
HAL Id: hal-01363975
https://hal.science/hal-01363975v1

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Consumption Analysis of Software Polar
Decoders on Low Power Processors

Adrien Cassagne, Olivier Aumage, Camille Leroux, Denis Barthou, Bertrand
Le Gal

To cite this version:
Adrien Cassagne, Olivier Aumage, Camille Leroux, Denis Barthou, Bertrand Le Gal. Energy
Consumption Analysis of Software Polar Decoders on Low Power Processors. The 24nd Euro-
pean Signal Processing Conference (EUSIPCO 2016), Aug 2016, Budapest, Hungary. �10.1109/EU-
SIPCO.2016.7760327�. �hal-01363975�

https://hal.science/hal-01363975v1
https://hal.archives-ouvertes.fr

Energy Consumption Analysis of Software
Polar Decoders on Low Power Processors

Adrien Cassagne∗†, Olivier Aumage†, Camille Leroux∗, Denis Barthou† and Bertrand Le Gal∗
∗IMS Lab, Bordeaux INP, France

†Inria / Labri, Univ. Bordeaux, INP, France

Abstract—This paper presents a new dynamic and fully generic
implementation of a Successive Cancellation (SC) decoder (multi-
precision support and intra-/inter-frame strategy support). This
fully generic SC decoder is used to perform comparisons of
the different configurations in terms of throughput, latency
and energy consumption. A special emphasis is given on the
energy consumption on low power embedded processors for
software defined radio (SDR) systems. A N=4096 code length,
rate 1/2 software SC decoder consumes only 14 nJ per bit on an
ARM Cortex-A57 core, while achieving 65 Mbps. Some design
guidelines are given in order to adapt the configuration to the
application context.

I. INTRODUCTION

Channel coding enables transmitting data over unreli-
able communication channels. While error correction cod-
ing/decoding is usually performed by dedicated hardware
circuits on communication devices, the evolution of gen-
eral purpose processors in terms of energy efficiency and
parallelism (vector processing, number of cores,...) drives
a growing interest for software ECC implementations (e.g.
LDPC decoders [1]–[3], Turbo decoders [4], [5]). The fam-
ily of the Polar codes has been introduced recently. They
asymptotically reach the capacity of various communication
channels [6]. They can be decoded using a successive cancel-
lation (SC) decoder, which has extensively been implemented
in hardware [7]–[13]. Several software decoders have also
been proposed [14]–[19], all employing Single Instruction
Multiple Data (SIMD) instructions to reach multi-Gb/s per-
formance. Two SIMD strategies deliver high performance:
the intra-frame parallelism strategy [14]–[16] delivers both
high throughput and low latency; the inter-frame parallelism
strategy [17], [18] improves the throughput performance by a
better use of the SIMD unit width at the expense of a higher
latency. AFF3CT1 [19], [20] (previously called P-EDGE) is the
first software SC decoder to include both parallelism strategies
as well as state-of-the-art throughput and latency.

The optimization space exploration for SC decoding of
Polar codes has so far primarily been conducted with raw
performance in mind. However, the energy consumption min-
imization should also be factored in. Moreover, heterogeneous
multi-core processors such as ARM’s big.LITTLE architec-
tures offer cores with widely different performance and energy
consumption profiles, further increasing the number of design

1AFF3CT is an Open-source software (MIT license) for fast forward error
correction simulations, see http://aff3ct.github.io

Layer

4

3

2

1

0

1 (LLR, ŝ)

2 (LLR, ŝ)

4 (LLR, ŝ)

8 (LLR, ŝ)

16 (LLR, ŝ)

Function f

Function g

Function h

Fig. 1. Full SC decoding tree (N = 16)

and run-time options. In this context, the contribution of this
paper is to propose a new dynamic SC decoder, integrated into
our AFF3CT software and to derive key guidelines and general
strategies in balancing performance and energy consumption
characteristics of software SC decoders.

The remainder of this paper is organized as follows. Sec-
tion II details relevant characteristics of the general Polar code
encoding/decoding process. Section III discusses related works
in the domain. Section IV describes our proposed dynamic
SC decoder and compares it to our previous specialized
approach based on code generation. Section V presents various
characteristics to explore in order to reach a performance
trade-off. Section VI presents experiments and comments on
performance results.

II. POLAR CODES ENCODING AND DECODING

Polar codes are linear block codes of size N = 2n,
n ∈ N. In [6], Arıkan defined their construction based on

the nth Kronecker power of a kernel matrix κ =

[
1 0
1 1

]
,

denoted κ⊗n. The systematic encoding process [21] consists
in building an N -bit vector V including K information bits
and N − K frozen bits, usually set to zero. The location of
the frozen bits depends on both the type of channel that is
considered and the noise power on the channel [6]. Then, a
first encoding phase is performed: U = V ∗κ⊗n and bits of U
in the frozen location are replaced by zeros. The codeword is
finally obtained with a second encoding phase: X = U ∗κ⊗n.

In this systematic form X includes K information bits and
N −K redundancy bits located on the frozen locations.

After being sent over the transmission channel, the noisy
version of the codeword X is received as a log likelihood ratio
(LLR) vector Y . The SC decoder successively estimates each
bit ui based on the vector Y and the previously estimated bits
([û0...ûi−1]). To estimate each bit ui, the decoder computes
the following LLR value:

λ0
i = log

Pr(Y, û0:i−1|ui = 0)

Pr(Y, û0:i−1|ui = 1)
.

The estimated bit ûi is 0 if λ0i > 0, 1 otherwise. Since
the decoder knows the location of the frozen bits, if ui is a
frozen bit, ûi = 0 regardless of λ0i value. The SC decoding
process can be seen as the traversal of a binary tree as shown
in Figure 1. The tree includes logN +1 layers each including
2d nodes, where d is the depth of the layer in the tree. Each
node contains a set of 2n−d LLRs and partial sums ŝ. Nodes
are visited using a pre-order traversal. As shown in Figure 1,
three functions, f , g and h are used for node updates:

 f(λa, λb) = sign(λa.λb).min(|λa|, |λb|)
g(λa, λb, s) = (1− 2s)λa + λb

h(sa, sb) = (sa ⊕ sb, sb)

The f function is applied when a left child node is
accessed: λlefti = f(λupi , λup

i+2d
), 0 ≤ i < 2d. The

g function is used when a right child node is accessed:
λrighti = g(λupi , λup

i+2d
), 0 ≤ i < 2d. Then moving up

in the tree, the first half of partial sum is updated with
supi = h(slefti , srighti), 0 ≤ i < 2d/2 and the second half
is simply copied : supi = srighti . The decoding process stops
when the partial sum of the root node is updated. In a
systematic Polar encoding scheme, this partial sum is the
decoded codeword. In practice, by exploiting knowledge on
the frozen bits fixed location, whole sub-trees can be pruned
and replaced by specialized nodes [14], [22], replacing scalar
computations in the lowest levels of the tree by vector ones.

III. SOFTWARE SC DECODERS STATE-OF-THE-ART

In [14]–[16], SIMD units process several LLRs in parallel
within a single frame decoding. This approach, called intra-
frame vectorization is efficient in the upper layers of the tree
and in the specialized nodes, but more limited in the lowest
layers where the computation becomes more sequential.

In [17], [18], an alternative scheme called inter-frame
vectorization decodes several independent frames in parallel
in order to saturate the SIMD unit. This approach improves
the throughput of the SC decoder but requires to load several
frames before starting to decode, increasing both the decoding
latency and the decoder memory footprint.

The AFF3CT software for SC decoding [19] is a multi-
platform tool (x86-SSE, x86-AVX, ARM32-NEON, ARM64-
NEON) including all state-of-the-art advances in software
SC decoding of Polar codes: intra/inter-frame vectorization,
multiple data formats (8-bit fixed-point, 32-bit floating-point)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 1.5 2 2.5 3

Eb/N0 (dB)

N = 4096, Rate 1/2

BER dyn.
BER gen.
FER dyn.
FER gen.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Eb/N0 (dB)

N = 32768, Rate 5/6

BER dyn.
BER gen.
FER dyn.
FER gen.

Fig. 2. Bit Error Rate (squares) and Frame Error Rate (circles) for the Fast-
SSC decoder. The solid shapes represent the dynamic decoder with adaptive
frozen bits when the hollow shapes represent the generated decoders. For
N = 4096 , the generated decoder is optimized for 3.2dB. For N = 32768,
the generated decoder is optimized for 4.0dB.

and all known tree pruning strategies. It resorts to code
generation strategies to build specialized decoders, trading
flexibility (code rate R, code length N) for extra performance.

All state of the art implementations aim at providing differ-
ent trade-offs between error correction performance through-
put and decoding latency. However, energy consumption is
also a crucial parameter in SDR systems, as highlighted
in [23]–[25]. In this study, we propose to investigate the
influence of several parameters on the energy consumption
of SC software Polar decoders on embedded processors to
demonstrate their effectiveness for future SDR systems.

IV. DYNAMIC VERSUS GENERATED APPROACH

We extend the AFF3CT software with a new version of
the Fast-SSC decoder, called dynamic decoder. This version
uses the same building blocks as the generated versions, but
the same code is able to accommodate with different frozen
bit layouts and different parameters (length, SNR). C++11
template specialization features are used to enable the compiler
to perform loop unrolling starting from a selected level in the
decoding tree. It is the first non-generated version (to the best
of our knowledge) to support both multi-precision (32-bit, 8-
bit) and multi-SIMD strategies (intra-frame or inter-frame).

By design, generated decoders are still faster than the dy-
namic decoder (up to 20%). However each generated decoder
is optimized for a single SNR. For very large frame sizes, the
dynamic decoder outperforms generated decoders because the
heavily unrolled generated decoders exceed Level 1 instruction
cache size capacity [19].

Fig. 2 shows the Bit Error Rate (BER) and the Frame
Error Rate (FER) of our dynamic and different generated
decoders for N = 4096 and for N = 32768. Since there
is almost no performance degradation between the 8-bit fixed-
point decoders and the 32-bit floating-point ones, only 8-bit
results are shown. We observe that the BER/FER performance

TABLE I
SPECIFICATIONS OF THE ODROID AND THE JUNO BOARDS.

ODROID-XU+E JUNO

SoC Samsung Exynos 5410 ARM64 big.LITTLE
(Exynos 5 Octa) (dev. platform)

Arch. 32-bit, ARMv7 64-bit, ARMv8
Process 28nm unspecified (32/28 nm)

big

4xCortex-A15 MPCore 2xCortex-A57 MPCore
freq. [0.8-1.6GHz] freq. [0.45-1.1GHz]

L1I 32KB, L1D 32KB L1I 48KB, L1D 32KB
L2 2MB L2 2MB

LITTLE

4xCortex-A7 MPCore 4xCortex-A53 MPCore
freq. [250-600MHz] freq. [450-850MHz]

L1I 32KB, L1D 32KB L1I 32KB, L1D 32KB
L2 512KB L2 1MB

is better for the dynamic version than for the generated codes.
Indeed the generated versions are by definition optimized for
a fixed set of frozen bits, and optimal for 3.2dB for N = 4096
and 4.0dB for N = 32768. As a result the generated versions
are only competitive for a narrow SNR sweet spot. A decoder
for a wider range of SNR values requires to combine many
different generated versions.

V. EXPLORING PERFORMANCE TRADE-OFF

The objective and originality of this study is to explore
different software and hardware parameters for the execution
of a software SC decoder on modern ARM architectures. For
a software decoder such as AFF3CT, many parameters can
be explored, influencing performance and energy efficiency.
The target rate and frame size are applicative parameters. The
SIMDization strategies (intra-frame or inter-frame) and the
features of decoders (generated or dynamic) are software pa-
rameters. The target architecture, its frequency and its voltage
are hardware parameters. This study investigates the corre-
lations between these parameters, in order to better choose
the right implementation for a given applicative purpose. The
low-power general purpose ARM32 and ARM64 processor
test-beds based on big.LITTLE architecture are selected as
representative of modern multi-core and heterogeneous ar-
chitectures. The SC decoder is AFF3CT [19], enabling the
comparison of different vectorization schemes.

The flexibility of the AFF3CT software allows to alter many
parameters and turn many optimizations on or off, leading to
a large amount of potential combinations. For the purpose of
this study, computations are performed with 8-bit fixed-point
data types, with all tree pruning optimizations activated. The
main metric considered is the average amount of energy in
Joules to decode one bit of information, expressed as Eb =
(P × l)/(K ×nf) where P is the average power (Watts), l is
the latency (s), K the number of information bits and nf is
the number of frames decoded in parallel (in the inter-frame
implementation nf > 1).

Testbed. The experiments are conducted on two
ARM big.LITTLE platforms, an ODROID-XU+E board
using a 32-bit Samsung Exynos 5410 CPU and the reference
64-bit JUNO Development Platform from ARM running a
Linux operating system, detailed in Table I.

TABLE II
CHARACTERISTICS FOR EACH CLUSTER (Ti IS THE INFORMATION

THROUGHPUT), FOR DYN. DECODER. N = 4096, RATE R = 1/2. THE
RAM CONSUMPTION IS NOT INCLUDED IN Eb AND IN P .

Cluster Impl. Ti (Mb/s) l (µs) Eb (nJ) P (W)

A7-450MHz
seq. 3.1 655 37.8 0.117
intra 13.0 158 9.5 0.123
inter 21.8 1506 6.0 0.131

A53-450MHz
seq. 2.1 966 29.0 0.062
intra 10.1 203 7.0 0.070
inter 17.2 1902 5.1 0.088

A15-1.1GHz
seq. 7.5 274 122.0 0.913
intra 35.2 58 28.2 0.991
inter 62.8 522 17.4 1.093

A57-1.1GHz
seq. 9.2 222 78.9 0.730
intra 39.2 52 21.1 0.826
inter 65.1 503 14.2 0.923

i7-3.3GHz
seq. 36.3 56.5 235.4 8.532
intra 221.8 9.2 40.5 9.017
inter 632.2 51.8 15.8 9.997

The big and the LITTLE clusters of cores on the ODROID
board are on/off in a mutually exclusive way. The active
cluster is selected through the Linux cpufreq mechanism.
Both clusters can be activated together or separately on the
JUNO board. Both platforms report details on supply voltage,
current amperage, power consumption for each cluster. Only
the ODROID platform reports details for the RAM. Conse-
quently, most experiments have been primarily conducted on
the ODROID platform to benefit from the additional insight
provided by the RAM metrics.

VI. EXPERIMENTS AND MEASUREMENTS

Table II gives an overview of the decoder behavior on
different clusters and for various implementations. The code is
always single threaded and only the 8-bit fixed-point decoders
are considered, since 32-bit floating-point versions are 4 times
more energy consuming, on average. The sequential version
is mentioned for reference only, as the throughput Ti is much
higher on vectorized versions. Generally the inter-frame SIMD
strategy delivers better performance at the cost of a higher
latency l. Table II also compares the energy consumption of
LITTLE and big clusters. The A53 consumes less energy
than the A7 and the A57 consumes less energy than the
A15, respectively. This can be explained by architectural
improvements brought by the more recent ARM64 platform.
Despite the fact that the ARM64 is a development board,
the ARM64 outperforms the ARM32 architecture. Finally we
observe that the power consumption is higher for the inter-
frame version than for the intra-frame one because it fills the
SIMD units more intensively, and the SIMD units consume
more than the scalar pipeline.

For comparison, the results for the Intel Core i7-4850HQ,
using SSE4.1 instructions (same vector length as ARM NEON
vectors) are also included. Even if the i7 is competitive with
the ARM big cores in term of energy-per-bit (Eb), these
results show it is not well suited for the low power SDR
systems because of its high power requirements. Table III
shows a performance comparison (throughput, latency) with

TABLE III
COMPARISON OF 8-BIT FIXED-POINT DECODERS WITH INTRA-FRAME

VECTORIZATION. N = 32768 AND R = 5/6.

Decoder Platform Freq. SIMD Ti (Mb/s) l (µs)
[15] i7-2600 3.4Ghz SSE4.1 204 135

this work i7-4850HQ 3.3Ghz SSE4.1 580 47
this work A15 1.1Ghz NEON 70 391
this work A57 1.1Ghz NEON 73 374

the dynamic intra-frame decoder of [15]. On a x86 CPU, our
dynamic decoder is 2.8 times faster than the state-of-the-art
decoder. Even if we used a more recent CPU, we also used
the same set of instructions (SSE4.1) and the frequencies are
comparable.

Figure 3 shows the energy-per-bit consumption depending
on the frame size N for the fixed rate R = 1/2. In general,
the energy consumption increases with the frame size. For
small frame sizes (N from 28 to 214), the inter-frame SIMD
outperforms the intra-frame SIMD. This is especially true
for N = 28 which has a low ratio of SIMD computations
over scalar computations in the intra-frame version. As the
frame size increases, the ratio of SIMD vs scalar computations
increases as well. At some point around N = 216 the intra-
frame implementation begins to outperform the inter-frame
one, because the data for the intra-frame decoder still fits in
the CPU cache, whereas the data of the inter-frame decoder
does not fit the cache anymore. In our case (8-bit fixed point
numbers and 128-bit vector registers) the inter-frame decoders
require 16 times more memory than the intra-frame decoders.
Then, for the frame size N = 220, both intra and inter-frame
decoders now exceed the cache capacity and the RAM power
consumption becomes more significant due to the increased
number of cache misses causing RAM transactions. In general
the code generation is effective on the intra-frame strategy
whereas it is negligible on the inter-frame version of the code.

Considering those previous observations, it is more energy
efficient to use inter-frame strategy for small frame sizes,

 0

 10

 20

 30

 40

 50

28 210 212 214 216 218 220

En
er

gy
-p

er
-b

it
(n

J)

Codeword size (N)

Total (cluster + memory)

intra dyn.
intra gen.
inter dyn.
inter gen. 1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

28 210 212 214 216 218 220

Pe
rc

en
ta

ge
 o

f e
ne

rg
y-

pe
r-b

it
(n

J)

Codeword size (N)

Memory only

Fig. 3. Variation of the energy-per-bit for different frame sizes and impl.:
intra-/inter-frame, dyn. code on/off, on A15 @ 1.1GHz. Fixed rate R = 1/2.

0

5

10

15

20

25

30

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

En
er

gy
-p

er
-b

it
(n

J)

ARM Cortex-A7

zHM054 zHM055zHM052 zHM053

0

5

10

15

20

25

30

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

intra dyn.

inter dyn.

ARM Cortex-A15

zHG0.1 zHG1.1zHM008 zHM009

Fig. 4. Variation of the energy-per-bit (Eb) depending on the cluster
frequency (dynamic code, intra-, inter-frame). A7 performance is on the left
and A15 on the right. N = 4096 and R = 1/2. Dark colors and light colors
stand for CPU cluster and RAM energy consumption, resp.

whereas it is better to apply intra-frame strategy for larger
frame sizes (comparable energy consumption with much lower
latency).

Figure 4 shows the impact of the frequency on the energy,
for a given value of frame size N = 4096 and code rate
R = 1/2. On both A7 and A15 clusters, the supply voltage
increases with the frequency from 0.946V to 1.170V. The
A7 LITTLE cluster shows that the energy consumed by
the system RAM is significant: At 250MHz it accounts for
half of the energy cost. Indeed, at low frequency, the long
execution time due to the low throughput causes a high
dynamic RAM refreshing bill. It is therefore more interesting
to use frequencies higher than 250MHz. For this problem size
and configuration, and from an energy-only point of view, the
best choice is to run the decoder at 350MHz. On the A15 big
cluster, the energy cost is mainly driven by the CPU frequency,
while the RAM energy bill is limited compared to the CPU.

Thus, the bottom line about energy vs frequency relationship
is: On the LITTLE cluster it is more interesting to clock the
CPU at high frequency (higher throughput and smaller latency
for a small additional energy cost); On the big cluster, where
the RAM consumption is less significant, it is better to clock
the CPU at a low frequency.

In Figure 5 the energy-per-bit cost decreases when the
code rate increases. This is expected because there are many

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1/10
2/10

3/10
4/10

5/10
6/10

7/10
8/10

9/10

En
er

gy
-p

er
-b

it
(n

J)

Rate (R = K / N)

A57 intra dyn.
A57 inter dyn.
A7 intra dyn.
A7 inter dyn.

A53 intra dyn.
A53 inter dyn.

Fig. 5. Variation of the energy-per-bit (Eb) for N = 32768 depending on
the rate R = K/N (various impl.: intra-, inter-frame, code gen. on). Running
on A7, A53 and A57 @ 450MHz.

Larger
SNR range

Lower memory
footprint

Lower latency Lower energy
per bit

Higher
throughput

Fig. 6. Ranking of the different approaches along 5 metrics. In red, inter-
frame vectorization performance and in blue, intra-frame performance. Solid
color is for the dynamic versions, dotted is for the generated versions. Each
version is sorted along each of the 5 axes and the best version for one axe is
placed further from the center.

more information bits in the frame when R is high, making
the decoder more energy efficient. With high rates, the SC
decoding tree can be pruned more effectively, making the
decoding process even more energy efficient. Figure 5 also
compares the ARM A7, A53 and A57 clusters for the same
450MHz frequency (note: this frequency is not available on
the A15). The LITTLE A7 is more energy efficient than the
big A57, and the LITTLE A53 is itself more energy efficient
than the LITTLE A7 (EbA53

< EbA7
< EbA57

).
Figure 6 presents a qualitative summary of the charac-

teristics of the different code versions, for intra-/inter-frame
vectorization, generated or dynamic code. For instance, if the
size of the memory footprint is an essential criterion, the
dynamic intra-frame code exhibits the best performance.

To sum up, the dynamic implementations provides efficient
trade-off between throughput, latency and energy depending
on code length. It was demonstrated by previous bench-
marks. Both implementations provide low-energy and low-
power characteristics compared to previous works in the field
on x86 processors [14]–[19]. Whereas the throughput on a
single processor core is reduced compared to x86 implemen-
tations, ARM implementations must fulfil a large set of SDR
applications with limited throughputs and where the power
consumption matters. Finally, it is important to notice that
multi-core implementations of the proposed ARM decoders is
still possible on these ARM targets to improve the decoding
throughputs.

VII. CONCLUSION AND FUTURE WORK

This paper presented for the first time a study comparing
performance and energy consumption for software Successive
Cancellation Polar decoders on big.LITTLE ARM32 and
ARM64 processors. We proposed a new decoder implementa-
tion, and showed how decoding performance, throughput and
decoder implementation correlate for a range of applicative
parameters, software optimizations and hardware architectures.

ACKNOWLEDGEMENTS

This study has been carried out with financial support from the French
State, managed by the French National Research Agency (ANR) in the frame
of the ”Investments for the future” Programme IdEx Bordeaux - CPU (ANR-
10-IDEX-03-02).

REFERENCES

[1] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput low
latency LDPC decoding on GPU for SDR systems,” in Proc. of the IEEE
GlobalSIP Conf., 2013.

[2] B. Le Gal and C. Jego, “High-throughput multi-core LDPC decoders
based on x86 processor,” IEEE TPDS, vol. 27, no. 5, pp. 1373–1386,
2016.

[3] B. L. Gal and C. Jego, “High-throughput LDPC decoder on low-power
embedded processors,” IEEE Comm. Letters, vol. 19, no. 11, pp. 1861–
1864, 2015.

[4] D. Yoge and N. Chandrachoodan, “GPU implementation of a pro-
grammable turbo decoder for software defined radio applications,” in
Proc. of the IEEE VLSI Design Conf., 2012.

[5] M. Wu, G. Wang, B. Yin, C. Studer, and J. Cavallaro, “HSPA+/LTE-
A turbo decoder on GPU and multicore CPU,” in Proc. of the IEEE
ACSSC, 2013.

[6] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
TIT, vol. 55, no. 7, pp. 3051–3073, 2009.

[7] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux,
P. Meinerzhagen, A. Burg, and W. Gross, “A successive cancellation
decoder ASIC for a 1024-bit polar code in 180nm CMOS,” in Proc. of
the IEEE A-SSCC, 2012.

[8] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross,
“Hardware implementation of successive-cancellation decoders for polar
codes,” Springer JSPS, vol. 69, no. 3, pp. 305–315, 2012.

[9] A. Raymond and W. Gross, “A scalable successive-cancellation decoder
for polar codes,” IEEE TSP, vol. 62, no. 20, pp. 5339–5347, 2014.

[10] B. Li, H. Shen, D. Tse, and W. Tong, “Low-latency polar codes via
hybrid decoding,” in Proc. of the IEEE ISTC Symp., 2014.

[11] B. Yuan and K. Parhi, “Low-latency successive-cancellation polar de-
coder architectures using 2-bit decoding,” IEEE TCS, vol. 61, no. 4, pp.
1241–1254, 2014.

[12] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE JSAC, vol. 32, no. 5,
pp. 946–957, 2014.

[13] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “A 237 Gbps unrolled
hardware polar decoder,” Electronics Letters, vol. 51, no. 10, pp. 762–
763, 2015.

[14] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE JSAC, vol. 32, no. 5,
pp. 946–957, 2014.

[15] P. Giard, G. Sarkis, C. Thibeault, and W. Gross, “Fast software polar
decoders,” in Proc. of the IEEE ICASSP, 2014.

[16] G. Sarkis, P. Giard, C. Thibeault, and W. Gross, “Autogenerating
software polar decoders,” in Proc. of the IEEE GlobalSIP Conf., 2014.

[17] B. Le Gal, C. Leroux, and C. Jego, “Software polar decoder on an
embedded processor,” in Proc. of the IEEE SiPS Work., 2014.

[18] ——, “Multi-Gb/s software decoding of polar codes,” IEEE TSP, vol. 63,
no. 2, pp. 349–359, 2015.

[19] A. Cassagne, B. Le Gal, C. Leroux, O. Aumage, and D. Barthou,
“An efficient, portable and generic library for successive cancellation
decoding of polar codes,” in Proc. of the Springer LCPC Work., 2015.

[20] AFF3CT, “AFF3CT: The first software release,” 2016. [Online].
Available: http://dx.doi.org/10.5281/zenodo.55668

[21] E. Arikan, “Systematic polar coding,” IEEE Comm. Letters, vol. 15,
no. 8, pp. 860–862, 2011.

[22] A. Alamdar-Yazdi and F. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Comm. Letters, vol. 15,
no. 12, pp. 1378–1380, 2011.

[23] A. M. Wyglinski, M. Nekovee, and T. Hou, Cognitive radio communi-
cations and networks: principles and practice. Academic Press, 2009.

[24] P. Dutta, Y.-S. Kuo, A. Ledeczi, T. Schmid, and P. Volgyesi, “Putting the
software radio on a low-calorie diet,” in Proc. of the ACM SIGCOMM
HotNets Work., 2010.

[25] S. Shaik and S. Angadi, “Architecture and component selection for SDR
applications,” IJETT, vol. 4, no. 4, pp. 691–694, 2013.

