
HAL Id: hal-01363980
https://hal.science/hal-01363980v1

Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond Gbps Turbo Decoder on Multi-Core CPUs
Adrien Cassagne, Thibaud Tonnellier, Camille Leroux, Bertrand Le Gal,

Olivier Aumage, Denis Barthou

To cite this version:
Adrien Cassagne, Thibaud Tonnellier, Camille Leroux, Bertrand Le Gal, Olivier Aumage, et
al.. Beyond Gbps Turbo Decoder on Multi-Core CPUs. The 10th International Symposium
on Turbo Codes and Iterative Information Processing (ISTC 2016), Sep 2016, Brest, France.
�10.1109/ISTC.2016.7593092�. �hal-01363980�

https://hal.science/hal-01363980v1
https://hal.archives-ouvertes.fr

Beyond Gbps Turbo Decoder on Multi-Core CPUs

Adrien Cassagne∗†, Thibaud Tonnellier∗, Camille Leroux∗, Bertrand Le Gal∗, Olivier Aumage† and Denis Barthou†
∗IMS Lab, Bordeaux INP, France

†Inria / Labri, Univ. Bordeaux, INP, France

Abstract—This paper presents a high-throughput implementa-
tion of a portable software turbo decoder. The code is optimized
for traditional multi-core CPUs (like x86) and it is based
on the Enhanced max-log-MAP turbo decoding variant. The
code follows the LTE-Advanced specification. The key of the
high performance comes from an inter-frame SIMD strategy
combined with a fixed-point representation. Our results show
that proposed multi-core CPU implementation of turbo-decoders
is a challenging alternative to GPU implementation in terms of
throughput and energy efficiency. On a high-end processor, our
software turbo-decoder exceeds 1 Gbps information throughput
for all rate-1/3 LTE codes with K < 4096.

I. INTRODUCTION

Turbo codes [1] are widely used as the channel coding com-
ponent in digital communication standards, such as the LTE
wireless specification [2]. Dedicated hardware architectures of
turbo-decoders are usually mapped on custom Silicon in order
to reach high energy-efficiency and high-throughput [3]–[6].
In [6] a turbo-decoder ASIC is demonstrated to reach 1.01
Gbps while consuming 0.7 nJ per decoded bit (K = 6144
and 6 iterations). However, dedicated hardware turbo-decoders
lack flexibility. This will become especially true in the future
5G mobile networks where baseband processing will be vir-
tualized and implemented on centralized cloud platforms [7],
[8]. Software implementations will then offer flexibility and
short development cycles to the channel decoder design, at the
cost of lower throughputs and higher energy consumptions. In
such a context, the channel coding functions must be analyzed
and optimized to be efficiently mapped on general purpose
processors [7], [8]. In the case of turbo coding, some work
has been initiated to devise efficient software implementations
of turbo decoders, mostly focusing on the LTE standard.

In [9]–[18], turbo decoders were implemented on GPU
targets to benefit from their computing power in order to
comply with the LTE required throughputs. This was made
possible by exploiting the parallelism within the turbo de-
coding process (intra-frame parallelism). An alternative is to
process several codewords on distinct computation resources
(inter-frame parallelism). For instance, in [15], a throughput
of 122.8 Mbps was reached for a code dimension K = 6144
and 6 decoding iterations on a GPU device. One should notice
that this throughput is approximately one decade lower than
the dedicated hardware implementation in [6] while the power
consumption is one to two decades higher. Indeed, despite the
large amount of parallelism in a GPU, it is not obvious to feed
every processing unit with data and some non-negligible time

is spent in memory accesses. This leads to an inefficient use
of the hardware resources and to high energy consumption.

An intermediate solution between dedicated hardware and
a GPU is the use of general purpose processors (GPP). Multi-
core devices provide high performance computation capabil-
ities while consuming noticeably less power. Thanks to a
large set of processor cores it becomes possible to implement
computation intensive applications such as channel decoding
with a lower energy consumption in comparison to GPU
targets. In [16], [19], [20], software turbo decoders are imple-
mented on GPP targets with intra-frame parallelism, similar to
hardware-oriented strategies. Unlike these works, we propose
to investigate the exclusive use of inter-frame parallelism. A
generic and portable software turbo decoder has been designed
and ported on several GPP targets. Experimental results show
that inter-frame parallelism allows a more efficient use of CPU
resources and our software turbo-decoder outperforms existing
implementations in terms of throughput and energy efficiency.
Moreover, it exceeds 1 Gbps information throughput on a high-
end CPU, making multi-core CPU a compelling alternative to
GPU for channel decoding processing in cloud-based Random
Access Network (RAN) [7], [8].

The remainder of this paper is organized as follows. Sec-
tion II presents the turbo code decoding algorithm that was
implemented in this work. Section III shows the benefit of
inter-frame parallelism for multi-core implementations. Sec-
tion IV details the optimized implementation of the turbo-
decoder. Section V presents experiments and comparison with
related works in the field.

II. OVERVIEW OF THE TURBO DECODING PROCESS

The turbo-decoding process is an iterative process in which
two soft input soft output (SISO) decoders exchange extrinsic
information. Each SISO decoder uses the channel information
and a priori extrinsic information to compute a posteriori
extrinsic information. The a posteriori information becomes
the a priori information for the other SISO decoder and is
exchanged via interleaver/deinterleaver.

In turbo-coding, the two component codes are convolutional
codes, the associated decoding modules perform the BCJR
or forward-backward algorithm [21] which is optimal for
the maximum a posteriori (MAP) decoding of convolutional
codes. In order to calculate the extrinsic information for a bit, a
BCJR SISO decoder first computes the probability that a trellis
transition occurred during the encoding process. The branch

metrics associated with states ski and sk+1
j are computed as:

γ(ski , s
k+1
j) = 0.5(Lksys + Lka)uk + 0.5(Lkpp

k). (1)

Here, Lksys and Lka are the systematic channel LLR and the
a-priori LLR for kth trellis section, respectively. In addition,
the parity LLRs for the kth trellis step are Lkp = Lkp0 for
MAP decoder 0 and Lkp = Lkp1 for MAP decoder 1. We
do not need to evaluate the branch metric γ(sk, sk+1) for all
16 possible branches, as there are only four different branch
metrics: γk0 = 0.5(Lksys+Lka+Lkp), γk1 = 0.5(Lksys+Lka−Lkp),
−γk0 , and −γk1 . After that, the SISO decoder computes forward
and backward recursions over the trellis representation of the
convolutional code. In this work, we use the Enhanced max-
log-MAP algorithm [22], [23]. For each state j of section k
of the trellis, the forward (α) and backward (β) metrics are
computed as follows:

αk+1
j = maxiεF {αki + γ(ski , s

k+1
j)} (2)

βkj = maxiεB{βk+1
i + γ(skj , s

k+1
i)}. (3)

Then, the extrinsic information for each bit at position k is:

Lke = max{sk,sk+1}εU1{αki + βk+1
j + γ(ski , s

k+1
j)}

−max{sk,sk+1}εU−1{αki + βk+1
j + γ(ski , s

k+1
j)}

−Lksys − Lka,
(4)

Finally, Le is scaled by a fixed factor of 0.75.

III. PARALLELISM ANALYSIS

a) Intra-frame versus inter-frame parallelism: A Turbo
decoder is in charge of decoding a large set of frames.
Two strategies are then possible to speedup the decoding
process. i) Intra-frame parallelism : the decoder exploits the
parallelism within the turbo-decoding process by executing
concurrent tasks during the decoding of one frame. ii) inter-
frame parallelism : several frames are decoded simultaneously.

In the perspective of a hardware implementation, the intra-
frame approach is efficient [24] because the area overhead
resulting from parallelization is lower than the speedup. On
the contrary, the inter-frame strategy is inefficient, due to the
duplication of multiple hardware turbo-decoders. The resulting
speedup comes at a high cost in term of area overhead.

In the perspective of a software implementation, the issue
is different. The algorithm is executed on a programmable
non-modifiable architecture. The degree of freedom lies in the
mapping of the different parallelizable tasks on the parallel
units of the processor. Modern multi-core processors support
Single Program Multiple Data (SPMD) execution. Each core
includes Single Instruction Multiple Data (SIMD) units. The
objective is then to identify the parallelization strategy suitable
for both SIMD and SPMD programming models. In the
literature, intra-frame parallelism is often mapped on SIMD
units while inter-frame parallelization is usually kept for multi-
threaded approaches (SPMD). In [16], [20], multiple trellis-
state computations are performed in parallel in the SIMD units.
In [9]–[18], [20], the decoded frame is split into sub-blocks

1 2 ... K 1 2 ... K 1 2 ... K

1 1 ... 1 2 2 ... 2 K K ... K

Frame 1 Frame 2 Frame F...

Turbo code
decoding

1 2 ... K 1 2 ... K 1 2 ... K
Frame 1 Frame 2 Frame F...

SIM
D

reordering
SIM

D
reordering

SIMD decoding process

Fig. 1. Frame reordering process before and after the decoding process.
Performed 3 times: for systematic, first and second parity information.

that are processed in parallel in the SIMD units. An alternative
approach is to process both SISO decoding in parallel but it
requires additional computations for synchronization and/or
impacts on error-correction performance [24]. However, for
all these approaches a part of the computation of the BCJR
decoder remains sequential, bounding the speedup beyond
the capabilities of SIMD units. Inter-frame parallelism has
been proposed in [9], [10], [16], [20]. Multiple codewords are
decoded in parallel, it improves the memory access regularity
and the usage rate of SIMD units. The speedup is no longer
bounded by the sequential parts, all removed, but this comes
at the expense of an increase in memory footprint and latency.

In this work, we focus on the inter-frame parallelization and
show that the use of this approach allows some register-reuse
optimizations that are not possible in the intra-frame strategy.

b) Inter-frame parallelism on multi-core CPUs: The
contribution of this work is to propose an efficient mapping of
multiple frames on the CPU SIMD units (inter-frame strategy):
the decoding of M frames is vectorized. Before the decoding
process can be launched, this new approach requires to: (a)
buffer a set of M frames and (b) reorder the input LLRs in
order to make the SIMDization efficient with memory aligned
transactions (see Fig. 1). Similarly, a reversed-reordering step
has to be performed at the end of the decoding process.
These reordering operations are expensive but they make the
complete decoding process very regular and efficient for SIMD
parallelization. Moreover, reordering is applied only once,
independently of the number of decoding iterations.

Algorithm 1 Standard BCJR implementation
1: for all frames do . Sequential loop
2: for k = 0; k < K; k = k + 1 do . Parallel loop
3: γk ← computeGamma(Lk

sys, L
k
p , L

k
e)

4: α0 ← initAlpha()
5: for k = 1; k < K; k = k + 1 do . Sequential loop
6: αk ← computeAlpha(αk−1,γk−1)

7: βK−1 ← initBeta()
8: for k = K − 2; k ≥ 0; k = k − 1 do . Sequential loop
9: βk ← computeBeta(βk+1,γk)

10: for k = 0; k < K; k = k + 1 do . Parallel loop
11: Lk

e ← computeExtrinsic(αk,βk,γk)

Algorithm 2 Loop fusion BCJR implementation
1: for all frames do . Vectorized loop
2: α0 ← initAlpha()
3: for k = 1; k < K; k = k + 1 do . Sequential loop
4: γk−1 ← computeGamma(Lk−1

sys , Lk−1
p , Lk−1

e)
5: αk ← computeAlpha(αk−1,γk−1)

6: γK−1 ← computeGamma(LK−1
sys , LK−1

p , LK−1
e)

7: βK−1 ← initBeta()
8: LK−1

e ← computeExtrinsic(αK−1,βK−1,γK−1)
9: for k = K − 2; k ≥ 0; k = k − 1 do . Sequential loop

10: βk ← computeBeta(βk+1,γk)
11: Lk

e ← computeExtrinsic(αk,βk,γk)

In the proposed implementation, the inter-frame parallelism
is used to fill the SIMD units of the CPU cores. Algorithm 1
illustrates the traditional implementation of the BCJR (used
for the intra-frame vectorization). The inter-frame strategy
makes the outer loop on the frame parallel (through vectors).
This means all computations inside this loop operate on
SIMD vectors instead of scalars, and the inner loops can be
turned into sequential loops on SIMD vectors. This gives the
opportunity for memory optimizations, through loop fusion.
The initial 4 inner loops are merged into 2 loops. Algorithm 2
presents this loop fusion optimization. This makes possible
the scalar promotion of βj (no longer an array), since it can
be directly reused from the CPU registers. In this version, the
SIMD are always stressed.

On a multicore processor, each core decodes M frames
using its own SIMD unit and T threads are activated, a total of
M × T frames are therefore decoded simultaneously with the
inter-frame strategy. Theoretically, this SPMD parallelization
strategy provide an acceleration up to a factor T , with T cores.
Large memory footprint, exceeding L3 cache capacity may
reduce the effective speedup, as shown in Section V.

IV. IMPLEMENTATION OF THE DECODER

The presented decoder implementation is available in the
AFF3CT1 software [25]. The use of C++ templates associated
to our generic SIMD library enables the same source code
to be compiled using different formats (32-bit float, 16-
bit short, and 8-bit char) and different SIMD instructions
(SSE, AVX and NEON), providing possible trade-offs between
SIMDization, throughput and error-correction performance.

a) Fixed-point representation: Nowadays on x86 CPUs,
there are large SIMD registers: SSE/NEON are 128 bits wide
and AVX are 256 bits wide. The number of elements that can
be vectorized depends on the SIMD length and on the data
format: nelem = sizeof(SIMD)/sizeof(data). So, the key
for a large parallelism is to work on short data.

As there is no floating-point support for 16-bit and 8-
bit data, a fixed-point representation is used. The AWGN
channel soft information is quantized as follows: yks,v =
Ψ(2v.yk ± 0.5), with yk the current floating-point value from
the channel, s the number of bit of the quantized number,
including v bits for the fractional part and the saturation

1AFF3CT is an Open-source software (MIT license) for fast forward error
correction simulations, see http://aff3ct.github.io

function Ψ(x) = min(max(x,−2s−1 + 1), 2s−1 − 1). In the
experiments (cf. Fig. 2) Qs,v denotes this channel quantization.

During the turbo-decoding process, the extrinsic values
grow at each iteration. It is then necessary for internal LLRs
to have a larger dynamic than the channel information. De-
pending on data format, 16-bit or 8-bit, the quantization used
in the decoder is Q16,3 or Q8,2, respectively.

b) Memory allocations: The systematic information
LsysN /LsysI and the parity information LpN /LpI are stored
in the natural domain N as well as in the interleaved do-
main I . Two extrinsic vectors are also stored: LeN in N
and LeI in I . Inside the BCJR decoding and per trellis
section, two γi and eight αj metrics are stored. Thanks to
the loop fusion optimization, the eight βj metrics are not
stored in the global memory. In the proposed implementation
i ∈ {0, 1} and j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Notice that all
those previously-mentioned vectors are K-bit wide and are
duplicated M × T times because of the inter-frame strategy.
The memory footprint in bytes is approximatively equal to:
16 × K × sizeof(data) × M × T . The interleaving and
deinterleaving lookup tables have been neglected in this model.

c) Forward trellis traversal: The objective is to reduce
the number of loads/stores, performing the arithmetic com-
putations (add and max) inside registers. The max-log-MAP
algorithm only stresses the integer pipeline of the CPU. This
kind of operations takes only one cycle to execute when the
latency is also very small (1 cycle too). In contrast, a load/store
can take a larger number of cycles depending on where the
current value is loaded/stored in the memory hierarchy. Using
data directly from the registers is cost-free but loading/storing
it from the L1/L2/L3 cache can take up to 30 cycles (at worst).

Per trellis section k, the two γki metrics are computed from
the systematic and the parity information. These two γki are
directly reused to compute the eight αkj metrics. Depending
on the number of bits available, the trellis traversal requires
to normalize the αkj because of the accumulations along
the multiple sections. In 8-bit format, the αkj metrics are
normalized for each section: the first αk0 value is subtracted
to all the αkj (including αk0 itself). In the 16-bit decoder, the
normalization is only applied every eight steps (like in [16]),
since there are enough bits to accumulate eight values. We
have observed in experiments that there is no performance
degradation due to the normalization process. At the end of a
trellis section k the two γki and the eight normalized αkj are
stored in memory. In the next trellis section (k + 1) the eight
previous αkj are not loaded from memory but they are directly
reused from registers to compute the αk+1

j values.
d) Backward trellis traversal: Per trellis section k, the

two γki metrics are loaded from the memory. These two metrics
are then used to compute, on the fly, the eight βkj metrics
(whenever needed the βkj metrics have been normalized like
for the αkj metrics). After that, the αkj metrics are loaded from
the memory. The αkj , βkj and γki metrics are used to determine
the a posteriori and the extrinsic LLRs. In the next trellis
section (k − 1) the previous βkj metrics are directly reused

TABLE I
SPECIFICATIONS OF THE TARGET PROCESSORS.

CPU P1 : Xeon E5-2650 P2: Core i7-4960HQ P3: Xeon E5-2680v3
Intel Arch. Ivy Bridge Q1’12 Haswell Q4’13 Haswell Q3’14
Cores/Freq. 8 cores, 2–2.8 GHz 4 cores, 2.6–3.8 GHz 12 cores, 2.5–3.3 GHz

LLC 20MB L3 6MB L3 30MB L3
TDP 95 W 47 W 120 W

from registers in order to compute the next βk−1j values. The
βkj metrics are then never stored in the memory.

V. EXPERIMENTS AND RESULTS

The experiments have been conducted on three different
x86-based processors detailed in Table I. A mid-range pro-
cessor (P2) is used for comparison with similar CPU tar-
gets in the literature [16], [19], [20] while the two high-
end processors (P1 and P3) are used for comparison with
GPU-based turbo-decoder implementations. Indeed, P1 and
P3 have a number of cores that is similar to the number
of Streaming Multiprocessors (SM) inside a GPU. Moreover,
the code has been compiled on Linux (Ubuntu 14.04 LTS)
with the GNU compiler (version 4.8) and with the -Ofast
-funroll-loops -msse4.1/-mavx2 flags.

a) BER/FER performance: Fig. 2 shows the decoding
performance of the proposed software turbo-decoder for the
K = 6144 rate-1/3, LTE-specified turbo-code. The decoding
performance of a floating-point decoder is provided as a
reference. Unlike [16], the proposed 16-bit implementation
does not degrade the decoding performance. The 8-bit version
of our decoder shows a 0.15dB degradation. The limited
dynamic of 8-bit format together with early saturation inside
the decoder are responsible for this small performance loss.

b) Throughput performance: Fig. 3 shows the evolution
of the information throughput depending on the code dimen-
sion K. This experiment was conducted on P2 and P3 (both
have Haswell architectures). The throughput tends to increase
linearly with the number of cores (up to 24 cores) except
in AVX mode where a performance drop can be observed
when K > 4096. The reason is that the AVX instructions

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2

BE
R

Eb/N0 (dB)

float (ref)
int-16 Q6,3

int-8 Q6,2

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2

FE
R

Eb/N0 (dB)

Fig. 2. Bit Error Rate (BER) and Frame Error Rate (FER) of the decoder for
K = 6144 (6 iters) and R = 1/3. Enhanced max-log-MAP algorithm (scaling
factor = 0.75). BPSK modulation and AWGN channel were used.

 16

 32

 64

 128

 256

 512

 1024

1024 2048 3072 4096 5120 6144

Th
ro

ug
hp

ut
 (M

bp
s)

Code dimension K

E5-2680v3 (P3):
1 core AVX
1 core SSE

4 cores AVX
4 cores SSE

12 cores AVX
12 cores SSE
24 cores AVX
24 cores SSE

i7-4960HQ (P2):

1 core AVX
1 core SSE

4 cores AVX
4 cores SSE

Fig. 3. Information throughput depending on K for various number of cores
and SIMD instruction types. 6 iterations, 8-bit fixed-point.

use vectors 2× wider than those used by SSE instructions
and the inter-frame strategy loads twice the number of frames
to fill these vectors. Thus, for K > 4096, in AVX, the
memory footprint exceeds the L3 cache optimal occupancy
and the performance is driven by the RAM bandwidth. Then,
as K increases the number of RAM accesses increases and
there is not enough memory bandwidth to feed all the cores.
This explains the decreasing throughput for K > 4096, in
AVX mode. Nonetheless, on P3 target, the throughput exceeds
1Gbps for all codes with K < 4096.

Fig. 4 shows the energy consumed by the processor to
decode one information bit (Ed) of the codes using SSE and
AVX instructions, on the P2 CPU target. For small codewords
(K = 1024) it is more energy efficient to resort to AVX. But
this is not so clear on larger codewords (K = 6144) since
with 3/4 cores, the code using SSE outperforms the AVX one.

Table II shows a performance comparison with related
works2. The variety of CPU/GPU targets and algorithmic
parameters allows to show some global emerging trends. When
comparing to similar CPU targets [16], [20], the proposed im-

2To be as fair as possible with the other works, we assume that the
Intel Turbo Boost (ITB) technology was disabled on their CPUs. For our
experiments, the ITB technology was on and the real frequency is picked
up. Moreover, for GPU works there is an asterisk when it is unclear if the
CPU/GPU data transfer times have been taken into account.

 250

 300

 350

 400

 450

 500

 550

 600

1 2 3 4

En
er

gy
-p

er
-b

it
(n

J)

Number of cores

K=1024 AVX
K=1024 SSE
K=6144 AVX
K=6144 SSE

Fig. 4. Energy-per-bit (Ed) depending on the number of cores and the
instruction types. 6 iterations, 8-bit fixed-point. The throughput and power
measurements were conducted on P2 with the Intel Power Gadget tool.

TABLE II
PERFORMANCE COMPARISON WITH THE OTHER WORKS. ALL THE REPORTED METRICS ARE NORMALIZED TO ONE ITERATION.

NThr. = (Thr.× Iters)/(Freq.× Cores) , TNDC = (Thr.× Iters)/(Cores× Freq.× SIMD), Ed = [TDP/(Thr.× Iters)]× 103 .
ON CPUS, ONLY SSE INSTRUCTIONS ARE CONSIDERED.

Hardware and decoder parameters Decoding performances Metrics

Work Year Platform Arch. TDP Cores Freq. Algorithm Pre. SIMD Inter K Iters BER FER Lat. Thr. NThr. TNDC Ed

Watts or SM GHz bit length level at 0.7 dB µs Mbps Mbps nJ

G
PU

-b
as

ed

[9] 2010 Tesla C1060 Tesla 200 15 1.30 ML-MAP 32 16 100 6144 5 1e-04 − 76800 8.0 2.1 0.135 5000
[10] 2011 GTX 470 Fermi 215 14 1.22 ML-MAP 32 32 100 6144 5 4e-05 − 20827 29.5 8.6 0.270 1458
[11] 2012 Tesla C2050 Fermi 247 14 1.15 L-MAP 32 32 32 11918 5 − − 108965 3.5 1.1 0.035 14114
[12] 2012 9800 GX2 Tesla 197 16 1.50 ML-MAP 32 16 1 6144 5 1e-02 − 3072 2.0 0.4 0.025 19700
[13] 2013 GTX 550 Ti Fermi 116 6 1.80 EML-MAP 32 32 1 6144 6 1e-02 − 72∗ 85.3 47.4 1.482 227
[14] 2013 GTX 580 Fermi 244 16 1.54 ML-MAP 32 32 1 6144 6 3e-04 − 1660 3.7 0.9 0.030 10090
[15] 2013 GTX 480 Fermi 250 15 1.40 EML-MAP 32 32 1 6144 6 − − 50∗ 122.8 35.1 1.098 339
[16] 2013 GTX 680 Kepler 195 8 1.01 EML-MAP 32 192 16 6144 6 − 1e-02 2657 37.0 27.5 0.144 878
[17] 2014 Tesla K20c Kepler 225 13 0.71 ML-MAP 32 192 1 6144 5 1e-04 − 1097 5.6 3.0 0.015 8036
[18] 2014 GTX 580 Fermi 244 16 1.54 BR-SOVA 8 32 4 6144 5 2e-02 − 192∗ 127.8 25.9 0.810 382

C
PU

-b
as

ed

[19] 2011 i7-960 Nehalem 130 1 3.20 ML-MAP 16 8 1 1008 8 3e-03 7e-02 138 7.3 18.3 2.280 2226
[20] 2012 X5670 Westmere 95 6 2.93 EML-MAP 8 16 6 5824 3 6e-02 − 157 222.6 38.0 2.373 142
[16] 2013 i7-3770K Ivy Bridge 77 4 3.50 EML-MAP 16 8 4 6144 6 − 1e-01 323 76.2 32.7 4.080 168

2016

E5-2650 Ivy Bridge 95 8 2.50

EML-MAP

16 8
64

6144 6

6e-06 6e-03
3665 107.3 32.2 4.014 148

i7-4960HQ Haswell 47 4 3.20 32 2212 88.9 41.7 5.208 88
this 2×E5-2680v3 Haswell 240 24 2.50 192 2657 443.7 44.4 5.544 90

work E5-2650 Ivy Bridge 95 8 2.50
8 16

128
8e-05 5e-02

3492 225.2 67.6 4.224 70
i7-4960HQ Haswell 47 4 3.20 64 2837 138.6 65.0 4.062 57

2×E5-2680v3 Haswell 240 24 2.50 384 3293 716.4 71.6 4.476 56

plementation reaches similar or higher throughput (from 88.9
Mbps to 138.6 Mbps on P2 target) at the price of an increased
latency (from 2212 µs to 2837 µs) and memory footprint.
The proposed high-end CPU processor (P3) implementation
outperforms all GPU-based works in terms of throughput
(from 443.7 Mbps to 716.4 Mbps) while consuming noticeably
less power (from 56 nJ to 90 nJ for each iteration). This leads
to the conclusion that high-end multi-core CPUs is a more
energy-efficient solution than GPUs while ensuring similar
or higher throughputs. Considering this, high-end multi-core
CPU appear as an alternative to GPU in future channel coding
functions in cloud-based RAN.

VI. CONCLUSION

Future communication standards will make use of cloud-
based RAN. In such a context, channel decoding processing
will be mapped on programmable targets. In this work, we
investigate the use of inter-frame parallelism for optimized
software implementation of turbo decoders. Our results show
that CPUs are competitive solutions in terms of throughput and
energy consumption. The proposed software decoder exceeds
1 Gbps on a high-end CPU.

ACKNOWLEDGMENT

This work was supported by a grant overseen by the French
National Research Agency (ANR), ANR-15-CE25-0006-01.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo-codes.” in IEEE ICC, 1993.

[2] ETSI, “3GPP - TS 136.212 - Multiplexing and channel coding (R. 11).”
[3] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and

optimization of an HSDPA turbo decoder ASIC,” IEEE JSSC, vol. 44,
no. 1, pp. 98–106, 2009.

[4] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and
implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE
JSSC, vol. 46, no. 1, pp. 8–17, 2011.

[5] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of
a highly-parallel 3GPP LTE/LTE-advance turbo decoder,” Integration
JVLSI, vol. 44, no. 4, pp. 305–315, 2011.

[6] S. Belfanti et al., “A 1Gbps LTE-advanced turbo-decoder ASIC in 65nm
CMOS,” in IEEE VLSIC, 2013.

[7] H. Paul, D. Wubben, and P. Rost, “Implementation and analysis of
forward error correction decoding for cloud-RAN systems,” in IEEE
ICCW, 2015.

[8] D. Wubben et al., “Benefits and impact of cloud computing on 5g
signal processing: Flexible centralization through cloud-ran,” IEEE SPM,
vol. 31, no. 6, pp. 35–44, 2014.

[9] M. Wu, Y. Sun, and J. R. Cavallaro, “Implementation of a 3GPP LTE
turbo decoder accelerator on GPU,” in IEEE SiPS, 2010.

[10] M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, “Implementation of a
high throughput 3GPP turbo decoder on GPU,” Springer JSPS, vol. 65,
no. 2, pp. 171–183, 2011.

[11] S. Chinnici and P. Spallaccini, “Fast simulation of turbo codes on GPUs,”
in IEEE ISTC, 2012, pp. 61–65.

[12] D. Yoge and N. Chandrachoodan, “GPU implementation of a pro-
grammable turbo decoder for software defined radio applications,” in
IEEE VLSID, 2012.

[13] C. Liu, Z. Bie, C. Chen, and X. Jiao, “A parallel LTE turbo decoder on
GPU,” in IEEE ICCT, 2013.

[14] X. Chen, J. Zhu, Z. Wen, Y. Wang, and H. Yang, “BER guaranteed
optimization and implementation of parallel turbo decoding on GPU,”
in IEEE ICST, 2013.

[15] J. Xianjun, C. Canfeng, P. Jaaskelainen, V. Guzma, and H. Berg, “A
122mb/s turbo decoder using a mid-range GPU,” in IEEE IWCMC, 2013.

[16] M. Wu, G. Wang, B. Yin, C. Studer, and J. R. Cavallaro, “HSPA+/LTE-A
turbo decoder on GPU and multicore CPU,” in IEEE ACSSC, 2013.

[17] Y. Zhang et al., “The acceleration of turbo decoder on the newest
GPGPU of kepler architecture,” in IEEE ISCIT, 2014.

[18] R. Li, Y. Dou, J. Xu, X. Niu, and S. Ni, “An efficient parallel SOVA-
based turbo decoder for software defined radio on GPU,” IEICE Trans.
Fundamentals, vol. 97, no. 5, pp. 1027–1036, 2014.

[19] L. Huang et al., “A high speed turbo decoder implementation for CPU-
based SDR system,” in IEEE IET ICCTA, 2011.

[20] S. Zhang, R. Qian, T. Peng, R. Duan, and K. Chen, “High throughput
turbo decoder design for GPP platform,” in IEEE ICST, 2012.

[21] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (corresp.),” IEEE TIT, vol. 20,
no. 2, pp. 284–287, 1974.

[22] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
IEEE ICC, 1995.

[23] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,”
Electronics Letters, vol. 36, no. 23, pp. 1937–1939, 2000.

[24] O. Muller, A. Baghdadi, and M. Jezequel, “From parallelism levels to a
multi-asip architecture for turbo decoding,” IEEE TVLSIS, vol. 17, no. 1,
pp. 92–102, 2009.

[25] AFF3CT, “AFF3CT: The first software release,” 2016. [Online].
Available: http://dx.doi.org/10.5281/zenodo.55668

