is Q.

Proof. By induction on P . If

P = φ | φ . = t t (Ref c )
and this constraint is valid, then φ ≡ αβη t t and t ∈ K (resp. t ∈ K ∩ F if P is fair), so that there is an obvious (resp. fair) K-LK-proof of φ. If

P = P 1 : Γ, φ ∆ | X Γ, χ ∆ | X χ . = ∃ξ φ . = (ξ (ι Γ∆χ)) (∃-L c )
and this constraint is valid, hence so is X and χ ≡ αβη ∃ξ, φ ≡ αβη (ξ (ι Γ∆χ)). By induction hypothesis there is a K-LK-proof

Q 1 : Γ, φ ∆. Let Γ , ξ , φ , ∆ and Q 1 be the respective βη-normal forms of Γ, ξ, φ, ∆ and Q 1 , so that Q 1 : Γ , φ
∆ is a K-LK-proof. Let t = (ι Γ ∆ ∃ξ ) be the βη-normal form of (ι Γ∆χ), so that φ ≡ αβη (ξ t), and let y : ı be a variable not occurring in Q 1 or ξ . Since ξ and the members of Γ and ∆ are strict subterms of t, then t cannot be a subterm of ξ or of any member of Γ or ∆ , hence ξ [y/t] = ξ , Γ [y/t] = Γ and ∆ [y/t] = ∆ . We finally let

Q = Q 1 [y/t] : Γ , φ [y/t] ∆ Γ, χ ∆ (∃-L).
By Lemma 19 Q 1 [y/t] is a K-LK-proof, and by Corollary 18 φ [y/t] ≡ αβη (ξ t)[y/t] = (ξ y).

Since Γ ≡ αβη Γ , χ ≡ αβη ∃ξ , ∆ ≡ αβη ∆ and y is not free in Γ , ∆ (since they occur in Q 1 ) or ξ , then this last inference is correct and therefore Q is a K-LK-proof.

If P is fair then so are Γ, ξ, φ, ∆ and P 1 , hence so is Q 1 by induction hypothesis, as are their normal forms Γ , ξ , φ , ∆ and Q 1 . Therefore Q 1 [y/t] and Q are fair.

All other rules can be treated similarly.

Theorem 22. For any valid K-LK c -proof P : Γ ∆ | X there exists a standard LK-proof Q : Γ ∆ of the same length as P such that Γ ∆ Γ↓ βη ∆↓ βη . If P is fair then so is Q.

Proof. By Lemma 21 and 20.

Together with Theorem 15, this shows that standard LK-proofs correspond to valid K-LK c -proofs.

Abstract Proofs and Proof Lifting in LK c

We now prove a result in LK c that is very similar to the well-known lifting lemma in resolution calculus: a proof of an instance is an instance of a "lifted" proof. One difference is that the initial proof does not need to be ground (propositional) and may involve quantifier inference rules. Another difference is that the lifted proof can use as many distinct variables as it may contain, i.e., up to a maximum defined below as a class of LK c -proofs, called abstract, in which, intuitively, all meta-variables are associated with distinct variables.

In the following, we treat sequences of pairwise distinct elements as sets, and using a sequence as a set always means that its elements are assumed to be pairwise distinct. Definition 23. Let n ∈ N and

P = P 1 : Γ 1 ∆ 1 | X 1 • • • P n : Γ n ∆ n | X n Γ ∆ | X 1 • • • X n X (R)
be some LK c -proof, then P is an abstract proof if the following conditions hold:

• the subproofs P i are abstract for all 1 ≤ i ≤ n,

• (local variables condition, or lvc) the last inference is drawn by instantiating the metavariables 4 of rule (R) by variables or sets of variables, and distinct meta-variables are instantiated by distinct variables or disjoint sets of variables (see Example 24 below),

• (split variables condition, or svc) FV(P i ) ∩ FV(P j ) = ∅ for all 1 ≤ i < j ≤ n, i.e., distinct subproofs have disjoint variables,

• (constraint variables condition, or cvc) FV(X ) ∩ FV(P i ) ⊆ Γ i ∪ ∆ i for all 1 ≤ i ≤ n, i.e., the constraint X only applies to variables in each subproof that are local to this last inference.

Example 24.

P 1 : Γ ∆, u | X 1 P 2 : Σ, v Π | X 1 Γ, Σ ∆, Π | X 1 X 2 u . = v (Cut c )
is abstract if

• P 1 and P 2 are abstract,

• (lvc) u, v are distinct variables, Γ, Σ, ∆ and Π are sequences of distinct variables and have no variable in common or equal to u or v.

• (svc) FV(P 1 ) ∩ FV(P 2 ) = ∅,

• and (cvc) {u, v}∩FV(P 1 ) ⊆ Γ∪∆∪{u}, i.e., v ∈ FV(P 1 ) and similarly u ∈ FV(P 2 ).

Here the cvc is a consequence of the svc, but this is not the case for (most) unary rules.

Note that the lvc entails that abstract proofs are fair K-LK c -proofs. We now prove that every LK c -proof can be lifted to a more general abstract proof. The proof is constructive, i.e., it provides an algorithm for computing such an abstract proof together with a substitution that instantiates this abstract proof to the original one. Furthermore, this algorithm is deterministic (up to a renaming of the variables that it introduces).

Theorem 25 (proof lifting). For any LK c -proof P : Γ ∆ | X , for any Γ , ∆ , σ and finite set V of variables such that

Γ σ = Γ and ∆ σ = ∆, FV(Γ , ∆ ) ⊆ V,
there exist an LK c -proof Q : Γ ∆ | X and a substitution θ such that

1. θ is equal to σ on V , 2. V ∩ (FV(Q) \ FV(Γ , ∆ )) = ∅,
3. Qθ = P , 4. if Γ and ∆ are disjoint sets of variables, then Q is abstract. Proof. By induction on P . We examine in detail only three cases: one axiom, one unary and one binary inference rules.

We first assume

P = φ | φ . = t t (Ref c )
and that φ , σ, V are such that FV(φ ) ⊆ V and φ σ = φ. Let x be a variable of type ı that does not belong to V , which always exists since

V is finite. Let θ = σ[x → t] and Q = φ | φ . = x x (Ref c ), then FV(Q) = FV(φ ) {x}, so that V ∩ (FV(Q) \ FV(φ )) = V ∩ {x} = ∅.
It is easy to check that Qθ = P .

If φ is a variable then the lvc holds and Q is thus abstract (the svc and cvc are trivially valid since there is no subproof).

2. Next, we assume that

P = P 1 : Γ, φ ∆ | X Γ, χ ∆ | X χ . = ∃ξ φ . = (ξ ιΓ∆χ) (∃-L c )
and that Γ , χ , ∆ , σ, V are such that FV(Γ , χ , ∆ ) ⊆ V , Γ σ = Γ, χ σ = χ and ∆ σ = ∆. Let u : o and f : ı → o be variables that do not belong to

V , V = V {u, f } and σ = σ[u → φ, f → ξ].
Obviously FV(Γ , u, ∆ ) ⊆ V , Γ σ = Γ, uσ = φ and ∆ σ = ∆, hence we obtain by the induction hypothesis on P 1 that there exist a proof

Q 1 : Γ , u ∆ | X and a substitution θ equal to σ on V such that V ∩ (FV(Q 1 ) \ FV(Γ , u, ∆ )) = ∅ and Q 1 θ = P 1 (in particular X θ = X ). Let Q = Q 1 : Γ , u ∆ | X Γ , χ ∆ | X χ . = ∃f u . = (f (ι Γ ∆ χ )) (∃-L c ).
Obviously χ θ = χ σ = χ, uθ = φ and f θ = ξ, hence

Qθ = P . Since FV(Q) = FV(Q 1 , χ , f ) then V ∩ (FV(Q) \ FV(Γ , χ , ∆ )) = V ∩ (FV(Q 1 , f ) \ FV(Γ , ∆ )) = V ∩ (FV(Q 1 , f ) \ FV(Γ , ∆ , u, f )) = ∅.
If Γ χ and ∆ are disjoint sets of variables, by definition u ∈ Γ ∪ ∆ , hence Γ u and ∆ are disjoint sets of variables and by induction hypothesis Q 1 must be abstract.

Obviously the lvc holds and the svc is trivial, hence there remains to check that

(Γ ∪ ∆ ∪ {χ , f, u}) ∩ FV(Q 1 ) ⊆ Γ ∪ {u} ∪ ∆ , i.e., χ , f ∈ FV(Q 1 ), which is true since χ , f ∈ V 1 .
Hence the cvc condition holds and Q is abstract.

3. Finally, we assume that

P = P 1 : Γ ∆, φ | X 1 P 2 : Σ, ψ Π | X 2 Γ, Σ ∆, Π | X 1 X 2 φ . = ψ (Cut c ) with Γ , Σ , ∆ , Π , σ, V such that FV(Γ , Σ , ∆ , Π ) ⊆ V , Γ σ = Γ, Σ σ = Σ, ∆ σ = ∆ and Π σ = Π. Let u : o and v : o be distinct variables that do not belong to V , V 1 = V {u, v} and σ = σ[u → φ, v → ψ]. Obviously FV(Γ , ∆ , u) ⊆ V 1 ,
Γ σ = Γ, uσ = φ and ∆ σ = ∆, hence we obtain by the induction hypothesis on P 1 that there exist a proof

Q 1 : Γ ∆ , u | X 1 and θ equal to σ on V 1 such that V 1 ∩ (FV(Q 1 ) \ FV(Γ , ∆ , u)) = ∅ and Q 1 θ = P 1 .
As above ∆ θ = ∆, vθ = ψ and Π θ = Π, hence with

V 2 = V 1 ∪ FV(Q 1 ), then FV(∆ , Π , v) ⊆ V 2
and we obtain by the induction hypothesis on P 2 that there exist a proof Q 2 : Σ , v Π | X 2 and θ equal to θ on V 2 (hence to σ on V , and

uθ = φ, vθ = ψ) such that V 2 ∩ (FV(Q 2 ) \ FV(Σ , v, Π )) = ∅ and Q 2 θ = P 2 (in particular X 2 θ = X 2 ). Let Q = Q 1 : Γ ∆ , u | X 1 Q 2 : Σ , v Π | X 2 Γ , Σ ∆ , Π | X 1 X 2 u . = v (Cut c ). Since FV(Q 1 ) ⊆ V 2 then Q 1 θ = Q 1 θ = P 1 , so that Γ θ = Γ, ∆ θ = ∆ and X 1 θ = X 1 , hence Qθ = P . Furthermore V ∩ (FV(Q) \ FV(Γ , Σ , ∆ , Π )) = V ∩ (FV(Q 1 , Q 2 ) \ FV(Γ , Σ , ∆ , Π )) = V 2 ∩ (FV(Q 1 , Q 2 ) \ FV(Γ , Σ , ∆ , Π , u, v, Q 1 )) = V 2 ∩ (FV(Q 2 ) \ FV(Γ , Σ , ∆ , Π , u, v)) = ∅.
If the sequences Γ Σ and ∆ Π are disjoint sets of variables, then so are Γ , Σ , ∆ and Π ; and by definition of u and v it is trivial that the lvc holds on Q. Besides, Γ and ∆ {u} are disjoint sets of variables, and similarly Σ {v} and Π , hence by induction hypothesis

Q 1 and Q 2 are abstract proofs. It is obvious that {u, v} ∩ FV(Q 1 ) ⊆ Γ ∪∆ ∪{u} since v ∈ V 1 hence v ∈ FV(Q 1 ). Similarly {u, v}∩FV(Q 2 ) ⊆ Σ ∪{v}∪Π holds since u ∈ V 2 hence u ∈ FV(Q 2 )
, so that the cvc holds.

Finally, since FV(Q

1 ) ⊆ V 2 , then FV(Q 1 ) ∩ (FV(Q 2 ) \ Σ ∪ {v} ∪ Π ) = ∅, hence FV(Q 1 ) ∩ FV(Q 2 ) ⊆ Σ ∪ {v} ∪ Π . But v ∈ FV(Q 1 ), and since Σ ∪ Π ⊆ V 1 , then (Σ ∪ Π ) ∩ (FV(Q 1 ) \ Γ ∪ ∆ ∪ {u}) = ∅, hence (Σ ∪ Π ) ∩ FV(Q 1 )
= ∅ (by the lvc), and therefore FV(Q 1 ) ∩ FV(Q 2 ) = ∅. This establishes the svc and hence that Q is abstract.

Corollary 26. Under the conditions of Theorem 25 and if furthermore P is valid then θ is a solution of X and for every solution µ θ of X , Qµ is a valid proof more general than P . 

(Axiom c ) φ 4 φ 3 | Y 1 (∀-L c ) φ 1 φ 3 | Y 2 (∃-R c ) φ 1 φ 2 | Y 3 where Y 1 def = φ 4 . = φ 3 , Y 2 def = Y 1 φ 1 . = ∀ξ 2 φ 4 . = (ξ 2 z 2 ), Y 3 def = Y 2 φ 2 . = ∃ξ 1 φ 3 . = (ξ 1 z 1 ).
It is easy to check that the proof Q of Example 3 is an instance of this proof, corresponding to the substitution:

θ def = [λy (p y a)/ξ 1 , (p v a)/φ 3 , v/z 1 , ξ/ξ 2 , ψ/φ 4 , u/z 2 ]σ,
and in particular Y 3 θ = X 3 .

Corollary 28. Under the conditions of Theorem 25 and assuming that Q is abstract then any sequent Γ ∆ has a valid LK c -proof less general than Q iff there is a solution θ of X such that (Γ ∆ )θ = Γ ∆ .

This is a translation of Lemma A in [START_REF] Parikh | Some results on the length of proofs[END_REF] where the notion of proof skeleton (or proof analysis) has been replaced by that of abstract proof. This suggests that an abstract proof is nothing else than a proof skeleton, but this is not the case. More precisely, a proof skeleton is what remains of a proof when all formulae have been removed: a tree labelled by inference rules. We can thus see it as a term in the signature of inference rules, e.g., the skeleton of the proof in Example 27 is ∃-R c (∀-L c (Axiom c )). But contrary to the schematic systems of [START_REF] Parikh | Some results on the length of proofs[END_REF] it is not generally possible to build the abstract constraint X from the proof skeleton. One problematic rule is (P-L c ), because in order to generate a constraint on formulae φ and ψ we need to know where exactly they occur in the left part of any given sequent. This is why in [START_REF] Krajíček | The number of proof lines and the size of proofs in first order logic[END_REF] an integer is attached to every occurrence of a (P-L) or (P-R) rule in a proof skeleton, in a rather ad-hoc way. This integer can of course be read out from an abstract proof which looks like x 1 , . . . , x n y 1 , . . . , y m | X 1 x 1 , . . . , x i+1 , x i , . . . , x n y 1 , . . . , y m | X 2 (P-L c )

The binary rules we have chosen are also problematic since we need to know where both sides of the end sequent are split between the left and right premiss. Consequently in [START_REF] Baaz | Generalizing proofs in monadic languages[END_REF] a pair of integers is added to all occurrences of binary rules5 in proof skeletons. It is easy to see that a skeleton enriched with this extra information is equivalent to an abstract proof in the sense that both allow to compute the other (including the lengths n and m at each inference). The notion of abstract proof naturally extends to other inference systems and meets the original notion of proof skeleton on schematic systems as illustrated in Section 9.

The next proposition states that an abstract proof is minimal w.r.t. the generalization ordering, i.e., it admits no strictly more general LK c -proof.

Proposition 29. If P , P a and Q are LK c -proofs such that P a is abstract, P a P and Q P , then P a Q.

Proof. By induction on P a . There exist σ and µ such that P a σ ≡ αβη P and Qµ ≡ αβη P . We examine the details in two cases: one axiom and one binary inference rule.

If

P a = u | u . = x x (Ref c )
where u and x are variables, then

P ≡ αβη P a σ = uσ | uσ . = xσ xσ (Ref c )
and since Qµ ≡ αβη P a σ then

Q = φ | φ . = t t (Ref c )
where φµ ≡ αβη uσ and tµ ≡ αβη xσ. We now define the substitution θ = [φ/u, t/x], then obviously P a θ = Q.

2. If P a is the proof (with variables u i , u i , v j , v j )

P a 1 : u 1 • • • u n v 1 • • • v m+1 | X a 1 P a 2 : u 1 • • • u n +1 v 1 • • • v m | X a 2 u 1 • • • u n u 1 • • • u n v 1 • • • v m v 1 • • • v m | X a 1 X a 2 v m+1 . = u n +1 (Cut c )
and since Qµ ≡ αβη P a σ then Q must be a proof

Q 1 : φ 1 • • • φ n ψ 1 • • • ψ m+1 | X 1 Q 2 : φ 1 • • • φ n +1 ψ 1 • • • ψ m | X 2 φ 1 • • • φ n φ 1 • • • φ n ψ 1 • • • ψ m ψ 1 • • • ψ m | X 1 X 2 ψ m+1 . = φ n +1 (Cut c )
where Q i µ ≡ αβη P a i σ for i = 1, 2. Since P a 1 and P a 2 are abstract, by induction hypothesis there exist θ 1 and θ 2 such that P a i θ i = Q i for i = 1, 2, and we may assume that Dom(θ i ) ⊆ FV(P a i ). By the svc we deduce that Dom(θ 1 ) ∩ Dom(θ 2 ) = ∅, hence we let θ be the substitution equal to θ 1 on Dom(θ 1 ) and to θ 2 elsewhere, so that

X a 1 θ = X a 1 θ 1 = X 1 , X a 2 θ = X a 2 θ 2 = X 2 , v m+1 θ = v m+1 θ 1 = ψ m+1 , u n +1 θ = u n +1 θ 2 = φ n +1
, and similarly for the u i 's, u i 's, v j 's and v j 's, which finally yields P a θ = Q.

Note that this implies that, for any LK c -proofs P and P a , if P a is abstract then P a P is equivalent to P a P (by taking Q = P ). This theorem thus shows that the abstract proof P a obtained by lifting P is most general among the generalizations of P . However, this is still an LK c -proof and our aim is to generalize LK-proofs, hence to obtain valid generalizations of valid LK c -proofs.

Proposition 30. If P a is abstract, P and Q are valid, P a P , Q P and σ is a most general solution of P a 's constraint, then P a σ Q.

Proof. By Proposition 29 there exists a substitution θ such that P a θ = Q, and since Q is valid then θ is a solution of P a 's constraint, hence there is a substitution ρ such that σρ ≡ αβη θ, and therefore P a σρ ≡ αβη Q, that is P a σ Q.

This means that in this case P a σ is most general among the valid generalizations of P . However, there may not be a most general unifier of the abstract constraint since it may have second order variables. But we may still be able to find minimal unifiers and we can show that this property extends to the corresponding valid proofs.

Proposition 31. If P a is abstract and σ is a minimal solution of P a 's constraint then P a σ is a minimal valid proof.

Proof. We may assume that Dom(σ) ⊆ FV(P a ). Suppose that there is a valid proof Q P a σ, then by Proposition 29 there is a θ such that P a θ = Q and we may assume that Dom(θ) ⊆ FV(P a ). Hence P a θ P a σ and it is then easy to see that θ σ. But θ is a solution of the abstract constraint (since P a θ is valid), hence θ ≡ αβη σ by minimality of σ and therefore Q ≡ αβη P a σ.

The Unifier Minimization Algorithm

Lifting a valid K-LK c -proof P to an abstract proof P a yields a substitution θ such that P a θ = P , hence θ is a solution of the constraint X of P a (which may not be valid) and is a K-substitution. As explained in Section 1, we now need an algorithm to compute, given X and θ, a solution σ of X such that σ θ, which according to Corollary 26 yields a valid proof P a σ P . Such a substitution always exists since θ fulfills the desired property; our goal is to find a solution that is as general as possible. In the present section we define and illustrate such an algorithm, and also prove a few lemmas to be used in Section 8 devoted to the basic properties of this algorithm. We first introduce the notion of a controlled unification problem, which is a second order unification problem (in the standard sense) associated with a particular solution: Definition 32. A unification problem is a pair (X , σ) where:

• X is a K-constraint.
• σ is an idempotent K-substitution such that Dom(σ) ∩ FV(X ) = ∅.

A K-substitution γ is a solution of (X , σ) if σ γ and γ is a solution of X . Note that σ is a solution of ( , σ). The set of solutions of (X , σ) is denoted by sol(X , σ).

A controlled unification problem is a triple (X , σ, θ), where (X , σ) is a unification problem and θ is a solution of (X , σ). A substitution γ is a solution of (X , σ, θ) if it is a solution of (X , σ) such that γ θ. (X , σ, θ) is fair if both X and σ are fair. The triple (X , σ, θ) is solved if X = (and then σ is a solution).

The algorithm presented in this section consists in rewriting controlled unification problems (X , σ, θ) by applying second order unification rules. The algorithm starts with σ = id and instantiates it by solving equations in X . It is sometimes necessary to introduce new variables in X and to extend θ accordingly. Since second order unification is undecidable, we use a specific strategy to preserve θ as a solution of X , which ensures that all the obtained solutions will be more general than θ. Furthermore, we show in Section 8 that the unification rules eventually decrease the size of the image by θ of the set of variables occurring in the considered problem. This allows us to propose a terminating algorithm but not to guarantee that a minimal unifier is found. Yet we will ensure an elementary form of generality, i.e., that the algorithm always reaches a fair solution (even when θ is not fair, i.e., when it is "committed" to a particular signature).

As usual in this kind of algorithm (see [START_REF] Dowek | Higher-order unification and matching[END_REF]), we use slightly different representatives of βη-classes than the βη-normal forms. Obviously, any β-normal term can be uniquely written in the form

λx 1 • • • λx n (v t 1 • • • t m )
where n ≥ 0, m ≥ 0, the t i 's are β-normal terms and v is either a β-normal eigenterm (in which case it has type ı and hence m = 0) or v ∈ V ∪ C. We now transform this term according to its type.

Definition 33. If t = λx 1 • • • λx n (v t 1 • • • t m ) is a term in β-normal form, with n, m ≥ 0 and has type ı p → τ where v ∈ V ∪ C and τ is basic (hence p ≥ n), let t def = λx 1 • • • λx p (v t 1 • • • t m x n+1 • • • x p )
where x n+1 , . . . , x p are variables that do not occur in t.

If t = λx 1 • • • λx n (ι t 1 • • • t m ) is a term in β-normal form with n ≥ 0, m > 0, let t def = λx 1 • • • λx n (ι t 1 • • • t m ).
For any term t we write t def = (t↓ βη ) and call it the long normal form (or lnf ) of t. The lnf X of a constraint X is obtained by transforming to lnf both members of every equation in X . Note that t ∈ K whenever t ∈ K, t → η * t↓ βη and t is only defined up to α-conversion. It is therefore clear that two terms s and t belong to the same αβη-equivalence class if and only if t and s are α-equivalent. Furthermore, since free variables and constants are preserved by both η-reduction and its inverse, then FV(t ) ⊆ FV(t) and if a constraint X is fair then so is X .

The following definition shows that every non atomic normal term of some V-type can be written of the form uγ, where u is of some specific form. The motivation for such a definition is that, when solving a controlled unification problem (X , γ, θ), one often has to instantiate a variable x ∈ FV(X ) by a new non atomic term u to enable further decomposition or simplification steps. Since we must keep the solution θ during the solving process, u must be more general than the term xθ, and since we want the solution to be as general as possible u must be -minimal (useless instantiations should be avoided). The next definition shows how u and γ can be computed from t = xθ. Definition 34. For every βη-reduced term t ∈ K \ (V ∪ C) of some V-type, δ(t) denotes the pair (u, γ) defined as follows.

Case

t δ(t) = (u , γ) 1 λx x (λx x , id) 2 λx a (λx y , [a/y]) 3 λx (ι ∃y (p y)) (λx (ι z) , [∃y (p y)/z]) 4 λx (∃y (p x y)) (λx (∃(z x)) , [λxλy (p x y)/z]) 5 λx (p a x) (λx (y (z 1 x) (z 2 x)) , [p/y, λx a/z 1 , λx x/z 2 ])
Figure 3: Examples of application of Definition 34

1. If t is of the form λx 1 • • • λx n x i where n ≥ 1 and 1 ≤ i ≤ n then: (u, γ) def = (t, id), where id is the identity substitution.

If

t = λx 1 • • • λx n v, where n ≥ 1 and v ∈ C ∪ V \ {x 1 , . . . x n } then (u, γ) def = (λx 1 • • • λx n y, [v/y])
, where y is an arbitrarily chosen variable of the same type as v (which is a V-type) distinct from x 1 , . . . , x n , v.

3. If t = λx 1 • • • λx n (ι t 1 • • • t m ) (
with m > 0 and n ≥ 0) then:

u def = λx 1 • • • λx n (ι y 1 • • • y m ) γ def = [t 1 /y 1 , . . . , t m /y m ]
where y 1 , . . . , y m are arbitrarily chosen distinct variables of type o not occurring in FV(t 1 , . . . , t m , x 1 , . . . , x n ).

If

t = λx 1 • • • λx n (v t 1 • • • t m ) with m > 0, n ≥ 0 and v ∈ {∀, ∃, ¬, ∧, ∨, ⇒} 6 then: u def = λx 1 • • • λx n (v (z 1 x 1 • • • x n ) • • • (z m x 1 • • • x n )) γ def = [λx 1 • • • λx n t 1 /z 1 , . . . , λx 1 • • • λx n t m /z m ]
where z 1 , . . . , z m are arbitrarily chosen distinct variables of the appropriate types 7 , not occurring in FV(t 1 , . . . , t m , x 1 , . . . , x n ).

If

t = λx 1 • • • λx n (v t 1 • • • t m ) with m > 0, n ≥ 0 and v ∈ {∀, ∃, ¬, ∧, ∨, ⇒} then: u def = λx 1 • • • λx n (y (z 1 x 1 • • • x n ) • • • (z m x 1 • • • x n )) γ def = [v/y, λx 1 • • • λx n t 1 /z 1 , . . . , λx 1 • • • λx n t m /z m ]
where y, z 1 , . . . , z m are arbitrarily chosen distinct variables of the appropriate types, not occurring in FV(v, t 1 , . . . , t m , x 1 , . . . , x n ).

Note that δ(t) is only defined up to a renaming of variables not free in t. See Figure 3 for an illustrating example of each case. The following propositions state immediate consequences of the definition.

Proposition 35. The pair δ(t) is well-defined, for every βη-reduced term t ∈ K \ (V ∪ C) of some V-type.

Proof. It is straightforward to check that the 5 items of Definition 34 do not overlap and cover all possible cases. Indeed, every βη-reduced term t must be of the form λx 1 • • • λx n (v t 1 . . . t m ) (with possibly n = 0 and m = 0), for variables x 1 , . . . , x n of type ı and terms v, t 1 , . . . , t m such that (v t 1 . . . t m ) has V-type and v is either a variable, a constant or an eigenterm. If m > 0 then we are in Case 4 if v ∈ {∀, ∃, ¬, ∧, ∨, ⇒} and in Case 5 otherwise. If m = 0, then v has V-type; it may be an eigenterm and we are in Case 3, or v ∈ V ∪ C and then n ≥ 1 (otherwise t = v). If v is a constant then we are in Case 2, otherwise it is a variable and then we are in Case 1 if v = x i for some 1 ≤ i ≤ n, and in Case 2 otherwise.

Lemma 36. Let t ∈ K \ (V ∪ C) be a βη-reduced term of some V-type and let (u, γ) = δ(t). Then u ∈ K, γ is a K-substitution, uγ↓ βη = t, FV(t) ∩ FV(u) = ∅ and |xγ| < |t| for every variable x ∈ Dom(γ).

Proof. The proof is immediate in Case 1 since then u = t, γ = id, FV(t) = ∅ and Dom(γ In Case 3, u ∈ K is obvious by the restriction on the y i 's and since all t i 's are in K then γ is a K-substitution. uγ = t is obvious, FV(u) = {y 1 , . . . , y m } is disjoint from FV(t 1 , . . . , t m ) by definition and FV(t 1 , . . . , t m ) = FV(t) since t ∈ K, hence FV(u) ∩ FV(t) = ∅. Furthermore, y i γ = t i for all 1 ≤ i ≤ m, and A first algorithm for finding solutions of fair controlled unification problems is defined by the set of rules 4. The rules apply modulo the commutativity of . =, the associativity and commutativity of , the fact that is the identity of , and modulo α-equivalence (i.e., bound variables can be renamed to allow for the application of the rules). The constraint is assumed to be in long normal form and the unifier θ to be βη-reduced. When applying Rule → 8 we assume that δ(xθ) is renamed so that u shares no variable with the considered problem. The notation y denotes possibly empty sequences of variables (with λy t def = t if y is empty and λy t

) = ∅. In Case 2, uγ = (λx 1 • • • λx n y)[v/y] = λx 1 • • • λx n v = t,
|t i | < 1 + m j=1 |t j | = |t|. In Case 5, u ∈ K is obvious and as above t ∈ K entails u ∈ K and λx 1 • • • λx n t i ∈ K for all 1 ≤ i ≤ m, hence γ is a K-substitution. Since yγ = v and (z i γ x 1 • • • x n ) ↓ βη = ((λx 1 • • • λx n t i ) x 1 • • • x n )↓ βη = t i , then uγ↓ βη = λx 1 • • • λx n (yγ (z 1 γ x 1 • • • x n ) • • • (z m γ x 1 • • • x n ))↓ βη = λx 1 • • • λx n (v t 1 • • • t m ) = t.
R def = {→ i | 1 ≤ i ≤ 8} given in Figure
def = λy 1 • • • λy n t if y = y 1 • • • y n with n > 0)
. We also consider an extended algorithm defined by the set of rules

R def = R ∪ {→ 9 }. We write t → R s (resp. t → R s) if t → i s for some 1 ≤ i ≤ 8 (resp. 1 ≤ i ≤ 9).
Rule → 1 merely removes trivial equations. Rule → 2 removes useless λ-abstractions. Rule → 3 is the usual replacement rule of the standard unification algorithms, which simply replaces a variable x by its value once it is known. The value of the variable is stored into the second component of the problem to ensure that equivalence is preserved. Note that → 3 applies also to second order variables, which, since we consider problems in lnf, always occur in the scope of a λ-abstraction (e.g., an equation x = y is written λz (x z) = λz (y z) if x, y are of type ı → ı). Rules → 4 , → 5 , → 6 and → 7 are usual decomposition rules. Note that Rules → 1 , → 2 , → 3 → 4 , → 5 and → 7 preserve the set of solutions of the problem (the this yields We thus start the unifier minimization algorithm on the fair controlled unification problem (Y 3 , id, θ). The first four equations can be discarded by applying Rule → 3 four times, which yields the controlled unification problem .

Y 3 = φ 4 . = φ 3 φ 1 . = ∀x (ξ 2 x) φ 4 . = (ξ 2 z 2 ) φ 2 . = ∃x (ξ 1 x) φ 3 . = (ξ
((ξ 2 z 2 ) . = (ξ 1 z 1 ), [∀x (ξ 2 x)/φ 1 , ∃x (ξ 1 x)/φ 2 , (ξ 2 z 2 )/φ 3 , (ξ 2 z 2 )/φ 4 ], θ). Since ξ 1 θ ∈ V ∪ C
= (ξ 3 (f 1 z 1 ) (f 2 z 1 )), σ 1 , θ 1 ), where σ 1 is [∀x (ξ 2 x)/φ 1 , ∃x (ξ 1 x)/φ 2 , (ξ 2 z 2 )/φ 3 , (ξ 2 z 2 )/φ 4 ][λy (ξ 3 (f 1 y) (f 2 y))/ξ 1 ]
and θ 1 def = θγ 1 . Again only Rule → 8 applies, for instance with δ(ξ 2 θ 1 ) = δ(λx (p x a)) = (u 2 , γ 2 ), where u

2 def = λx (ξ 4 (f 3 x) (f 4 x)), γ 2 def = [p/ξ 4 , λx x/f 3 , λx a/f 4 ] and ξ 4 : ı → ı → o, f 3 , f 4 : ı → ı are new variables. Applying the rule yields ((ξ 4 (f 3 z 2 ) (f 4 z 2 )) . = (ξ 3 (f 1 z 1 ) (f 2 z 1 )), σ 2 , θ 2 )
where σ 2 

((f 3 z 2 ) . = (f 1 z 1 ) (f 4 z 2 ) . = (f 2 z 1 ), σ 2 [ξ 4 /ξ 3 ], θ 2 ).
Rule → 6 cannot be applied, we select the first equation to apply Rule → 8 with δ(f 3 θ 2 ) = (λx x, id) (by Case 1), thus applying [λx x/f 3 ] which yields

(z 2 . = (f 1 z 1 ) (f 4 z 2 ) . = (f 2 z 1 ), σ 2 [ξ 4 /ξ 3 ][λx x/f 3 ], θ 2 ).
Now Rule → 3 applies on the first equation, which yields

((f 4 (f 1 z 1 )) . = (f 2 z 1 ), σ 2 [ξ 4 /ξ 3 ][λx x/f 3 ][(f 1 z 1 )/z 2 ], θ 2 ).
Since f 4 θ 2 = λx a by Rule → 8 with δ(f 4 θ 2 ) = (λx z 3 , [a/z 3 ]) (by Case 2) we obtain

(z 3 . = (f 2 z 1 ), σ 2 [ξ 4 /ξ 3 ][λx x/f 3 ][(f 1 z 1 )/z 2 ][λx z 3 /f 4 ], θ 3 ) with θ 3 = θ 2 [a/z 3 ] and finally Rule → 3 yields ( , σ 2 [ξ 4 /ξ 3 ][λx x/f 3 ][(f 1 z 1 )/z 2 ][λx z 3 /f 4 ][(f 2 z 1 )/z 3 ], θ 3 ).
The result is

σ 3 def = σ 2 [ξ 4 /ξ 3 ][λx x/f 3 ][(f 1 z 1 )/z 2 ][λx z 3 /f 4 ][(f 2 z 1 )/z 3 ] = [∀x (ξ 4 x (f 2 z 1 ))/φ 1 , ∃x (ξ 4 (f 1 x) (f 2 x))/φ 2 , (ξ 4 (f 1 z 1 ) (f 2 z 1 ))/φ 3 , (ξ 4 (f 1 z 1 ) (f 2 z 1 ))/φ 4 , λy (ξ 4 (f 1 y) (f 2 y))/ξ 1 , λx (ξ 4 x (f 2 z 1 ))/ξ 2 , ξ 4 /ξ 3 , λx x/f 3 , (f 1 z 1 )/z 2 , λx (f 2 z 1 )/f 4 , (f 2 z 1 )/z 3 ].
It is easy to check that σ 3 is a solution of Y 3 and that it is more general than θ 4 . Indeed, we find that σ 3 γ 1 γ 2 [a/z 1 , a/z 2 , a/z 3 ] ≡ αβη θ 3 . Hence the restriction of σ 3 to FV(Y 3 ) is more general than θ. Note that the solution σ 3 is fair even though the solution θ is not. This algorithm is nondeterministic; the reader may check that if we change the orientation of the equation on which we first apply Rule → 8 , i.e., if we apply it to (f 1 z 1 ) . = (f 3 z 2 ) we reach the following solution:

σ 3 = [∀x (ξ 4 (f 3 x) (f 4 x))/φ 1 , ∃x (ξ 4 x (f 4 z 2 ))/φ 2 , (ξ 4 (f 3 z 2 ) (f 4 z 2 ))/φ 3 , (ξ 4 (f 3 z 2 ) (f 4 z 2 ))/φ 4 , λy (ξ 4 y (f 4 z 2 ))/ξ 1 , λx (ξ 4 (f 3 x) (f 4 x))/ξ 2 , ξ 4 /ξ 3 , λy y/f 1 , (f 3 z 2 )/z 1 , λy (f 4 z 2 )/f 2 , (f 4 z 2 )/z 3 ]
and none of σ 3 , σ 3 is more general than the other. The reader may check that Rule → 9 yields extra solutions, but they are instances of those already found.

We next prove that these algorithms always produce a fair solution more general than the given unifier.

Properties and Consequences

We first state that the obtained triple is always a fair controlled unification problem and that all its solutions are also solutions of the original problem. 

Proof.

• We consider Rule → 2 by assuming that Y ≡ λy t . = λy s X , Y ≡ t . = s X , with y ∈ FV(t, s) and σ = σ, θ = θ. Since Y is a fair K-constraint in lnf, then so is Y . Similarly σ is a fair idempotent K-substitution, and since FV(Y ) = FV(t, s, X ) = FV(λy t, λy s, X ) = FV(Y), then Dom(σ ) ∩ FV(Y ) = Dom(σ) ∩ FV(Y) = ∅. σ θ is obvious, and since θ is a solution of Y, then (λy t)θ ≡ αβη (λy s)θ. Let x ∈ V \ FV(tθ, sθ) of type ı, then (λy t)θ = λx tθ[y → x] = λx tθ since y ∈ FV(t), and similarly (λy t)θ = λx sθ, hence λx tθ ≡ αβη λx sθ and therefore tθ ≡ αβη sθ. Thus θ is a solution of Y , hence (Y , σ , θ ) is a fair controlled unification problem. θ is obviously a βη-reduced extension of θ. Furthermore, it is clear that for every substitution µ, tµ ≡ αβη sµ implies (λy t)µ ≡ αβη (λy s)µ thus sol(Y, σ) ⊆ sol(Y , σ).

• We examine Rule → 8 , hence we assume that Y ≡ λy

(x t 1 • • • t n ) . = λy s X with n ≥ 1, x ∈ V, xθ ∈ V ∪ C, (u, γ) = δ(xθ), γ = [u/x], Y = Yγ , σ = σγ and θ = θγ.
By inspecting Definition 34 we see that only in Case 4 does u contain a constant, and it is a logical symbol; hence u is fair and therefore so are Y and σ . By the condition given on Page 25 for applying Rule → 8 we also know that FV(u) ∩ FV(Y, σ, θ) = ∅, and Definition 34 yields Dom(γ) = FV(u). This first implies that Dom(γ)∩FV(θ) = ∅ and hence that θ is an extension of θ. Since γ is clearly βη-reduced then so is θ .

By Lemma 36 uγ ≡ αβη xθ, u ∈ K, γ is a K-substitution and so is γ , hence by Proposition 14 so are σ and θ , and Y is a K-constraint. We also know that σ θ, thus there exists a ρ such that, for every variable z, zσρ ≡ αβη zθ. Let ρ be the substitution coinciding with γ on FV(u) and with ρ elsewhere. If z ∈ FV(u) then zσ ρ = zρ = zγ = zθ . If z ∈ FV(u) let z ∈ FV(zσ), then z ∈ FV(u) and z ∈ Dom(σ) (since σ 2 = σ). If z = x then z σ ρ = z γρ = z ρ = z ρ = z σρ. Furthermore, xσ ρ = uρ = uγ ≡ αβη xθ ≡ αβη xσρ. This proves that (zσ)σ ρ ≡ αβη (zσ)σρ, but zσσ ρ = zσ ρ and zσ 2 ρ = zσρ ≡ αβη zθ = zθ , hence zσ ρ ≡ αβη zθ holds for every variable z, thus σ θ and we have proved that (Y , σ , θ ) is a controlled unification problem. 

2 = γ then Y µ ≡ Y γ ρ ≡ Yγ ρ = Yσγ ρ ≡ Yµ. But Y µ ≡ , which proves that µ ∈ sol(Y, σ). • We now consider Rule → 9 , hence Y ≡ λy (x t • • • t n ) . = λy (z s 1 • • • s n ) X , n ≥ 1, x, z ∈ V, xθ ≡ αβη zθ, (λy t i )θ ≡ αβη (λy s i )θ for all 1 ≤ i ≤ n, γ = [x/z], Y ≡ ( n i=1 λy t i . = λy s i X )γ, σ = σγ and θ = θ.
Obviously Y is a fair Kconstraint in lnf and σ is a fair K-constraint. Since Dom(σ) ∩ FV(Y) = ∅ then x, z ∈ Dom(σ), hence Dom(σ ) = Dom(σ)∪{z}, and since FV(Y ) = FV(Y)\{z} then Dom(σ ) ∩ FV(Y ) = ∅. This also implies that γσγ = σγ and since σ is idempotent then so is σ .

Since σ θ there is a ρ such that σρ ≡ αβη θ. Then

zσ ρ = zσγρ = zγρ = xρ = xσρ ≡ αβη xθ ≡ αβη zθ.
Furthermore, for every variable z = z, z σ ρ = z σρ ≡ αβη z θ. Thus σ θ.

Since xθ ≡ αβη zθ, then tγθ ≡ αβη tθ for any term t, hence (λy t i )γθ ≡ αβη (λy t i )θ for all 1 ≤ i ≤ n, and similarly for s i so that θ is clearly a solution of (λy t i )γ . = (λy s i )γ and similarly of X γ, hence (Y , σ , θ ) is a controlled unification problem.

Finally we prove that sol(Y , σ ) ⊆ sol(Y, σ). Let µ ∈ sol(Y , σ ), by definition there is a ρ such that µ ≡ αβη σ ρ = σγρ (hence σ µ) and (λy t i )γµ ≡ αβη (λy s i )γµ for all 1 ≤ i ≤ n. But zµ ≡ αβη zσγρ = xρ = xσγρ ≡ αβη xµ, hence tγµ ≡ αβη tµ for any term t; in particular X µ ≡

X γµ ≡ . Let t = (x t 1 • • • t n ), s = (z s 1 • • • s n )
and y be a sequence of variables of type ı such that y ∩ FV(tγµ, sγµ) = ∅, then (λy t i )γµ = λy t i γµ[y → y ] and similarly for s i , hence • Rule → 1 is trivial, Rule → 3 is the standard replacement rule, Rules → 4 , → 5 and → 7 are standard decomposition rules and can be treated as above.

t i γµ[y → y ] ≡ αβη s i γµ[y → y ] for all 1 ≤ i ≤ n,
• We finally consider Rule → 6 , thus Y ≡ λy

(x t 1 • • • t n ) . = λy (z s 1 • • • s n ) X , n ≥ 1, x, z ∈ V, xθ, zθ ∈ V ∪ C, γ = [x/z], Y ≡ ( n i=1 λy t i . = λy s i X )γ, σ = σγ and θ = θ. Let t = (x t 1 • • • t n ), s = (z s 1 • • • s n )
and y be a sequence of variables of type ı such that y ∩ FV(tθ, sθ) = ∅, then (λy t)θ = λy tθ[y → y ] and similarly for s, and since θ is a solution of λy t . = λy s then tθ

[y → y ] ≡ αβη sθ[y → y ]. But xθ[y → y ] = xθ ∈ V ∪ C, hence tθ[y → y ]↓ βη = (xθ t 1 θ[y → y ]↓ βη • • • t n θ[y → y ]↓ βη )
and similarly for s, hence xθ = zθ and t i θ[y → y ] ≡ αβη s i θ[y → y ] for all 1 ≤ i ≤ n, so that (λy t i )θ ≡ αβη (λy s i )θ. This shows that the conditions of Rule → 9 hold and we can therefore conclude as above.

The last item of the previous proof shows that Rule → 6 is a restriction of Rule → 9 and can therefore be removed from R . Next, we prove that R terminates.

Proposition 39. R is terminating.

Proof. We consider the measure on controlled unification problems defined as follows.

For every problem P = (X , σ, θ), (P) def = ( 1 (P), 2 (P)), where:

• 1 (P) def = {|xθ| | x ∈ FV(X )}. • 2 (P) def = {{|t|, |s|} | t . = s occurs in X }.
The measures 1 and 2 are ordered by the multiset extensions of the standard ordering on natural numbers, and is ordered by the lexicographic extension of the measures on 1 and 2 . We show that decreases strictly each time a rule in R is applied. Rule → 1 cannot increase 1 and strictly decreases 2 (since one equation is removed). Rule → 2 does not affect 1 (the set of free variables does not change) and strictly decreases 2 . Rule → 3 replaces a variable in FV(X ) by a term λy s. Since x ∈ FV(λy s), x does not occur freely in the obtained constraint, thus (since no new variable is introduced) 1 must be decreasing. Rule → 4 does not affect 1 and replaces an equation λy (ι

t 1 • • • t n ) . = λy (ι s 1 • • • s n ) by n equations λy t i . = λy s i . Since |t 1 |, . . . , |t n | ≤ n i=1 |t i | < |(ι t 1 • • • t n )|
and similarly for the s i 's, then 2 decreases strictly. The proof for Rules → 5 , → 6 , → 7 and → 9 is similar since the substitution of a variable by another one does not affect 2 ( 1 also decreases in the last two rules).

In Rule → 8 a variable x is replaced by a term u in the constraint X before it is transformed to lnf, and θ is replaced by θγ. Note that u is not a variable and contains no variable in X (thus zθγ = zθ for every z ∈ FV(X )). Furthermore, for every variable y ∈ Dom(γ), y occurs in u hence by strategy (last condition) y ∈ Dom(θ) and therefore |yθγ| = |yγ| < |xθ| by Lemma 36. Consequently, 1 must be strictly decreasing after the replacement of x by u, since the element |xθ| is deleted and replaced by strictly smaller elements |yθγ|. Then it is obvious that the reduction to lnf cannot increase 1 since it may remove (by β-reduction) but not add free variables to the constraint.

The two previous results obviously hold also for R. The following lemma states that all R-irreducible fair problems are solved.

Lemma 40. All R-irreducible fair controlled unification problems with a constraint in lnf and a βη-reduced solution θ are of the form ( , σ, θ).

Proof. Let (Y, σ, θ) be an irreducible fair controlled unification problem where Y is in lnf and θ is βη-reduced. Since θ ∈ sol(Y), Y cannot be ⊥. Assume that Y is not , we show that (Y, σ, θ) is not irreducible, in contradiction with the hypothesis. By suitable α-conversion we can assume that Y contains an equation λy t .

= λy s where y has no Input: a standard LK-proof P : Γ ∆.

Translate

P into a valid K-LK c -proof Q : Γ ∆ | X .
2. Compute an abstract proof Q a : Γ a ∆ a | X a and a K-substitution θ such that Q a θ = Q.

3. Compute an R -normal form ( , σ, θ ) of the fair controlled unification problem (X a , id, θ↓ βη ).

4. Translate Q a σ into a standard LK-proof P : Γ ∆ such that Γ ∆ Γ a σ↓ βη ∆ a σ↓ βη and output P . Note that, if σ is the restriction of σ to FV(X ), σ is still a solution of X , σ σ and by construction θ is equal to θ on FV(X ), hence σ θ and therefore σ is a solution of the initial controlled unification problem (X , id, θ).

We can now collect the results of the previous and present sections into an algorithm performing proof generalization in LK, see Figure 5.

Theorem 42. Given any standard LK-proof P : Γ ∆, the generalization algorithm terminates and outputs a standard and fair LK-proof P : Γ ∆ of the same length as P such that Γ ∆ Γ ∆.

Proof. The first step is performed according to Theorem 15, which provides the valid K-LK c -proof Q : Γ ∆ | X of the same length as P . For the second step, we first build Γ a and ∆ a as disjoint sequences of new variables (w.r.t. FV(Q)) of the same length as Γ and ∆ respectively. We let V = Γ a ∪ ∆ a and build the substitution ρ of domain V such that Γ a ρ = Γ and ∆ a ρ = ∆. Then Theorem 25 provides an abstract proof Q a : Γ a ∆ a | X a and a substitution θ that is an extension of ρ such that Q a θ = Q, hence Γ a θ = Γ, ∆ a θ = ∆, Γ a ∪ ∆ a ⊆ Dom(θ) and Q a has the same length as P . We may assume w.l.o.g. that Dom(θ) ⊆ FV(Q a ). Q a is abstract hence is a fair K-LK c -proof, and since Q a θ is also a K-LK c -proof then θ is a K-substitution. Since Q a θ is valid, θ is a solution of X a and therefore (X a , id, θ↓ βη ) is a fair controlled unification problem. By Proposition 39 an Rnormal form can be computed in finite time, and by Theorem 41 it must be some ( , σ, θ ) where θ is an extension of θ↓ βη and σ is a fair K-substitution such that σ ∈ sol(X a ) (hence Q a σ is fair and valid) and σ θ , which completes the third step. There is a substitution ρ such that σρ ≡ αβη θ , hence Γ a σρ ≡ αβη Γ a θ = Γ a θ↓ βη ≡ αβη Γ, so that Γ a σ Γ and similarly ∆ a σ ∆. By Theorem 22 Q a σ can be translated into a standard and fair LKproof P : Γ ∆ of the same length as P such that Γ ∆ Γ a σ ∆ a σ Γ ∆, which completes the fourth step.

Example 43. It is easy to see that translating the proof P of Example 3 into a valid LK cproof and then lifting this proof to an abstract proof yields a variant of Q a of Example 27 together with the substitution θ of Example 37. Translating the proof Q a σ 3 into an LK-proof yields (Axiom) (ξ 4 (f 1 z 1 ) (f 2 z 1 )) (ξ 4 (f 1 z 1 ) (f 2 z 1 )) (∀-L) ∀x (ξ 4 x (f 2 z 1 )) (ξ 4 (f 1 z 1 ) (f 2 z 1 )) (∃-R) ∀x (ξ 4 x (f 2 z 1 )) ∃x (ξ 4 (f 1 x) (f 2 x))

Note that if p is replaced by the predicate in P then the result is exactly the same, even though is a logical symbol. The reason is that no equality rule is used in the proof and therefore the constant does not occur in the constraint Y 3 , and therefore Rule → 7 cannot be applied.

Similarly, translating the proof Q a σ 3 into an LK-proof yields (Axiom) (ξ 4 (f 3 z 2 ) (f 4 z 2 )) (ξ 4 (f 3 z 2 ) (f 4 z 2 )) (∀-L) ∀x (ξ 4 (f 3 x) (f 4 x)) (ξ 4 (f 3 z 2 ) (f 4 z 2 )) (∃-R) ∀x (ξ 4 (f 3 x) (f 4 x)) ∃x (ξ 4 x (f 4 z 2 )) which is another possible generalization of P .

Conclusion

Most of the methods and results in this paper apply to other logics whose inference rules can be expressed with λ-terms, as long as the side conditions can themselves be expressed solely as constraints. This expression can be somewhat twisted as we have seen with the eigenvariable condition. The main point is of course to build a constrained inference system suitable for lifting any proof to an abstract proof and constraint.

One particularity of our version of LK is that formulae can only be duplicated (from conclusion to premisses) by the contraction rules (C-L) and (C-R), and we have been careful in designing their constrained versions with linear premisses so that abstract proofs can always be obtained. Other versions of LK, especially those dispensing with the weakening rules, allow for duplications in binary rules. For instance, the (∨-L) rule in [START_REF] Takeuti | Proof Theory[END_REF] = ψ n . Then the sequences Γ, Γ , ∆ and ∆ can be disjoint sets of variables. It is therefore possible to transcribe our method to a version of LK where, except for the (P-L), (P-R) and cut rules, the premisses of an inference rule is always determined by its conclusion (as in [START_REF] Krajíček | The number of proof lines and the size of proofs in first order logic[END_REF]). As explained in Section 6 the structure of abstract proofs would consequently be simplified.

In order to simplify abstract proofs to the point that they become nothing more than proof skeletons, we need to treat LK as a schematic system in the sense of [START_REF] Parikh | Some results on the length of proofs[END_REF] and therefore treat the symbols Γ, ∆, . . . as variables. An easy way to do this is to add two basic types, * for sequences of formulae and s for sequents, and three constants, the comma of type o → * → * , the constant of type * → * → s (both written in infix notation) and a constant of type * for the empty sequence. The constrained version of the (P-L) rule would then be s s | s . = (Γ φ, (ψ, Σ)) ∆ s . = (Γ ψ, (φ, Σ)) ∆ (P-L c ) where s, s are variables of type s, φ, ψ variables of type o, Σ, ∆ variables of type * and Γ a variable of type * → * . It is then obvious that an abstract proof is nothing more than a proof skeleton decorated with its resulting constraint (and then Proposition 29 becomes obvious). The reader has probably noticed that this permutation rule is not strictly equivalent to the original rule since it encompasses (when Γ is instantiated by a constant function) the identity inference, which is only derived in LK. We can see this as an extension of the general permutation rule, just as specifying a position for the permutation of formulae is a restriction of the general rule. Such extensions could make proofs more general as they allow for more inferences at each rule. As a rule of thumb we may presume that longer proofs mean more constraints and therefore less freedom for generalization, hence that only easy theorems (those with short proofs) are prone to generalization. It would be surprising that textbook theorems could be generalized in non-trivial ways; our method is probably more relevant to the context of interactive proofs of "real-world" conjectures. It is anyway to adopt inference systems in which proofs are shorter.

One common way of shortening proofs is to use sequents in which the left and right parts of the turnstile are multisets of formulae. This allows to dispense with the permutation rules (P-L) and (P-R) and therefore with the logistics of moving formulae around in the right positions for the next move 8 . In this case, the comma in the rules should be interpreted as a multiset sum. The proof of Theorem 25 can then easily be adapted so that such LK-proofs can still be lifted to abstract proofs. However, there is a fundamental ambiguity in the process since any occurrence of a formula can be chosen as the principal formula (occurrence) of an inference. For instance, assuming the "weakening-less" axiom Γ, φ ∆, φ and the cut rule we can build the following proof:

p p, q p, p p p, p p, q

There is an ambiguity as to which occurrence of p on the left of the sequent p, p p is involved in the axiom and in the cut. If both involve the same occurrence, the abstract proof is and none of these abstract proofs is an instance of the other. In this case the lifting procedure is non-deterministic and Propositions 29, 30 and 31 do not hold. Of course the generalization algorithm can still be used (there is no guarantee that a most general proof can eventually be obtained anyway).

Future work

The present work raises several interesting theoretical issues. The first one concerns the decidability of the satisfiability problem for LK c -proofs: given a proof P in LK c , is there a substitution σ such that P σ is valid? This amounts to checking whether the constraint X corresponding to P is satisfiable. It is easy to see that this problem is undecidable in general but particular cases deserve to be investigated, e.g., the case in which P is abstract (in the sense of Definition 23). Also, the possibility of computing a maximal solution for all LK c -constraints is an open question (the fact that second order unification is undecidable is not sufficient to answer negatively since the generated constraints are more specific -for instance they are always satisfiable). The properties of the minimization algorithm need further investigations. From a more practical point of view, we also plan to implement the devised generalization procedure.
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 1 Figure 1: The sequent calculus LK

  a) (p a a) (∀-L) ∀x (p x a) (p a a) (∃-R) ∀x (p x a) ∃y (p y a)

  ξσ and Π = Γσ∆σχσ. Assume that Γσ, χσ |= s ∆σ, then there is an interpretation I with domain D such that I |= Γσ, I |= χσ and I |= s ∆σ. Since χσ = ∃ζ, there exists an element e ∈ D such that ζ I (e) = true. Let J be the interpretation of domain D that is identical to I except that ι J (Π) = e. For all D-terms t such that |t| ≤ |Π|, it is obvious by construction of J that ι J (Γ ) = ι I (Γ ) for every Γ ∈ (T D ) + such that |Γ | < |t| (since then Γ = Π), hence by Lemma 8 that t J = t I . In particular, |Γσ| ≤ |Π| and |∆σ| ≤ |Π|, hence J |= Γσ and J |= s ∆σ. Furthermore, |ζ| < |∃ζ| = |χσ| ≤ |Π|, hence (φσ) J = (ζ (ι Π)) J = ζ J (e) = ζ I (e) = true, so that J |= φσ. Hence Γσ, φσ |= s ∆σ, in contradiction with the induction hypothesis on P 1 . Therefore, Γσ, χσ |= s ∆σ must hold.

  and by Corollary 18 φ[x/l] ≡ αβη (ξ y)[x/l] = (ξ[x/l] y). Since obviously y ∈ FV(Γ[x/l], ∆[x/l], ξ[x/l]) (and these terms are in βη-normal form) then

Example 27 .

 27 The following is an abstract LK c -proof Q a obtained by lifting the proof Q of Example 5 with the end sequent φ 1 φ 2 , the substitution σ = [∀x (p x a)/φ 1 , ∃y (p y a)/φ 2 ] and V = {φ 1 , φ 2 }. Symbols z 1 , z 2 are variables of type ı, φ 1 , φ 2 , φ 3 , φ 4 are variables of type o and ξ 1 , ξ 2 are variables of type ı → o.

  FV(u) = {y} and by definition y cannot occur in FV(t) ⊆ {v}, thus FV(t)∩FV(u) = ∅. Furthermore, |yγ| = 1 < |t| = n+1 (since n ≥ 1, see Definition 7 for the definition of |t|).

  Obviously FV(u) = {y, z 1 , . . . , z m } and by definition y, z 1 , . . . , z m ∈ FV(t), hence FV(t) ∩ FV(u) = ∅. Finally, |yγ| = |u| > 0, |z i γ| = n + |t i | and |t| = n + |u| + Σ m i=1 |t i | with m > 0 and |t 1 | > 0, thus |yγ|, |z 1 γ|, . . . , |z m γ| < |t|. Case 4 is similar.

1 z 1

 1 ), θ def = [∀x (p x a)/φ 1 , ∃y (p y a)/φ 2 , (p a a)/φ 3 , (p a a)/φ 4 , λy (p y a)/ξ 1 , λx (p x a)/ξ 2 , a/z 1 , a/z 2 ].

  only Rule → 8 applies, for instance with δ(ξ 1 θ) = δ(λy (p y a)) = (u 1 , γ 1 ), where (by Case 5 of Definition 34) u1 def = λy (ξ 3 (f 1 y) (f 2 y)), γ 1 def = [p/ξ 3 , λy y/f 1 , λy a/f 2 ] and ξ 3 : ı → ı → o, f 1 , f 2 : ı → ı are new variables.The result of applying the rule is obtained by using the substitutions [u 1 /ξ 1 ] (and normalizing) and γ 1 , yielding ((ξ 2 z 2 )

def = σ 1 2 def= θ 1 γ 2 .

 122 [λx (ξ 4 (f 3 x) (f 4 x))/ξ 2 ] and θ Now ξ 4 θ 2 = ξ 4 γ 2 = p and ξ 3 θ 2 = ξ 3 γ 1 = p are both (necessarily the same) constant, hence Rule → 6 applies, yielding

Lemma 38 .

 38 If (Y, σ, θ) is a fair controlled unification problem, where Y is in lnf and θ is βη-reduced, and (Y, σ, θ) → R (Y , σ , θ ) then (Y , σ , θ ) is a fair controlled unification problem, Y is in lnf, θ is a βη-reduced extension of θ and sol(Y , σ ) ⊆ sol(Y, σ).

  Since FV(u) ∩ Dom(θ) = ∅, then xγ θγ = uθγ = uγ ≡ αβη xθ. Besides, for any z ∈ FV(Y) other than x, zγ θγ = zθγ = zθ since FV(zθ) ⊆ FV(Y, θ) is disjoint from Dom(γ). Hence Y θ = Yγ θγ ≡ Yθ ≡ , so that θ ∈ sol(Y ). Since (Y, σ, θ) is a controlled unification problem then σ 2 = σ and Dom(σ)∩FV(Y) = ∅. But Dom(σ ) = Dom(σ) {x} and FV(Y ) = (FV(Y) ∪ FV(u)) \ {x}, hence Dom(σ ) ∩ FV(Y ) = Dom(σ) ∩ FV(u) = ∅. Hence uσ = u and since xσ = u then xσ 2 = u = xσ . Furthermore, for every z ∈ Dom(σ), zσ 2 = zσσ = zσ 2 γ = zσ . Therefore σ 2 = σ .

For

  any µ ∈ sol(Y , σ ) by definition µ ∈ sol(Y ) and σ µ, hence there is a ρ such that µ ≡ αβη σ ρ = σγ ρ. Since Dom(σ) ∩ FV(Y ) ⊆ Dom(σ) ∩ FV(Y, u) = ∅, then Y σ = Y as well as Yσ = Y, and since γ

  and since xγ = zγ then tγµ[y → y ] ≡ αβη sγµ[y → y ]. This yields (λy t)µ ≡ αβη (λy t)γµ = λy tγµ[y → y ] ≡ αβη λy sγµ[y → y ] = (λy s)γµ ≡ αβη (λy s)µ hence µ ∈ sol(Y, σ).
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  is: φ, Γ ∆ ψ, Γ ∆ φ ∨ ψ, Γ ∆where the formulae in the end sequent are duplicated in each premiss. The constrained version of this rule cannot be φ,Γ ∆ ψ, Γ ∆ χ, Γ ∆ | χ . = φ ∨ ψbecause it would then be impossible to satisfy the split variable condition in abstract proofs. Hence a correct "liftable" constrained version of this rule could beφ, Γ ∆ ψ, Γ ∆ χ, Γ ∆ | χ . = φ ∨ ψ Γ . = Γ ∆ . = ∆ where of course φ 1 • • • φ n . = ψ 1 • • • ψ n stands for the constraint φ 1 . = ψ 1 • • • φ n .

  If they involve distinct occurrences of p, then the abstract proof is u v, w | u .

  The length of an LK c -or LK-proof is the number of inferences occurring in it.For any substitution σ and object O on which Oσ is defined, we write O Oσ and say that Oσ is an instance of O. The relation is a quasiorder since Oid = O and O(σµ) = (Oσ)µ always hold. If furthermore the relation ≡ αβη is defined between objects O and O , we write O O (and say that O is more general than O ), if there is a substitution ρ such that Oρ ≡ αβη O . The relation is a quasiorder since, as is well known in λ-calculus, the relation ≡ αβη is substitutive, i.e., O ≡ αβη O entails Oρ ≡ αβη O ρ for any substitution ρ. An object O that verifies some property P is most general w.r.t. P if all objects O verifying P also verify O O ; and O is minimal w.r.t. P if all O verifying P and O O also verify O ≡ αβη O.

	Example 5. The following is an LK c -proof Q with the same end-sequent as in Example
	3 (discarding the constraints). Symbols u, v, ξ, ψ are variables of type ı, ı, ı → o and o
	respectively.

  then there must be in m [x/t][s[x/t]/y] an occurrence of t left. This means that there is in m [x/t] a subterm t other than t or y such that t [s[x/t]/y] = t, hence t is some (ι φ 1 • • • φ n ) and contains a free occurrence of y, which is impossible since

  • • • φ n ) and only consider one axiom and two inference rules.

	If		
	P =	t t	(Ref)

with t ∈ K, since x does not occur in t we deduce that t[x/l] ∈ K, and since (t t)[x/l] = t[x/l] t[x/l], then obviously

Formal definitions are given in Section

2, see in particular Figure1for the inference rules.

Γ ∆, φ Σ, φ Π Γ, Σ ∆, Π (Cut) Γ, φ ∆ Γ, φ ∧ ψ ∆ (∧-L1) Γ ∆, φ Γ ∆, φ ∨ ψ (∨-R1) Γ, ψ ∆ Γ, φ ∧ ψ ∆ (∧-L2) Γ ∆, ψ Γ ∆, φ ∨ ψ (∨-R2) Γ, φ ∆ Σ, ψ Π Γ, Σ, φ ∨ ψ ∆, Π (∨-L) Γ ∆, φ Σ Π, ψ Γ, Σ ∆, Π, φ ∧ ψ (∧-R) Γ ∆, φ Σ, ψ Π Γ, Σ, φ ⇒ ψ ∆, Π (⇒-L) Γ, φ ∆, ψ Γ ∆, φ ⇒ ψ (⇒-R) Γ ∆, φ Γ, ¬φ ∆ (¬-L) Γ, φ ∆ Γ ∆, ¬φ (¬-R)Γ, (ξ t) ∆ Γ, ∀ξ ∆ (∀-L) Γ ∆, (ξ t) Γ ∆, ∃ξ (∃-R)

def = Γσ ∆σ | X σ. The relation ≡ αβη is extended to constrained sequents by Γ ∆ | X ≡ αβη Γ ∆ | X if Γ ∆ ≡ αβη Γ ∆ and X ≡ αβη X .The rules of LK c are given in Figure2in a condensed way; a rule of the formΓ 1 ∆ 1 • • • Γ n ∆ n Γ ∆ | X stands for Γ 1 ∆ 1 | X 1 • • • Γ n ∆ n | X n Γ ∆ | X 1 • • • X n X .Γ, ∆, Σ, Π are sequences of terms of type o, χ, φ, ψ, ϕ are terms of type o, ξ is a term of type ı → o and s, t are terms of type ı.For any L ⊆ T we call L-LK c -proofs all proofs built with the rules of Figure2and containing only constrained L-sequents. The constraint of an LK c -proof P is the constraint of its last constrained sequent. P is valid if its constraint is valid. For any substitution

We assume w.l.o.g. that D ∩ (C ∪ V) = ∅ and that D contains no non-atomic terms in T D .

More precisely on a special kind of formulae called "matrices".

note that the X i 's are not part of these meta-variables.

In all rigor the same should be done in[START_REF] Krajíček | The number of proof lines and the size of proofs in first order logic[END_REF] for the (⇒-L) rule from[START_REF] Takeuti | Proof Theory[END_REF].

These constants cannot be generalized simply because there is no variable of the corresponding types. The equality predicate could be generalized if its specific properties are not used in the proof, i.e., if no paramodulation inference is applied on it. Of course, if no ∧-rule is applied on a formula (∧ t 1 t 2 ) then it can be generalized by a variable of type o.

In particular, if v ∈ {∀, ∃} then m = 1 and z 1 has type ı n+1 → o. If v is a binary connective then m = 2 since t has V-type.

Another way to do this is to allow principal formulae to occur anywhere in the conclusions of the rules.For instance, the (¬-L) rule would be Γ, Σ ∆, φ Γ, ¬φ, Σ ∆ .
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(t . = t X , σ, θ) → 1 (X , σ, θ) (λy t . = λy s X , σ, θ) → 2 (t . = s X , σ, θ) if y ∈ FV(t, s), (λy (x y) . = λy s X , σ, θ) → 3 (X γ , σγ, θ) if x ∈ V, x ∈ FV(s) and γ = [λy s/x],

Figure 4: The unifier minimization rules obtained problem is always equivalent to the initial one). However, this is not the case for Rules → 6 , → 8 and → 9 , for which some of the solutions may be lost (e.g., in Rule → 6 , if x and z are constant functions the terms (x t 1 • • • t n ) and (z s 1 • • • s n ) may be equal even if t i and s i are distinct). However, the application conditions ensure that the specific solution θ associated with the controlled unification problem (third component) is preserved.

Rules → 8 and → 9 are different ways of using the solution θ as a guide toward a generalized solution of the constraint. In Rule → 8 the choice is to make a minimal copy of the value xθ for a variable x (as explained before Definition 34). In Rule → 9 the choice is to assert as constraints some equalities that happen to hold on θ (but the common value xθ↓ βη = zθ↓ βη is not used as such). The same choice motivates Rule → 6 , but it is postponed until atomic values are reached for xθ and zθ (which implies that xθ ≡ αβη zθ and therefore Rule → 6 is a restriction of Rule → 9 ), when Rule → 8 can no longer be applied. In contrast, Rules → 8 and → 9 overlap and both may entail some loss of generality, since the set of solutions is not preserved, and it is easy to construct examples showing that neither of the rules is uniformly superior to the other. There does not seem to be any easy way to decide which rule should preferably be applied in any given context (other than computing and comparing all normal forms, but this is not practical). The algorithm R circumvents the dilemma.

In the following example, we adopt algorithm R and apply the rules that preserve equivalence with the highest priority. of which we discard the variables not occurring in Y 3 ; with the suitable normalizations, common variable with FV(θ) and, due to the lnf, t and s are terms of order 1. Thus λy tθ ≡ αβη (λy t)θ ≡ αβη (λy s)θ ≡ αβη λy sθ, hence tθ ≡ αβη sθ, and neither t nor s is an abstraction. Let X be the remaining constraint, i.e., such that Y ≡ λy t . = λy s X . Since Y is fair and there is no logical symbol of order 1, neither t nor s is a constant; hence they are either variables, applications or eigenterms. Suppose t and s are both variables. If y is empty then either t = s and then Rule → 1 applies; or t = s and then Rule → 3 applies. If y is not empty and one of t or s, say t, belongs to y then (λy t)θ = (λy t) ≡ αβη (λy s)θ, which means that s must be the same variable as t, hence Rule → 1 applies. If none belong to the non empty y, then the first variable of y does not belong to FV(t, s) = {t, s} and Rule → 2 applies. Since (Y, σ, θ) is irreducible then t and s cannot both be variables.

Suppose one of t or s, say t, is a variable x; then s is not a variable.

(which only can be eliminated by β-reduction) and zθ must be an abstraction. Since s is in lnf then z must be a variable, hence Rule → 8 applies (to the same equation with reverse orientation). We conclude that neither t nor s can be a variable.

If one of t or s, say t, is an eigenterm (ι t 1 • • • t n ), then so are tθ and sθ. If s is an eigenterm (ι

If y is not empty then its first variable does not belong to FV(t, s) by definition of K hence Rule → 2 applies; otherwise y is empty and Rule → 4 applies. Thus s cannot be an eigenterm or a variable, hence as above it must be an application (z

and zθ is an abstraction, hence Rule → 8 applies (with reverse orientation). We conclude that neither t nor s can be an eigenterm. Hence t and s must both be applications; let

where n, m ≥ 1 and v, w are either variables or constants. If they are both constants, then tθ↓ βη = (v t 1 θ↓ βη • • • t n θ↓ βη ) and sθ↓ βη = (w s 1 θ↓ βη • • • s m θ↓ βη ) are equal, hence n = m, v = w and Rule → 5 applies. Hence one of v or w, say v, is a variable. If vθ ∈ V ∪ C then Rule → 8 applies, hence vθ ∈ V ∪ C and therefore tθ↓ βη = (vθ t 1 θ↓ βη • • • t n θ↓ βη ). If w is also a variable then either wθ ∈ V ∪ C and Rule → 8 applies (with reverse orientation), or wθ ∈ V ∪ C and therefore sθ↓ βη = (wθ t 1 θ↓ βη • • • t n θ↓ βη ), n = m and Rule → 6 applies. w must therefore be a constant, so that sθ↓ βη = (w s 1 θ↓ βη • • • s m θ↓ βη ), n = m and vθ = w. But X is fair, hence w is a logical symbol of V-type, i.e., w is and therefore Rule → 7 applies, a contradiction. This entails that both Rand R -normal forms are exactly the solved problems. This also means that, starting from a given controlled unification problem, R may reach more solutions than R; hence we adopt R as our minimization algorithm and we denote by P↓ R an arbitrarily chosen R -normal form of P. By putting together all the previous results, we immediately infer the correction of this minimization algorithm: Theorem 41. Let X be a fair K-constraint in lnf, θ a βη-reduced K-substitution such that θ ∈ sol(X ) and (Y, σ, θ ) = (X , id, θ)↓ R , then θ is an extension of θ and σ is a fair K-substitution such that σ ∈ sol(X ) and σ θ .

Proof. (X , id, θ) is obviously a fair controlled unification problem, by Proposition 39 any R -normal form (Y, σ, θ ) exists and by Lemma 38 it is a fair controlled unification problem (hence σ θ ) such that θ is an extension of θ and sol(Y, σ) ⊆ sol(X , id), and Y is in lnf according to the strategy. But Y ≡ by Lemma 40, hence σ ∈ sol(Y, σ) and therefore σ ∈ sol(X ).