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Abstract

The Cellular Potts Model (CPM) is a lattice based modeling technique which is widely used for simulating cellular
patterns such as foams or biological tissues. Despite its realism and generality, the standard Monte Carlo algorithm
used in the scientific literature to evolve this model preserves connectivity of cells on a limited range of simulation
temperature only. We present a new algorithm in which cell fragmentation is forbidden for all simulation temperatures.
This allows to significantly enhance realism of the simulated patterns. It also increases the computational efficiency
compared with the standard CPM algorithm even at same simulation temperature, thanks to the time spared in not
doing unrealistic moves. Moreover, our algorithm restores the detailed balance equation, ensuring that the long-term
stage is independent of the chosen acceptance rate and chosen path in the temperature space.
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1. Introduction

The Cellular Potts Model (CPM) – or Glazier-Graner-
Hogeweg model – developed by Glazier and Graner [1–
3] has become a common technique to simulate cellu-
lar patterns either in physics or biology. Originally, the
CPM was proposed to test the differential adhesion hy-
pothesis suggested by Steinberg [4] to explain the spon-
taneous segregation of cells of different type, a phe-
nomenon known as cell sorting. The CPM approach
describes cellular systems based on the following as-
sumptions: i) cells are spatially extended but internally
structureless objects; ii) cells and associated fields are
discretized onto a lattice; iii) it describes most cell be-
haviors and interactions in terms of an effective energy
or HamiltonianH ; iv) the classic implementation of the
CPM employs a modified Metropolis Monte-Carlo al-
gorithm which chooses update sites randomly and ac-
cepts them with a Metropolis probability. A simulation
temperature T then determines the probability of a con-
figuration. For thermal physical systems, T is the ac-
tual temperature (up to Boltzmann constant kB). For bi-
ological cells, actual temperature is too low to induce
significant fluctuations, and T simulates the membrane
fluctuations due to cell activity [5].
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In its original form [1, 2], the CPM Hamiltonian H
has only two contributions: a boundary term and a com-
pressive term, which write, for a two-dimensional pat-
tern:

H =
∑

neighboring
sites〈k,l〉

Jτ,τ′
(
1 − δσk ,σl

)
+

B
2A0

∑
cells

i

(Ai − A0)2 .

(1)
Here σk and σl are the site values of site k and l, respec-
tively. A cell i consists of all sites in the lattice with site
value i. δ is the Kronecker delta symbol: δm,n = 1 if
m = n, and 0 otherwise. τ and τ′ are abbreviations for
τ(σk) and τ(σl), the cell types which can be attributed
to cells with respective value σk and σl. Jτ,τ′

(
= Jτ′,τ

)
is

the energy per unit contact length between cell types τ
and τ′. For a foam, there is a unique cell type and hence
J reduces to a constant proportional to the surface ten-
sion. B is the bulk modulus of the internal fluids, Ai is
the area of cell i, and A0 the target area, i.e. the area
that the enclosed fluid would occupy for its pressure to
be equal to the surrounding pressure. The first sum in
Eq. (1) is carried over neighbouring sites 〈k, l〉 and rep-
resents the boundary energy: each pair of neighbours
having unmatching indices determines a boundary and
contributes to the boundary energy. The second sum in
Eq. (1), carried over all the cells that constitute the pat-
tern, is the compressive energy of the cells. Since then,
additional terms have been added to the Hamiltonian to
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account for real cell behaviors, or application of exter-
nal fields [3, 6, 7].

Because of its flexibility, extensibility and ease of
use, the CPM has been widely and successfully used
in different domains of physics, biology or medicine
[1, 2, 5–15]. In order to prevent the apparition of het-
erogeneous sites (spontaneous nucleation), and hence
preserve the connectivity of the cells, the CPM uses a
modified Metropolis algorithm (MMA), in which a lat-
tice site is authorized to be changed in one of its neigh-
boring values only. Although this algorithm substan-
tially improves the realism of the simulated patterns, it
has yet some flaws. First, it works on a limited range
of temperature: if the temperature is too low, the sys-
tem is trapped in one of its many energetic valleys. If
the temperature is too high, connectivity of cells is no
more guaranteed: boundaries can become highly con-
torted, provoking the detachment of small (usually sin-
gle lattice site) fragments. This upper limit on the us-
able range of temperature inevitably makes simulations
very slow if spatial resolution is not chosen with care
[7]. To overcome this limitation, sophisticated paral-
lelization techniques have been developed, with varying
degrees of success [16–18].

Second, the MMA — unlike the classic Metropolis
algorithm — does not satisfy the detailed balance con-
dition [3, 19, 20]. Detailed balance ensures that the long
term distribution of configurations obeys Boltzmann
statistics. This is critical when intending to study the
equilibrium configuration of thermal systems (e.g. ther-
mally shuffled foam). When CPM is used as a purely ki-
netic model for out-of-equilibrium systems (e.g. coars-
ening foams, morphogenesis, cell sorting), detailed bal-
ance condition is irrelevant. However, using algorithms
that satisfy detailed balance can still be of interest for
such systems, as it guarantees that the long-term stage
eventually reached by the simulation depends only on
the final simulation temperature, and not on the chosen
path in the temperature space or the chosen acceptance
rate (e.g. Metropolis, heat-bath, Glauber [21]).

In this paper, we present a new algorithm in which
both fragmentation and spontaneous nucleation are for-
bidden. Normally, the inspection of cell connectivity
is computationally very expensive: at every modifica-
tion of a site value, one must check that there is al-
ways a path connecting any pair of lattice sites that be-
long to the same cell. However, we show that a test
of local connectivity in the neighborhood of the mod-
ified site is necessary and sufficient for ensuring that
cells remain simply connected (i.e. homeomorphic to a
disk): fragmentation or handle formation are then pro-
hibited. Hence, this new algorithm enhances realism for

most cellular systems, at least in non-pathological situa-
tions. At given simulation temperature, these modifica-
tions increase the computational efficiency, as time used
for local connectivity inspection is largely compensated
by the time not wasted in unrealistic cell fragmentation
moves. Moreover, this new algorithm allows to increase
the simulation temperature, thereby speeding up simu-
lation time, while preserving connectivity of the cells.
Finally, our proposed algorithm restores the condition
of detailed balance at all temperatures. Our algorithm
is much simpler to implement than parallel algorithms.
Nevertheless, both techniques can be combined together
to simulate larger systems.

The structure of the paper is as follows: in Section
2, we detail the standard algorithm used in most CPM
simulations, and emphasize that it does not prevent from
cell fragmentation or handle formation, and violates de-
tailed balance condition. We also point out the three
distinct notions of neighborhood that are used in CPM.
In Section 3, we detail a new algorithm that resolves
these issues. The notion of local connectivity, on which
this algorithm relies, is properly defined. In Section 4,
we show that a careful choice for the different neighbor-
hoods makes the test of local connectivity very fast. In
Section 5, we present cell sorting simulations on a two-
dimensional square lattice and compare the efficiency of
the two algorithms. The new algorithm performs better
for all tested temperatures: the convergence to the long-
term, steady stage is computationally more efficient for
a same simulation temperature, and the long-term stage
obtained after smoothing (“annealing”) procedure is in-
dependent of the temperature value. Finally, in Section
6, we discuss extension of the algorithm to other 2D or
3D lattices.

2. Classical CPM algorithm: Modified Metropolis
Algorithm (MMA)

2.1. Motivations

Algorithm used in CPM simulations is adapted from
Metropolis algorithm, which is one of the simplest and
most popular algorithm used in Monte Carlo simula-
tions. Applied to the Potts model [3, 21], in which each
site, or “spin”, can have Q different values, the Metropo-
lis algorithm consists of the following steps:

1. Randomly select a lattice site i. Call this site the
candidate site. Let σ be its value.

2. Randomly select a value σ′ among the Q possible
site values. Call this the target value.
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3. Calculate the change in energy ∆E resulting in
changing the site value from σ to σ′.

4. Accept the site value modification with probability
A(σ→ σ′) = min(1, e−∆E/T ).

5. Increment the number of copy attempts and go
back to step 1.

This algorithm allows spontaneous nucleation, i.e the
appearance of site value different from its neighbor-
hood. This of course does not realistically simulate
cellular systems, in which every cell must be (simply)
connected. Metropolis algorithm must be adapted in
order to eliminate nucleation. The algorithm that has
been used by Graner & Glazier [1, 2] (and since then in
most of the scientific literature on CPM) replaces step
2. with:

2b. Randomly select a site from the candidate site’s
neighbor list. Call this the target site, and let σ′

be its value.

Note that here a site, and not a site value, is randomly
selected. This algorithm is commonly named Modified
Metropolis Algorithm (MMA). The primary reason to
use the Metropolis acceptance ratio A(σ → σ′) in step
(4.) is that the average time evolution of the configu-
ration then obeys the Aristotelian or overdamped force-
velocity relation [3]: v ∝ ∇H . Nevertheless, the ac-
ceptance ratio of any other single-spin-flip algorithm
(e.g. Glauber, Heat Bath [21]) could be used; in any
case, the modification from step (2.) to step (2b.) is
required to suppress spontaneous nucleations.

2.2. Neighborhoods

It can be noticed that the algorithm introduces two
distinct notions of neighborhood so far: the first one,
which we shall call coupling neighborhood, is the one
which is used in the first sum of the Hamiltonian (1)
to calculate the interface energy. We note it Nc. The
second one, that we shall call target neighborhood, is
the one used in step (2b), and represents the set Nt of
lattice sites from which the target value is chosen. Ac-
tually, a third neighborhood is used in CPM simulations,
when calculating the number of sides (or more exactly,
of neighboring cells) of every cell. We shall call it adja-
cency neighborhood Na: for every site of a cell, we list
the site values that are in this neighborhood. The total
list of different values provides the list of neighboring
cells.

Distinction between these three neighborhoods is of-
ten disregarded in literature. Yet, they can be chosen

independently; a careful choice can tremendously in-
crease the efficiency of the algorithm, as will be dis-
cussed in Sect. 4.

2.3. Limitations of the MMA

In addition to improving realism, the modification of
step (2.) to step (2b.) speeds up the computing time by
reducing the number of possible target values. But it has
still some limitations. First, although spontaneous nu-
cleation is forbidden, heterogeneous sites (i.e. sites with
mismatched neighboring sites) still appear, as illustrated
in Fig. 1: they result from the detachment from the in-
terface of fragments whose size is eventually reduced
to a unique lattice site. The number and size of frag-
ments increase with simulation temperature T , as inter-
faces get more and more crumpled. Simplest scenario of

Figure 1: Cell fragmentation observed with the MMA at high tem-
perature values: fragments of one or more lattice sites are surrounded
by mismatched site values. Here each cell has a different color to
highlight the presence of fragments.

fragmentation is shown in Fig. 2: a fragment of one lat-
tice site size detaches from the interface in a three steps
process. To create such a fragment, the system must
cross the energy barrier ' zcJ – corresponding to the
transition from configuration 2(a) to configuration 2(c)
– where zc is the number of sites in the coupling neigh-
borhood Nc and J the energy per unit contact length.
It is therefore less than zcJ`, the typical energy barrier
which must be crossed to trigger a neighbor switching
between 4 cells with characteristic edge length ` [22].
Hence, fragmentation appears at temperatures below the
temperature required to initiate cell diffusion.
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Like spontaneous nucleation, fragmentation is unde-
sirable because it does not mimic realistically cellular
systems, at least in normal (non pathological) situations.
Moreover, it causes an overestimation of the number
of sides of the cells and complicates the calculation of
interfacial energy. Fragmentation is also undesirable
in measuring cell mean square displacement because it
may cause the center of mass of a domain to jump a
large distance after a single spin flip. Therefore, CPM
simulations must be limited to temperature values low
enough for the fragments to disappear with a rate at least
equal to the rate at which they appear. This low temper-
ature range is quite restrictive, as the systems which are
simulated with CPM usually have a rough energy land-
scape: they are trapped in successive local minima and
thus evolve slowly. To reduce the visual presence of
such fragments, “annealing” steps at vanishing temper-
ature are often performed before measurements [1–3].
However, fragmentation still occurs between annealing
steps, and has a strong effect on the kinetics of the sys-
tem. In fact, even the long term stage of the simulation
can be affected by the fragmentation, despite the anneal-
ing procedure, as will be shown in Sect. 5.

(a) (b) (c) (d)

Figure 2: Simplest scenario of one-pixel-size fragmentation resulting
in an isolated pixel.

Another peculiarity of the MMA is that by changing
step (2.) to step (2b.), detailed balance condition is not
satisfied anymore. In its canonical formulation, the de-
tailed balance equation reads:

g(xi : σ→ σ′)A(xi : σ→ σ′)
g(xi : σ′ → σ)A(xi : σ′ → σ)

= e−∆E/T , (2)

where g(xi : σ → σ′) is the selection probability,
which is the probability, given an initial state of the
system, that our algorithm will generate a new tar-
get state that differs from the initial state by chang-
ing the value of one single site i from σ to σ′. De-
tailed balance criterion, or microreversibility, guaran-
tees that the long term distribution of configurations fol-
lows the Boltzmann statistics [21]. Hence, detailed bal-
ance condition must be respected to adequately simu-
late systems at thermodynamic equilibrium. Detailed
balance condition is irrelevant when simulating out-of-
thermodynamic-equilibrium systems such as biological

systems or coarsening foams; the primary requested
feature of the algorithm is that it mimics realistically
the time evolution of the system [3]. However, vari-
ous different algorithms usually do satisfy this request.
Since the CPM approach follows classic Monte Carlo
schemes, the use of an algorithm that also satisfies de-
tailed balance criterion ensures that a steady state exists
(e.g. long term stage of cell sorting), and is the same
for any specific acceptance rate that satisfies detailed
balance condition. Moreover, microreversibility solves
the degenerate long-term behavior associated with the
MMA [20].

Violation of detailed balance is noticeable in partic-
ular in the case of spontaneous nucleation: although
spontaneous nucleation is forbidden (thanks to the mod-
ification of step 2 to step 2b), its reverse process – that is,
the disappearance of a heterogeneous site – is allowed,
and even wanted to avoid their proliferation, resulting
from cell fragmentation. We could (naively) think of
restoring detailed balance by forbidding the disappear-
ance of heterogeneous sites. However, this approach
generates a proliferation of nucleated sites as tempera-
ture increases, the only way for an isolated site to disap-
pear is by reaching the cell it belongs to. This would
certainly not improve the realism of the simulations.
Moreover, that would not restore microreversibility in
all situations: detailed balance condition also requires a
modification of step (2b.), as this will appear below (see
also the Appendix).

3. Connectivity Algorithm (CA)

It is clear from the discussion above that an algo-
rithm that would forbid cell fragmentation, in addition
to spontaneous nucleation, would preserve the connec-
tivity of the cells, and then would solve the limitations
inherent to the MMA. Two cells are possibly affected by
the modification of a site value: the candidate cell and
the target cell, defined as the cells whose the candidate
and the target lattice site belong to, respectively. Prior
to the modification of the candidate site value, one must
check that these two cells will both remain connected.
In fact, by choosing Nt ⊆ Na, we are ensured that the
target cell stays connected, by construction. Still, the
inspection of the connectivity of the candidate cell is
very costly in computing time: for every couple of lat-
tice sites that belong to the cell, one must inspect that
there is a path that links them, where a path is defined as
a list of lattice sites with same value, and each of which
belongs to the adjacency neighborhood of the preceding
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one1.
Instead, we propose to test the local connectivity of

the cell. To define this property, we need to introduce
first the local connectivity domain Dc(i), as being any
set of lattice sites that contains the adjacency neighbor-
hood of site i, but not site i itself. The local connectivity
property is then defined as follows:

Definition a cell C is locally connected at site i, within
the local connectivity domain Dc(i), if and only if the
sites of C that are in the adjacency neighborhood of i
are connected through paths that are included inDc(i).

Hence, if C is locally connected at position i, within
the local connectivity domainDc(i), we are ensured that
there are paths connecting the sites of C∩Nt and which
do not contain site i.

Let us illustrate this notion of local connectivity with
the example given in Fig. 3: let Dc(i) be composed
of the eight sites that surround site i (Moore neighbor-
hood), and the connectivity neighborhood Nt be com-
posed of the four side-adjacent sites (Von Neumann
neighborhood). Then, the blue cell is locally connected
at site i, while the orange and grey cells are not. This ex-
ample emphasizes that a cell C can be locally connected
at site i even if i is not in C, and not locally connected at
site i even if i is in C.

i

Figure 3: Illustration of the notion of local connectivity: suppose
Dc(i) is composed of the eight sites that surround site i and Na is
composed of the four side-adjacent sites. Then, the blue cell is locally
connected at site i, while the orange and grey cells are not.

The proposed test then consists, in a first step, to
check the local connectivity of the candidate cell at the
randomly selected site i (candidate site), before eventu-
ally accepting the modification of its value. This sim-
plification substitutes a global test with a local one, re-
sulting in a huge saving of computing time. However,

1For convenience, a path – and hence the connectivity property –
is defined based on the adjacency neighborhood Na, but this notion
actually introduces a fourth notion of neighborhood that could have
been chosen independently of the three neighborhoods already defined
in Sect. 2.2.

is this local test a necessary and sufficient condition to
guarantee the non-fragmentation of the cells ?

A connected cell is not necessarily locally connected
everywhere: for instance, a flat cell with 1 lattice site
thickness is not locally connected, excepted at its ends
(see Fig. 4(a)). This is also the case of the orange cell
in Fig. 3. Conversely, a cell that is locally connected on
everyone of its sites is not necessarily connected, as this
is illustrated in Fig. 4(b), where a cell is divided into
two fragments which are both locally connected. Nev-

★ ★ ★★

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

(a) (b)

Figure 4: Illustration of the non-equivalence between connectivity and
local connectivity: (a) a flat cell which is one-site thick is connected,
yet it is not locally connected everywhere. Red stars indicate the lat-
tice sites inside and outside the cell over which the cell is locally con-
nected, with sameDc andNa as in Fig. 3. (b) a cell composed of two
disjoint fragments is locally connected, yet not connected.

ertheless, if we ensure that, at the initial time (cellular
pattern formation), cells are connected, then the local
connectivity test will prevent cell fragmentation at any
subsequent time. Local connectivity test at site i is then
a sufficient condition for the candidate cell to remain
connected2.

It is also a necessary condition as long as the cell
remains simply connected, that is, homeomorphic to a
disk. When the candidate cell is non-simply (aka mul-
tiply) connected, our test is too restrictive, meaning that
it is sufficient, but not necessary, to prevent fragmenta-
tion: the candidate cell can be non locally connected at a
given site, although it remains connected after modifica-
tion of this site value, as this is illustrated in Fig. (5): the
change of site i from configuration (a) to configuration
(b) is not allowed by our test, because the blue cell is not
locally connected at site i. Yet, this modification would
not fragment the cell. Note also that in this situation,
the detailed balance criterion is not satisfied anymore:
in the example of Fig. 5, the reciprocal change from
configuration (b) to configuration (a) is still allowed.

2A common way to generate the cellular pattern is from the grow-
ing of cell “seeds” in a medium, which is treated as a special cell
without area constraint. One then must be careful to momentarily al-
low the fragmentation of the medium, until cells touch each others, so
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(a) (b)

Figure 5: In a non-simply connected cell, the local connectivity of
the candidate cell is not a necessary condition for the cell to stay con-
nected after modification of site i value: assuming that adjacency neig-
borhood Na coincides with Von Neumann or Moore neighborhood,
the blue cell is not locally connected at site i in configuration (a) (nor
in configuration (b)). Yet, the cell stays connected when the site value
is modified from configuration (a) to configuration (b).

Since cell fragmentation is now forbidden by the lo-
cal connectivity test, a cell must surround one (or more)
other cell(s) to become multiply connected. When sim-
ulating foams, such an event is unlikely: the boundary
energy per unit contact length Jτ,τ′ is uniform, and it
would require a very high temperature and very high
size ratio in order for a larger bubble to surround a
smaller one. In practice such a size ratio is hardly
achievable, because we are limited by the finite size
of the lattice. When simulating biological cells on the
other hand, such situation may occur when adhesion en-
ergies have high contrast.

Multiple connected cells (and bubbles) are rather un-
realistic. Fortunately, for a little extra computational
cost, we can ensure that cells remain simply connected
at all times. Remember that with our definition of local
connectivity, a cell C can be locally connected at site i
even if i is not in C. If the target cell — which is con-
nected by construction (by choosing Nt ⊆ Na) — is
locally connected at site i, the modification of its value
results in the formation of a “handle”, and the target cell
becomes multiply connected. Thus, to ensure that cells
remain simply connected, we just have to additionally
check that the target cell is locally connected at site i
before accepting the modification of the site value. In
the example of Fig. 5, the change of site i from configu-
ration (a) to configuration (b) and the reciprocal change
are now both forbidden.

In summary, the full CA consists of the following
steps:

that the removing of medium between the cells is achieved in a small
amount of time.

1c. Randomly select a lattice site i. Call this site the
candidate site. Let σ be its value.

2c. Randomly select a value σ′ from those present in
the target neighborhood Nt. Call this the target
value.

3c. Check the local connectivity of the candidate cell
at site i, within the domain Dc. If it is locally con-
nected, proceed to next step. Otherwise, go to step
7c.

4c. Check the local connectivity of the target cell at
site i, within the domain Dc. If it is locally con-
nected, proceed to next step. Otherwise, go to step
7c.

5c. Calculate the change in energy ∆E resulting in
changing the lattice site value from σ to σ′.

6c. Accept the site value modification with probability
A(σ → σ′) = min(1, e−∆E/T ) (or any other ac-
ceptance probability that satisfies detailed balance
equation).

7c. Increment the number of copy attempts and go
back to step 1c.

Incidentally, target value draw has been slightly modi-
fied: its value is chosen arbitrarily in the set of differ-
ent values present in the target neighborhood Nt (step
(2c.)), without weighting by the number of neighboring
sites that have this particular value, as it is in step (2b.)
(see the Appendix for more details). This modification,
together with the two local connectivity tests that keep
cells simply connected, restore detailed balance condi-
tion.

The two flaws of the MMA are now solved: cell frag-
mentation is prohibited, and detailed balance condition
is satisfied at all temperatures.

Variants of this algorithm consist of swapping of
steps (2c.) and (3c.), or (3c.) and (4c.). Relative effi-
ciency of these variants depends on the simulation tem-
perature T and typical cell size A0. To optimize the
algorithm, local connectivity test with higher rejection
rate should be tested first. The probability that the can-
didate cell is locally connected at a given site decreases
as T increases. The probability that the target cell is not
locally connected decreases as T increases. The target
cell becomes not locally connected at site i when two
cell protrusions come sufficiently close, what is unlikely
at moderate simulation temperature. That is why we test
it in last in our algorithm, but it could be more efficient
to test it first at high temperature.

6



Note that the number of copy attempts is incremented
regardless of the results of the two connectivity tests (3c,
4c), in order to keep accurate correspondence between
number of copy attempts and real time. Such correspon-
dence is required for instance to satisfy equivalence of
time and ensemble averages for systems at thermal equi-
librium.

4. Choices for neighborhoods and local connectivity
domain

Coupling neighborhood Nc is used in the calculation
of the boundary energy, but does not play any role in
the local connectivity test. Taking a large domain for
Nc reduces the lattice anisotropy, but increases the num-
ber and range of interactions, thereby slightly increasing
simulation time. The range of interactions must also re-
main small compared with the typical cell size. Neigh-
borhoods made of the 8 first neighboring sites (order II,
or Moore neighborhood, Fig. 6b) and 20 first neigh-
boring sites (order IV neighborhood, Fig. 6d) are com-
monly used.

Choices for the lattice sites that define the neighbor-
hoods Na and Nt and local connectivity domain Dc

strongly affect the efficiency of the local connectivity
test, and must be chosen carefully. Adjacency neigh-
borhoodNa is rarely defined in the literature, suggesting
that it is often equated with the coupling neighborhood
Nc. Yet, it would be better to choose it as small as possi-
ble to avoid overestimating the number of sides of cells.
We then choose it equal to the order I – or Von Neumann
– neighborhood, which is made of the 4 lattice sites ad-
jacent by side (Fig. 6a)). This choice also avoids the un-
realistic chessboard interlacing of cells that is observed
at high temperature when choosing a larger adjacency
neighborhood. More generally, two paths belonging to
two distinct cells cannot cross each other. Hence, the
definition of simple connectivity introduced in Sect. 3
is a direct transposition to lattices of the definition that
is used for continuous topological spaces3.

The target neighborhood used in CPM simulations
often corresponds with order II (or Moore) neighbor-
hood. A more judicious choice is to take it identical
to the adjacency neighborhood: as emphasized in Sect.
3, taking the target neighborhood smaller or equal to
the adjacency neighborhood ensures that the target cell
preserves its connectivity after each modification of site

3Another definition for the simple connectivity of a domain E,
valid for any adjacency neighborhood, but restricted to 2D lattices,
is as follows: E is simply connected iff it is connected and the com-
plement of E is connected too.

(a) (b) (c) (d)

Figure 6: Different choices for the the neighborhood (in orange) of
the central site (in blue), in the square lattice: (a) order I (or Von
Neumann) neighborhood; (b) order II (or Moore) neighborhood; (c)
order III neighborhood; (d) order IV neighborhood. For adjacency
and target neighborhoods, Na and Nt respectively, we choose order I
neighborhood. For the local connectivity domain Dc, we choose the
order II neighborhood. For the coupling neighborhood Nc, we use
either order II or order IV neighborhood.

value. Thus, we recommend to take both equal to the
order I (Von Neumann) neighborhood (Fig. 6a).

For the local connectivity domain Dc(i), we choose
the smallest domain as possible that contains the lattice
sites in the adjacency neighborhood, plus the shortest
paths that may connect them. With Na defined over the
Von Neumann neighborhood,Dc(i) then corresponds to
the Moore neighborhood.

With this choice for Na, Nt and Dc, only a few pat-
terns within the order II neighborhood need to be tested
to check the local connectivity of a cell C. Let z be the
number of lattice sites in the adjacency neighborhood of
i that belong to C. Cases z = 0, z = 1, and z = 4 are triv-
ial: in the first case, C is never locally connected at site i.
In the second case, C is always locally connected at site
i. In the third case, value of site i cannot be modified.
When z = 2, there are two possible situations: either the
two neighbors face each other, or are corner-adjacent.
Only the second situation can eventually lead to a lo-
cally connected cell, if their common side-adjacent site
belongs to C too (see Figure 7(a)). When z = 3, the two
common side-adjacent sites must belong to C too for the
cell to be locally connected (see Figure 7(b)). Account-
ing for the π/2 rotations of these admissible patterns,
only four different patterns correspond to a locally con-
nected cell for z = 2, and similarly for z = 3.

In practice, the implementation of the local connec-
tivity test is as follows: we first detect, within the adja-
cency neighborhood of site i, the number (z) and posi-
tions (North, South, East, West) of the lattice sites that
belong to cell C (either the candidate or target cell). If
z = 2 or z = 3, we further check whether or not their po-
sitions and the values of their side-adjacent lattice sites
match the patterns shown in Figs. 7(a) and 7(b) (modulo
π/2 rotations), respectively.
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(a) (b)

Figure 7: Non-trivial patterns for which the blue cell is locally con-
nected at site i, using an order I adjacency and target neighborhoods,
and an order II local connectivity domain. (a) configurations with
z = 2 blue sites in the adjacency neighborhood of i: the two sites
(here N(orth) and W(est)) must be corner-adjacent, and their common
side-adjacent site (NW) must be blue too for the blue cell to be locally
connected at i. (b) configurations with z = 3 blue sites in the adja-
cency neighborhood of i: their two common side-adjacent sites must
be blue too for the blue cell to be locally connected at i.

5. Benchmark

To test the efficiency of the CA, we perform cell sort-
ing simulations similar to those presented in the semi-
nal work of Glazier and Graner [1, 2], and compare the
results obtained with both CA and MMA. For simplic-
ity, Hamiltonian (1) has been used in the simulations
presented here. To make a fair comparison, we used
the same target, adjacency, and coupling neighborhoods
and same connectivity domain for both algorithms. For
the MMA, step (2b.) was replaced with step (2c.). The
two algorithms then only differ by the test of local con-
nectivity for the candidate and target cells in the CA. On
a lattice with N sites, we define one Monte Carlo Step
(MCS) to be N copy attempts. Simulations have been
performed with and without 100 annealing MCS. This
unusually long annealing procedure allows us to com-
pare the two algorithms on a large temperature range
(for practical purpose, the program exits whenever the
number of neighbors of a cell exceeds 20). We dupli-
cated the simulated pattern before annealing it to not
alter the kinetics of cell sorting.

Because of the two local connectivity tests within the
CA, the correspondence between CPU time and MCS
is different for the two algorithms: 1 MCS with CA
takes a little bit more of CPU time than with the MMA.
We checked that this difference is totally negligible: the
increase of CPU time for similar runs (6 × 106 MCS)
ranges from 0.235% for low temperature (T = 35) to
4.97% for high temperature (T = 85).

We start from an equilibrated rounded cluster of 150
B(lue) and 150 Y(ellow) cells, randomly positioned.
The cluster is surrounded with the M(edium), and the
total number of sites is N = 300 × 300. Values of the

different parameters used in the Hamiltonian (1) are:
JBM = 16, JY M = 16, JBB = 8, JYY = 14, JYB = 12,
A0 = 150, B = 200. Thanks to our discrimination of
the different neighborhoods, the size of coupling neigh-
borhood has a very limited effect on the computing time.
We choose an order IV coupling neighborhood, which is
sufficiently large to reduce the lattice anisotropy, whilst
remaining small compared with the typical cell size.
The other neighborhoods and local connectivity domain
are chosen as recommended in Sect. 4. Typical evolu-
tion of the annealed patterns are shown in Figs. 8 and
9. We also show on Fig 10 typical unannealed patterns
observed after 6 × 106 MCS.

We first compare the mean number of sides per cell
〈n〉 obtained with the two algorithms. According to Eu-
ler theorem [23], 〈n〉 is equal to 6 in a pattern contain-
ing only 3-fold vertices, if the surrounding medium is
counted as an extra cell. Discrepancy with this theo-
retical value can have several origins: i) due to the dis-
cretization of the pattern on the lattice, two 3-fold ver-
tices can be mingled with one 4-fold vertex. This arti-
fact can only decrease the measured value of 〈n〉, and
is reduced when the target area A0 (and so the typi-
cal edge length) is increased. ii) The algorithms actu-
ally evaluate the number of different neighboring cells –
rather than the number of sides – of each cell. These
two numbers differ when two neighboring cells have
two sides in common (thereby encircling a third cell).
This would underestimate 〈n〉. In practice, configura-
tions where two cells share more than one side are un-
likely after 100 annealing steps, and the two numbers
are equal. iii) when a cell is fragmented, its number of
neighboring cells increases or stays constant. Thus, 〈n〉
cannot decrease under fragmentation.

In Table 1 are reported the average and standard de-
viation values of the number of neighboring cells, with
and without 100 annealing steps. The annealing temper-
ature is Tanneal = 3. Data are averaged over 20 runs. In
presence of annealing steps, values obtained with both
algorithms are close to the theoretical value 6. Notice
that at high temperature (T = 85) though, the aver-
aged value is slightly above 6. Indeed, Fig. 11 reveals
the presence of large fragments, despite the unusually
long annealing procedure (only a few annealing steps
are usually performed in literature). Without anneal-
ing, values obtained with the MMA are above 6, and
increase with T , due to cell fragmentation. Values ob-
tained with the CA are equal to, or slightly below 6, and
slightly decrease as T increases, due to the presence oc-
casionally of 4-fold vertices. Note that for the CA, the
values reported with and without annealing steps, and
for any temperature, are very close, which confirms that
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Figure 8: Cell sorting simulations at low temperature (T = 35). Patterns are displayed after 100 MCS of T = 3 annealing steps. Top row: MMA.
(a) 0 MCS. (b) 104 MCS. (c) 105. (d) 106 MCS. (e) 6 × 106 MCS. Bottom row: CA at same simulation times.

no fragmentation occurs.
Then, we compare the evolution of the boundary

length, defined as the number of edges that are shared
by blue and yellow cells [1, 2, 24]. Values shown in Fig-
ure 12 are those obtained after 100 annealing steps. The
boundary length at initial time is close to the theoreti-
cal value 450 for randomly positioned blue and yellow
cells, then it decreases – with a temperature-dependent
rate – down to a plateau referred to as long-term stage.

At low temperature (T = 35), the CA converges to
the long-term stage much more rapidly than the MMA.
This difference highlights that the few fragmentation
which occurs with the MMA between annealing steps
has a dramatic effect on the dynamics of cell sorting. It
is not clear if complete cell sorting will eventually be
reached with the MMA: as noticed before [2], a min-
imal temperature seems required to achieve complete
cell sorting, at least with the MMA. Actually, we were
not able to find a set of parameter values for which com-
plete sorting is achieved with identical kinetics for both
algorithms, which suggests that the temperature range
in which fragmentation has a negligible effect in the
cell sorting kinetics is above the critical temperature re-
quired to achieve complete sorting.

As temperature is slightly increased (T = 40), both
algorithms converge to the same stage: a complete cell
sorting with round cluster of blue cells surrounded by
yellow cells. But the convergence is still much faster
with the CA. The long-term value (' 90) is consistent
with a rough estimation in which the blue cells are as-

sumed to form a circular cluster of radius R =
√

NBd/2,
where NB = 150 is the number of blue cells in the
cluster, and d = 2

√
A0/π is the diameter of the cells:

since all junctions are trivalent, the number of edges
that belong to the boundary is equal to N− + N+, where
N− ' 2πR/d and N+ ' 2π(R + d)/d are the number of
cells in the inner and outer shell of cells at the bound-
ary. Hence, N− + N+ ' 2π(

√
NB + 1) ' 83. This con-

stitutes a lower bound, as non-circular clusters have a
larger boundary length.

At moderate temperature (T = 60), the CA is still
more efficient, although the difference in time evolution
is less pronounced: the increase of fragment sizes in
MMA favorizes large (but unrealistic) displacements of
the cell centroids.

At high temperature (T = 85), the behavior of both
algorithms differs clearly: for the CA, the long time
stage is the same as at low and moderate temperatures
– a complete cell sorting with blue cells surrounded by
the yellow cells. Thanks to detailed balance criterion,
once the thermal equilibrium is reached, the long-term
stage is the same whatever the path we choose in the
simulation temperature space: it depends only on the
final temperature, which is here the annealing temper-
ature. For the MMA on the other hand, evolution of
the boundary length is noisier and the plateau at long
times is noticeably higher. Figure (9(e)) reveals that the
blue cell cluster is highly contorted. Moreover, com-
plete cell sorting is never attained: some yellow cells are
constantly entering and leaving out the blue cell cluster,
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Figure 9: Same as in Fig. 8, at high temperature (T = 85). Red box indicates the area shown in Fig. 11(b).

MMA
without annealing

MMA
after 100 annealing

steps

CA
without annealing

CA
after 100 annealing

steps
T = 35 6.001 ± 0.005 6.000 ± 0.001 5.995 ± 0.005 5.999 ± 0.002
T = 40 6.004 ± 0.008 5.999 ± 0.002 5.992 ± 0.007 5.999 ± 0.003
T = 60 6.049 ± 0.020 5.999 ± 0.003 5.982 ± 0.011 5.999 ± 0.003
T = 85 6.276 ± 0.047 6.001 ± 0.007 5.980 ± 0.011 5.995 ± 0.005

Table 1: Mean and standard deviation values of the number of neighbours of a cell obtained with the standard CPM algorithm (MMA) and the new
proposed algorithm (CA), with and without 100 annealing steps

and some blue cells are ejected from it, what opposes
to sorting process. This phenomenon, inherent to frag-
mentation (and violation of detailed balance), is never
observed with the CA.

Note that for both algorithms the time evolution of
the boundary length is approximately the same than at
moderate temperature. The gain in cell sorting process
becomes marginal, as spatial spread and entanglement
of the cells restrain their mobility.

Log-log plots (Fig. 12(b)) show that cell sorting ki-
netics obtained at long times with both algorithms is
compatible with a power law dependence, although our
sample is too small to discriminate between logarithmic
or power-law decay [24].

We performed simulations at higher temperatures, up
to T = 150 (not shown). With the CA, the kinetics
of cell sorting is approximately the same, and 〈n〉 re-
mains close to 6, with or without annealing steps. With
the MMA, the number of cells entering or leaving the
blue cell cluster increases, and the value of the long-

term plateau gets higher as the temperature increases.
〈n〉 also significantly increases, up to 6.46, in spite of
100 annealing steps. 〈n〉 cannot be evaluated without
annealing, as the number of neighbours of a cell often
exceeds the limit value 20 set in the program, due to the
high fragmentation rate.

6. Conclusion and Outlook

To summarize, we provide a new algorithm for CPM
simulations that forbids cell fragmentation (in addition
to spontaneous nucleation) by testing the local connec-
tivity of the candidate and target cells before every mod-
ification of a site value. It is shown that these two lo-
cal connectivity tests are rigorously equivalent to test-
ing the simple connectivity of the cells. This algorithm
presents numerous advantages (and no drawbacks have
been identified):

• It improves the realism of the simulations of cellu-
lar systems (except perhaps for systems in patho-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Cell sorting patterns without annealing steps observed after 6 × 106 MCS. Top row: MMA. (a) T = 35. (b) T = 40. (c) T = 60. (d)
T = 85. Red box indicates the area shown in Fig. 11(a). Bottom row: CA at same temperatures.

(a) (b)

Figure 11: Details of the patterns obtained with the MMA at T = 85,
after 6×106 MCS. (a) Without annealing (close-up of Fig. 10(d)): the
pattern exhibits numerous fragments. (b) After 100 annealing steps
(close-up of Fig. 9(e)): the pattern still exhibits large fragments, indi-
cated by arrows.

logical situations): no fragmentation or nucleation
occurs, and cells stay simply connected.

• For a same simulation temperature, it is faster than
the standard algorithm used in CPM simulations:
the time spent to test the local connectivity of the
cells is largely offset by the time spared by not do-
ing moves that induce fragmentation.

• It restores detailed balance. As a consequence, the

long-term stage and the statistics of configurations
do not depend on the specific chosen acceptance
rate, nor on the chosen path in the simulation tem-
perature space: it depends only on the final tem-
perature once the thermal equilibrium is reached.

• It works for all simulation temperatures. Hence,
when interested in the long-term stage of the sim-
ulations, we can (temporarily) increase the simula-
tion temperature to converge more rapidly.

• Its implementation is much easier than those of
parallel algorithms.

Note that if this algorithm is intended to be used for
prohibiting cell fragmentation, and not so for preserving
the simple connectivity of the cells or the detailed bal-
ance criterion, the local connectivity test on the target
cell (step 4c.) can be skipped.

Although we focused primarily on the 2D square lat-
tice, the algorithm can be adapted without difficulty to
other 2D or 3D lattices. At 2D, alternatives are the
hexagonal and triangular lattices (see Figs 13(a) and
13(b)). Best choices for the values of Na (= Nt) and
Dc are generalized as follows: adjacency neighborhood
is defined as the set of lattice sites that are side-adjacent
to the central site (hence composed of 6 sites for the
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Figure 12: (a) Boundary length (number of edges that are shared by blue and yellow cells) as a function of time, for four different simulation
temperatures: T = 35, T = 40, T = 60, and T = 85. Shaded areas mark standard errors of the mean. Values are measured after 100 MCS of T = 3
annealing steps, and averaged over 20 runs; (b) same data in log-log scale.

hexagonal lattice, and 3 sites for the triangular lattice).
Indeed, this is the minimal number of lattice sites re-
quired to respect the lattice symmetry. Local connectiv-
ity domain Dc is defined as the set of lattice sites that
are side- or corner-adjacent to the central site (hence
composed of the same 6 sites thanNa for the hexagonal
lattice, and 12 sites for the triangular lattice). For the ex-
tension to the 3D cubic lattice,Na andNt are composed
of the 6 face-adjacent sites, and Dc of the 12 face- or
edge-adjacent sites (see Fig. 13(c)).

The modifications brought by our algorithm also al-
low to use other families of Monte-Carlo algorithms. In
particular, one can think of single-spin-exchange algo-
rithms, like the Kawasaki algorithm, as opposed to the
Metropolis or Heat bath algorithms which are single-
spin-flip algorithms. In the Kawasaki algorithm, two
lattice sites exchange their values, conserving the num-
ber of sites (i.e. area) of every cell, what makes the
compressive energy term in the Potts Hamiltonian (1)
unnecessary. Kawasaki algorithm is commonly used in
interface problems [21]. As with Metropolis, the algo-
rithm must be adapted to prevent spontaneous nucle-
ation: only exchange of neighboring sites’ values (lo-
cal value-exchange) must be allowed. With the MMA,
a series of local value-exchanges would still result in a
lone heterogeneous site in a region of differing site val-
ues. Because cell areas are conserved, the lone hetero-
geneous site would persist for much longer time than
it would with Metropolis. Presumably this is the rea-
son why the Kawasaki algorithm has never been used

in CPM simulations, to our knowledge. Kawasaki algo-
rithm can be safely used with the CA, thanks to the cell
connectivity test.

It can also be noticed that the significant difference in
kinetics of cell sorting produced by the two algorithms
may reduce the discrepancy observed so far between ex-
perimental and CPM sorting processes [24, 25]. Further
investigation are currently conducted in order to confirm
(or infirm) this hypothesis.

Finally, it is worth mentioning that our algorithm may
open up new fields of application for CPM simulations:
at higher simulation temperature, prohibition of frag-
mentation leads to the formation of dendritic cells, as
shown in Fig. (14). Combined with anisotropic neigh-
borhoods, prohibition of fragmentation may also facili-
tate simulating of elongated cells.
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Appendix

The Modified Metropolis Algorithm (MMA) com-
monly used in CPM simulation differs from the stan-
dard Metropolis algorithm in the selection of target val-
ues (step (2b.) vs step (2.)): in standard Metropolis, the
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Figure 13: Best choices for the adjacency neighborhood, target neigh-
borhood, and local connectivity domain in (a) hexagonal lattice; (b)
triangular lattice; (c) cubic lattice. Adjacency and target neighbour-
hoods are equal and shown in orange. The local connectivity domain
is delimited by bold edges (and shadowed surface for the 3D lattice).

target value is randomly chosen from any of the Q pos-
sible values, without bias, where Q denotes the num-
ber of cells. In the MMA, the target value is chosen
from the list of neighbouring sites, without bias. As a
consequence, the selection probability does not satisfy
g(xi : σ→ σ′) = g(xi : σ′ → σ) anymore, and the con-
dition of detailed balance [Eq. (2)] is not satisfied. This
is exemplified with the neighborhood shown in Fig. .15:
if we choose for the target neighborhood Nt (see Sect.
2) the 4 side-adjacent lattice sites (Von Neumann neigh-
borhood), we have: g(xi : r → b) = 1/(4N), while
g(xi : b → r) = 3/(4N). If Nt is composed of the
8 side- or corner-adjacent sites (Moore neighborhood):
g(xi : r → b) = 3/(8N), while g(xi : b → r) = 4/(8N).
One way to restore detailed balance would be to weight
acceptance ratios to recover condition of detailed bal-
ance: the original acceptance ratio A(xi : σ → σ′) is
replaced with A(xi : σ → σ′)/z(σ′), where z(σ′) is the
number of sites, within the target neighborhood, which
have the specific value σ′ [19]. However, this is not the
best way to restore detailed balance, as we should keep
acceptance ratios as large as possible to have an efficient
algorithm. Instead, we choose to modify the selection
probability by replacing step (2b.) (Sect. 2) with:

Figure 14: Close-up of the cellular pattern obtained with the CA at
T = 130: cells have contorted structures. Each cell is coded with a
different color to facilitate their visualization.

2c. Randomly select a value from those present in the
target neighborhood Nt. Call this the target value.
Let σ′ be its value.

This restores the equality g(xi : σ → σ′) = g(xi :
σ′ → σ). In the example of Fig. .15, the number of
possible target values is 2 for a Von Neumann target
neighborhood, and 3 for a Moore neighborhood. Thus,
g(xi : r → b) = g(xi : b→ r) = 1/(2N) in the first case,
and = 1/(3N) in the second case.

In comparison with step (2b.), step (2c.) is somehow
a more straightforward adaptation of step (2.): in step
(2c.) the target value is drawn from among the set of
values within Nt, while in step (2.) the target value is
drawn from among the Q values within the whole pat-
tern. However, compared to step (2b.), step (2c.) would
enhance persistence of fragments, if used without the
modification brought by our algorithm to prevent bubble
fragmentation. We presume that is the reason why target
value selection (2b.) prevails in most CPM simulations.
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