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Abstract
Due to the compromise between their thermomechanical properties and low density, Short Fiber Rein-
forced Polyamides (SFRP) present a good alternative to metals for automotive structural components.
The microstructure of such materials, combined with the matrix sensitivity to environmental conditions,
has a strong impact on their overall behavior and the related damage. A new multi-scale modelling strat-
egy is proposed, based on the experimental observations of interfacial damage evolution for PA66-GF30
composites.
Three main key-points have been integrated to this approach: an original damage evolution law at the
interface, an appropriate load transfer law at the matrix-fiber interface, and a homogenization strategy
founded on the generalized Mori-Tanaka scheme. The damage evolution law is driven by a local prob-
abilistic criterion based on the interfacial stress field estimation. This type of evolution depends on
the maximal local damage rate at the fiber/matrix interface, determined from a numerical evaluation at
several points of the interface surrounding the inclusion. It is then coupled with a load transfer law
formulated according to a modified shear lag model (SLM). The developed model is assessed with a
finite element (FE) computation integrating cohesive elements at the matrix-fiber interface. The FE
unit cell consists in a periodic media (hexagonal array) with periodic boundary conditions. The fiber-
matrix interface integrates cohesive elements, with a cohesive law driven by a Paulino-Park-Roesler
(PPR) potential-based formulation. The latter has been proven to be suitable for the 3D modeling of
interface in reinforced composites. The proposed approach is able to accurately capture the non-linear
behavior of short fiber reinforced polyamide composites accounting for interfacial damage.

1. Introduction

Short fiber reinforced composites (SFRC) provides high thermomechanical performances and good den-
sity ratio allowing lightweight structural parts in automotive industry. The microstructure of such materi-
als strongly impacts their behavior and their damage evolution. Different degradation mechanisms appear
at the microscopic level as the interfacial debonding, matrix microcracks and fiber breakage [1, 2]. In-
terfacial decohesion is considered as the predominant one playing a crucial role in the effective behavior.
To predict the overall macroscopic behavior, the knowledge of the local stress state in the constituting
phases is necessary through a suitable multiscale modeling. Defects evolution and voids density can be
computed as functions of local stresses [3]. The evolution of the load transfer is not sufficiently consid-
ered to integrate the damage at the fiber-matrix interface.
In past decades, the interface damage of composite materials was the subject of many intentions. In
reference [4], a method considering the fiber coating has been used. Some works introduced imperfect
interfaces to take into account displacement and stress jump at the interface between two constituents



of a material [5, 6]. Others consider imperfectly bonded interfaces [7]. In [8], a new solution of the
eigenstrain problem of a spherical inclusion with an imperfect interface has been determined. The shear
lag method (SLM), originally proposed in [9], provides a powerfull alternative to predict stress state of
a fiber inside a stiffer matrix. Recently, Jain et al. [10] have developed an equivalent debonded inclusion
model for Eshelby based approaches coupled with the Cox’s predictions applied for six loading cases,
namley three uniaxial tensile and three shear loads.
This method, considering no slip at the interface, introduces a redistribution of strain and stress within
the composite due to fiber presence. A shear stress, depending on the two phases of the composties,
governs the load and the stress transfer to fibers. More details on the SLM are available in [11, 12].
The presented approach in this paper is a combination of a load transfer model based on the SLM and an
interfacial damage law. This leads to the computation of the stress fields of each phases using the stress
transfer ratio and the concentration tensor obtained from the adopted micromechanical homogenization
scheme. The method associated to an incremental multiscale method capturing the nonlinear behavior
of the interface and the composite phases.
Section 2 is dedicated to experimental observations of interfacial damage in SFRC justifying the choice
of the SLM. Section 3 presents the new proposed approach. Section 4 provides a finite element (FE)
model which will be used to produce a reference solution in order to validate the new approach. Section
5 focus on the results of the validation. A short conclusion will end the paper leading to some thoughts
for further work.

2. Experimental observation of interfacial damage in a SFRC

Short glass fibers reinforced polyamide-66 damage mechanicms has been severaly characterised in situ
under quasistatic monotonic loading. Arif et al. [13] have proposed a damage scenarios depending on
the relative humidity (RH). 1) the damage starts where local stress are highest which is most of the time
localised at the fiber ends (Fig. 1b). 2) interfacial decohesion propagates along the fiber interface (Fig.
1a). 3) matrix microcracks develop and propagate in various way depending on the RH. 4) accumulation
of microcracks leads to failure of the material.

(a) (b)

Figure 1: SEM observations of the interfacial debonding of PA66GF30 obtained by (a) Arif et al. [1]
which confirm those from Sato et al. [2] (b).

To be predictive, micromechanical models need to include the interfacial decohesion phenomenon. It is
necessary to determin the local stress state for each phase in order to know the local state of damage.
For this, the stress transfer ratio is needed to compute the stress state of fibers, and so the overall stress
distribution.



In reference [1], the main features of defects, such as volume, orientation and shape, have been obtained
for several levels of damage. They conclude that the orientation of defects follow the orientation of fibers
which increases throughout the lifetime of the composite. It yields that the interfacial debonding appears
as the prominent damage mechanism. While it is difficult to directly relate the quantity of defects oriented
in the fiber direction to an evolution law of the interface decohesion surface, it is however demonstrated
that such an evolution equation drives the overall behavior of the composite.

3. A new shear lag based method

The experimental observations help to construct an Eshelby based homogenization strategy integrating
the developed interface damage evolution law coupled to an adapted load transfer model.

3.1. Damage evolution law

The damage evolution law is formulated using a quadratic rupture criterion of the local stress (Eq. 1).
The shear and normal stress components are computed at each point of an ellipsoid surface. A scale
factor η allows to describe the damage evolution in a family of reinforcements that share some common
features, for instance orientation and aspect ratio.

ξ(σn, τ) =

(
σn

ησcrit

)2

+

(
τ

ητcrit

)2

≤ 1 (1)

η is introduced in the criterion as a probabilistic factor. The damage criterion (Eq. 1) can be introduced
in a normalized probalistic rupture approach (Eq. 2) based on a normal law N .

P̃r(σn, τ) =
N ((C0/C)αξγ,m, sd) − N (κ,m, sd)

1 − N (κ,m, sd)
(2)

The normal law has a mean value m = 1+κ
2 and a standard deviation sd = sd0 (1 − κ) where κ is the

damage threshold and sd0 is the standard deviation which allows for reaching a damage level of 99% for
κ = 0, when the failure criterion is reached. γ is a shape function parameter of fibers.
In the proposed model, it is worth mentioning that the damage evolution is assumed to be correlated
with the local curvature of the fibers envelope. This aspect is taken into account through the ratio of the
gaussian curvature C of the considered surface point to the gaussian curvature along the central equator
of the short fiber C0. α is an exponent parameter that can adjust the damage location.

This Weibull-like statistical approach is here designed to fit in an incremental homogenization scheme.
An evolution equation (Eq. 3) for the local damage of each material point at the reinforcement/matrix
interface is proposed, that accounts for the actual damage d representative of the damage for the whole
interface and ω which is a parameter expressing the effect of the accumulated damage on its own evolu-
tion. λ is a time normalization constant.

ḋloc =
(1 − d)ω

λ
∗ P̃r(σn, τ) (3)

The local damage criterion is computed over the entire envelope of the reinforcement using two angle : u 

(angle between the vector x and the projection of the normal vector in the x0y plane) and v (angle between 
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the vector z and the projection of the normal vector in the x0z plane). Fig. 2 shows the ellipsoidal fiber
with the criterion ξ computed accordingly, and a damage map using the two integration angles u and v
(both in longitudinal-transverse planes). As shown in figure 2, the computation of damage should not be
restricted to the fiber ends only, even though it is commonly admitted to be the most frequent case.
The maximal local damage rate is therefore selected as the representative damage rate of the whole
interface and so ḋ = max

(
ḋloc

)
.
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(a) Under tensile.
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(b) Under transverse-transverse shear.

Figure 2: Local damage criterion ξ on one reinforcement surface under tensile and under transverse-
transverse shear. According to a Tresca criterion, the maximum shear stress τcrit = σcrit/2, and η is equal
to 1. The graph is a damage map using the two orientation angles u and v in the planes x0y and x0z,
respectively.

3.2. Load transfer model

The approach developed here is derived from a modified shear lag model (SLM) approach to define an
appropriate load transfer ratio, characteristic of the stress state of a fiber. The SLM, defined by Cox [9],
is originally based on the cylindrical fibers where decohesion is supposed to appear at the fibers ends.
The SLM derives a differential, defining the stress of a fiber section defined by its coordinate z, and is
then integrated into Eq. 4 assuming, for the boundary conditions, that there is no stress at the fiber ends.
In this equation, l is the length of the fiber, β is the shear lag parameter as defined by McCartney [14],
〈σ f 〉 is the average fiber stress and 〈σ f∞〉 is the average theoretical fiber stress if the fiber was an infinite
cylinder.

〈σ f 〉(z)
〈σ f∞〉

= 1 −
cosh(βz)
cosh(β l

2 )
(4)

Eq. 4 is integrated on the whole fiber to get a load transfer ratio ψ0 between the coating and the fiber (Eq.
5).
Since the following model is intended to be implemented into an homogenization scheme, the theoretical
fiber stress σ f∞ is assumed to be determined from the homogenization method. For short fiber reinforced
composites, since the aspect ratio is still rather important (at least ≈ 10), the reinforcement can be
considered both as an ellipsoid for the homogenization method and as an infinite fiber to fulfill the
requirements of the shear lag model. A similar technique has been adopted by Jain et al. [10] in their
relevant work devoted to modeling partially debonded interfaces.
The global load transfer ratio (Eq. 5) is illustrated in Fig. 3. The global load transfer is represented
as a function of the interfacial damage. First slightly affected with damage, the load transfer begins to
drastically decrease. The load transfer eventually reaches 0% when the whole fiber interface is debonded.

Ψ0 = 1 −
2 tanh( l

2β)
lβ

(5)

The damage parameter is then used to decrease the effective fiber length regarding load transfer. The
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latter is in fact reduced by the damage percent. Due to the boundary conditions at the end of the fibers,
the load transfer ratio is not equal to 1 when the fiber is considered to be totally bounded, in terms of
its bounded length. A normalisation is thus performed to ensure that 100% load transfer to the fiber in a
virgin material, leading to the final formula (Eq. 6).

Ψ =

1 − 2 tanh( l(1−d)
2 β)

l(1 − d)β

 /Ψ0 (6)
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Figure 3: Shear Lag Model (SLM) based transfer load computed according to Eq. 6 for the entire fiber
after normalization and as a function of interface damage.

4. FE model for validation

A 3D finite element model (Fig. 4) is developed to validate the new proposed approach. A represen-
tative volume element (RVE) composed of two fibers in a matrix has been discretized. Fibers have an
ellispoidale shape. The first fiber is localized at the center of the RVE and the second one is distributed
on the eigth corners of the cubic RVE as shown in Fig. 4. The geometry and the mesh are periodic which
allows to apply periodic boundary conditions. Those are applied using constraint drivers [15] and the
closest node from center of the RVE is totally clamped. To consider interfacial debonding between fibers
and the matrix, cohesive elements are integrated in the model [16]. Those elements follow a potential-
based formulation providing a flexible traction-separation law proposed by Park et al in reference [17].
C3D4 elements were adopted to model the matrix (54588 elements) and the fibers (239860 elements),
and pentahedric elements were employed for the interfaces (13856 elements).

Figure 4: FE models with cohesive elements on the interface between the matrix and short fibers modeled
as ellipsoidal inclusions (AR = 22,V f = 0.18).

This RVE allows to model the PA66-GF30 composites. Parameters of the cohesive elements are chosen
as follows: Φn = 1.36 kN/m, Φt = 2.67 kN/m, ζn = ζt = 5 and λn = λt = 0.005. Φn and Φt are provided
by [18]. ζn and ζt are chosen to obtain a quick total failure condition when softening appears. λn and
λt are chosen to obtain the lowest value of ratio of the critical crack opening width to the final crack
opening width. The normal cohesive strength σcrit is equal to 118MPa. Based on the Tresca criterion,
the tangential cohesive strengths τcrit is equal to half of the normal cohesive strengths σcrit. Elastic
behaviors are considered in the matrix (E0 = 3.6 GPa and ν0 = 0.36) and in the fibers (E1 = 72 GPa and
ν1 = 0.26). Dimensions of fibers are governed by the volume fraction (V f = 18%) and their aspect ratio
(AR = 22).



5. Validation of the model

Tensile tests with various loading directions have been simulated: 0o (in the direction the fiber), 15o, 20o,
45o and 90o.
A view of von Mises stresses resulting from the FE simulation of the PA66-GF30 in case of a loading
at 0o (in the direction of the fiber) are shown in Fig. 5. For a better observation of the debonding, the
displacement scale factor is set to 10 and only half of the RVE is shown.
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Figure 5: View of the Von Mises stresses and of the debonding on the FE models considering the PA66-
GF30 at 1.5% of strain in the case of loading oriented in the direction of the fiber (0o). Strain is zoomed
X10. Only half of the RVE is represented.

As shown in Fig. 5, in this loading case, the debonding starts at the fiber ends where the stresses are
maximum. It spreads then along the reinforcement. The interfacial damage reduces the stress level at the
fiber extremities but the Von Mises stresses are still high at the center of the fiber. Theses observations
are in agreement with the shear-lag approach.

To be able to compare the proposed model with the FE approach, a two-phase composite micromechan-
ical simulation using the Mori-Tanaka scheme. According to the evolution of the volume fraction of the
phases, an incremental version of the Mori-Tanaka scheme is adopted, in a similar way of [19, 20].
The FE strain-stress curves are used as master curves to identify the new approach parameters. A hy-
brid optimisation algorithm associating a genetic algorithm with a Levenberg-Marquardt method [21]
is applied for identifying the model parameters. A single set of parameters for all orientation curves is
retrieved: η = 1.61, γ = 2.084, κ = 0.037, ω = 2.962 and α = 0.317.
The new approach is compared to the FE model in Fig. 6.
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Figure 6: Comparison of strain-stress curves between FE model with cohesive elements and the present
model for various loading directions for the PA66-GF30 composite.

Strain-stress curves at 45o and 90o are close which confirms this well known result. With the FE tensile
test at 0o, an inflection point is captured. The new approach is able to capture the debonding considered
FE model. Debonding initiations and the asymptotic behavior for each orientation are well reproduced
while a single set of parameter is used with the new approach. The only weak point is the miss of the



inflection point captured at 0o in the new approach.

6. Conclusion

Based on the experimental observations, a strategy to model interfacial damage of short fiber reinforced
composites has been build. A probabilistic damage evolution law based on a rupture criterion has been
proposed. The quadratic criterion depends on the normal and tangential local stress components at the
fiber-matrix interface. It determines a probability of rupture accounted for computing the evolution of
the damage ratio. The interfacial damage law is then estimated on the entire ellipsoid surface by varying
the angular step. Using this latter and the SLM model, the global load transfer from the matrix to the
fiber is determined.

A comparison with a numerical reference solution based on the FE analysis with cohesive elements at
the matrix-inclusion interfaces was performed to model a PA66-GF30 composite. It demonstrates the
capabilities of the approach to simulate the behavior of short-fiber composites under various loading
directions. To model the composite with the new damage model, a two phase incremental Mori-Tanaka
scheme is formulated accounting for the proposed stress transfer law. Using a single set of parameters, a
good correlation is achieved between FE model and the new approach for all orientations.

Adopting small steps yields to time consuming simulations but the computations still remain faster
(roughly 100 times) than those based on the cohesive FE analyses. For structure simulations using
the developed approach, an optimized procedure is required to identify the critical damage points. This
aspect will be considered in a future work.
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