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Abstract

In this article, we show how to perform a dynamical control of Newton’s method for the com-
putation of multiple roots of polynomials. Using Discrete Stochastic Arithmetic, root approxi-
mations are computed until the difference between two successive approximations is numerical
noise. With such a stopping criterion, the optimal number of iterations in Newton’s method
are performed. Moreover it is possible to estimate in the result obtained which digits are in
common with the exact root. Two strategies to estimate the multiplicity of polynomials roots
are compared: one requires root approximations computed at different precisions and the other
three successive iterates of Newton’s method. We show that using such a strategy and then the
modified Newton’s method, multiple roots can be computed with a requested accuracy.

Keywords: Discrete Stochastic Arithmetic, floating-point arithmetic, numerical validation, rounding errors,
polynomial, multiple roots, Newton’s method, modified Newton’s method

AMS subject classifications: 65H10, 65G20, 65H05, 65-04

1 Introduction
The approximation of polynomial roots is usually based on a sequence computation and it might be difficult
to perform the optimal number of iterations. Indeed if the computation stops too early, the result may
be still far from the exact root and too many iterations may cause an increase of the rounding error that
affects the result. In this article we show how to perform a dynamical control of Newton’s method for the
approximation of a root α of multiplicity m of a polynomial f , i.e. such that f (i)(α) = 0 for i = 0, . . . ,m−1
and f (m)(α) 6= 0. Thanks to Discrete Stochastic Arithmetic [29], a stopping criterion that takes into account
rounding errors can be used and the optimal number of iterates can be computed. Moreover, from the root
multiplicity m, it is possible to estimate the number of correct digits in the approximation obtained.

In this article, two strategies are compared to estimate the multiplicity of polynomial roots. It is well-
known that deciding whether a univariate polynomial has a multiple root is an ill-posed problem: an arbitrary
small perturbation of a polynomial coefficient may change the answer from yes to no. For example a real
double root may be changed into two simple roots. As a consequence, it is hardly possible to verify that
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a polynomial has a multiple root, unless the entire computation is performed without any rounding errors,
that is to say using Computer Algebra methods. In [23], we showed that it is possible to certify with interval
techniques that the polynomial f has a true multiple root in its neighborhood. Given an integer m and an
approximation x0 of the root α, we provide a method that can potentially find intervals X and E such that
we can certify that there exist α̂ ∈ X and e ∈ E, α̂ being a root of multiplicity m of g(x) := f(x) − e. If
the polynomial f has a root of multiplicity m, typically the interval E is a very narrow interval around zero.
Of course this method can fail and answer that we cannot say anything. But if this method provides some
intervals then this is a true (mathematical) solution. In this paper, we describe how to find a number m
such that the previous procedure works, meaning that there is a polynomial close to f that has a true root
of multiplicity m.

This paper is organized as follows. In Section 2, we describe how rounding errors can be estimated
using Discrete Stochastic Arithmetic. In Section 3, we propose a method and some theoretical results to
dynamically control the errors in Newton’s method. In Section 4, we present how to estimate the multiplicity
of polynomial roots thanks to a dynamical control of Newton’s method with Discrete Stochastic Arithmetic.
Finally, concluding remarks and perspectives are presented in Section 5.

2 Estimation of rounding errors using Discrete Stochastic Arith-
metic

2.1 Principles of the CESTAC method
Based on a probabilistic approach, the CESTAC method [28] allows the estimation of rounding error prop-
agation which occurs with floating-point arithmetic. When no overflow occurs, the exact result, r, of any
non exact floating-point arithmetic operation is bounded by two consecutive floating-point values R− and
R+. The basic idea of the method is to perform each arithmetic operation N times, randomly rounding
each time, with a probability of 0.5, to R− or R+. The computer’s deterministic arithmetic, therefore, is
replaced by a stochastic arithmetic where each arithmetic operation is performed N times before the next
one is executed, thereby propagating the rounding error differently each time.

It has been proved [4] that the computed result R of n elementary arithmetic operations is modelled to
the first order in 2−p as:

R ≈ Z = r +
n∑
i=1

gi(d)2−pzi, (1)

where r is the exact result, gi(d) are coefficients depending exclusively on the data and on the code, p is the
number of bits in the mantissa and zi are independent uniformly distributed random variables on [−1, 1].

From Equation 1, we deduce that:

1. the mean value of the random variable Z is the exact result r;

2. the distribution of Z is a quasi-Gaussian distribution.

Then by identifying R and Z, i.e. by neglecting all the second order terms, Student’s test can be used
to estimate the accuracy of R. From N samples Ri, i = 1, 2, ..., N ,

∀β ∈ [0, 1],∃τβ ∈ R s.t. P
(∣∣R− r∣∣ ≤ στβ√

N

)
= 1− β, (2)

where

R = 1
N

N∑
i=1

Ri and σ2 = 1
N − 1

N∑
i=1

(
Ri −R

)2
. (3)
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τβ is the value of Student’s distribution for N−1 degrees of freedom and a probability level 1−β. Therefore,
if no overflow occurs, the number of decimal significant digits common to R and r can be estimated as

CR = log10

(√
N
∣∣R∣∣

στβ

)
. (4)

Thus the implementation of the CESTAC method in a code providing a result R consists in:

• performing N times this code with the random rounding mode, which is obtained by using randomly
the upward or downward rounding mode; we then obtain N samples Ri of R;

• choosing as the computed result the mean value R of Ri, i = 1, ..., N ;

• estimating with Equation 4 the number of exact decimal significant digits of R.

In practice β = 0.05 and N = 3. Indeed, it has been shown [4, 5] that N = 3 is in some reasonable sense
the optimal value. The estimation with N = 3 is more reliable than with N = 2 and increasing the size of
the sample does not improve the quality of the estimation. The probability of overestimating the number of
exact significant digits of at least one is 0.054% and the probability of underestimating the number of exact
significant digits of at least one is 29%. By choosing β = 0.05, we prefer to guarantee a minimal number of
exact significant digits with a high probability (99.946%), even if we are often pessimistic by one digit. The
complete theory can be found in [4, 28].

2.2 Validity of the CESTAC method
Equations 1 and 4 hold if the two following hypotheses are verified:

1. the rounding errors αi are independent, centered uniformly distributed random variables;

2. the approximation to the first order in 2−p is legitimate.

Concerning the first hypothesis, with the use of the random arithmetic, rounding errors αi are random
variables, however, in practice, they are not rigorously centered and in this case Student’s test gives a biased
estimation of the computed result. It has been proved [4] that, with a bias of a few σ, the error on the
estimation of the number of exact significant digits of R is less than one decimal digit. Therefore even if the
first hypothesis is not rigorously satisfied, the estimation obtained with Equation 4 is still correct up to one
digit.

Concerning the second hypothesis, the approximation to the first order only concerns multiplications and
divisions. Indeed the rounding error generated by an addition or a subtraction does not contain any term
of higher order. It has been shown [4] that, if both operands in a multiplication or the divisor in a division
become insignificant, i.e. with no more exact significant digit, then the first order approximation may be
not legitimate. In practice, the CESTAC method requires, during the execution of the code, a dynamical
control of multiplications and divisions, which is a so-called self-validation of the method.

2.3 Principles of DSA
The self-validation of the CESTAC method requires its synchronous implementation. Indeed to enable the
estimation of the accuracy, the samples which represent a result must be computed simultaneously. Discrete
Stochastic Arithmetic (DSA) [29] has been defined from the synchronous implementation of the CESTAC
method. With DSA, a real number becomes an N -dimensional set and any operation on these N -dimensional
sets is performed element per element using the random rounding mode. The number of exact significant
digits of such an N -dimensional set can be estimated from Equation 4. The self-validation of the CESTAC
method also leads to the concept of computational zero [27] defined below.

Definition 2.1 During the run of a code using the CESTAC method, a result R is a computational zero,
denoted by @.0, if ∀i, Ri = 0 or CR ≤ 0.
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Any computed result R is a computational zero if either R = 0, R being significant, or R is insignificant.
A computational zero is a value that cannot be differentiated from the mathematical zero because of its
rounding error. From the concept of computational zero, an equality concept and order relations have been
defined for DSA.

Definition 2.2 Let X and Y be N -samples provided by the CESTAC method.
• Discrete stochastic equality denoted by ds= is defined as Xds= Y if and only if X − Y = @.0.
• Discrete stochastic inequalities denoted by ds> and ds≥ are defined as:
Xds> Y if and only if X > Y and Xds6= Y ,
Xds≥ Y if and only if X ≥ Y or Xds= Y .

Stochastic relational operators ensure that in a branching statement the same sequence of instructions
is performed for all the samples which represent a variable. DSA enables to estimate the impact of rounding
errors on any result of a scientific code and also to check that no anomaly occurred during the run, especially
in branching statements.

2.4 Implementation of DSA
The CADNA1 software [4, 7, 10, 11, 19] is a library which implements DSA in any code written in C, C++ or
Fortran and allows one to use new numerical types: the stochastic types. In essence, classical floating-point
variables (in single or in double precision) are replaced by the corresponding stochastic variables, which
are composed of three perturbed floating-point values. The library contains the definition of all arithmetic
operations and order relations for the stochastic types. The control of the accuracy is performed only on
variables of stochastic type. When a stochastic variable is printed, only its exact significant digits appear.
For a computational zero, the string “@.0” is printed. In contrast to interval arithmetic, that computes
guaranteed results, the CADNA software provides, with the probability 95% the number of exact significant
digits of any computed result. CADNA has been successfully used for the numerical validation of academic
and industrial simulation codes in various domains such as astrophysics [14], atomic physics [24], chemistry,
climate science [3, 12], fluid dynamics, geophysics [13].

The SAM library2 [9] implements in arbitrary precision the features of DSA: the stochastic types, the
concept of computational zero and the stochastic operators. The SAM library is written in C++ and is
based on MPFR. The particularity of SAM (compared to CADNA) is the arbitrary precision of stochastic
variables. The SAM library with 24-bit (resp. 53-bit) mantissa length is similar to CADNA in single (resp.
double) precision, except the range of the exponent is only limited by the machine memory. In SAM, the
number of exact significant digits of any stochastic variable is estimated with the probability 95%, whatever
its precision. Like in CADNA, the arithmetic and relational operators in SAM take into account rounding
error propagation.

In CADNA and SAM all operators are overloaded, therefore their use in a program requires only a few
modifications: essentially changes in the declarations of variables and in input/output statements. CADNA
and SAM can detect numerical instabilities which occur during the execution of the code. These instabilities
are either operations involving a computational zero or cancellations, i.e. subtractions of two very close
values which generates a sudden loss of accuracy. At the end of the run, each type of instability together
with their occurrences are printed.

3 Dynamical control of Newton’s method
In this section, we will first recall Newton’s method and some results on its convergence. We will then state
a criterion to stop the iterations and give some information about the accuracy of the computed solution.
Numerical experiments will confirm our results.

1http://cadna.lip6.fr
2http://www-pequan.lip6.fr/~jezequel/SAM
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3.1 Newton’s method
Newton’s method enables one to approximate a root α of a function f by computing the sequence xn+1 =
g(xn) with g(x) = x − f(x)

f ′(x) . Newton’s method is based on the fixed-point method; indeed g(x) = x ⇐⇒
f(x) = 0. If α is a simple root (f ′(α) 6= 0), then there is a local quadratic convergence. If now α is a multiple
root of multiplicity m > 1 then the convergence is linear. If one knows the multiplicity, it is possible to get
a quadratic convergence via the modified Newton’s method defined by the iteration xn+1 = xn −m f(xn)

f ′(xn) .
One can find more information on Newton’s method in the book [6]. For some results on the convergence
and the accuracy of Newton’s method in floating-point arithmetic, see [8, 15, 25].

3.2 Optimal stopping criterion
The following definition makes clear the notion of decimal significant digits in common between two numbers.

Definition 3.1 The number of decimal significant digits in common between two real numbers a and b is
defined in R by

• for a 6= b, Ca,b = log10

∣∣∣∣ a+ b

2(a− b)

∣∣∣∣;
• for all a ∈ R, Ca,a = +∞.

Then |a− b| =
∣∣a+b

2
∣∣ 10−Ca,b . For instance, if Ca,b = 3, the relative difference between a and b is of the

order of 10−3, which means that a and b have three significant decimal digits in common.

Remark 3.1 The value of Ca,b can seem surprising if we consider the decimal notations of a and b. For
example, if a = 2.4599976 and b = 2.4600012, then Ca,b ≈ 5.8. The difference due to the sequences of “0” or
“9” is illusive. The significant decimal digits of R and r become actually different from the sixth position.

The following lemma gives a relation between the derivative of the function g at the root α and the
multiplicity.

Lemma 3.1 Let us assume α is a root of multiplicity m ≥ 2 of a polynomial f and g(x) = x− f(x)
f ′(x) . Then

g′(α) = 1− 1
m .

Proof: Let us assume that α is a root of f of multiplicity m, then we can find a function h such that

∀x ∈ I, f(x) = (x− α)mh(x) with h(α) 6= 0, (5)
with I a small open interval around α. As a consequence, it turns out that

f ′(x) = (x− α)m−1 [mh(x) + (x− α)h′(x)] . (6)

Then

f ′′(x) = (x− α)m−1 [(m+ 1)h′(x) + (x− α)h′′(x)] + (m− 1)(x− α)m−2 [mh(x) + (x− α)h′(x)] . (7)

The derivative of g is

g′(x) = 1− (f ′(x))2 − f(x)f ′′(x)
(f ′(x))2 = f(x)f ′′(x)

(f ′(x))2 . (8)

Therefore we have

g′(x) = (x− α)h(x) [(m+ 1)h′(x) + (x− α)h′′(x)]
[mh(x) + (x− α)h′(x)]2

+ (m− 1)h(x)
mh(x) + (x− α)h′(x) , (9)
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which implies that
g′(α) = 1− 1

m
. (10)

In the next two lemmas, we recall well-known results on finite expansions that can be found in any
textbook on mathematical analysis. They will be used in the sequel.

Lemma 3.2 Let us consider (un) and (vn) two real sequences (n ∈N). Then we have

lim
n→∞

un
vn

= 1 ⇐⇒ un ∼∞ vn.

Lemma 3.3 Let us consider (un) and (vn) two real sequences such that ∀n ∈ N , un > 0 and vn > 0,
lim
n→∞

un = L 6= 1 and un ∼∞ vn. Then log un ∼∞ log vn.

The following theorem gives a relation between the common significant digits of two successive approx-
imations of the root and the common significant digits of an approximation and the root when the root is
simple.

Theorem 3.1 Let xn and xn+1 be two successive approximations computed using Newton’s method of a
polynomial root α of multiplicity m = 1 (simple root).

Then
Cxn,xn+1 ∼∞ Cxn,α.

Proof: If n ∈ N exists such that xn = xn+1. Then xn+1 = α, Cxn,α = ∞, and Cxn,xn+1 = ∞. So, in
this case, Theorem 3.1 is satisfied.

Let us now consider ∀n ∈ N , xn 6= xn+1. From Taylor expansion, f(xn) = f(α) + f ′(λn)(xn − α)
where λn ∈ [min(α, xn),max(α, xn)]. Moreover, with Newton iteration, we have xn+1 = xn − f(xn)

f ′(xn) . As a
consequence, xn+1 = xn +Mn(α− xn) with Mn = f ′(λn)/f ′(xn) and Mn → 1 when n→ +∞. It turns out
that

lim
n→+∞

(α− xn)(xn+1 + xn)
(xn+1 − xn)(α+ xn) = 1.

Applying Lemma 3.2, we obtain
xn+1 + xn
xn+1 − xn

∼∞
α+ xn
α− xn

. (11)

Therefore, we have ∣∣∣∣ xn+1 + xn
2(xn+1 − xn)

∣∣∣∣ ∼∞ ∣∣∣∣ α+ xn
2(α− xn)

∣∣∣∣ . (12)

Applying Lemma 3.3, we also obtain

log10

∣∣∣∣ xn+1 + xn
2(xn+1 − xn)

∣∣∣∣ ∼∞ log10

∣∣∣∣ α+ xn
2(α− xn)

∣∣∣∣. (13)

Finally, from Definition 3.1, it turns out that

Cxn,xn+1 ∼∞ Cxn,α. (14)

From Theorem 3.1, if the convergence zone is reached, then the digits common to two successive ap-
proximations xn and xn+1 are also in common with the exact root α. If iterations are performed until the
difference between two successive approximations xn and xn+1 is not significant, then the transformation
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of xn into xn+1 is due to rounding errors. Further iterations are useless: the number of iterations has
been optimized. Moreover, if the difference xn − xn+1 is not significant, the digits of xn+1 which are not
affected by rounding errors are in common with xn. Therefore, from Theorem 3.1, the decimal digits of the
approximation xn which are not affected by rounding errors are also in common with the exact root α.

The following theorem gives a relation between the common significant digits of two successive approx-
imations of the root and the common significant digits of an approximation and the root when the root is
multiple.

Theorem 3.2 Let xn and xn+1 be two successive approximations computed using Newton’s method of a
polynomial root α of multiplicity m ≥ 2.

Then
Cxn,xn+1 ∼∞ Cxn+1,α + log10(m− 1).

Proof: If n ∈ N exists such that xn = xn+1. Then xn+1 = α, Cxn+1,α = ∞ and Cxn,xn+1 = ∞. So, in
this case, Theorem 3.2 is satisfied.

Let us now consider ∀n ∈N , xn 6= xn+1. Applying Taylor-Lagrange formula, it exists λn ∈ [min(α, xn),max(α, xn)]
such that

g(α)− g(xn) = g′(λn)(α− xn). (15)
As lim

n→∞
xn = α and lim

n→∞
g′(λn) = g′(α) = 1 − 1

m with m ≥ 2 from Lemma 3.1, we can assume that
g′(λn) 6= 0 and g′(λn) 6= 1.

By definition, we have
g(α)− g(xn) = α− xn+1. (16)

By combining Equations 15 and 16 we can write

α− xn = α− xn+1

g′(λn) . (17)

Therefore, we have
α− xn+1 = α− xn+1

g′(λn) + xn − xn+1. (18)

Because xn 6= xn+1, from Equation 18, we can write

α− xn+1

xn − xn+1
= g′(λn)
g′(λn)− 1 . (19)

Because lim
n→∞

λn = α, from Lemma 3.1 and Equation 19, we deduce

lim
n→∞

α− xn+1

(1−m)(xn − xn+1) = 1. (20)

Moreover, because lim
n→∞

xn = α, it follows that

lim
n→∞

(α− xn+1)(xn + xn+1)
(1−m)(xn − xn+1)(α+ xn+1) = 1. (21)

Applying Lemma 3.2, we obtain

xn + xn+1

xn − xn+1
∼∞

(1−m)(α+ xn+1)
α− xn+1

. (22)

and so ∣∣∣∣ xn + xn+1

2(xn − xn+1)

∣∣∣∣ ∼∞ (m− 1)
∣∣∣∣ α+ xn+1

2(α− xn+1)

∣∣∣∣ . (23)
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Applying Lemma 3.3, we obtain

log10

∣∣∣∣ xn + xn+1

2(xn − xn+1)

∣∣∣∣ ∼∞ log10

∣∣∣∣ α+ xn+1

2(α− xn+1)

∣∣∣∣+ log10(m− 1). (24)

Finally, from Definition 3.1, we deduce

Cxn,xn+1 ∼∞ Cxn+1,α + log10(m− 1). (25)

From Theorem 3.2, if the convergence zone is reached, then the digits common to two successive ap-
proximations xn and xn+1 are also in common with the exact root α, up to log10(m − 1). If iterations are
performed until the difference between two sucessive approximations xn and xn+1 is not significant, then the
significant digits of the last approximation xn+1 which are not affected by rounding errors are in common
with the exact root α, up to δ = dlog10(m− 1)e, as illustrated in Figure 1.

xn+1

xn

α rounding errorsδ

Figure 1: In case α is a multiple root, representation of the last iterates xn and xn+1, and the first
digits of the exact root α: if the difference xn − xn+1 is not significant, then the digits of xn+1
which are not affected by rounding errors are in common with α, up to δ.

3.3 Numerical experiments
In the numerical experiments presented here, each polynomial root is approximated by computing a sequence
(xn) using Newton’s method with DSA until the difference xn − xn+1 is not significant, i.e. xn ds= xn+1.
The algorithm used is given below. We recall that in the SAM library all arithmetic and relational operators
are redefined for stochastic variables. Therefore, as usual in C implementations of Newton’s method, the
stopping criterion is actually written as while (x!=y).
Algorithm 1: Newton using DSA
Data: xinit (initial approximation)
Result: x (approximation of a root of a polynomial f)
x = xinit;
do

y = x;
x = y − f(y)/f ′(y);

while x ds6= y;

Let us first consider the following polynomial

P (x) = (19x+ 5)5 (19x+ 21)9 (19x+ 46)13 (19x+ 67)25
. (26)

Its four roots with their multiplicities are presented in Table 1.
From Theorem 3.2 and Table 1, in the approximations of the roots obtained, the digits which are not

affected by rounding errors are in common with the exact roots, up to 1 for α1 and α2, up to 2 for α3 and α4.
This is observed in the numerical expriment described here, despite a few exceptions due to the probabilistic
aspect of DSA.
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roots α1 = −5/19 α2 = −21/19 α3 = −46/19 α4 = −67/19
multiplicity m 5 9 13 25
dlog10(m− 1)e 1 1 2 2

Table 1: Roots of P (x) = (19x+ 5)5 (19x+ 21)9 (19x+ 46)13 (19x+ 67)25 with their multiplities.

Figure 2 and Table 2 present the accuracy of the roots computed with the SAM library with respect to
the precision used. For each root, 15 different precisions are considered, from 24 to 10,000 bits (equivalent
to 3,010 decimal digits). In Figure 2 and Table 2 are reported: the accuracy estimated by SAM, i.e. the
number of significant digits which are not affected by rounding errors, and the number of significant digits
in common with the exact roots. As a remark, a log scale is used in Figure 2 for the y-axis to improve the
readability of the results obtained with the lowest precisions. The accuracy is linear with respect to the
decimal precision used and, as expected, it decreases as the multiplicity increases.

 1

 10

 100

 1000

 0  500  1000  1500  2000  2500  3000

A
cc

u
ra

cy

Precision

α1: accuracy estimated by SAM
      number of exact digits
α2: accuracy estimated by SAM
      number of exact digits
α3: accuracy estimated by SAM
      number of exact digits
α4: accuracy estimated by SAM
      number of exact digits

Figure 2: Accuracy of the roots of P (x) = (19x+ 5)5 (19x+ 21)9 (19x+ 46)13 (19x+ 67)25 com-
puted by SAM with respect to the decimal precision used.

The digits not affected by rounding errors which are provided by SAM are in common with the exact
roots, up to 1 or 2. Actually the difference between the accuracy provided by SAM and the number of exact
significant digits is 2 in six results out of sixty:

• one result is an approximation of α1, its accuracy estimated by SAM is 12 digits and its exact accuracy,
10 digits, determined from Definition 3.1 is actually bCxn+1,αc ≈ b10.83c digits;

• one result is an approximation of α2, its accuracy estimated by SAM is 6 digits and its exact accuracy,
4 digits, determined from Definition 3.1 is actually bCxn+1,αc ≈ b4.92c digits;

• in four results, which are approximations of α4, this difference is consistent with Theorem 3.2 and
Table 1.

A polynomial with a root of multiplicity 100 is also considered. In this case, from Theorem 3.2, in the
approximations of the root obtained, the digits which are not affected by rounding errors are in common with
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precision α1 = −5/19 α2 = −21/19 α3 = −46/19 α4 = −67/19
bits digits SAM exact SAM exact SAM exact SAM exact
24 7 1 0 0 0 0 0 0 0
53 15 2 1 1 0 1 0 0 0

100 30 5 5 2 2 1 0 1 0
200 60 12 10 6 4 3 3 3 1
300 90 17 16 9 8 6 5 3 2
500 150 29 28 15 14 10 9 6 5
750 225 44 43 24 23 16 15 9 8
1000 301 59 59 32 31 21 21 12 11
1500 451 90 89 49 48 33 32 18 17
2000 602 120 119 66 65 45 44 24 23
3000 903 180 179 99 98 68 67 36 35
4000 1204 240 239 132 131 91 90 49 47
5000 1505 300 300 166 165 114 113 61 59
7500 2257 450 449 250 249 172 171 90 89

10000 3010 601 601 333 332 230 229 121 119

Table 2: For each root of P (x) = (19x+ 5)5 (19x+ 21)9 (19x+ 46)13 (19x+ 67)25, number of dec-
imal digits not affected by rounding errors estimated by SAM and number of decimal digits in
common with the exact root.

the exact root, up to 2. Table 3 presents for P (x) = (3x− 1)100 the number of decimal digits not affected by
rounding errors estimated by SAM and the number of decimal digits in common with the exact root α = 1/3.
The digits not affected by rounding errors which are provided by SAM are in common with the exact root
up to 2, except in one case. Indeed, if the precision is set to 750 bits (equivalent to 225 decimal digits), the
accuracy of the root estimated by SAM is 4 decimal digits and its exact accuracy, reported in Table 3, is
1 decimal digit. However this exact accuracy, determined from Definition 3.1 is actually bCxn+1,αc ≈ b1.97c
digit.

Theorems 3.1 and 3.2 can be applied to other numerical examples presented in Section 4 that describes
strategies to approximate polynomial roots along with their multiplicity.

4 Estimation of the multiplicity of polynomial roots
4.1 Previous work
Multiple roots of polynomials have been studied for a long time. See for example [18] and especially chapter 7
in [26].

In [2], Bini and Fiorentino used an adaptive multiprecision version of the Ehrlich-Aberth iteration [1] to
compute clusters of roots. For that they use a suitable restarting criterion and cluster analysis to overcome
the numerical instabilities arising from multiple roots. With their method, it is possible to count the number
of roots in a cluster and so to have an approximation of the multiplicity.

More recently, Zeng [31, 32, 33] showed that it is possible to accurately compute a multiple root when one
knows its multiplicity. This work is based on computing the pejorative manifold introduced by Kahan [16].
The algorithm does not require the use of multiprecision. It first computes the multiplicity structure by de-
veloping a numerical GCD-finder using a successive singular value updating and an iterative GCD refinement
algorithm using a Gauss-Newton iteration.
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precision #digits precision #digits
bits digits SAM exact bits digits SAM exact
24 7 0 0 1500 451 6 4
53 15 1 0 2000 602 7 5
100 30 0 0 3000 903 10 8
200 60 1 0 4000 1204 13 11
500 150 3 1 5000 1505 17 14
750 225 4 1 7500 2257 24 22

1000 301 4 2 10000 3010 31 29

Table 3: For P (x) = (3x− 1)100, number of decimal digits not affected by rounding errors estimated
by SAM and number of decimal digits in common with the exact root.

In [22], Rump proposed ten methods to bound multiple roots of polynomials. Given a univariate poly-
nomial with a multiple root of multiplicity k, the paper discusses methods for computing a disc containing
exactly k roots.

One can find reviews and presentations of the previous methods in the following books [20, 21]. In the
sequel, we show how to compute polynomial roots with a requested accuracy using Newton’s method and
taking into account rounding errors. Then we present methods to compute the multiplicity of roots and
therefore benefit from the quadratic convergence of the modified Newton’s method.

4.2 Computation of polynomial roots with a requested accuracy
Algorithm 2 enables one to compute using DSA an approximation of a polynomial root, taking into account
a requested accuracy, i.e. a minimal number of significant digits that will not be affected by rounding errors.
Newton’s method, implemented as in Algorithm 1, is applied iteratively until the desired root accuracy,
computed from Equation 4, is reached. The precision, i.e. the number of digits used for the computation, is
initially set to the requested accuracy multiplied by a rate arbitrarily chosen by the user, for instance 1.3.
This rate enables one to take into account rounding errors that are necessarily generated; it avoids to perform
two iterations in stable cases when one is sufficient. In accordance with the strategy described in [17], the
precision is doubled at each iteration. If the requested accuracy and consequently the initial precision are
too low, the root accuracy is also too low and useless iterations are performed. Therefore if the accuracy of
the root computed at the first iteration is very low, a message is left to the user and the computation stops.

Algorithm 2: Newton with a requested accuracy using DSA
Data: Requested_accuracy, xinit (initial approximation)
Result: x (root approximation with a requested accuracy)
Precision = Requested_accuracy ∗Rate ;
step = 0;
do

step = step+ 1;
x = Newton (xinit);
if step = 1 and Cx ≤ 2 then

print “increase requested accuracy” and stop ;
end
xinit = x;
Precision = Precision ∗ 2;

while Cx ≤ Requested_accuracy;

11



4.3 Estimation of the multiplicity from a linear regression
We now study the accuracy of the root compared to the precision of the computation. We will show that
the relation is linear with a slope depending on the multiplicity.

Proposition 4.1 Let f be a polynomial and let α be a root of f with multiplicity m. Let x be an approxi-
mation of α computed using Newton’s method. Let h = α− x and ε = f(m)(α)hm

m! . It follows that

• if α 6= 0, then − log10 |ε| = m

(
− log10

∣∣∣∣hα
∣∣∣∣)+ log10

∣∣∣∣ m!
f (m)(α) αm

∣∣∣∣;
• if α = 0, then − log10 |ε| = m (− log10 |h|) + log10

∣∣∣∣ m!
f (m)(α)

∣∣∣∣ .
Proof: Because α is a root of f with multiplicity m, f(α) = 0, ∀i ∈ {1, ...,m − 1} f (i)(α) = 0 and

f (m)(α) 6= 0. If ε = f(m)(α)hm

m! , then

hm = ε m!
f (m)(α)

, (27)

and
m log10 |h| = log10

∣∣∣∣ ε m!
f (m)(α)

∣∣∣∣ . (28)

If α 6= 0, we deduce

−m log10

∣∣∣∣hα
∣∣∣∣ = − log10

∣∣∣∣ ε m!
f (m)(α) αm

∣∣∣∣ , (29)

and

− log10 |ε| = m

(
− log10

∣∣∣∣hα
∣∣∣∣)+ log10

∣∣∣∣ m!
f (m)(α) αm

∣∣∣∣ . (30)

If α = 0, from Equation 28 we deduce

− log10 |ε| = m (− log10 |h|) + log10

∣∣∣∣ m!
f (m)(α)

∣∣∣∣ . (31)

From Proposition 4.1, the multiplicity m satisfies

P = mCx +Km, (32)

where
• P = − log10 |ε|. From Taylor expansion of f , f(x) = ε + O(hm+1). Therefore ε ≈ f(x), x being an

approximation of the root α. In general floating-point computations are affected by a relative error,
the magnitude of which being the precision. This is similar as a perturbation of the given function f
so that ε can be seen as the precision of the computation. As a consequence, P is assumed to be very
close to the precision (i.e. the number of decimal digits) used for the computation.

• If α 6= 0, Cx = − log10
∣∣x−α
α

∣∣ and if α = 0, Cx = − log10 |x|.
In both cases Cx is the number of exact significant digits in x.

• If α 6= 0, Km = log10

∣∣∣ m!
f(m)(α) αm

∣∣∣ and if α = 0, Km = log10

∣∣∣ m!
f(m)(α)

∣∣∣.
Because of the log10 function, Km is considered not preponderant compared to mCx.

If Algorithm 2 is used, we compute approximations of a polynomial root at several precisions. For
each precision Pi, we obtain an approximation xi and its accuracy Cxi computed from Equation 4. From
Equation 32, the different couples (Cxi , Pi) are close to a line of slope m. Therefore the multiplicity m can
be estimated from a linear regression. To enable the estimation of m even if one iteration in Algorithm 2 is
sufficient, the line is assumed to include the origin: in this case both the precision and the accuracy are zero.
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4.4 Estimation of the multiplicity from successive approximations
Here we assume that ∀n ∈ N , xn 6= α. If the exact solution α is known, then we can determine the
multiplicity m by performing successive euclidean divisions of the polynomial f by (x− α).

To estimate the multiplicity m of a polynomial root, Yakoubsohn [30] suggested a strategy based on the
following property.

Proposition 4.2 Let (xn) be the sequence of approximations computed using Newton’s method of the root
α of multiplicity m of a polynomial f . Then

lim
i→∞

xi+2 − xi+1

xi+1 − xi
= 1− 1

m
.

Proof: The Taylor expansion of f at α leads to

f(x) = f (m)(α) (x− α)m

m! + ϕ(x− α)(x− α)m+1 with lim
x→0

ϕ(x) = 0. (33)

Then, it follows that

f ′(x) = f (m)(α) (x− α)m−1

(m− 1)! + [(m+ 1)ϕ(x− α) + (x− α)ϕ′(x− α)](x− α)m, (34)

and
f ′(x) = f (m)(α) (x− α)m−1

(m− 1)! + ψ(x− α)(x− α)m with lim
x→0

ψ(x) = 0. (35)

Therefore, from Equation 33, we have

lim
x→α

f(x) = f (m)(α) (x− α)m

m! , (36)

and, from Equation 35,

lim
x→α

f ′(x) = f (m)(α) (x− α)m−1

(m− 1)! . (37)

If α 6= 0, then lim
x→α

f ′(x) 6= 0. By division, we obtain

f(x)
f ′(x) ≈α

x− α
m

, (38)

x− α− f(x)
f ′(x) ≈α x− α−

x− α
m

, (39)

g(x)− α ≈α
(

1− 1
m

)
(x− α), (40)

where g(x) = x− f(x)/f ′(x). Finally, it turns out that

g(x) ≈α
α

m
+
(

1− 1
m

)
x. (41)

Therefore if approximations xi are close to the root α, the points of coordinates (xi, xi+1) are close to a line
of slope 1− 1

m and lim
i→∞

xi+2−xi+1
xi+1−xi

= 1− 1
m .

From Proposition 4.2, in the convergence phase, the multiplicitym can be estimated from three successive
Newton’s approximations.
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4.5 Numerical experiments
In the numerical experiments presented here, several polynomial roots along with their multiplicities are
computed using three strategies described below.

1. Newton’s method is applied iteratively using Algorithm 2 until the accuracy of the approximated root
is satisfactory. To estimate the multiplicity, a linear regression is performed using the different couples
(accuracy, precision) obtained, as described in 4.3.

2. Algorithm 2 is used to compute the polynomial root with the requested accuracy. The root multiplicity
is estimated from three successive approximations computed using Newton’s method, as described
in 4.4. For performance reasons, the multiplicity is estimated only at the first iteration of Algorithm 2.

3. The convergence of Newton’s method is linear in case of a root multiplicity m > 1. However if the
multiplicity is known, a quadratic convergence can be obtained using the modified Newton’s method.
In Algorithm 3, the root is approximated with a requested accuracy using firstly Newton’s method
and then the modified Newton’s method. The multiplicity m is estimated from three successive ap-
proximations computed using Newton’s method and then m is used in the modified Newton’s method.
Algorithm 4 shows how the modified Newton’s method is implemented using DSA. Like in Algorithm 1,
computations are performed until the difference between two successive iterates is a computational
zero. Because of the fast convergence of the modified Newton’s method, it is sometimes observed that,
for an approximation x, f(x) is a computational zero. In this case, further computations are useless.
Such an approximation is returned as a solution.
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Algorithm 3: Modified Newton with a requested accuracy using DSA
Data: Requested_accuracy, xinit (initial approximation)
Result: x (root approximation with a requested accuracy)
Precision = Requested_accuracy ∗Rate ;
step = 0;
do

step = step+ 1;
if step = 1 then

(x,m) = Newton(xinit);
if Cx ≤ 2 then

print “increase requested accuracy” and stop ;
end

else
x = Modified_Newton(xinit,m);

end
xinit = x;
Precision = Precision ∗ 2;

while Cx ≤ Requested_accuracy;

Algorithm 4: Modified Newton using DSA
Data: xinit (initial approximation), m (multiplicity)
Result: x (approximation of a root of a polynomial f)
x = xinit;
do

if f(x) ds= 0 then
return x and stop ;

end
y = x;
x = y −m ∗ f(y)/f ′(y);

while x ds6= y;

The numerical experiments have been carried out using the SAM library on an Intel Core 2 Quad Q9550
processor at 2.83 GHz using the gcc version 4.9.2 compiler. In the numerical experiments presented here,
the self-validation described in 2.2 is activated: all multiplications and divisions are controlled during the
execution.

Tables 4 and 5 present results obtained with the polynomial (3x− 1)n for different values of the degree
n that here equals the root multiplicity. In Algorithms 2 and 3, the initial approximation xinit and the rate
used to initialize the precision are respectively set to 0.4 and 1.3.

In Table 4, for each degree n, the root is approximated using the three strategies previously described
with the following requested accuracies: 10, 25, 50, 100, and 500 decimal digits. However no result is reported
if the requested accuracy and consequently the initial precision are too low. In this case, a message is printed
and the computation stops. If the degree n increases, the minimal requested accuracy also increases.

Table 4 presents the multiplicity m estimated using each strategy, the accuracy estimated by SAM, i.e.
the number of significant digits which are not affected by rounding errors, the number of significant digits
in common with the exact root, the execution time, and the number of steps performed in Algorithms 2
and 3. In the case of a simple root, it has been observed that, one step is sufficient; furthermore the modified
Newton’s method is useless. Therefore if n = 1, the results obtained using the third strategy are not reported:
they are the same as those provided by the second one.

The first strategy and the second one provide the same root approximation with similar execution times.
In accordance with Theorem 3.2, one can observe that, in this root approximation, the digits not affected
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by rounding errors provided by SAM are always in common with the exact root, up to δ = dlog10(n − 1)e
if n > 1. In the case of a simple root, i.e. when the polynomial considered is 3x − 1, in accordance with
Theorem 3.1, the accuracy estimated by SAM is the exact accuracy, except if 10 correct decimal digits
are requested. However, in this case, the accuracy estimated by SAM is 12 digits and the exact accuracy,
11 digits, determined from Definition 3.1 is actually b11.95c digits.

The first strategy and the second one differ by the estimation of the multiplicity. The estimation
performed by the second strategy from three successive root approximations is always correct. It is better
than the estimation performed by the first strategy that requires a linear regression. Furthermore with the
second strategy, the multiplicity is correctly estimated at the first step of Algorithm 2, whereas the first
strategy requires results computed at several steps.

Therefore with the third strategy, the multiplicity is estimated from three successive approximations
computed by Newton’s method and then the modified Newton’s method can be used. One can observe
that, with the third strategy, two steps of Algorithm 3 are sufficient; furthermore in the roots provided by
SAM the digits not affected by rounding errors are always in common with the exact ones. Because of the
quadratic convergence of the modified Newton’s method, the third strategy performs better than the others:
the execution times reported in Table 4 can be up to five orders of magnitude lower.

Table 5 presents results obtained with the polynomial (3x − 1)n for higher values of n. Because of the
execution time, only the third strategy is used. Results computed with a sufficiently high requested accuracy
are reported. One can observe that two steps of Algorithm 3 are sufficient, the multiplicity is correctly
estimated and in the approximations provided by SAM the digits not affected by rounding errors are always
in common with the exact root.

Results obtained using the third strategy with the polynomial P defined by Equation 26 are reported
in Table 7. Table 6 presents for each root of the polynomial P , its multiplicity, the initial approximation
xinit and the rate used to initialize the precision in Algorithm 3. Indeed a particular rate is set for each
root. If the rate and consequently the initial precision are too low, the computed root may be numerical
noise, i.e. a result with no correct digit because of rounding errors. If the rate is too high, the execution
time may be unsatisfactory, because the computation may be performed with a precision that would be too
high for the requested accuracy. In the same way we need an initial approximation of the root, we also need
an approximation of the rate that can depend on the degree of the polynomial and on an approximation of
the multiplicity. For each root approximation, the multiplicity is correctly determined. One can observe in
Table 7 that, in the approximations provided by SAM, the digits not affected by rounding errors are always
in common with the exact root, up to one. As a remark, all the approximations are obtained after two steps
of Algorithm 3.

5 Conclusion and perspectives
In this article we show how to numerically compute polynomial roots along with their multiplicity taking
into account a requested accuracy. We present a strategy to perform the optimal number of iterations
with Newton’s method. This strategy requires to control rounding error propagation using for instance
Discrete Stochastic Arithmetic. Furthermore we show how to estimate in the root approximation obtained
which digits are in common with the exact root. Two methods are compared to estimate the multiplicity
of polynomial roots: one based on a linear regression from results computed with several precisions and one
proposed by Yakoubsohn that uses three successive iterates of Newton’s method. Yakoubsohn’s method is
particularly satisfactory and enables one to compute the root multiplicity and then benefit from the quadratic
convergence of the modified Newton’s method.

Attention should be paid to the initial precision to avoid both insignificant results and costly compu-
tations due to a too high precision. From the numerical experiments presented in this article, the initial
precision should depend on the requested accuracy, the degree of the polynomial and a rough approximation
of the multiplicity of the root. A perspective to this work consists in determining automatically the optimal
initial precision. Another prospect would be to extend the theoretical results concerning the dynamical
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n requested method m #digits time (s) #steps
accuracy SAM exact

1 10 lin. regr. 1.08 12 11 5. E−3 11 10 succ. app. 1.00
1 25 lin. regr. 1.04 31 31 6. E−3 11 25 succ. app. 1.00
1 50 lin. regr. 1.01 64 64 6. E−3 11 50 succ. app. 1.00
1 100 lin. regr. 1.01 129 129 7. E−3 11 100 succ. app. 1.00
1 500 lin. regr. 1.00 649 649 8. E−3 11 500 succ. app. 1.00
10 25 lin. regr. 9.91 26 25 1.1E−1 410 25 succ. app. 10.00
10 25 modif. 10.00 35 35 1.1E−2 2
10 50 lin. regr. 9.96 52 51 4.5E−1 410 50 succ. app. 10.00
10 50 modif. 10.00 70 70 2.4E−2 2
10 100 lin. regr. 9.98 104 103 2.2E+0 410 100 succ. app. 10.00
10 100 modif. 10.00 142 142 5.6E−2 2
10 500 lin. regr. 10.00 520 519 1.5E+2 410 500 succ. app. 10.00
10 500 modif. 10.00 714 714 1.3E+0 2
25 50 lin. regr. 24.66 83 82 3.4E+1 625 50 succ. app. 25.00
25 50 modif. 25.00 66 66 3.5E−2 2
25 100 lin. regr. 25.32 166 165 2.3E+2 625 100 succ. app. 25.00
25 100 modif. 25.00 133 133 1.0E−1 2
25 500 lin. regr. 25.00 833 831 1.8E+4 625 500 succ. app. 25.00
25 500 modif. 25.00 675 675 2.9E+0 2
50 100 lin. regr. 49.43 167 165 3.8E+3 750 100 succ. app. 50.00
50 100 modif. 50.00 131 131 1.5E−1 2
50 500 lin. regr. 49.99 833 831 2.1E+5 750 500 succ. app. 50.00
50 500 modif. 50.00 662 662 5.5E+0 2

Table 4: Approximation of the root of (3x − 1)n and estimation m of its multiplicity with sev-
eral strategies: Newton’s method and linear regression, Newton’s method and estimation of the
multiplicity from three successive approximations, modified Newton’s method. Are reported: the
number of decimal digits not affected by rounding errors estimated by SAM, the number of decimal
digits in common with the exact root, the execution time, and the number of steps in Algorithms 2
and 3.
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n requested m #digits time (s) #steps
accuracy SAM exact

100 100 100.00 130 130 1.1E−1 2
100 500 100.00 655 655 9.9E+0 2
100 1000 100.00 1311 1311 6.6E+1 2
200 500 200.00 653 653 1.6E+1 2
200 1000 200.00 1305 1305 1.2E+2 2
500 500 500.00 651 651 1.3E+1 2
500 1000 500.00 1301 1301 2.7E+2 2

Table 5: For P (x) = (3x− 1)n, estimation m of the root multiplicity and then computation of the
root using modified Newton’s method. Are reported: the number of decimal digits not affected by
rounding errors estimated by SAM, the number of decimal digits in common with the exact root,
the execution time, and the number of steps in Algorithm 3.

roots α1 = −5/19 α2 = −21/19 α3 = −46/19 α4 = −67/19
multiplicity m 5 9 13 25
xinit 0 −1 −2 −3
Rate 3 5 7 12

Table 6: Roots of P (x) = (19x+ 5)5 (19x+ 21)9 (19x+ 46)13 (19x+ 67)25 with their multiplities,
values xinit (initial approximations) and Rate used in Algorithm 3.

root requested #digits time (s)
accuracy SAM exact

α1 50 62 61 3.0E−1
α1 100 123 123 1.2E+0
α1 200 243 243 5.1E+0
α1 500 603 603 5.1E+1
α2 50 69 68 7.9E−1
α2 100 124 123 3.4E+0
α2 200 235 235 1.9E+1
α2 500 569 569 1.9E+2
α3 50 80 79 1.7E+0
α3 100 134 133 8.2E+0
α3 200 242 241 4.5E+1
α3 500 564 563 4.8E+2
α4 50 73 72 5.2E+0
α4 100 122 122 3.2E+1
α4 200 218 218 2.0E+2
α4 500 507 507 3.2E+3

Table 7: For each root of P (x) = (19x+ 5)5 (19x+ 21)9 (19x+ 46)13 (19x+ 67)25, number of deci-
mal digits not affected by rounding errors estimated by SAM, number of decimal digits in common
with the exact root, and execution time.
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control of Newton’s method to the modified Newton’s method. The two stopping criteria in Algorithm 4
should be taken into account to estimate the number of correct digits in the solution obtained.
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