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1. Introduction 

Describing a motion consists in defining the state or position q of the investigated 
system as a function of the real variable t, the time. Commonly, q takes its values 
in some set Q, suitably structured for the velocity u to be introduced as the 
derivative of t-+q, when it exists. This, in fact, makes sense if Q is a topological 
linear space or, more generally, a differential manifold modelled on such a space. 

For smooth situations, classical dynamics rests, in turn, on the consideration 
of the acceleration. This is the derivative of t-+u, if it exists in the sense of the 
topological linear structure of Q, or, when Q is a manifold, in the sense of some 
connection. But, from its early stages, classical dynamics has also had to face 
shocks, i.e. velocity jumps. For isolated shocks, one traditionally resorts to the 
equations of the dynamics of percussions. Even in the absence of impact, it has 
been known for a long time [1] that systems submitted to such nonsmooth effects 
as dry friction may exhibit time discontinuity of the velocity. Furthermore, 
nonsmooth mechanical constraints may also prevent t-+u from admitting a 
derivative. In all these cases, the laws governing the motion can no longer be 
formulated in terms of acceleration. Incidentally, one may find in [2] an attempt 
at gaining a synthetic view: a formulation of classical dynamics is proposed, 
valid for continuous media as well as for systems of finite freedom, without 
reference to acceleration. 

It should be understood below that t-+u takes its values in some real Banach 
space X and is locally Lebesgue-integrable. So this function will be connected 
with the motion t-+qeX through 

t 

q(t)=q0 + f u(-c)d-r:. (1.1) 
to 

The usual problems of dynamics are governed by first-order differential 
conditions imposed on u and involving q through expression (1.1 ). These may be 
viewed equally as second-order differential conditions for t-+q, as first-order 
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differential equations for t-+(q, u) or as frrst-order integro-differential condi
tions for t-+u. 

We shall therefore concentrate on conditions formulated in terms of the 
velocity u. As long as t-+u is locally absolutely continuous, these conditions can 
be differential equations in the classical (Caratheodory) sense. If this is not the 
case, then the next available analytical framework in which some object playing 
the role of derivative may be associated with t-+u is the following. By writing 
u E lbv (I, X), we mean that u is a function of the real (time) interval I to the 
Banach space X with locally bounded variation, i.e. it has bounded variation over 
every compact subinterval of I. Then, an X-valued measure on I, which we shall 
denote by 4u, is known to be associated with the function u. Characteristically, 
for every compact subinterval [a, -r] of I one has 

J du =u+ (-r) -u- (a)., (1.2) 
[a, t] 

where u+ and u- refer, respectively, to the right-limit and the left-limit of the 
function u at a point of I (under an ad hoc convention for the possible endpoints 
of I; see Sect. 3 below). In particular, if at some -rei the two limits are different, 
the vector measure du possesses at this point an atom, with value u + ( -r)-u- ( -r ). 

When I is open in lR, the vector measure du may also be seen as the derivative 
of t -+u in the sense of distributions. But for applications it is essential not to 
restrict ourselves to this case. 

We shall call du the differential measure of u. The smooth case corresponds to 
du admitting a density function, say u;., relatively to the Lebesgue measure on I. 
For reflexive X (more generally, for a Banach space possessing what is called the 
Radon-Nikodym property; see Sect. 13 below) the existence of such a density 
function is equivalent to the absolute continuity of u over every compact 
subinterval of I. 

Assuming u E lbv (I, X) is enough for u to be involved as the unknown in a 
measure differential equation, as in the following example. Take I= [0, + oo [; 
one looks for u, a right-continuous lbv function verifying some initial condition 
u(O) = Uo, and this equality of X-valued measures on I: 

du=F(t, u(t))dt+G(t, u(t))df. 

Here dt denotes the Lebesgue measure on I (it equals the differential measure of 
t-+t) and dfa given (signed) real measure; F and G are given functions of /x X 
to X, regular enough for the X-valued functions t-+F(t, u(t)) and t-+G(t, u(t)) to 
be locally integrable relative to dt and df, respectively. The monograph [3] is 
devoted to problems of this sort, with X= lR"; it contains numerous references to 
papers motivated by operations research, control theory or mathematical 
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physics, possibly also involving stochastic versions of measure differential 

equations. 
Better matched to the needs of contemporary nonsmooth mechanics are 

measure differential inclusions, about which we shall give more information in the 
concluding section of this chapter. These consist in requiring the density function 
u~ of du, relative to some nonnegative real measure dJl, to be a selection of 
t-+F(t, u(t)), where (t, x)-+r(t, x) c X denotes a given multifunction. The real 
measure dp, may be prescribed in advance; alternatively, provided every F(t, x) is 
a conic subset of X, dp, has not to be given and may indifferently equal any 
nonnegative real measure relative to which du happens to possess a density 
function. The latter setting has been introduced when extending to nonconti
nuous situations the abstract unilateral evolution problem called the sweeping 
process [4, 5]. In Sect. 16 we shall come back to this problem, which was initially 
motivated by the quasistatic motion of elastoplastic systems and which has also 
been studied under a stochastic version [6]. It has been shown more recently that 
the dynamics of systems of finite freedom in the presence of unilateral constraints 
is governed by measure differential inclusions of the same conical type [7, 8]. 
This holds even if the unilateral contacts involve dry friction [9]. The existential 
and numerical study of measure differential inclusions with such a dissipative 
character is currently in progress; further references on this subject will be given 
in Sect. 16. 

Investigation is also under way of the dynamics of systems submitted to 
frictionless unilateral constraints, under the assumption that the possible shocks 
are elastic, i.e. energy is conserved. Various formulations have been proposed for 
this type of mechanical problem; they are closely connected with measure 
differential inclusions and naturally involve lbv velocity functions [10-12]. 

Apart from in mechanics, the variational problem of Lagrange in 1Rn has been 
extended in [13], under a convexity assumption for the integrand, to arcs of 
bounded variation; instead of the traditional Hamilton-Jacobi system of 
differential equations, there appears a measure differential inclusion. 

Without explicitly resorting to measure differential equations or inclusions, 
some authors have been induced to accept functions of bounded variations as 
"weak" solutions to problems primitively formulated in a stronger setting 
(see, e.g. [14]). 

As all this currently has created an active domain of research, it is considered 
helpful to devote the present chapter to a systematic exposition of lbv (/, X). In 
fact, the basic information about functions of bounded variation on an interval is 
scattered throughout various treatises on real analysis and measure theory, 
without sufficient emphasis having been placed on the points specifically 
pertinent to evolution problems. This chapter also includes some recently 
developed material, partly unpublished or available only from seminar reports. 
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We shall generally assume that X is an infinite-dimensional Banach space, 
because a large part of the current mathematical work on evolution problems is 
done in such a setting. Actually, it should be acknowledged that the most 
effective mechanical applications of lbv (/,X) so far concern systems of finite 
freedom, whose treatment only requires finite dimensionality for X. In fact, 
mechanical systems of infinite freedom are continuous media, the dynamics of 
which is commonly expressed by partial differential equations in some domain of 
time-space. The consideration of the solutions of such partial differential 
equations as functions of time, with values in some function space, is only one of 
the possible approaches. Even when such a standpoint is adopted, it frequently 
happens that the velocity function t -+u is defined in some indirect way, so that it 
does not take its values in the same space as the system state; in turn, acceleration 
may be conceived of as an element of yet another space .. 

In the context of partial differential equations, the space BV (0, JRP) of the 
functions of bounded variation in an open subset 0 of JR." should also be recalled, 
with the books [15] and [16] as standard references. For n= 1, one naturally 
recov-ers the functions of bounded variation in an open real interval, with values 
in JR.'. But the virtual absence of overlap between the content of this chapter and 
the mentioned books above attests to the essential difference between these 
subjects. Significantly, defining the variation of a function on a (not necessarily 
open) real interval relies only on the ordering of 1R., without any reference to 
Lebesgue measure. In contrast, the Lebesgue measure on the subset 0 of 1R" is 
inherent in the definition ofBV (0, JRP). Incidentally, for n> 1, the relevance of 
BV (/J, JRP) to mechanics emerges through the theory of minimal surfaces, which 
may be viewed as an aspect of the statics of membranes. Also connected with 
BV (!2, JRP) are vector fields of bounded deformation, primarily motivated by the 
field of plasticity [17, 18]. 

The concept of a measure with values in a Banach space naturally plays the 
central role in this chapter. References [19-22] are standard books on this 
matter. By extracting from them some key facts and subsequently relying only on 
basic knowledge in real integration, we have attempted to spare the reader from 
being obliged to refer to these texts. 

Recall that two different approaches compete in the expositions of measure
theory. Most commonly, a measure on a set S is introduced as a countably 
additive function defined on some u-field of subsets of S. In contrast, the duality 
approach, as developed by Bourbaki [20], defines a measure on a locally compact 
topological space T, with values in JR, ([ or in any locally convex topological 
linear space, as a linear functional, say m, on the space :K (T, JR.) of the real 
continuous functions with compact support in T, meeting the following 
continuity requirement: For every compact subset K ofT, the restriction of the 
functional q>-+m(cp) to the subspace of :K{T,JR) consisting of the continuous 
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functions with support contained in K is continuous in the norm 
supgjq>l. 

We have preferred the latter standpoint for several reasons. First this makes 
measures appear to be a special case of Schwartz's Distributions, a notion which 
is familiar in any case to the theoretically minded researcher of mechanics. The 
procedure readily carries over to the definition of vector or tensor distributions 
and measures on differential manifolds,. in line with de Rham's theory of 
currents. The author [2, 232 24] has recently drawn attention to the use of such 
concepts in classical mechanics. But, above all, the duality of linear spaces 
appears to be a cornerstone in the whole of mechanics. Researchers in mechanics 
may claim precedence in implementing such a duality, prior even to any attempt 
at axiomatizing linear algebra. We are referring to the method of virtual work (or 
virtual power), which consists in placing some linear space ofdisplacements (or 
velocities) in duality with a linear space of efforts. Starting with mechanical 
instances, the duality of linear spaces has today also become a general tool in 
numerical analysis, at the stage of constructing finite~dimensional approxima
tions to functional problems. From another viewpoint, the relevance of duality 
to nonsmooth mechanics is evident throughout this book. 

In any case., what in. measure theory is considered a definition from one ofthe 
two standpoints appears as a proposition from the other one. We have tried, 
especially in Sects. 13 and 14, to bridge the gap between the respective 
approaches, for the reader accustomed to the set functions setting to easily 
recover his familiar background. 

The author is indebted toM. Valadier for helpful criticism throughout this 
.chapter. 

2. Review of Contents 

Section 3 presents some elementary facts concerning the right-side limit J+ and 
left-side limit],. for a function f ofa real interval I to a regular topological space 
E, when such limits exist. If 1 includes its possible left endpoint, say t0 , 

Convention 3.5, frequently used in the following; stipulates that/- (t0) should be 
understood as equal to f(t0); symmetrically, J+ _.! at the possible right 
endpoint. In connection with this, the meaning of initial conditions for evolution 
problems is discussed. 

It is supposed in Sect. 4 that f is a function of the real interval! to a metric 
space E. The variation var (f, J) off over a subinterval Jofl is defined. We mean 
by f E lbv (J, E) that /has locally bounded variation, i e. it has finite variation over 
every compact subinterval of I. This is equivalent to the existence of Pf :I-+ lR, 
said to be a varz'ation function of [, nondecreasing and such that for every 
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[a, b]ci one has var (f, [a, b])= Vf(b)- Vf(a). The connection of Vf with the 
possible one-sided limits off at a point (they are sure to exist if E is complete) is 
investigated, and an approximation property off e lbv (I, X) through local step 
functions is established. 

Section 5 develops the effect of a monotone change of variable upon a 
function oflocally bounded variation. This produces the basis of the concept of a 
rectifiable curve which is to play an essential role in Sect. 15. 

From Sect. 6 onward, X denotes a real Banach space. Associated with every 
f e lbv (I, X) is its differential measure, an X-valued measure on the interval I 
denoted by df 

Section 7 begins with discussion, along the line of Bourbaki [20], of the 
concept of a majorable X-valued measure, say m, on some locally compact 
topological space; such is the case, in particular, of every X-valued measure if X 
has finite dimension. In alternative constructions of vector measure theory, the 
corresponding notion is that of an X-valued measure with finite variation [21]. 
Associated with such an m is its modulus lml, a nonnegative real measure on the 
same space. It is involved in some inequalities and calculation rules concerning 
the integral of a real function relative to the vector measure m. A typical instance 
of a majorable X-valued measure is provided by defining m from a given 
nonnegative real measure J.l., through a density function ~~ e Ltoc (J1, X). This one 
expresses by writing m=m~J.I.· 

When the locally compact space we have considered equals a real interval/, 
the differential measure df of any f e lbv (I, X) is found to be majorable. In the 
sense of the ordering of real measures, its modulus me~sure satisfies I dfl < dV1 , 

with equality iff has "aligned jumps". 
The integral of df over a subinterval of I is expressed in Sect. 8. Typically, 

J df f+ (b) -f- (a), under Convention 3.5 if needed; similar formulas apply 
[a, b) 

to open or semi-open intervals with endpoints in I. For every subinterval J of I, 
one defines (df)1 , the measure induced by df on J. The restrictionf1 off to J is an 
element oflbv (J, X) whose differential measure may differ from (df)1 , if J is not 
open relative to I. 

Section 9 extends to vector measures a procedure familiar in probability 
theory. It is shown that every majorable X-valued measure on the interval I 
equals the differential measure of some f E lbv (I, X). This function may be 
constructed left-continuous (alternatively right-continuous) in the interior of I, a 
requirement which permits that this function be determined uniquely, up to an 
additive constant. 

Section 1 0 introduces three Banach spaces X, Y, Z and a continous bilinear 
mapping 4J : X x Y ~ Z. If m is a majorable Y-valued measure on a locally 
compact space and if geLloc(lml; X), aZ-valued measure denoted by 4J(g,m) is 
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defined. Calculation rules are established, involving in particular the case where 
m is defined through a nonnegative real measure Jl. and a density function m~. 

In the same three-space setting, two functions x E lbv (/, X) andy E lbv (/, Y) 
are considered in Sect. 11. Then t-+tl>(x(t), y(t)) belongs to lbv (/, Z) and some 
differentiation formulas are established; in particular 

(2.1) 

As a special case, this is used to show thai the differential measure of an lbv 
vector function in an open interval equals its derivative in the sense of 
distributions. 

In Sect. 12, the above is particularized by making Y =X and Z =JR. It is 
assumed that tl> : X x X-+ 1R is a symmetric continuous bilinear mapping such 
that the quadratic form a-+tl>(a,a) is nonnegative. Then, for every xelbv (I, X), 
the following inequalities hold, in the sense of the ordering of real measures: 

2tl>(x-, dx) <dtl>(x, x) <2tl>(x+, dx). (2.2) 

This is applied to the study of certain integral quadratic functionals on bv (I, X): 
positivity and lower semicontinuity in the norm supt llx(t) II· Some generaliza
tions of (2.2) to functions more general than the quadratic form tl>( .. , . ) are 
reviewed. All this is motivated by energy inequalities in evolution problems. 

Section 13 is devoted to the connection between the absolute continuity of 
a function f: I-+ X and the existence of a density ft' E Lfoc (I, dt; X) for the 
differential measure df, relatively to the Lebesgue measure dt. The notation 
f E wrr:; (/,X) is used to express this existence. The Radon-Nikodym property 
of the Banach space X, which holds in particular if it is reflexive, here plays the 
central role. This section, as well as the next, is mainly a review without proofs of 
some significant facts from the literature. In particular the reader may here find 
some conceptual and terminological links between the functional measure 
theory, used throughout the chapter, and the widespread concept of a countably 
additive set function. 

Because almost every point of /is a Lebesgue point of ft' elJoc(I,dt;X), the 
corresponding function f E Wi~<! (/,X) possesses ft' as derivative almost ever
ywhere. On the other hand, the differentiability almost everywhere for any 
felbv(/, X) is equivalent to the Radon-Nikodym property for X. Section 14is a 
review of fads connected with this. In particular, a recent result on unilateral 
derivation involving a base measure other than Lebesgue is quoted. The final 
part of this section, limited for brevity to real functions, explains the relevance of 
Lebesgue's decomposition theorem to the questions investigated. To preclude any 
possible confusion, the traditional decomposition of a bv function into the sum 
of a jump function and of a continuous component is also recalled. 
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Section 15 introduces a new way of studying lbv functions. It is established 
that, among other factorization properties, for every f E lbv (/,X) there exist an 
increasing function w of I to some real interval L1 and a Lipschitz function o of L1 
to X such that f = ~ o w; the indefinite variation ~ is concomitantly factorized 
through w ~ The proof consists in filling the possible gaps in the graph off in I x X 
by line segments and constructing from that a rectifiable curve in JR. x X. The 
relevance of this result will be demonstrated in the concluding section by the 
graph approximation of lbv unknowns. 

Section 16 illustrates the material in this chapter by some indications on how 
the theory of lbv vector functions applies to evolution problems governed by 
measure differential inclusions. This gives the occasion to review a few other 
facts from the literature, in particular Helly's selection theorem. 

3. One-sided Limits and Initial Conditions 

Let I denote a real interval, including or not its possible ends. Letfbe a mapping 
of Ito a Hausdorff topological space E; in all that follows, for every tel different 
from the possible right end of this interval, we shall denote by/+ (t) the right-side 
limit 

j+ (t)= lim f(s) 
s-+t,s>t 

if it exists; symmetrically, for t different from the possible left end of I, the left
side limit, if it exists, will be denoted by f- (t). 

Recall that a Hausdorff topological space Eis said to be regular (see, e. g. [25]) 
iff for each point x and each neighborhood U of x there exists a closed 
neighborhood V of x such that V c U; equivalently, the family of closed 
neighborhoods of each point is a base for the neighborhood system of the point. 
Such are, in particular, every metric space and every Hausdorff topological 
linear space. 

Proposition 3.1: Let E be regular and letf:J~E be such that for every tEl 
different from the possible right end of I, there exists f+ (t); then 

lim /+ (s) f+ (t). (3.1) 
s-+t,s>t 

If, in addition, for every t different from the possible left end of I, there exists 
f- (t), then 

(3.2) 
s-+t,s>t 

In short,(/+)+ 1+, (f-)+ =I+ and, through the symmetric property after 
exchanging sides, (/-)- = 1-, (/+)- = 1-. 
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Proof: Let W c Ebeaclosedneighborhood of f+(t); thereexists,.,>Osuchthat 

SE ]t,t+'1[ => f(s)eW. 

For every sin the open interval ]t, t+'1[ one has 

f('r) eel f(]t, t+'1 [) c W. 
r-+s, -r e ]s, t + rr[ 

Since the closed neighborhoods such as W make a base of neighborhoods of 
f+ (t), this establishes (3.1). 

Similarly, for every sin ]t, t+17[, 

f-(s)= lim f('r)E W, 
-r-+s,-re]t,s[ 

hence (3.2). 0 

Remark 3.2: The situation appears especially clear when I is an open interval, 
possibly unbounded. The proposition shows that f+ and /-, defined by 
assumption at every point of I, are, respectively, right-continuous and left
continuous functions. This introduces two operations: the right-continuous and 
left-continuous regularizations. Proposition 3.1 expresses that, if these opera
tions are applied alternately and/or iteratively, the final result is the same as if the 
operation performed last had been applied to f itself. 

Remark 3.3: Suppose that Eisa complete metric space. Then, classically [26] the 
existence of the right- and left-limits off at every interior point of I, together with 
the existence of the appropriate one-sided limits if I includes some of its possible 
ends, is equivalent to f being regulated in the sense that, on every compact 
subinterval [a, b] of I,f equals the uniform limit of a sequence of step functions. By 
definition, a step function on [a, b] equals a constant over each member of a finite 
partition of [a, b] into subintervals of any sort (some of them possibly reduced to 
singletons). 

The elementary theory of differential equations rests on the definition of 
possible solutions as indefinite Riemann integrals of regulated functions [26]. 

Remark 3.4: In Dynamics, the time interval I considered commonly contains its 
left end t0 , the initial instant. Suppose that a function u from I to some Banach 
space represents the velocity of the investigated mechanical system; the initial 
data usually involve some given initial velocity Uo· In the most traditional 
situation, the system evolution is governed by differential equations, assumed to 
be satisfied in the interior of I. The initial conditions are then interpreted as 
imposing the right-limits at t0 of the functions one is investigating. This is similar 
to what is more generally done with physical phenomena governed by partial 
differential equations in some open subset of JRn: boundary conditions involve 
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some "trace" operators whose simplest instance is the construction of limits at 
boundary points. But, if the dynamical process is not smooth enough to secure 
continuity of the velocity function t~u(t) in the interior of the time interval!, 
imposing the right-limit u+ (t0 ) looks inconsistent: why should not a jump also 
occur at the very instant t0 ? Therefore, the governing conditions of such a 
nonsmooth process have to place t0 on the same footing as the other instants. 

A simple way of describing things is to imagine that the investigated process Is 
already in progress before t0 , i.e. it takes place over a time interval! containing I 
in its interior. While the evolution for t > t0 is the object of prediction, the 
"initial" data are understood to convey abridged information on the system 
history before t0 : we shall interpret them as the left-limits of the considered 
functions at t0 • 

It will then prove expedient, as soon as a function u is defined on I, to extend it 
into a function u defined on !with the constant value u(t)=u(t0 ) fort< t0 ; this 
implies a- (to)= u(to). 

Accordingly, the following convention will often be used in the following 
sections. 

Convention 3.5: If the real interval! contains its possible left end T,, then for a 
function/ defined on I we shall agree that/- (T,) representsf(T,); symmetrically, 
if I contains its possible right end T,., we shall agree that/+ (T;) f(T,.). 

Warning: The above convention clearly preserves the calculation rules 
j++=f+ and~-- f- but IT IS NOT CONSISTENT with/-+ j+ and 
f+- -!-. This reflects the fact that the extension off on the left ofT, with the 
constant value f(T,) does not commute with right-continuous regularization; 
similarly for the extension of f on the right of T,.. 

4. Functions of Locally Bounded Variation 

Let I be a real interval of any sort and E a metric space, with distance denoted 
by b. Letf: I~E and let J be a subinterval of I. The variation off on J is, by 
definition, the nonnegative extended real number 

n 

var (f,J)=sup L b(/(-ri-1), /(-r,)), 
i=l 

where the supremum is taken over all strictly increasing finite sequences 'to< 't'1 

< ... < 't'n of points of J; this supremum refers to the ordering of [0, + oo ], i.e. 
sup 0 = 0. One may equivalently accept finite sequences which are only 
nondecreasin~. 
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Clearly var (f, J) is zero iff f equals a constant on J. 
If J is a compact subinterval [a, b] of I, we shall also write var (f; a, b) instead 

ofvar (j, [a, b]); this symbol will be considered as meaningless if a> b. Evidently 
var (j; a, a)= 0 and, if a < b < c in I, one readily finds 

var (j; a, c) = var (j; a, b) + var (j; b, c) . (4.1) 

Definition 4.1 : The function f: I-+ E is said to be of bounded variation on I iff 
var (j, I)< + oo; notation f E bv (I, E). 

It is called function of locally bounded variation on I iff var (j; a, b)< + oo 
for every compact subinterval [a, b] of I; notation f E lbv (I, E). 

Observe that var (f, I) equals the supremum of var (f; a, b) for all [a, b] c I. 
The addition rule (4.1) elementarily implies that f belongs to lbv (I, E) iff 

there exists a (nondecreasing) function Vf :I-+ JR such that 

V[a,b] c I: var (f;a,b)= V1(b)- V1(a). (4.2) 

This real function, called a variation function or an indefinite variation off, is 
defined up to the addition of an arbitrary constant. 

One readily sees thatf: I-+ Eis Lipschitzian on Iiffjelbv (I, E) with~: I-+1R 
Lipschitzian in the usual metric of IR; then f and Vf admit the same Lipschitz 
constant. 

Recall that f: I-+ E is said to be absolutely continuous on I iff, for every 8 > 0, 
there exists 17 > 0 such that, denoting by ]ai, hi[ any finite collection of 
nonoverlapping open subintervals of I, one has the following implication 

L (hi -ai) < 11 ~ L b(j(ai), f(bi)) < 8. 
i i 

The function is said to be locally absolutely continuous on I if it is absolutely 
continuous on every compact subinterval of I. 

It is easily proved that f is absolutely continuous (alternatively locally 
absolutely continuous) iff felbv (I,E) with variation function Vf absolutely 
continuous (locally absolutely continuous respectively) in the usual metric of :JR. 

We shall now investigate one-sided limits of lbv functions. 

Proposition 4.2: If the metric space ( E, {J) is complete and f E 1 bv (I, E), then f 
possesses a left-limit f- (t) for every t E I different from the possible left end of I 
(otherwise, Convention 3.5 makes f- (t) trivially meaningful); the symmetric 
statement holds for j+ (t). 
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Proof: Since Vr :I-+ JR is non decreasing, the left-limit Vj ( t) exists for every 
t>inf /.Thus V1 (s) possesses the Cauchy property for s tending tot from the 
left. In view of the inequality <5(/(s), f(s')) <I V1 (s')- J'{(s)l, the same is true 
furf 0 

Proposition 4.3: Let f e,. · (I, E); then, for every t E I different from the possible 
left end, there exists 

lim <5(/(s), f(t)) 
s->t,s<t 

equal to 
lim var (/; s, t) = V1 (t)- Vj (t). 

s-+t,s<t 

If/- (t) exists, these expressions equal 8(/- (t),f(t)). 
Symmetrical properties hold true for right-limits, as long as tis different from 

the possible right end of I. 

Proof: Let t0 <tin I and let e> 0. By the definition ofvar (f;t0 ,t) there exists a 
strictly increasing finite sequence t0 = -r0 < -r 1 < ... < 't'n - 1 < 'tn = t such that 

n 

var (f; t0 , t) < e + L b(f( 't'i-1),/(-ri)). 
i=1 

Let se [-rn-1, t[; through the triangle inequality the above entails 

n-1 
var (f; to, t) <e + L 8(/(-ri-1), f(-ri)) + 8(/ (-rn-1), f(s))+lJ(f(s), f(t)) 

i=l 

<e+var (f; t0 , s) +8(/(s), f(t)). 

In short, 

se ['t'n-b t[ => b(f(s),f(t))+e>var (f; s, t), 

while, essentially, 8(/(s), f(t)) <var (/; s, t).Now var (f; s, t)= V1 (t)- V1 (s) 

admits, for s-+t, s<t, a limit equal to Jif(t)- Jif- (t), since Vr :1-+JR is non
decreasing; this proves the first statement.If f- (t) exists, the asserted equality 
follows from the continuity of 8. 0 

Corollary 4.4: The function felbv (/,E) is left-continuous at a point of I 
(alternatively right-continuous), iff such is the real function Vr. 

Elementarily, the set of the discontinuity points in I of the nondecreasing real 
function Jif is (finite or) countable; Corollary 4.4 shows that the same is true for 
every f E lbv (/, E). 
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Proposition 4.5: Let felbv (/,E); iff- (alternatively f+) exists at every point 
of/, under Convention 3.5 if needed, this constitutes a function belonging to 
lbv (/,E). 

Proof: Lets < t in I; if sis not the left end of I, one has, due to the continuity of o, 
~(f- (s), f- (t)) = lim lim ~{f(u), f(7: )) . 

a-+s,a<s t-+t,-r<t 

Since ~(f(u),f(7:))<1V1 (7:)-V1 (u)l, one obtains, by going to limits, 
~(f- (s), f- (t)) < v,- (t)- Yt- (s). This inequality is similarly established, 
under Convention 3.5, if s happens to be the left end of I. It readily implies 

V [a, b] c I: var {f-; a, b)< Yt- (b)- Yt- (a); 

therefore, f- e lbv (/, E). 0 

Incidentally, the above does not imply that Yj- equals a variation function 
off-. 

The end of this section is devoted to the approximation by local step functions. 
By writing P E lfp (I) we shall mean that Pis a partition of I into subintervals of 

any sort (some of them possibly reduced to singletons) and that this partition is 
locally finite, i.e. every compact subset of I is covered by a finite collection of 
members of P. 

For P and Q in lfp (/), we shall write Q >-P iff Q is a refinement of P, i.e. every 
member of Q is contained in a member of P. Visibly this partial ordering makes 
of lfp (I) a directed set (see, e.g. [25]) in the sense that every two elements of 
lfp (I) possess a common refinement. 

A function I of I to a set E is said to be a local step function iff there exists 
P E lfp (I) on each member of which I equals a constant. 

For every f: I--+- E and every Q E lfp (I) let us agree to denote by /Q a local step 
function I--+- E constructed as follows: on every member of Q, fQ assumes the 
constant value f ( 1: ), where 1: is a point chosen in the said member. 

Proposition 4.6: Let (E, ~)be a metric space and felbv (/,E). For every e> 0, 
there exists P E lfp (I) such that, for every Q E lfp (I) which is a refinement of P, 
any function fQ constructed as above satisfies 

\/tel: ~(f(t), fQ(t)) <e, 

V[a,b) c/:var (JQ; a,b)<2e+var (f; a, b). 

(4.3) 

(4.4) 

Proof: Take a locally finite partition of 1R into intervals with lengths <e. The 
inverse images of these intervals by the nondecreasing function ¥f : I -+-lR are 
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subintervals of I; the nonempty ones constitute a partitionPelfp (/).Let Q>-P; 
if two points t and -r belong to the same member of Q, they belong a fortiori to the 
same member of P, say J, hence 

fJ(f(t), f(-r)) <var (f, J) <e. 

By taking as -r in each member of Q the point where, by construction, fQ 
equals f, one obtains the inequality (4.3). 

Those intersections of [a,b] with members of Q which are nonempty will be 
indexed from left to right as J0 , J1 , ... , J m. If a point ri is chosen in each interval 
Ji, one trivially has 

m 

var (fQ; a, b)= L fJ(fQ(-ri-1), /Q(-rJ) · 
i=1 

In particular, let us take -r0 =a, Tm =band for 0 < i < m let us choose as -ri the point 
at which /Q equals f Then 

m-1 
var (fQ; a, b)= fJ(fQ(a), f(-r1)) + L fJ(f(-rf-t), f(ri)) +fJ(f(-rm-1), /Q(b )) . 

i=2 

Using the triangle inequality and, at points a and b, inequality (4.3), this yields 
m 

var(fQ; a,b)<2s+ L EJ(f(-ri- 1),f(-ri))<2e+var{f;a,b). D 
i=l 

Remark 4. 7: A concept weaker than that of variation may be developed by 
considering, instead of the metric space (E, fJ), a space F equipped with a 
nonsymmetric pseudo-metric; this means that, for every x andy in F, some ecart 
e(x, y) e [0, + oo] verifying the triangle inequality e(x, z) <e(x, y) +e(y, z) is 
defined. But possibly e(x, y)#e(y,x) and possibly e(x, y)=O for x=/=y. This is 
done in [27], where a multifunction of the interval I to the metric space (E, fJ) is 
considered, i.e. a function of I to F = 2E. For any two elements A, B ofF, the ecart 

e(A, B)= sup inf fJ(a, p) 
aeA fJeB 

is defined (here sup and inf refer to the ordering of [0, + oo ], i.e. sup 8=0 and 
inf 8 = + oo ). This generates the theory of multifunctions with finite retraction, 
motivated by some mechanical evolution problems of the unilateral sort [5]. 

5. Monotone Change of Variable 

Proposition 5.1: ·Let H and I be two real intervals and let c :H-+ I be 
nondecreasing. Iff e lbv (/, E), then the function f o c: s-+ f(c(s)) belongs to 
lbv (H, E) and, for every [a, b] c H, 

var (fo c; a, b) <var {f; c(a), c(b )) . (5.1) 
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If, in addition, cis assumed continuous on [a,b] (equivalently, cis surjective of 
[a,b] to [c(a),c(b)]) equality holds in (5.1). 

The same statements are true for nonincreasing c : H ~I, provided the right
hand member of (5.1) is replaced by var {f; c(b ), c(a)). 

f>((f o c) (cri-1), (f o c) (cri)) = f>{f(c(cri- 1)), f(c(cri))) <var {f; c(cr1- 1), c(uJ). 

The definition of the variation off readily yields inequality (5.1). 
Let e>O; except in the trivial case where c(a)=c(b), there exists a finite 

sequence -r0 < -r1 < ... < 't'n in [c(a), c(b )] such that 

n 

var {f; c(a), c(b))<e+ I f>{f(-ri-d,f(-ri)). 
i=1 

If the nondecreasing function c is surjective of [a, b] to [c(a), c(b )], there exist 
u0 <cr1 < ... <an in [a, b] such that -ri=c(ui); hence 

n n 

I f>{f(-ri-d, /(-ri)) = I f>((fo c) (cri-1), {fo c) (cri)) <var (f o c; a, b). 
i=1 i=1 

As e may be taken arbitrarily small, this establishes equality in (5.1). D 

Increasing changes of variables make the basis of the concept of oriented curve 
in the metric space E. Let I and I' be two real intervals; let f: I~ E and f' : I'~ E 
denote two continuous mappings. Suppose that no subinterval of their respective 
domains exists on which/ or f' are constant. One defines an equivalence relation 
by writing f ""f' iff there exists c : I'~ I, nondecreasing and bijective (hence 
continuous strictly increasing, with continuous inverse) such that/' f o c. Every 
equivalence class relative to ,...., is called an oriented curve in E; every member of 
such a class is called a proper parametrization of the oriented curve. 

As a consequence of Proposition 5.1, if some member of the class is an lbv 
function, so are all members. In that case the class is called an oriented curve of 
locally bounded variation, or also a rectifiable curve, an archaic way of saying 
that the length of any of its arcs may be defined. In fact, letfelbv (/,E) and 
f' fo celbv (I', E) be two proper parametrizations; lett' range through some 
compact subinterval [a',b'] of I'; equivalently t=c(t') ranges through the 
subinterval [a,b]= [c(a'), c(b')] of I. Then the pointf(t)= f'(t') of Eis said to 
describe an arc of the curve, withf(a)=/'(a') andf(b)=f'(b') as endpoints. 
Proposition 5.1 entails var (f; a, b)= var {f'; a' ,b'); this is, by definition, the 
length of the arc, a real number independent of the parametrization used. 

Since f is continuous and nowhere constant, a variation function ~of/is a 
continuous and strictly increasing mapping of I onto a real interval r. Therefore, 
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y- fo v1- 1 elbv (r, E) is also a proper parametrization of the curve; if a= Vj (a) 
and p = V1 (b ), the length var (f; a, b)= P -a is found, through Proposition 5.1, 
to be equal to var(y;a,p). This equality holds for every [a,p]cr; in other 
words, y admits as variation function the identity mapping of r. We shall express 
this property by saying that y is a curve-isometry; in fact, y maps any com
pact subinterval of r onto an arc of equallentgh. It is commonly said that 
r= V1 (t) E r is the oriented arc length (or curvilinear abscissa) locating the point 
f(t)=y(t) on the curve. If one starts from/' instead off, the same procedure 
yields another curve-isometry, say y', and for every 1:er it results easily that 
y(r)=y'(r-r0 ), with r0 a constant. 

Incidentally, observe that a rectifiable curve may be generated from any 
continuous lbv function g of an interval J toE; to recover the above setting, it 
suffices to perform on the interval J a reducing manipulation: every possible 
subinterval over which g is a constant will be contracted to a singleton. If such 
nonzero subintervals exist, g is said to be an improper parametrization of the 
corresponding curve. 

6. Differential Measures 

As before, I denotes a real interval of any form; in all the following the metric 
space considered will be a real Banach space X, with norm denoted by II . II· 

For every fi, / 2 :I---+-X, every A.1 , A.2 in lR and every subinterval J of I, one easily 
establishes 

var (A.1fi + A-2/ 2 , J) < IA-11 var (/1, J) + IA-2 1 var (h, J). 

This shows that bv (I, X) and lbv (I, X) are linear subspaces of X 1
. 

Call [I' the totality of the finite subsets of I; every memberS of !7 may be 
uniquely enumerated as a strictly increasing finite sequence of points of I, say 

S: to< t1 < · . · < 't"n· (6.1) 

By an intercalator, we shall mean an assignment- call it fJ- associating with every 
S E [I', as written in the form ( 6.1 ), and every i E { 1, ... , n} an element denoted by 
(Jk of the compact interval [ti-t, rd. By q> E %(I) it is classically expressed that q> 

is a continuous real function on I whose support (relative to I) is compact. 
Let f: I-+ X; for every S, (J and ({J as above let us construct the following 

element of X: 

n 

M(S,{},tp)= L q>((Jk)(f(tJ-/(ti-1)). (6.2) 
i=l 
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The inclusion ordering makes out of.9' a directedset, i.e. for every two elements S, 
S' of .9', there exists S"e.9' such that S"::::>S and S"::::>S~, namely S"=SuS'. 
This enables one to use the concept of the convergence of a mapping, say S-+ M 8, 

of (S, =>)to the topological space X (see, e. g. [25]; such a mapping is also called a 
generalized sequence of elements of X, indexed in (S, => ), or, in short, a net). 

Proposition 6.1: Let f e lbv (I, X); for every qJ e .Yt'(I) and every intercalator 8, 
the mapping S-+ M(S, 8, qJ) of the directed set {S, =>) to X converges to a limit 
independent of 8; convergence is uniform with regard to the choice of 8. 

Denote this limit by J qJdf; for every compact subinterval [a, b] of I containing 
the support of qJ the inequality 

II J qJdf II <max !({JI var (f; a, b) (6.3) 

holds, showing that the linear mapping qJ-+J qJdf of .Yt(I) to X constitutes a 
vector measure on I in the sense of Bourbaki. 

Definition 6.2: The X-valued measure above will be called the differential 
measure (or Stieltjes measure) of the function f e lbv (I, X) and be denoted by df 

Proof of Proposition 6.1 : Let [a, b] be a compact subinterval of I containing the 
support of qJ. As the members of .9' which include a and b constitute a cofinal 
subset of (9', ::::>) (see, e.g. [25]), one may restrict oneself to such members. 
Besides, the points of .9' which do not belong to [a, b] may be neglected when 
introducing the enumeration (6.1) since they have zero contribution in such 
expressions as ( 6.2), due to the vanishing of qJ outside [a, b ]. Hence we shall only 
take S under the form 

S:a=-r0 <-r1 < ... <-r,=b. (6.4) 

Let us first consider the special intercalator IJ, which consists in taking If~= -r1, and 
prove the convergence of S-+M(S, lJ, ((J). 

Let e > 0; as qJ is uniformly continuous on [a, b ], the finite subset S may be 
chosen such that the following holds: for every i and for every -r, -r' in [-r1_ 1 , -ri] 

I((J(-r) -qJ(-r')l <e. (6.5) 

Let S' e .9' such that S c S' c [a, b]; with S written in the form (6.4), for every 
i e { 1, 2, ... , n} let us denote by -r{ the points of S' which lie in [ -ri -It -ri], so that 

(p= 1 whenS' possesses no point in ]-ri-1 , -ri[; ifi<n thesamepointof S' appears 
as tf and as -r?+ 1). 
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The intervals delimited by S' and contained in [ri-b ri) contribute to 
M(S', 0, q>) by terms whose sum equals 

p 

L q>(r{) (j('r:{)-f('r:{-1))' (6.6) 
j=1 

to be compared with the following term of M(S, 0, q>) 

p 

q>(ri) (f(rt)-f(ri-1))= L q>(ri) (f(r{)-f(r/- 1
)). (6.7) 

j=1 

If S meets the requirement (6.5), the difference between expressions (6.6) and 
(6. 7) lets itself be bounded as follows: 

p 

L (q> (ri) -q>(r{)) (f(r{) -f(r{- 1
)) 

j=1 

p 

<e L llf(r{)-f(r{-1)11<evar(j;ri-t,'td. (6.8) 
j=1 

After summation with respect to i, this yields 

IIM(S, 0, q>) -M(S', 0, q>ll <e var (j; a, b). (6.9) 

Therefore, if S" denotes another member of .9, also contained in [a, b), one has 
the implication 

S':::) S, S":::) S ==> IIM(S', 0, q>)-M(S", 0, q>) II <2e var (j; a, b), 

meaning that the generalized sequence S-+-M (S, {f, q>)eXpossesses the Cauchy 
property; this establishes convergence. 

As for the use of another intercalator 0, one observes that, if S meets the 
requirement (6.5), a calculation similar to that in (6.8) yields, for every S' ef// 
which is a refinement of S, 

IIM(S', 0, q>)-M(S', 0, q>) II< e var (f; a, b). 

This proves that, uniformly with regard to the choice of 0, the same limit is 
approached. 

Since q>-+-M(S, 0, q>) is, for fixed Sand 0, a linear mapping of%(/) to X, it 
results, after going to the limit, that q>-+-J q>df is linear. 

Finally, the definition of M trivially implies 

IIM(S, 0, q>)ll <maxlq>l var (j; a, b), 

yielding (6.3) at the limit. 
That the linear mapping q>---+-J q>df of :ft (I) to the Banach space X constitutes a 

vector measure on I in the sense of Bourbaki means , as recalled in Sect. 1, that it 
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possesses the following continuity property: for every compact subset K of/, the 
restriction of this mapping to the subspace consisting of the elements of :K(l) 
with support contained in K is continuous in the supremum norm. Since K is 
necessarily contained in some [a, b ], this in fact follows from the inequality (6.3). 

0 

Remark 6.3: One similarly finds that, if S meets the requirement (6.5), then for 
every S' :::> S in .9 

IIJ cpdf -M(S, 8, q>)ll <e var (/;a, b). (6.10) 

Remark 6.4: The totality of the X-valued measures on I naturally constitutes a 
real linear space. As the first calculation rule concerning differential measures, 
there readily results the linearity of the mapping f-+df. 

Furthermore, if the vector function f is a constant, then df 0. Remark 6.6 
below shows that the converse is not true in general; however, Corollary 8.4 will 
describe a situation free from this inconvenience. 

We now calculate dfin the case where f is a local step function, i.e. ( cf. Sect. 4) 
there exists P E lfp (/) on each interval of which f is a constant. Every point of I 
which equals an end of some of the intervals constituting P will be called a node of 
P, and also a node off Such a function is readily found to belong to lbv (/,X). 

Proposition 6.5: Iff: I-+ X is a local step function and q> E :Yf' (I), one has, under 
Convention 3.5 if needed, 

p 

J cpdf= I cp(tk) (f+(tk)-f-<tk)), (6.11) 
j=1 

where t1 , t2 , ••• , tp are the nodes off contained in the support of q>. 

In other words, the differential measure df equals the sum of a locally finite 
collection of point measures placed at the discontinuity points off, the respective 
values of which are equal to the jumps f+ -f-. 

Remark 6.6: If one of the intervals over which f is constant reduces to a 
singleton, say {ts}, interior to I, the value f(ts) may be fixed independently ofthe 
values f+ {t8) and f- {t8) that the function takes on the two intervals adjacent to 
ts; hence the measure dfhas no relationship withf(ts). In particular, one may take 
f equal to a constant throughout /, except at some isolated interior points: this 
gives an example of a nonconstant lbv function with zero differential measure. 

Proof of Proposition 6.5: Let [a, b] c I contain the support of q>. First suppose I 
open in JR.; then a and b may be chosen to be different from all the nodes of P. The 
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partition P induces a finite partition of [a, b] whose nodes will be enumerated as 

a<t1 <t2 < ... <tp<b. (6.12) 

By definition, J cpdf equals the limit of the convergent net S--+ M(S, 0, <p ), as 
expressed in (6.2), with 

S: a= to < t'1 < · · · < t'n = b · 

Take the same intercalator lJ as in the proof of Proposition 6.1. Using Remark 
6.3, one observes that J <pdf also equals the limit of M(Si, lJ, cp), where Sb j EN, 
denotes an infinite sequence of choices of S, agreeing with the following 
requirements: 

(a) There exists a sequence 1'/i > 0, tending to zero, such that the distance between 
any two successive points of Si is less than t'/J· 

(b) No point of Si equals a node of P. 
(c) Every open interval ]ti- 1 , ti[ determined by Si contains at most one of the 

said nodes. 

Since f is a constant between the points ( 6 .12) the only possible nonzero terms 
in M{SJ, IJ, cp) correspond to the p values of i such that ]-ri-l, -ri[ contains one of 
the points tk. The term so associated with tkequals <p(-ri) (f(-ri)-/(-ri- 1)). Whenj 
tends to infinity this clearly has the limit <p(tk) (/+ (tk)-f- (t,:)), hence (6.11) is 
proved. 

So far we have supposed I open in IR. If I possesses, for instance, a left end 1i 
and includes it, the support of <p may contain this point; then necessarily a= 1i. 
Again, let t1 < t2 < ... < tP denote the nodes of P contained in [a, b]; it may 
happen that t1 =a= T,, so the term corresponding to i = 1 in M(SJ, lJ, cp ), namely 
cp(-r1) {f(t1}-/(1i)), possesses the limit cp(Ti) (f+{Ti)-/('Ji)) whenj tends to 
infinity. According to Convention 3.5, /(T,) is interpreted as/- (T,); this agrees 
with (6.11). 0 

Remark 6.7: We acknowledge a certain lack of consistency in the use of the 
notation df to represent the differential measure of f In fact, the symbol d 
usually does another job when the integral of a function h, relative to some 
measure called J1., is written down as J hdf.J, or, if a dummy variable is needed, 
f h(t)df.J,(t) (also J h(t)dt(J1,)). So some authors are entitled to prefer using Dfto 
mean the differential measure off [3]. An integral relative to this measure would 
then logically be expressed as J hdDf or J h(t)dDf(t). Ifthat system of notation 
were strictly implemented, the Lebesgue measure on an interval would stand out 
as Did (since it equals the differential measure of the identity function id: I-+1) 
and the traditional integral J h(t)dt relative to it would take on the form 
J h(t)d Did (t) or f h(t) Did (dt). Clearly, for simplicity's sake, some consistency 
has to be sacrificed. 
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7. The Modulus Measure 

In the following definitions, one may take as I a locally compact topological 
space which, for simplicity, will be supposed "countable at infinity", i.e. it equals 
the union of a countable collection of compact subsets; such is evidently the case 
when I is a real interval. 

Defmition 7.1: The vector measure m is said to be majorable iff there exists a 
nonnegative real measure J.l on I such that, for every tp E %+ (/) (the subset of 
f (I) consisting of nonnegative functions), one has 

liS cpdm II < S cpdJL. (7.1) 

This is equivalent to Bourbaki's terminology (cf. [20], Chap. VI, § 2, No. 3, 
where, more generally than X, a locally convex topological linear space, with a 
collection of semi-norms characterizing its topology, is considered). 

Note that every cp E% (/) equals the difference of two elements cp _ and cp + of 
f+(I), with cp_ +cp+ =lcpl. Hence the above property is equivalent to 

liS cpdm II < J lcpldJ.l (7.2) 

holding for every <p E .:ft (I). 
If X has fmite dimension, any X-valued measure is majorable. This easily 

follows from the use of a base in X and from the complete lattice property of real 
measures 

Let us consider the dual Banach space X' of X, with duality pairing denoted by 
(., .). Inequality (7.1) is equivalent to saying that, for every x' eX', 

V cp E .:ft + (/): (x', S cpdm) < llx'll S cpdJ.l. (7.3) 

For fixed x' in X', the linear mapping <p-+(x', S cpdm) of%(/) to 1R clearly 
constitutes a real measure, which we shall denote by x' o m, in accordance with 
the customary notation for the composition of mappings (the writing (x', m) 
could also be used, consistent with Sect. 10 below, where more general bilinear 
expressions will be considered). Then (7 .3) means equivalently that the collection 
of real measures x' om, for x' ranging through the unit ball B' of X', is majorized 
by J.l in the sense of the ordering of real measures. Hence this collection possesses 
a supremum, majorized by J.l, which we shall denote by lml (or ldml when it 
appears in an integral). Equivalently, lml equals the supremum, for x' E B', of the 
collection of nonnegative real measures 

lx' om! =sup { -x' om, x' om}; 

therefore lml is nonnegative and vanishes iff m vanishes. Clearly (7 .1 ), (7 .2) and 
(7.3) hold with J.l=lmj .. 
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More generally, a similar procedure is used in [20], Chap. VI,§ 2, No. 3, 
starting with a continuous semi-norm q on X, in order to define some real 
measure denoted by q(m). Regarding diverse situations where a measure is also 
constructed by extending the symbol of a real function, see [20], Chap. V, § 5, No. 
9, and [28-30]. 

Defmition 7.2: For every majorable vector measure m, the nonnegative real 
measure lml introduced above is called the modulus (or absolute value) of m. 

If X= IR, this is nothing but the traditional absolute value of a real signed 
measure. 

When vector measures are treated from the standpoint of set functions, the 
concept corresponding to majorability is that of a measure offmite variation (or 
locally bounded variation); then lml is introduced as the variation measure of m, 
also called the modulus of m in [21 ], § 3, No. 4. 

Counterexample 7.3: Let us show a nonmajorable vector measure. Suppose that I 
is a compact topological space and take as the Banach space X the function space 
:Yf' (I) equipped with the supremum norm. Then the identity mapping of :K (I) 
constitutes an X-valued vector measure, say m; in other words, for every 
cpE:Yf'(I), the integral J cpdm equals the element cp itself. Asserting m to be 
majorable would mean the existence of a nonnegative real measure Jl majorizing 
x' om for every x' in the unit ball of X'. Any element of X' is a real measure on I; 
take in particular x' = f>a, the Dirac measure at point a E I. Clearly llf>,ll = 1 and 
f>a om is nothing but the real functional associating with every cp E :K (I) the value 
that cp takes at point a; in short f>, om= b11• Now, one may easily check that, 
provided I contains more than a finite number of points, the collection of real 
measures f>a, for a ranging through I, cannot be majorized by any real measure. 

Let us come now to the integration of a rea/function with respect to a vector 
measure. Commonly, a function h :I-+ 1R is said to be scalarly integrable relative 
to m iff h is integrable relative to all real measures x' o m, x' EX'. Since the 
mapping x'-+ J hd(x' om) i~ linear of X' to JR., this leads one to define the integral 
J hdm as an element of X'*, the algebraic dual of X', in which Xis naturally 
imbedded. Sufficient conditions may be found in [20], Chap. VI, for J hdm to lie 
in X; here we shall only need the following. 

Proposition 7.4: If m is majorable, for every hE .fR 1 (I, lml; JR.) the integral J h dm 
is an element of X satisfying 

IIJ hdml! <J lhlldml. (7.4) 
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Proof: Let lfJn be a sequence of elements of :K(l) conver~g to h in !£1
(/, lml; JR.). 

Using inequality (7 .2) with J..L = lml, one finds that lfJn is a Cauchy sequence in 
!i' (I, lx' o ml; lR) for every x' EX'; this entails the existence of J hdm as an element 
H of X'*. Now, for every two integers n,p, inequality (7.2) with J..L=Iml yields 

showing that the sequence J lfJndm is Cauchy in X; its limit is readily identified 
with H. Finally, by applying (7.2) to lfJn and going to the limit in fi' 1 (I, lml; 1R) 
one obtains (7 .4). 0 

What precedes naturally leads to this extension of the dominated convergence 
theorem. 

Proposition 7.5: Let hn be a sequence of elements of .P1 (J, lml; lR) satisfying: 

(a) There exists g E !£1 (/, lml; lR+) such that lhnl <g holds lml-a.e. 
(b) For lml-almost every value oft, the real sequence hn(t) possesses a limit, say 

h(t). 

Then hE !£1 (I, lml; lR) and, normwise in X, 

lim J hndm= J hdm. 
n~oo 

Proof: The dominated convergence theorem implies that the sequence hn 
converges to h in 2 1 

(/, lml; 1R). Then, for every two integers nand p, (7.4) yields 

which entails that the sequence J hndm is Cauchy in X; the limit is readily found 
to be equal to the element J hdm of X. 0 

Remark 7.6: Like many authors (e.g. those of [20, 21]) we use .Pin the notation 
of the non-Hausdorff topological linear spaces, whose elements are functions 
everywhere defmed in I, with some integrability properties relative to a given real 
measure. Taking the quotients of such spaces by the subspaces consisting of 
functions which are negligible relative to the said measure yields the correspond
ing Hausdorff spaces traditionally denoted by L; the elements of the latter are 
not properly functions. We strongly advise paying attention to this distinction 
when treating nonsmooth evolution problems, in which several real measures 
often appear jointly. 

Oearly, in Propositions 7.4 and 7.5, hand hn could equivalently be considered 
as elements of L1 (I, lml; lR). 
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We now come to a common way of constructing majorable vector measures. 
Let there be given a nonnegative real measure J1 on I and let m~ denote an X
valued function, 11-integrable (in the sense of Bourbaki [20]; equivalently Boch
ner-integrable) over every compact subset of I; notation m~e!l'foc(I,Jl;X). 
Then, for every cp e % (I), the vector function cpm~ is 11-integrable and, if K 
denotes a compact subset of I containing the support of cp, 

IIJ cpm~d11ll <J llm~lldJlmax lcpl. 
K 

This shows that the mapping m: cp~J cpm~dJ1 constitutes a vector measure. 

Defmition 7.7: The X-valued measure m constructed above is called the product 
of the real measure J1 by the vector function m~ E 2foc{I, 11; X); notation m=m~ J1 
(and, when written in an integral, dm =m~dJ1). Also, m is said to admit -m~ as 
density relative to Jl. 

(Observe that a weaker concept of density is developed in [20], Chap. VI,§ 2, No. 
4: instead of being an element of !l' 1~c (I, J1; X), the function m~ is only assumed 
scalarly locally 11-integrable ). 

Clearly, the same vector measure m is obtained after replacing m~ by any 
11-equivalent X -valued function. Therefore, the density of m relative to Jl-may be 
considered as an element of Lloc(/, 11; X) and, from that standpoint, it is unique. 

Due tom~ e 21~c(I, 11; X), the nonnegative real function t~ II m~ (t) II, simply 
denoted by II m~ II, belongs to !l' foe(/, J1; JR.) : this allows one to use the above 
definition with X= JR., thus obtaining the nonnegative real measure II m~ II Jl. 

In some contexts, it will prove safer to use the lengthier notation lim~{·) II to 
refer to the real function II m~ II· 

Proposition 7.8: For every nonnegative real measure J1 on I and every 
m~ e .P foe(/, J1; X), the vector measure m = m~ J1 is majorable; its modulus 
measure lml equals II m~ II Jl. 

Proof: Clearly, for every x' in the unit ball B' of X', the nonnegative real measure 
lx' o ml = lx' om~ IJ1 is majorized by II m~ll 11; hence m is majorable, with modulus 
lml majorized by llm~IIJl· Through the.Radon-Nikodym theorem, this implies 
that lml admits a density relative to Jl, say v~E!l'foc(I,p;JR.+) and 
v~(t) < llm~(t) II for 11-almostevery value oft in/. Let us now prove the reverse 
inequality. 

Being an element of !l' foe (I, J1; X) the vector function m~ takes p. -a. e. its 
values in some separable Banach subspace Y of X. The measure m is Y-valued, in 
the sense that, to every lm !-integrable real function it assigns as integral an 
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element of Y. The collection of real measures lx' o ml = lx' o m~!Jl, for x' ranging 
throughout B' equals the collection of IY' o ml = ly' o m~IJl, for y' ranging 
throughout the unit ball C' of Y' ~X'jY1.. Since Y is separable, C' contains a 
countable subset D', dense in the weak* topology o-(Y', Y). By definition, lml 
majorizes the real measure ly' o ml,y' E C'; hence the corresponding density 
function satisfies IY' o m~ ( t) I < v~ ( t) with the possible exception of a p-negligible 
subset N(y') of values of t in I.. If y' ranges throughout D ', the union of the 
corresponding N(y') is a J.L-negligible subset, say N, of I. The above inequality 
implies that, for t E I\ 1V, 

sup ly'om~(t)l<v~(t). 
y'eD' 

Since D' is weak*-dense in C', the left-hand side equals llm~(t)jj. 0 

The above expression for lml implies that the subset of I on which the real 
function II m~ II vanishes is lml-negligible. Outside this subset, the vector function 
m~j II m~ II, with values of unit norm, is defined; arbitrarily extended to the whole 
of I, it constitutes a density function of m relative to lml. 

Conversely, supposing that an arbitrary majorable X-valued measure is 
given, one may ask whether it is sure to admit a density relative to its modulus 
measure. The answer is affirmative for special choices of the Banach space X, 
said to have the Radon-Nikodym property (see [22]; we shall come back to this 
subject in Sect. 13). Such is in particular any reflexive Banach space, and hence 
every finite-dimensional normed space. 

Example 7.9: Suppose m =abr, i.e. the point measure located at point tEl, with 
value aEX(cf. Proposition 6.5). One finds lml =II all br; every function h :1-+JR. 
belongs to !l'1 (I, lml; JR.) and the integral J hdm equals h(t)a. For this special 
X-valued measure, the existence of a density function, say m~, relative to its 
modulus measure p= llall br is trivially secured, without any additional assump
tion concerning X. In fact, every function m~ : I-+ X belongs to !l' 1 (I, tt; X) ; it 
does the job iff it takes a point t the value a/ I! all; the values ofm~ anywhere else 
are immaterial, since I\ { t} is J.L-negligible. 

Let us finish this section by considering the case where I is a real interval, with 
m equal to the differential measure of an lbv function. 

Proposition 7.10: Let I be a real interval and let /Elbv (/,X) with variation 
function V1 : I-+ JR. Then the differential measure df is majorable and, in the 
sense of the ordering of real measures, 

ldfl<d~. (7.5) 
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Proof: Coming back to expression (6.2) one observes that 

ll/(ri)-/(ri-1)11 <var (/; -ri - 1, -ri) = Jij(-ri)- Jij(-ri-1). 

Hence, for every q> e% + (/), 

n n 

2: q>(Ok) (f(-ri)-/(-ri-1)) < I q>(Ok) (Vr(-ri)- Jij(-ri-1). 
i=1 i=1 

By taking the respective limits, for S ranging in the directed set (f/, => ), one gets 

Vq>E%+(/): IIJ q>dfll <S q>dVJ, 

which is the property involved in Definition 7.1 ; inequality (7 .5) follows from the 
definition of the modulus measure of df 0 

Remark 7.11: Here is a counterexample showing that equality in (7.5) does not 
hold in general. Let t1 be an interior point to I and u, v two elements of X; define 

f(t)={u ~f t#t1 • 

v tf t=t1 

In view of Proposition 6.5 the vector measure df vanishes, and hence also ld/1; 
but Jif may be constructed as 

{ 

0 if t < tl 

Jij(t)= · llv-ull if t=t1 

2llv-ull if t>t1 ; 

this makes dJif consist of the point measure located at t1 , with value 211 v-u II· 

Recail that a normed space is said to be strictly convex iff 

{A.e ]0, 1 [, llxll = IIYII =r, x# y)=>ll lx+(1-A)YII <r. (7.6) 

Elementary reasoning from two-dimensional geometry shows that this property 
is equivalent to the following: equality 

Ile-al!= llc-bll +lib-all 

holds (if and) only if b belongs to the line segment with endpoints a and c. 

The following proposition will be established in Sect. 8; for another proof, 
developed from the viewpoint of set functions, see [31 ]. 

Proposition 7.12: Iff has aligned jumps, i.e., for every tel, the value /(t) 
belongs to the line segment in X with endpoints /- (t), f+ (t), then ld/1 = dVr. 
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If, in addition, the Banach space is supposed strictly convex, equality 
ldfl = d~ conversely implies that f has aligned jumps. 

Note that, under Convention 3.5, alignment of jumps holds trivially at an 
endpoint of /. 

If, in particular, f is right-continuous (alternatively, left-continuous) in the 
interior of/, then it has aligned jumps. 

8. Subintervals 

Let m denote an X-valued measure on the real interval /. If [a, b] c /, the 

notation J dm classically stands for the integral Jxra,b]dm of the characteristic 
[a, b) 

function of [a,b ], in other words the m-measure of this subset of I. If m is 
majorable, Proposition 7.4 ensures that this integral is an element of X; in 
contrast, for a nonmajorable measure, Counterexample 7.3 may be used in order 
to exhibit an interval -for instance a singleton -whose measure, essentially an 
element of X'*, cannot belong to X. 

In any case, if two vector measures on/, say m1 and m2 , yield as integrals, on 
each compact subinterval of/, the same element of X'*, then m1 =m2 ; this 
readily follows from consideration of the real measures x' o m1 and x' o m2 , with 
x' eX'. 

Proposition 8.1: Let f E lbv (/,X); for every compact subinterval [a, b] of I, 
under Convention 3.5 if needed, one has 

J df= f+(b)- f- (a). (8.1) 
[a, b) 

In particular, for every ael, the d.f-measure of the singleton {a} equals 

J df=f+(a)- f-(a). (8.2) 
{a} 

Proof: We first consider the case where [a, b] is contained in the interior of I; then 
we may approach Xra,bJ by the following sequence (/)p of elements of :K (1). Denote 
by sP and aP, with sp<ap<a, two infinite sequences of points of /tending to a; 
denote by tP and bP, withb <hp< tP, two infinite sequences of points of /tending 
to b. Choose the function cp P E :K (I), with values in the interval [0, 1 ], with 
support contained in [sp, tp] and taking the value 1 throughout [ap, bp]. By 
establishing that, normwise in X, 

lim J cpPdf = f+ (b)- f- (a), (8.3) 
p-+oo 

27



we shall prove (8.1), thanks to Proposition 7.5; in fact, the sequence ({Jp con
verges to Xra,bl pointwise, with lcpPI majorized by the characteristic function of 
some compact interval containing all [sp, tp]. 

Now, under the definition (6.2) of M, 

J cpPdf =lim M(S, e, cpp). 
Sefl' 

(8.4) 

For fixed p, the elements off/ containing the four points sP, aP, bP, tP constitute a 
cofinal subset of(f/, =>);therefore, this constraint maybe imposed on Sin (8.4). 
If an interval delimited by S, say [-ri-h -ri], is not contained in [sp, tp] its 
contribution to M(S, 0, cpp) vanishes; the total contributions of intervals 
contained in [ap, bp] equals f(bp)- f(ap), since cp(Ok) = 1 for all the correspond
ing values if i; finally, because lcpPI < 1, the contributions of the intervals 
contained in [sp, ap] and [bp, tp] have their norms bounded by var (j; sP, ap) and 
var (/; bP, tp), respectively. Consequently, 

llf(bp)- f(ap)- J (/Jpd/11 < Vj-(ap)- V1 (sp)+ Vj-(tp)- V1 (bp). 

For p-+ oo, this tends to zero since the nondecreasing real function V1 possesses a 
limit on the left at point a and a limit on the right at point b; equality (8.3) 
follows. 

Let us now suppose that I contains its left end T,, with a= T, while b is different 
from the possible right end (otherwise I= [a, b ], hence Xra.bJ E:% (I), which makes 
the proof of (8.1) straightforward). The sequences tP and bP, b<bp<tp, only 
have to be introduced; cpP is constructed with support in [T,, tp] and with the 
value 1 throughout [~, bP]; thus 

J df =!+(b)- f(T,) 
[7;, b 1 

which, in view of Convention 3.5, is again equality (8.1). Similar reasoning 
applies if b is equal to the right end of I and a different from the possible left end. 

0 

Corollary 8.2: If a, b are two elements of I and a< b, one has, under Convention 
3. 5 if needed, 

J df=f+(b)-j+(a), (8.5) 
]a,b] 

J df=f-(b)- f-(a); (8.6) 
[a,b[ 

furthermore, if a< b, 

J df=f-(b)- j+(a). (8.7) 
]a,b[ 
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Proof: Since X[a.b] = X{a} + XJa.bl' (8.5) follows from (8.1) and similar reasoning 
applies to (8.6). For a=b the notations ]a, b], [a, b[ and ]a, b[ are naturally 
understood as representing the empty subset of I; therefore, equality 
X£a,b£= X{al + XJa,b£ holds iff a< b, so (8.7) follows from (8.6). 0 

Corollary 8.3: Iff e lbv (/,X), the function ft equal to j+ (respectively/-) at 
every interior point of I and to fat the possible ends of /belongs to lbv (/,X) and 
has the same differential measure as f 

Proof: That.ft elbv (/,X) results from Proposition 4.5. Using Propositions 3.1 
and 8.1, one readily checks that dfi and dfyield the same integral over every 
compact subinterval of I. 0 

Corollary 8.4: If two elements ft and fi of lbv (/,X) have the same differential 
measure and are right-continuous in the interior of I (alternatively, left
continuous in the interior of I), then ft - fi equals a constant. 

Proof: If I does not contain its possible left end T,, this readily follows from (8.5). 
Otherwise one finds a constant C such that 

t > T, => h (t)-fi (t) =c. 
Therefore ft.+ (T,)-f 2+(T,)= C; in view of (8.2) and the assumption dfi. =d/2 , 

this implies / 1 (T,)-/ 2 (T,) =C. 0 

Remark 8.5: If I contains its left end Tz, the right-continuity of a function 
f e lbv (/,X) at this point is equivalent to J df = 0, i.e. { T,} is not an atom of d f 

{Tr} 

A similar remark applies to left-continuity at the possible right end. 

We are now able to justify a foregoing statement. 

Proof of Proposition 7.12: Let us prove that, under the assumption made, the 
reverse inequality of (7 .5) holds; we shall first show that, for every a< bin/, one 
has 

J dV1 < J ld/1. (8.8) 
]a,b[ ]a,b[ 

The left-hand member equals v1- (b)- J-f+ (a), i.e. var (/;]a, b [), due to 
Proposition 4.3; now, for every e > 0 there exists an increasing finite sequence 
t1 < t2 < ... < t11 of points of ]a, b[ such that 

II 

-e+var{f;]a,b[)< L llf(ti)-f(ti-1)11. (8.9) 
i=2 
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Furthermore, 

llf(ti)- f(ti-1)11 < llf(ti)-f-(ti)ll + llf-(ti)-f+(ti-1)11 

+II!+ {ti-l)- f<ti-1) II· (8.10) 

Define t0 =a, t,. + 1 = b; then ]a, b [ rna y be expressed as the following union of 
disjoint intervals: 

]a,b[=]t0,t1[u {td u]tbt2 [u ... u{t,.}u]t,.,t,.+1[. (8.11) 

By adding to the right-hand member of (8.9) the nonnegative terms 
II!- (tl) -!+ Cto) II, II!Ut) -!- Ut)ll, II!+ (t,.) -f(t,.) II and II!- (t,.+l) -!+Ct .. ) II 
and using (8.1 0), one majorizes this right-hand member by 

n+l n 

L: llf-(ti)-f+(ti-1)11+ L: <llf-(ti)-f(ti)ll+ll!+<ti)-f(tJII). 
i=l i=l 

Now, using inequality (7.4), one has 

Furthermore, if f has aligned jumps, 

llf-(ti)-f(ti)ll+llf+(ti)-f(ti)ll=llf+(ti)-f-(ti)ll= J df < J ldfl. 
{ti} {ti} 

In view of (8.11), since e may be taken arbitrarily close to zero, this establishes 
(8.8). 

Secondly, consider a singleton {a} c I; using Convention 3.5, if a happens to 
be an end of /, one has 

J dV1 = V/ (a)- v,- (a)= V/ (a)- V1 (a) + V1(a)- v,- (a). 
{a} 

Through Proposition 4. 3, if f has aligned jumps, this is found equal to 

II!+ (a)-!- (a) II= J df < J ld/1. 
{a} {a} 

Combining this inequality with (8.8), one concludes that, over every compact 
subinterval of/, the integral of ldf I majorizes that of dV.,: this entails the expected 
inequality, in the sense of the ordering of real measures. 

To finish the proof ofProposition 7.12, let us assume that Xis strictly convex 
and that equality dV1 = ldfl holds. Imagine a point sel with nonaligned . . 
Jumps, 1.e. 

II!+ (a)-!- (a)ll <II!+ (a) -f(a)ll + llf(a) -r(a)ll· 
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By the same calculation as above, this yields 

J dV1 > J ld/1, 
{a} {a} 

which is contradictory. 0 

What concludes this section is of use, in particular, when discussing the local 
character of evolution problems formulated in terms of differential measures 
and the possible extension of their solutions. 

Let J be a nonempty subinterval of I; clearly, for every felbv (I, X), the 
restriction off to J, denoted by !J, is an element oflbv (J, X). Then d(fJ) is an X
valued measure on J; we are to investigate its relationship with df. 

In the special case where J is open in the topology of I (this means that, if J 
includes any of its possible ends, this point is also an end of I), the concept of the 
restriction of the measure df to J is readily available; this consists in the 
following. If J is open relative to I and cp e :/t (J), the function ijJ extending cp 
to I with value zero outside J belongs to :/t (I). Clearly, the mapping q>-+ J i[Jdf 
of :/t (J) to X is an X-valued measure on J, denoted by (df)J and called the 
restriction of df to the open subset J of /. Proposition 8.6 below implies that 
(df)J=d(fJ) in this special case. 

For an arbitrary nonempty subinterval J of I and every cpe:/t(J), the same 
extension ijJ as above may be considered; this function is not expected to be 
continuous in I but it is bounded and its support, relative to I, is compact. In 
addition, ijJ is measurable with regard to any real measure on I; one way of 
proving this assertion is to observe that ijJ is regulated in the sense recalled in 
Sect. 3. Therefore, ijJ belongs to .P1 (I, ldfl; lR.); in view of Proposition 7.4, 
cp-+ J i[Jdf is a linear mapping of :/t (J) to X meeting the continuity requirements 
in order to constitute a vector measure on J. We shall denote by (dj)J this vector 
measure, called the measure induced by df on the subset J of I. In the previous 
special case of J open relatively to I, this is obviously identical with the restriction 
of dfto J. 

Let us write as xl>, the point measure on J, located at the point t e J, with value 
xeX, i.e. the mapping lfJ-+XqJ(t) of :/t(J) to X. 

Proposition 8.6: The measure (df)J equals the sum of d(fJ) and the following 
measures on J: 
(a) the measure {f(a) -f- (a))l>a if J possesses a left end, say a, contained in it; 
(b) the measure {f+ (b) -f(b))l>b if Jpossesses aright end, say b, contained in it. 

In the case of a orb being endpoints of I, f- (a) and f+ (b) are understood in 
the sense of Convention 3.5. 
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Proof: Let us show that the above sum of measures yields the same integral as 
(df)J on every compact subinterval [s, t] of J. Denote by h the characteristic 
function of [s, t] in J; the function 1i extending h to I with value zero outside J 
equals the characteristic function of [s, t] as a subinterval of I. Through similar 
arguments as in the proof of Proposition 8.1, h equals the limit of a dominated 
sequence of functions q>p E% + (J). The corresponding extensions i{Jp to I 
converge pointwise to li; then Proposition 7.5 entails 

J h(df)J = J lid[ (8.12) 

First, suppose that J possesses a left end, say a, contains it, but does not contain 
its possible right end; suppose s=a (otherwise the expected equality is trivial). 
Then (8.12) yields, in view of Corollary 8.2, J h(d/)1 j+ (t) -!-(a), while 
through the same corollary, applied to J, one has J hd(/1) j+ (t)-f(a). The 
difference between these two expressions, namely f(a) -!-(a), equals the 
integral of h relative to the measure (f(a) -/- (a))(ja· 

Similar reasoning applies if J includes its right end, say b. 0 

As an example, take as J a singleton; then a= b and 

Such is, in this special case, the measure (df);, while d(/1) = 0. 

Remark 8.7: That (d/)1 differs from d(/1) may be seen as an inconvenience. In 
contrast, everything runs smoothly for the variation of the restriction: var (/, J) 
= var (/;, J); equivalently, for every [a, b] c J, var (/; a, b)= var (/1 ; a, b). 

9. Cumulative Distribution Functions 

As was seen in Sect. 7, for every felbv (I, X), the differential measure df is 
majorable. The following states that, conversely, every majorable X-valued 
measure on I equals a differential measure. Recall that, when X has finite 
dimension, every X-valued measure is majorable. 

Proposition 9.1: Let m denote a majorable measure on the interval/, with values 
in the Banach space X. There exists f E lbv (/, X), left-continuous in the interior 
of I (alternatively right-continuous in the interior of I) whose differential 
measure equals m. Within the addition of a constant, this function is unique. 

The real nondecreasing function, left-continuous (respectively right-con
tinuous) in the interior of I, which corresponds in the same way to the modulus 
measure lml, equals a variation function off 
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Proof: In the case when I contains its possible right end, denote this end by T,.; 
choose a reference point (! e I and define, for every t e I, 

J dm if t= T,. 
[Q,t] 

f(t)= J dm if a<t<T,. (9.1) 
[Q,t[ 

- J dm if t<g. 
[t,(l( 

We shall avoid uninteresting discussion by assuming(}< T,.. After examining 
three possible locations of(} with regard to a subinterval [a, b [ of I, one obtains 
that, for every a< b < T,. in I, 

J dm f(b)-f(a). (9.2) 
[u,b[ 

Let b lie in the interior of I; take an arbitrary sequence an < b tending to b. Apply 
Proposition 7.5, with hn equal to the characteristic function of [an, b [;replacing 
a by an in (9.2), one obtains lim (f(b) -f(an)~=O, which is .the left-continuity 
off at point b. n->oo 

Let a e I, with a < T,. if I contains its right end; take an arbitrary sequence 
bn >a tending to a. By applying Proposition 7.5 with hn equal to the characteristic 
function of [a, bn[, one similarly derives from (9.2) that the right-limit f+ (a) 
exists and J dm f+ (a) -f(a). (9.3) 

{a} 

In the case of I containing its right end, similar reasoning shows the existence of 
f- (T,.) and J dm f(T,.) -f- (T,.). (9.4) 

{T,} 

Altogether, for every [a, b] c I, 

J dm f+(b)-f-(a). (9.5) 
[a, b) 

In order to prove that f has bounded variation on every [s, t] c /, let us consider 
a finite sequence s = 1:0 < 1:1 < ... < -r:n = t. First suppose t < T,. ; then by making 
[a, b [=['ti-t, 1:i[ in (9.2) and using inequality (7.4), one obtains 

n n 

L llf('ti) -f('ti-1>11 = L IIJ X[tt-l.'li[dmll 
i=1 i=l 

n 

< L J ldml< J ldml< +oo. 
i = 1 [ti- t. t1[ [s, t] 

If t= T,., a similar majorization may be constructed thanks to (9.4). 
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Therefore, felbv (I, X) and the equality m=df follows from (9.5). 
Corollary 8.4 entails that any other function in lbv (/, X), left-continuous on 

the interior of I and admitting m as its differential measure, can only differ from 
the above by a constant. 

Finally, the same construction performed after replacing m by the nonnega
tive real measure lm I = ldfl yields a nondecreasing real function, left-continuous 
on the interior of I, whose differential measure equals ldfl. In view of Proposition 
7 .12, this real function is a variation function off, since the latter has aligned 
jumps. D 

Remark 9.2: Suppose that I does not contain its possible left end T, ; in particular 
it may be unbounded from the left. Suppose that the nonnegative real measure 
lm I is bounded in the left of I, i.e. there exists t0 e I such that the subinterval 
I- = { t e I: t < t0 } has finite lm !-measure. Equivalently, a function f e lbv (I, X), 
with aligned jumps, admitting m as its differential measure, has bounded 
variation on 1-; this implies that f(t) possesses a limit when t decreases 
indefinitely in I. Then the additive constant in Proposition 9.1 may be adjusted 
for this limit to equal zero. Such is the familiar situation of probability theory; 
the probability law of a random variable with values in the real interval I 
(commonly I=lR) is defined by a nonnegative real measure m on I, with total 
equal to 1. One then constructs a nondecreasing real function t-+f(t) as the 
m-measure of the interval {sei:s<t}. This function, left-continuous on the 
interior of I, is usually called the cumulative distribution function of m, a 
denomination that we propose to also use in the general situation of Propo
sition 9.1. 

A symmetric observation applies when lm I is bounded in the right of I; then 
the additive constant may alternatively be adjusted for f (t) to tend to zero 
when t increases indefinitely in I. 

Remark 9.3: Let us fix(} in I; the subset Lfl oflbv (/,X) consisting of functions 
which are leftacontinuous on the interior of I and which vanish at(} is clearly a linear 
subspace. Denote by Mm(I, X) the totality of the majorable X-valued measures 
on I. By adjusting the additive constant of Proposition 9.1, one associates with 
every me Mm(I, X) a unique element, say j,, of Lll such that m =dfz (in the 
situation described in Remark 9.2, one might alternatively avoid privileging a 
point(} in I by imposing on j,(t) the condition that it have zero limit when t 
decreases indefinitely in I). This one-to-one linear mapping is sometimes 
invoked to identify Mm(I,X) with Lfl; this would be confusing in evolution 
problems. 

Symmetrically, Proposition 9.1 defines a one-to-one linear mapping, say 
m-+f,. of Mm(I, X) to the subspace Rfl of lbv (/,X) consisting of functions 
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vanishing at Q, right-continuous on the interior of I. This also entails that 
m-"'Ui + f,.)/2 is a one-to-one linear mapping of Mm(I, X) to the subspace of 
lbv (I, X) consisting of functions f which vanish ate and which satisfy, for every 
t in the interior of I, 

f(t) =t(f- (t) + t+ (t)). 

Such lbv functions are of interest when dealing with Fourier series or Fourier 
integrals; they also have the advantage of giving a simple form to the 
differentiation formula presented in Sect. 11 below. 

Another way of avoiding giving preference to some of the one-sided 
continuities will be presented in Sect. 16. 

Remark 9.4: N. Dinculeanu ([21], § 17) has presented a construction similar to 
what has been done above in the proof of Proposition 9.1. This gives us the 
opportunity to translate our assumptions into the language commonly used 
when vector measures are considered from the standpoint of set functions. What 
we call a majorable X-valued measure on the interval I is, in Dinculeanu's book, 
an X-valued Borel measure on I with finite variation. This means precisely, an X
valued countably additive function, say m, defined on the collection !!I of the 
relatively compact Borel subsets of I, with the property that, for every Be !!I, one 
has 

sup I l!m(Bi)ll < + oo; 
i 

here the supremum is taken for all the finite families { Bi} of disjoint members of 
rJ1 contained in B (see also Remark 13.4 below). 

10. Vector Measure Constructed Through a Bilinear Mapping 

Let X, Y, Z be three real Banach spaces and let iP : X x Y-+ Z denote a continuous 
bilinear mapping. The norm of iP is the nonnegative real number 

N(iP)=sup{llcP(a,b)jj :aeX, beY, llall<1, llbll::;;1}. 

The norms in X, Y or Z, indistinctly, are denoted by 11·11· 
Here, as in Sect. 7, I may be understood as denoting any locally compact 

topological space, countable at infinity. 
Let m be a majorable Y-valued measure on I. A proposition of Bourbaki ([20], 

Chap. VI, § 2, No. 7) may be transcribed with the notation we are using as 
follows. There exists, uniquely, a continuous linear mapping of .f£/1 (1, lml; X) to 
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Z, that we shall denote by x-+ J tP(x, dm), such that for every a eX and every real 
function r e !l' 1 (I, lml; 1R), 

J tP(ra, dm)= tP(a, J rdm). (10.1) 

Furthermore, for every xe.!l' 1
(/, lml; X), 

IIJ tP(x, dm)!l <N(tP) J llxllldml. (10.2) 

Recall that we denote by llxll the rea/function t-+ llx(t)lj; in some contexts it will 
prove clearer to use the more cumbersome notation II x( ·)II instead. This readily 
entails the following proposition. 

Proposition 10.1: For every g e !l'1~c(I, lml; X), the mapping q>-+ J tP(cpg, dm) of 
%(1) to Zis aZ-valuedmeasure on/that we shall denote by tP{g, m) (or tP(g, dm) 
when placed in an integral). 

This measure is majorable and, in the sense of the ordering of real measures 
on/, its modulus measure 14>{g, m)l satisfies 

ltP(g, m)l <N(tP) llg( ·)111m I. (10.3) 

The above system of notation results in the calculation rule 

Vcpe%(1) :J cptP(g,dm)= J tP(q>g,dm). (10.4) 

This is an associativity property which may be generalized as follows. 

Proposition 10.2: Let g E !l'1~c(I, lml; X); then jjg( ·)!lim I, shortly denoted by 
llg 111m I, is a nonnegative real measure on I. Every function he .!l'1(I, llg 111m I; JR.) 
(equivalently h llg II e .!l' 1 (I, lml; 1R)) is integrable relatively to the vector measure 
tP(g,m) and 

J htP(g, dm) = J tP(hg, dm) e Z. (10.5) 

Proof: The second member of (10.5) is a meaningful element of Z because 
hg e .!l'1 (I, lml; X). In fact, under the convention 1/llg(t)ll =0 for llg(t)ll =0, the 
real function t--+1/llg ft)ll is lml-measurable on I; bywritinghg=h llgllgJIIB II, one 
obtains that the vector function hg :I--+ X is lm !-measurable, hence 1m I-integrable 
since II hg II = lh I II g II belongs to !l' 1 (I, lm I; 1R). In addition, by making x = hg in 
(10.2), one has 

IIJ tP(hg,dm)jj <N(tP) J lhldCIIBIIIml). 

The left-hand member of (10.5) is also meaningful because, in view of the 
measure inequality (10.3), h belongs to !l'1

(/, ltP{g,m)l; JR.); this inequality 
furthermore implies 

IIJ htP(g,dm)ll <N(tP) J lhldCIIglllml). 
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This shows that both members of (10.5) depend in a linear continuous way on h 
in 9'1 (I, llu 111m!; JR.). Now (10.4) means that equality (10.5) holds for every h in 
:YC (I), which is a dense subspace. 0 

Defining the product, denoted by hm, (or hdm, when written in an integral) of 
the Y-valued vector measure m by he ft'1~c (I, lm I; JR.) may be seen as a special case 
of what precedes: take X= JR., Z = Yand tl!: (r, b )-+rb. This gives rise to another 
associativity rule, in the following proposition. 

Proposition 10.3: If hE It'1~c(I, lml; JR.) and g E .P1
(/, lhllml; X) one has 

f tl!(hg,dm)=f tl!(g,hdm)eZ. (10.6) 

Proof: Similarly to (10.3), the modulus measure of hm is majorized by the 
nonnegative real measure lhllml, since the norm of the bilinear mapping 
(r,b)-+rb is unity. Thus, the assumptions made imply ge..<l' 1 (l,lhmi;X), 
securing that the second member of ( 1 0.6) is a well-defined element of Z. As far as 
the first member is concerned, one may observe that the function sgn h, with 
values -1., 0 or 1, belongs to It' 00 (1, lml; JR.). Since lhlge.P1

(/, lmi;X), the 
product hg=lhlg sgnh is also an element of 2 1

(/, lmi;X); this ensures the 
existence off iP(hg,dm)eZ. 

For fixed h, the same inequalities as in the proof of Proposition 10.2 show 
that both members of (10.6) depend in a linear continuous way on g in 
2 1

(/, lhllmi;X). Due to the property (10.1), equality (10.6) holds when g is 
taken in the form ra, re.P 1

(/, lhllmi;JR), aeX. Now the linear subspace of 
ft' 1

(/, lhllmi;X) generated by the elements of this form is dense. 0 

Corollary 10.4: If heft'1~(/,lmi;1R) and ge.P1~c(l,lhllmi;X) the Z-valued 
measJlleS iP(hg, m) and iP(g, hm) are equal. 

By bringing together Propositions 10.2 and 10.3, one obtains the following 
corollary. 

Corollary 10.5: If he..P/oc(I, lmi;JR), ge.Pl~c(I, lmi;X) and lhlllull E 

e 2 1
(/, lml; JR.), all three expressions appearing in (10.5) and (10.6) are 

meaningful and equal. 

Remark 10.6: In all the preceding, It' could visibly be replaced by L. Such also is 
the case in the following proposition, which states the calculation rule which is to 
apply when the Y-valued measure m is defined through some density function 
relative to a real measure, according to Definition 7. 7. 
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Proposition 10.7: Suppose there exists a nonnegative real measure p. on I and 
a vector function m~ E !l'1~c (I, p.; Y) such that m = m~p. Then, for every 
g E !l'1~c(I, lml; X) (equivalently g lim~ II E !l'1~c(l, p.; X)), the vector measure 
fP(g, m) equals flJ{g, m~)p.. 

Proof: Due to Proposition 7.8, the modulus measure ofm=m;p equals the real 
measure II m~ II p.. Hence the assumption g E !l'1~c (/, lm I; X) is in fact equivalent to 
g lim~ II E !l'1~c(l, p.; X). In view of the definition (10.4) of the measure fP(g, m), one 
has to establish that, for every <p E :fl (I), 

J fP(<pg, dm) = J fP(<pg, m~)dp. 

or, more generally, that for every f E !l' 1 
(/, m; X), 

J flJ(f, dm) = J flJ(f, m~)dp.. (10.7) 

Takefunder the special formf=ra, with aEX and re!l' 1 (I,Imi;1R). Then, 
using (10.1), one transforms the left member of (10.7) into iP(a, J rdm), i.e. 
fP(a, J rm~dp.). Because, for fixed a EX, the mapping iP(a,.) is linear continuous 
of Y to Z, . a classical calculation rule for vector integrals yields 

fP(a, J rm~dp.) = J fP(a, rm;)dp. = J fP(ra, m~)dp.. 

This establishes (10. 7), for the said choice off; since the linear space generated in 
!l' 1 

(/, lm I; X) by the functions f of this form is dense, this completes the proof. 
0 

Example 10.8: Here is a trivial instance we shall meet again in the following. 
Take m = bbr, i.e. the point measure located at the point t of I, with value bE Y. 
Then lml=llbllbt and every function g:I-+X belongs to !l'1 (I,Imi;X) (cf. 
Example 7.9). Proposition 10.7 yields fP(g,m)=fP(g(t),b)b,. 

Remark 10.9: The reader preferring to treat measures from the standpoint of set 
functions may refer, instead of to [20], to [21], § 8; in the latter book three 
Banach spaces, a continuous bilinear mapping and a vector measure (with finite 
variation) are similarly considered. 

11. Differential Measure of a Bilinear Expression 

In this section, I denotes a real interval. Let X, Y, Z be three Banach spaces and 
fP : X x Y---+- Z a continuous bilinear mapping. 

For xelbv (/,X) and yelbv (I, Y) the function t-+iP(x(t), y(t)), denoted by 
fP(x, y) for short, belongs to lbv (/, Z). In fact, on every compact subinterval 
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[a, b 1 of I, the real functions t-+ l!x(t) II and t-+ IIY(t) II possess some upper 
bounds, say A and B (e.g. A=Jix(a)jl +var (x;a,b)); then, for s<t in [a,b1, 

II4J(x(t), y(t))- 4J(x(s), y(s)) II 

< II4J(x(t) -x(s), y(t)) II+ II4J(x(s), y(t)-y(s)) II 

<N(<fJ) [(Vx(t)- Vx(s))B+(Vy(t)- Vy(s))A1; 

this readily yields a majorization of var (<fJ(x,y); a, b). 
Convention 3.5 will be used when writing one-side limits at some possible 

end of I. 

Proposition 11.1: If x e lbv (I, X) and y e lbv (I, Y), the function <fJ(x, y): 
t-+<fJ(x(t),y(t)) is an element of lbv (I, Z) whose differential measure equals 

d<fJ(x,y)= <fJ(dx,y-)+cP(x+, dy). {11.1) 
Also, 

dcP(x,y) = 4J(dx,y+) + cP(x-, dy), (11.2) 

( 
y+ +y-) (x+ +x- ) dcP(x, y) = 4> dx, 

2 
+ 4> 

2 
, dy · (11.3) 

The expressions written on the right-hand sides are meaningful vector 
measures; in fact x +, x -., y +, y -., being lbv functions, equal, on every compact 
subinterval of I, the uniform limits of sequences of step functions; consequently, 
these functions belong to .!£1~c of any real measure. on I. 

We shall base the proof on the following approximation lemma, where the 
notation of Sect. 4 is used. In particular, for y : I-+ Y and Q E lfp (I), one denotes 
by Ya a local step function which takes on each member of Q the constant value 
y(t), where 't' is a point chosen in the said member. 

Lemma 11.2: Let y e lbv (I, Y) and let u : I-+ X be a regulated function ( cf. Sect. 
3). Then, for every [a, b 1 c I and every '1 > 0, there exists P E lfp (I) such that, 
whatever is Q E lfp (I), a refinement of P, any local step function Ya constructed 
as above verifies 

J f/!(u, dy)- J f/!(u, dya) <'7. (11.4) 
[a,b] [a,b] 

Proof: Since u is regulated, there exists for every ex> 0 a local step function 
"": I-+X such that !lu -u«ll <ex everywhere in [a, b 1. The left-hand side of(11.4)is 
majorized by 

J f/!(u-ufndy) + J <fJ(u«-u,dya) + J 4>(u«,dy-dya) . (11.5) 
[a,b] [a,b} [a,b] 
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Introducing the variation. functions V, and vcz of y and Ya, respectively, one 
obtains through inequalities (10.3) and (7.5)t 

.. I . tP(u-u«j dy)II<N(4'J)a. J dVy, 
~~ ~» 

~ J 4)(u« .--u, dyQ)II <N(tl> )a. J dvfJ. 
n~" . ~~ 

Under Convention 3.5 if needed, one has 

I dva=va(b)-va(a)<var(ya;a,,b'), 
~~ . . 

(11.6) 

where the compact interval [a·~, b '] is assumed to be a neighborhood of [a, b] 
relative to I. In view ofProposition4.6, a partition P elfp (I) may be constructed 
in such a way that the right-hand side of (1 1.6) admits a fixed bound, whatever 
the refi1;1elllent Q of Pis. Therefore, a. and Ur, may be chosen in order that the two 
first tetms in (11. S) are less than '1/4 for every such Q. Since "" is a local step 
function, there exists a partition of [a, b] into a finite number m of subintervals; 
on each of them. u« equals a constant, which for the subinterval J is denoted by 
u« (I). Denoting by U« an upper bound of II u« 11 throughout [a, h], one has, in view 
of (10.1), 

h qj(u,,dy-dya) = ,,(u,(J), f dy-dya) 

<N(qJ)U. ! dy~dyal· (11.7) 

Using the expressions found in Sect. 8 for the integral of a differential measure on 
a subinterval of I, one derives from Proposition 4.6 that the last member of(11. 7) 
is less than '112m, provided P has been constructed to be fine enough. The 
expected inequality follows by addition. o 

Lemma 11.3; Equality (11.1) holds true if x andy are local step functions. 

Proof: Assuming that x andy are local step functions involves the existence of 
partitions Px and P1 in lfp (1), on the respective members of which, these 
functions equal constants. A commonrefmement P e lfp (I) of P x and P1 may be 
constructed, meeting the following requirement: every member ofP is either an 
interval which does not contain any of its ends or a singleton, say { -r} ; points such 
as -r will be called the nodes of P. 

In order to establish equality ( 11.1) for t~s· special choice of x andy, we shall 
show that the vector measures appearing in both members yield the same integral 
on every compact subinterval [a,b] of I. 
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Let t1 < t2 < ... < 111 be the nodes of P belonging to [a, b ]. Since 4J(x, y) is a 
constant on each member of P, Proposition 6.5 implies that its differential 
measure equals the sum of point measures located at nodes of P. Hence, under 
Convention 3.5 if t1 . or t11 happen to equal an end of I, one has 

II 

J dcP(x,y)= L [cP(x+ (t1),y+ (ti)) -cP(x- (ti),y- (t1))]. {11.8) 
[a,b) i=l 

Similarly, dy equals the sum of point measures placed at nodes of P such as th 

with values y+ (t1) -y- (ti). Hence, in view of Example 10.8, it results that the 
Z-valued measure cP(x+, dy) equals the sum of point measures with the same 
locations and values cP(x+ (ti),y+ (ti) -y- (ti)). A symmetric calculation applies 
to 4J(dx,y-), so 

J cP(dx,y-) + cP(x+, dy) 
[a,b] 

II 

= L cP(x+ (ti) -x- (tt),y- (tt)) + cP(x+ (tt), y+ (ti) -y- (t,)), 
i=l 

which is visibly equal to expression (11.8). 0 

Proof of Proposition 11.1 : Let e > 0; Lemma 11.2 implies the existence of 
PE lfp (I) such that for every Q E lfp (I), a refinement of P, 

J cP(x+, dy)- J iP(x+, dyQ) <i. 
[a,b] [a,b) 

Furthermore, if P has been chosen to be fine enough, Proposition 4.6 yields, for 
every such Q, some upper bound e of II X- XQ II throughout I. Introducing a 
<;;ompact neighborhood [a', b ') of [a, b] relatively to I, one has 

J cP(x+ -xa ,dyo) <N(<P)e var (YQ; a',b'), 
(a, b) 

an expression which can be made smaller than s/4 by taking Q fine enough. 
A similar approximation procedure by local step functions applies to 

J cP(dx,y-) and also trivially to J diP(x,y). Since e may be arbitrarily 
~~ ~~ 

small, this reduces the proof of equality (11.1) to Lemma 11.3. Equality (11.2) 
follows by symmetry and equality (11.3) by combining the two. 0 

Hence Proposition 11.1 generates a formula of "integration by parts", as 
follows. 
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Corollary 11.4: For every [a, b] c I, under Convention 3.5 if a orb happen to 
equal an end of I, one has 

J 4J(dx,y-)+ J 4J(x+,dy)=4J(x+(b),y+(b))-4J(x-(a),y-(a)) (11.9) 
[a,b) [a,b) 

and analogous formulas corresponding to (11.2) and (11.3). 

Remark 11.5: The results of this section were first published in [32] and [33]. At 
the same time, R. T. Rockafellar [13] obtained the integration by parts formula 
(11.9), with 4Jequal to the scalar product of1R.n; his proof was basedonaresultof 
E. Asplund and L. Bungart [34 ], involving a summation over the set of the 
discontinuity points of the considered pair of real lbv functions. 

Remark 11.6: Let us apply Corollary 11.4 with Y=1R, Z=X and the bilinear 
form 4J equal to the product (x, r)_..,rx. Suppose that the function y: I_.. 1R. is 
absolutely continuous on every compact subinterval of I; this is classically 
equivalent to the existence of y; E Lfoc (I, dt; JR.), with dt denoting Lebesgue's 
measure, such that for every [a, b] c I 

J y;dt=y(b)-y(a). 
[a, b) 

This amounts to saying that y E lbv (I, JR.) with dy = y; dt (see also Sect. 13, 
concerning the absolute continuity of vector functions). 

In applying ( 11.9) to this special case, one observes that x = x + = x-, except at 
the discontinuity points of x, which make a countable, hence Lebesgue
negligible, subset of I. Therefore, 

J ydx+ J xy;dt=y(b)x+(b)-y(a)x-(a) (11.10) 
[a,b) [a,b) 

(the same holds symmetrically after interchanging x+ and x-). 
For simplicity, let us restrict ourselves in what follows to the case where I is an 

open real interval. More specifically than above, take ye~1 (I, JR.), i.e. y is 
continuously differentiable with compact support in I; the application of (11.1 0) 
with [a, b] containing this support yields 

Jydx=-Jxy'dt, (11.11) 
I I 

where y' denotes the derivative of y in the elementary sense. This equality hold
ing for every ye ~1 (I, JR.) (equivalently, every ye~ 00 (I, JR.)), may be expressed 
by saying that the X-valued measure dx constitutes the generalized derivative of 
x, or derivative in the sense of Schwartz's distributions. 

Observe that, in the right-hand side of (11.11), x may be understood as an 
element of Lfoc (I, dt; X), i.e. an equivalence class of locally Lebesgue-integrable 
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functions. This could be taken as the starting point of an alternative theory of 
lbv (I, X): an element of Ltoc (/, dt; X) whose derivative in the sense of 
distributions happens to be an X-valued measure on I would be said to have 
locally bounded variation. In the author's view, the policy adopted here of 
defining the elements oflbv (I, X) as proper functions and making use only of the 
ordering of the real interval I, without reference to Lebesgue's measure, would 
seem to be better adapted to evolution problems. In contrast it should be 
observed that relying on Lebesgue's measure in order to define generalized 
derivation allows one to develop the theory of bounded variation for functions 
defined in an arbitrary open subset Q of1Rn, with values in 1R or JRP. This concept 
has been extensively studied for the past thirty years, with applications to 
minimal hypersurfaces and various problems of mathematical physics; [15] and 
[16] are reference books on the subject. 

Let us finally quote from [35] a proposition, which makes precise the 
connection between the variation of a function I--+ X and the integration rela
tive to Lebesgue measure. For simplicity, the interval I is assumed compact, 
say I= [0, T]. 

Proposition 11.7: Let X be a reflexive Banach space, with dual X', and let 
f E L1 ([0, T], dt; X). The following assertions are equivalent: 
(a) There exists Ji E bv ([0, T], X), a representative of f, such that 

var (Ji, [0, T]) < C; 
T-Il 

(b) Vhe]O, T[: f llf(t+h) -f(t)lldt<Ch; 
0 

(c) V q> e !'4 oo (]0, T[, X') : I (t (t), : (I)) dt < C sup, II q>(t) llx- . 

12. Quadratic Forms, Chain Rule and Inequalities 

Let us apply the results of the preceding section by making X= Y and by 
assuming that the continuous bilinear form iP : X x X--+ Z is symmetric. Then the 
function F: X -+Z defined by F(a) = iP(a, a) constitutes, by definition, the most 
general Z-va/ued continuous quadratic form on X. Proposition 11.1 entails that, 
for every x e lbv (I, X), the function t-+ F(x(t)), shortly denoted by F(x), belongs 
to lbv (I, Z) and that the following equality of Z-valued measures holds: 

dF(x) = iP(x+ + x-, dx). (12.1) 

In the special case X= Z = 1R, with iP equal to the usual product, a similar 
formula was derived by P. J. Daniell [36]. 
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If xelbv (1, X) is continuous, (12.1) reduces to 

dF(x)=2~(x, dx). (12.2) 

Observe that u~2 ~(a, u) is the tangent linear mapping, or gradient of Fat point 
a. So the differentiation formula {12.2) has the familiar aspect of a chain rule. 

Now we shall suppose that Z;::: JR. and that the real quadratic form F is 
nonnegative; this holds in particular if X is a real Hilbert space with~ equal to the 
corresponding scalar product. 

Proposition 12.1: Let If) : X x X-+ 1R be a real continuous symmetric bilinear form 
on the Banach space X, such that the quadratic form a-+ ~(a, a) is nonnegative. 
Then, for every x e lbv (I, X), the real measure 4'(x + - x-, th) is nonnegative. 

In the sense of the ordering of real measures, one has 

(12.3) 

Proof: Let us show that ~(x + - x-, dX) yields a nonnegative integral on every 
. . 

compact subinterval [a; b] of I. 
This is true if x :I-+ X is a local step function; in fact, x then equals a constant 

on each member of some P e lfp (J). Denote by t1 < t2 < ... < t. the nodes of P 
belonging to _[a, b ]. Under Convention 3.5 if t1 or t,. happen to equal an end of I. it 
results that, as in Example 7 .9, 

lJ 

f ~(x+-x-.;dx)= L <P(x+(ti)-x-(tt},x+(tt)-x-(t,})>O. 
[a,b]. l=l 

For arbitrary x in lbv (I, X), an appro:ximation procedure based on Lenuna 11.2 
will establish the expected nonnegativity. 

Inequalities (12.3) follow from combination with (12.1). o. 

The above was published in [32, 33], with a view to the study of some 
evolution problems in a Hilbert space (see, e.g. [5]). Physically, inequalites such 
as (12. 3) express the irreversibility of processes (see, e. g. [7; 8]); they are exploited 
through integration over a time interval, as in the following proposition. 

Proposition 12 .. 2: Let I= [1l, 7;] be a compact interval; denote by bv0 (I, X) the 
linear subspace of bv (I; X) consisting of the functions which vanish at the 
"initial instant'' T,. Let iP be as in Proposition 12.1; suppose that two 
nonnegative real functions on the interval 1 are given: 

p :. _no.nincreasing and left-continuous, 
ex: universally integrable (for instance a regulated function). 
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Then, for every x E bv0 (/,X), the real expression 

Q(x) = J p4'((1 + oc)x+ + (1 -oc)x-, dx) (12.4) 
I 

is nonnegative. 
If, in addition, it is assumed that p is strictly positive, strictly decreasing and 

that the quadratic form a-+4'(a, a) is positive definite on X, then x-+Q(x) 
constitutes a positive definite quadratic form on the linear subspace ofbv0 (/,X) 
consisting of functions with aligned jumps (cf. Proposition 7.12). 

Proof: Since t-+p(t) and t-+4'(x(t), x(t)) are elements ofbv (/,JR.), Proposition 
11.1, applied to the usual product in JR., yields in view of (12.1), 

d(p4'(x, x)) =p-4'(x+ +x-, dx)+4'(x+, x+)dp. 

Since pis left-continuous, one obtains through integration on/, 

J p4'(x+ +x-, dx) =p(T,.)4'(x(T,.), x(T,.))-J 4'(x+, x+)dp, 

which is nonnegative by virtue of the assumptions made. Besides, as the product 
poe is a nonnegative universally integrable function, Proposition 12.1 implies 

J poc4'(x+ -x-, dx) >0. 
1 

The nonnegativity of Q in (12.4) follows, by addition. 
In order to prove the second assertion, let us suppose that the left

hand member of (12.4) vanishes. Then both nonnegative expressions 
p(T,.)4'(x(T,.), x(T,.)) and -J 4'(x+, x+)dp vanish. This first entails x(T,.) =0. 
Denote by t1 an interior point of I and assume that x has aligned jumps. If x(t1) 

were different from zero, then at least one of the two limits x+ (t1) and x- (t1) 

would be nonzero; therefore there would exist on one side of t1 some nonempty 
open interval J throughout which 4'(x(t), x(t)) would be greater than some 
m>O; hence 

-J 4'(x+,x+)dp> -mJ dp. 
J J 

Since p is strictly decreasing, one has - J dp > 0; this contradicts the vanishing 
of - J 4'(x+, x+)dp. 1 D 

:flemark 12.3: After dividing by 2, one may write equivalently (12.4) in the form 

J p4'(A.x+ +(1-A.)x-,dx)>O, 
1 

where). is a universally integrable real function on/, satisfying).> 1/2. As soon 
as x + :/:: x-, one rna y characterize A.x + + ( 1 -).) x- as a point of the straight line 
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drawn in X through x+ and x-, lying on the same side as x+ relative to the 
midpoint (x+ +x-)/2. 

Proposition 12.2 was motivated by the treatment of energy inequalities in 
some discontinuous evolution problems. In the same context one needs some 
semi-continuity properties of the quadratic functional Q. To this end, we shall 
equip the linear space bv0 (/, X) with the norm of uniform convergence, 

II x II oo =sup !lx(t) llx · 
tel 

Proposition 12.4: With the same assumptions as in the first part of Proposition 
12.2, one additionally supposes that the nonnegative function a is left
continuous, with bounded variation; then Q: bv0 (/, X)-+JR is lower semi
contjnuous in the II · II oo norm. 

If A denotes a subset ofbv0 (/,X) whose elements have variations bounded by 
some fixed M> 0, then the restr~ction of Q to A is continuous in the ll·lloo norm. 

Proof: Concerning any nonnegative quadratic form, such as Q, standard 
calculation yields that, for every y and u, one has 

Q(y + u) = Q(y) + Ly(u) + Q(u) < Q(y) + Ly(u), 

where Ly denotes a linear form. Hence Q equals the supremum of the collection 
of affine functions 

x-+Q(y)+Ly(x -y), (12.5) 

withy ranging throughout bv0 (/, X). We shall establish the expected lower semi
continuity by showing that for fixed y, the linear form Ly is continuous in the 
II ·II oo norm. In fact Ly(u) equals the sum of the following two expressions: 

L1 (u) = J p4>((1 + a)u+ +(1 -a)u-, dy), 
I 

L 2 (u)= J p4>((1 +a)y+ +(1-a)y- ,du). 
I 

For every t E /, II u + (t) II x and II u- (t) II x are majorized by II u II oo ; then, through 
inequality (10.2) and Proposition 10.2, one obtains 

ILt (u)l <N{<P)IIulloo J (11 +al + 11-al)pldyl (12.6) 
I 

which proves the continuity of L1 . 

As for ~, one performs some integrations by parts: 

<P(y+, du) =d<P(y. u) -<P(dy, u-), 
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and, since q = (1 + a.)p is left-continuous, with bounded variation, one may again 
apply Proposition 11.1 so as to obtain: 

qtP(y+, du) =d(qtP(y, u)) -tP(y+, u+)dq -qtP(dy, u-). 

Consequently, 

J qtP(y+, du) <N(q,) [q(J;) IIYIIoo 
I 

+II y II«> var (q, I)+ sup lql var (y, I)] llu II«>. 
I 

(12.7) 

Similar majorizations apply to the terms involving (1-a.)y- in ~' so the 
continuity of u-+ ~ (u) in the norm II u II«> is established. 

Now, if xis restricted to the subset A, one may express Q(x) as the supremum 
of the affine functions (12.5), for y ranging through A only. Then var (y, I) <M, 
so (12.6) and (12.7) show that this collection of affine functions is equicon
tinuous in the II · II«> norm. This proves the continuity of the restriction Q1A. 

D 

We shall finish this section with a review of some generalizations of what 
precedes, referring to [37] for the proofs; an arbitrary real interval is 
denoted by I. 

The first line of generalization consists in replacing the nonnegative real 
quadratic form a-+tP(a, a) of Proposition 12.1 by a convex continuous real 
function y, defined on an open convex subset Q of the Banach space X. Then 
oy(a) denotes the subdifferential of y at point aeQ, in the sense of convex 
analysis, i.e. the closed convex subset of the dual space X' of X (the bilinear 
duality pairing will be denoted by < . , . ) ) consisting of the elements a' such that 
the affine function x-+(a', x -a) +y(a) minorizes y. Because y is convex and 

' continuous on Q, it is known that, for every aeQ, the subdifferential oy(a) is 
nonempty and that this subset of X' reduces to a singleton iffy is Gateaux
differentiable at point a (a sufficient condition for this is the strict convexity of 
the conjugate convex function y*: X'-+]- oo, + oo ]). Observe also that, if a 
function y : D-+ 1R. is Gateaux-differentiable at every point of Q, then the 
convexity of this function ensures its continuity (in fact, in that case, y equals the 
supremum of a collection of continuous affine functions; hence it is I. s. c. and 
therefore continuous throughout the open convex set Q, because X is a barelled 
space [38]). 

Proposition 12.5: Let f e lbv (/, X) with differential measure df admitting a 
density/~ e !l't'00 (J, p,; X) relative to some nonnegative real measure p,. Let Q be 
an open convex subset of X andy: Q-+JR be continuous and convex. Assume 
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that, for every compact subinterval [a, b] of I, the closure off ([a, b]) is contained 
in Q. 

Then the real function y of: t-+y(f(t)) belongs to lbv (/, lR) and its differential 
measure possesses, relative to Jl., a density (yo/)~ E fl'l"oc(l, Jl.; lR). 

The real functions 

cp*: t-+SUp { (g, J;(t)): g E oy(f- (t))}, 

cp*: t-+inf {(g,J;(t)) :geoy(f+(t))} 

belong to !l'1~c(I, JJ.; IR), and the inequalities 

hold J1. -a. e. in I. 
In the set lc={tel:f+(t)=f-(t)}, equality cp*=cp* holds JJ.-a.e. 

When the above proposition is specialized to the case of a convex Gateaux
differentiable function y, with gradient at point a denoted by Vy(a), it yields that 
a chain rule of the familiar form 

(yo/)~= (Vy(f),J;> (12.8) 

holds Jl-a. e. in Ic (and, a fortiori, in the set of the continuity points of f); 
generally, Jl-a.e. in I one has 

( Vy(f-),J;) <(yo/)~< ( Vy(f+),J;>. 

These inequalities extend (12.3). 

H. Brezis ([35], Lemma 3.3, p. 73) has obtained a formula of the same sort as 
(12.4) by taking X equal to a Hilbert space Hand assuming fe Wi~~2 (1, H), but 
requiring only of y : H-+] - oo, + oo] that it be convex and 1. s. c.: if there exists 
g E fl't!c(I, H) such that g(t) E oy(f(t)) holds Lebesgue-a. e., then, with Jlequal to 
the Lebesgue measure on I, he proved that yo fis locally absolutely continuous 
and that, for almost every t, 

v he oy(f(t)): (yo f)' (t) = (h, f'(t)>. 

For the second line of generalization of (12.1) and (12.3), the convexity 
assumption of y: Q-+JR. is dropped; instead, this real function is supposed 
Lipschitz on every bounded subset of Q. Then by oy(a) is denoted Clarke's 
generalized gradient [39] of y at point a, a convex compact subset of x; (i.e the 
dual space of X, equipped with the weak* topology). It is known [40] that By(a) is 
a singleton for every a in the open subset Q of X iffy is Gateaux-differentiable 
in Q with gradient mapping a-+ Vy(a) continuous from Q to x;. 
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Again, it is assumed that for every [a, b] c: I, the closure of f([a, b]) is 
contained in Q. 

Proposition 12.6: With X, Q, I, f, df, J.l, f~ as in Proposition 12.5, suppose that 
y: Q-. JR. is Lipschitz on every bounded subset of Q. Then yo f belongs to 
lbv (/,JR.) and d(y of) admits, relative to J.l, a density (yo f)~ e .P1~c(I, }.l; JR.). 

For ,u -almost every t in /, there exists x in the closed line segment 
[f- (t), f+ (t)] of X and x' in Clarke's generalized gradient oy(x) such that 

(yo f)~(t)= (x', f~(t)). (12.9) 

If j+ f-, at ,u-almost every point of/, the convexity of Q is required no more; 
if, in addition, y is supposed Gateaux-differentiable, (12.9) turns into a chain rule 
of the same familiar form as (12.8). 

In [37] the more special case is also studied where y: Q-.JR is continuously 
Frechet-differentiable; then an expression for (yo f)~ is obtained, which may be 
seen as a generalization of (12.2). 

13. Densities and the Radon-Nik.odym Property 

The question of deciding whether a real function of a real variable equals an 
indefinite integral of its derivative has been posed since the beginnings of 
Lebesgue's theory ofintegration. The extension to more general situations of the 
results obtained along this line has led to the word "derivative" being used in a 
sometimes confusing way. The purpose of this section and of the next is to review 
some facts connected with our subject matter, using the most common 
terminology. 

As an immediate consequence of Sects. 7 and 8, one has the following. 

Lemma 13.1: Let X be a Banach space and I a real interval, with Lebesgue 
measure denoted by dt. Denote by fa function of I to X and by g an element of 
L1~c (I, dt; X). Then the following statements are equivalent: 

(a) V[u,-r]c:I: J gdt f(-r)-f(u), (13.1) 
[a, t} 

(b) felbv (/,X). and df=gdt, (13.2) 

i.e., according to Definition 7. 7, df admits g as density relative to the Lebesgue 
measure. 
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Notation 13.2: One expresses by f e W/o~1 (I, X) the existence of g E £.~(1, dt; X) 
such that the above statements are true. In accordance with Definition 7. 7, g will 
then be denoted by ft'. 

Oearly .Jv.!~ 1 (I, X) is a linear space, the elements of which are continuous 
functions of I to X, since the Lebesgue measure has no atom. 

For p e [1, + oo ], one denotes by 'Wi~P(I, X) the linear subspace of W.!~1 

consisting of the functions f such that ft' E Ll'oc (I, dt; X). 
If the interval I is compact, the subscript loc becomes immaterial. For I not 

necessarily compact there is also a natural definition for some spaces denoted by 
W"·P(I, X), equipped with Banach norms. They make an essential tool is 
studying some evolution problems; a review of important facts about them may 
be found in [35]. They do not fall into the scope of the present chapter, which is 
mainly aimed at the treatment ofless smooth functions. Recall that the notation 
W is more generally used, with I replaced by an open subset of 1R11

, to denote 
Sobolev spaces. 

Let us reformulate in the normed space setting the classical definition already 
met in Sect. 4. A function/: I-+X is said to be locally absolutely continuous if, 
whatever the compact subinterval [a, b 1 of I is, one has the following property: 
for every e > 0, there exists 17 > 0 such that, denoting by ]ah b1[ any finite 
collection of nonoverlapping open subintervals of [a, b ], the implication 

L (bi-a,)<1'f=>L !lf(bt)-f(at)ll <e (13.3) 
i i 

holds. Equivalently f e lbv {/, X) with variation function Jif locally absolutely 
continuous of I to JR. 

Proposition 13.3: For any Banach space X, every element of J¥t'!~1 (I,X) is a 
locally absolutely continuous function. 

Proof: Let f E WI!~ 1 (I, X); with the corresponding ft' e £.~(I, dt; X) is associ
ated the element II ft' II of Lloc (I, dt; IR) (the class of dt-equivalent real functions, 
a representative of which is t-+!ly(t)jjx, where y denotes a representative offt'). 
For every u<r in I, (13.1) yields 

llf(r)-f(u)ll = J f,'dt < J ll!t'lldt. (13.4) 
]cr, t[ Jcr, t( 

Denote by A any dt-measurable subset of [a, b 1; it is a basic fact of integration 
theory that, for every e > 0, there exists 17 > 0 such that 

J dt < ,.,=> J 11 !t' II dt <e. (13.5) 
A A 
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Therefore, implication (13.3) is established by taking as A the union of the 
collection ]ah bi[ and by using (13.4). 0 

Remark 13.4: Let us review the standard background of implication (13.5), 
referring to [19], Chap. III, as the main source. Let 'E be a a-field of subset of 
a setS and let J.L be a countably additive set function defined on 'E, with values 
in R, in JR. u { + oo }, in JR. u {- oo }, or in a Banach space X; in the latter case, 
the Banach norm will be denoted here by the same symbol I ·I as the absolute 
value of extended real numbers. For every E e I, the variation (also called total 
variation) of J.L on E is, by definition, 

v(J.L, E)=sup I IJ.L(E,)I 
i 

where the supremum is taken over all finite collections { Ei} of pairwise disjoint 
members of 'E, with Ei c: E. Clearly, when J.L takes only nonnegative values in JR. 
or 1R u { + oo }, then v(J.L, E)= J.L(E). 

If the countably additive set function J.L takes its values in JR. or X, it is shown 
([19], Sect. III.4) that the set of these values is bounded. In such a case, pis said to 
be finite and the set function E-+v(p, E), with values in JR. u { + oo }, is found to be 
countably additive. 

Let .II. denote another countably additive set function defined on the same 
a-field 'E as J.L. Then .II. is said to be continuous with respect to J.L or simply 
J.L-continuous if 

lim .ll(E) = 0. (13.6) 
v(p,E)-+0 

An interesting fact is that, if .II. is finite, p-continuity is equivalent to the 
implication v(p,, E)=O=>l(E)=O. 

The classical Radon-Nikodym theorem states that, if the countably additive set 
functions .II. and p. are real-valued, with p, > 0, then .II. is p,-continuous if and only if 
there exists (uniquely) an element g of L1{S,p,;1R) such that 

'v' E e 'E: .II.( E)= J gdp,. (13.7) 
E 

Under these conditions v(A., S) equals the L1 (S, p.; JR)-norm of g. 
Let us now attempt to connect the above and the functional theory of 

measures used in the foregoing sections. Of course, one may also establish the 
Radon-Nikodym theorem within the functional theory (see [20], Chap. V, § 5). 
Suppose that T is a locally compact topological space, and denote by B the 
collection of the Borel subsets of T (by definition, B is the smallest a-field 
containing all the closed subsets ofT). For every compact subset K ofT, the 
members of B contained inK constitute a a-field, say BK. Let p, denote a real-
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valued measure on T, in the sense of the functional theory. It is found that for 
every EeBK, its characteristic function XE belongs to L 1(T, J.L; lR). Its integral is 
denoted as usual by J dJ.L or J.L(E) and it results that E-+ J dJ.L is a countably 

E E 

additive set function on the a-field BK. The Radon-Nikodym theorem may be 
applied in that context. Through the use of a base in X, this yields a partial 
converse to Proposition 13.3. 

Proposition 13.5: If X is finite dimensional, every locally absolutely continuous 
function of I to X belongs to Wt!~ 1 (J, X). 

For an infinite-dimensional Banach space X the same is readily found true if 
and only if X meets the following requirement. 

Definition 13.6: A Banach space X is said to have the Radon-Nikodym property 
if, for every absolutely continuous/: [0, 1]-+ X, the differential measure df admits 
a density relative to Lebesgue's measure. 

Counterexample 13.7: It is to be shown that X= :Yt (I), equipped with the 
supremum norm, does not possess the Radon-Nikodym property. Let I= [0, 1] 
and let/: 1-+Xbe defined as follows; for every tel, the elementf(t) of Xis the 
continuous function 

{
t-u if u<t 

0"-+ . 
0 otherWise . 

If [a,b] c/, one finds ll/(b)-/(a)ll =b-a; hence/is absolutely continuous 
on I. 

Admit that fr' e L1 (I, dt; X), the density of df relative to Lebesgue's measure, 
exists. Then, for every element x' of the dual of X, i.e. x' is a real measure on I, 

(x', f(s)) = ( x', 1 f,'(t)dt) = l (x', J,'(t))dt, (13.8) 

since f vanishes at the origin. Take, in particular, x' = ~r' the Dirac measure at 
point rei. By definition (~r,/(s)) is the value that the elementf{s) of$"(/) 
takes at point r, namely s-r if r<s and zero otherwise. One sees that the real 
function s-+(~,/(s)) possesses a derivative equal to 1 for s>r, and zero for 
s < r. If (13.8) were true, this derivative would equal ( ~, fr' (s)) for almost every 
s=Fr in /. Since fr'(s) is, by assumption, an element of X=:Yf(I), this real 
expression, namely the value offr' (s) at point r, should depend continuously on r; 
this is a contradiction. 
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A large part of the book [22] by J. Diestel and J. J. Uhl is devoted to discussing 
the Radon-Nikodym property (from a starting point other than our Definition 
13.6). In a summary (Chap. VII, Sect. 6), there are listed no fewer than 23 
properties equivalent to this one (plus 6 others concerning the special case where 
X is a dual). Several items on this list attest to the geometrical nature of the 
Radon-Nikodym property, not essentially connected with the Lebesgue measure 
on [0, 1 ], for instance: if D is a nonempty closed bounded subset of X, then a 
bounded linear functional on X assumes a maximum value on D. 

More important with respect to our subject matter is the following, which 
removes the prominence of Lebesgue measure. 

Let us come back to the setting of Remark 13.4. Let us suppose that, on the 
u-field I of subsets of S, two countably additive set functions are defined: p. with 
nonnegative real values and A. with values in the Banach space X. Suppose that X 
has the Radon-Nikodym property; then it is established that A. is p.-continuous, 
with v(A., S) < + co, if and only if there exists g e £ 1 (S, p.; X) ensuring (13. 7). 

As in Remark 13.4, this may be transferred into the functional theory of 
measures, by considering the a-field BK of the Borel subsets of every compact 
K c T. If the X-valued measure m on Tis majorable, it results from Proposition 
7.4 that the integral J dm, denoted by m(E), is an element of X for every EeBK. 

E 

This defines on BK a countably additive X-valued set function, with finite 
variation. Take as Jl. the modulus measure lml (as a set function, the latter is 
equivalently the variation E -+v(m, E)). Then inequality (7 .4), with h equal to the 
characteristic function of E, implies the p.-continuity of m. Hence, on account of 
Proposition 7.8, one has the following proposition. 

Proposition 13.8: If X possesses the Radon-Nikodym property, every major
able X-valued vector measure m possesses, relative to its modulus p. = lml, a 
density m~ e L IX) (I, Jl.; X). Every representative of m~ is a function taking values of 
unit norm at p.-almost every point of /. 

Also established in [22] is the equivalence of the Radon-Nikodym property of 
X with the Riesz representation property: for each bounded linear operator A of 
L1 (S, Jl.; JR.) to X, there exists geL IX) (S, Jl.; X) such that 

V feL1 (S, p.; JR.): Af= J fgdp.. 
s 

Let us conclude this section by quoting some items from Diestel and Ubi's lists. 

Banach spaces that have the Radon-Nikodym property 

- Reflexive spaces (in particular finite-dimensional spaces, Hilbert spaces, etc.) 
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- Separable duals 
- LP(S, p,; X), 1 <p < + oo, if X has the Radon-Nikodym property 
- Every closed linear subspace of a Banach space having the Radon-Nikodym 

property· 

Banach spaces that do not have the Radon-Nikodym property 

- L1 (S, p,; 1R) if p, is not purely atomic 
- C(K, 1R), i.e. the space of the continuous real functions on an infinite 

(Hausdorff) compact space 
- L 00 of the Lebesgue measure on [0, 1] 

14. Derivative at a Point 

Let X be an arbitrary Banach space and f E W~'! (I, X). The element ft' of 
Lloc (I, dt; X) involved in Notation 13.2 is connected with the possible derivative 
off at a point of I through the concept of a Lebesgue point of a locally integrable 
function. 

Letg ELfoc(I, dt; X). Classically (see, e.g. [19], Chap. III, Sect.12, Theorem 8, 
concerning, more generally, a function of an open subset of1R"), every point -r in 
the complement of a Lebesgue-negligible subset of I is a Lebesgue point of g, i.e. 
there exists an element y ( -r) EX such that 

lim /(
1
C) J g(t)dt=y(-r), 

Z(C)-+0 C 
(14.1) 

where C denotes any closed subinterval of I containing -r, with length /(C). The 
function y, after arbitrary extension to the whole of I, makes a representative of 
the element g of Lfoc (I, dt; X). 

In view of Lemma 13.1 and Notation 13.2, this readily implies the following 
proposition. 

Proposition 14.1: A function/ E Jfl~~ 1(I, X) possesses, at Lebesgue -almost every 
point -r of I, a derivative, sayj(-r); the functionj, arbitrary extended to the whole 
of I, constitutes a representative of the element ft' E 1-toc(I, dt; X). 

In that sense, every function belonging to W1~'! (I, X) equals an indefinite 
integral of its derivative. 

When a connection with absolute continuity is wished, the Radon-Nikodym 
property has to be assumed for X. In fact, an item on Diestel and Uhl's list asserts 
that X possesses this property if and only if every absolutely continuous 
f: [0, 1] ~X is differentiable almost everywhere. 
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Another item on the list states that the Radon-Nik:odym property of X is 
equivalent to asserting that every f: [0, 1]-+ X with bounded variation possesses a 
derivative almost everywhere. Since every compact interval may be reduced to 
[0, 1] through some affine change of variable, we shall use this to establish the 
following. 

Proposition 14.2: Let X possess the Radon-Nikodym property and let 
f e lbv (I, X). The derivative j ( 1:) exists for Lebesgue -almost every point 1: and, 
after arbitrary extension to the whole of I, it constitutes an element of 
~t!c(I,dt;X). Lebesgue-almost everywhere in I one has 

lli<t>ll<! Jlj(t), 
and this holds as an equality iff f e W.!e: 1 (I, X). 

Suppose I to be C?Ompact. Then 

J lli(t)lldt<var({,J), 
I 

with equality iff f e W1
•
1 (I, X). 

(14.2) 

((14.3) 

Proof: It is enough to assume from the start that I is a compact interval, say 
[0, T], and that the variation function J1f vanishes at 0. Then, for every he ]0, T[, 

T-h 

J llf(t+h)-f(t)lldt~h var {f; 0, T). (14.4) 
0 

In fact, the left-hand member is majorized by 

T-h T 

J (Jif(t+h)- v1 (t))dt< J Jlf(t)dt<hV1 (T). 
0 T-h 

Since the existence of 
. 1 

/(t)=lim -h (f(t+h) -f(t)) 
11-+0 

is granted for almost every t, let us consider a sequence of positive values of h 
tending to zero. Thanks to (14.4), Fatou's lemma yields that the restriction ofjto 
every interval of the form [0, T-ho], hoe ]0, T[, is Lebesgue integrable and, 
finally, that j e ~ 1 (I, dt; X). As an element of bv (I, 1R), the nondecreasing real 
function fJ possesses a derivative almost everywhere. Inequality (14.2) is 
obtained by going to the limit from 

~ (f(t+h)-f(t)) :s~ (Jif(t+h)-Jij(t)). (14.5) 

Inequality (14.3) follows through integration. 
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If/e W'-• 1(I, X), then in view of Propositions 14.1 and 7.12, equality holds in 
(14.2) and (14.3). 

Conversely, suppose that (14.2) is verified as an equality. For every se [0, T], 
this implies 

J lli(t)jjdt+ J lli(t)!ldt=var(f;O,s)+var(f;s,T). 
[0,&] [&, T] 

Since inequality (14.3) may be invoked for the intervals [O,s] and [s, T] as well, 
one concludes 

J IIi< (t)lldt=var (f;O,s) 
[O,s] 

for every s. This shows that the function fJ equals an indefinite integral of an 
element of L1 (I, dt; JR.). It is therefore absolutely continuous and so isf As X has 
been supposed to possess the Radon-Nikodym property, one concludes that 
fe wt,l(J, X). 0 

Corollary 14.3: If X has the Radon-Nikodym property, every felbv (I, X) 
possesses a decomposition into the sum of an element of W.!c1 (I, X), unique up to 
the addition of a constant, and an element of lbv (I, X) with zero derivative 
Lebesgue -a. e. 

This demonstrates that, for a function/ e lbv (I, X), the derivative j, though it 
exists Lebesgue -a. e., conveys deficient information aboutf In particular, an 
evolution problem with/ as unknown cannot be posed well by asserting only that 
the said derivative verifies a certain condition Lebesgue -a. e., unless it is 
specifically stipulated that/belongs to WI!c1 . Evolution problems concerning 

. lbv unknowns are the motivation of the following proposition, which involves a 
density function of df relative to a measure other than dt. 

Proposition 14.4: Let X be an arbitrary Banach space and let an X-valued 
measure m on the interval I admit, relatively to some nonnegative real measure f.J., 

a density, say g e !i'1!c (I, fJ.; X). Then, for f.J.-almost every t in I, 

() I
. m([t,t+e]) 

1
. m([t-a,t]) 

g t = tm tm . 
e-+0 fJ.([t,t+a]) s-+0 f.J.([t-a,t]) 
e>O e>O 

Here, by m([t,t+a]) the integral of mover In[t,t+a] is meant; a similar 
convention applies to fJ. and to [t-e, t]. 

This generalizes a theorem of Jeffery [41, 42] concerning real-valued 
measures on an interval. A proof, based on Jeffery's result, may be found in [37]. 
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Another proof~ valid if X has the Radon~Nikodym property (hence applicable to 
JefTery"s original case) was developed m [43]: there one notes the use of the 
technique of factorization (see Sect. ? ~ below) which reduces general lbv 
functions to Lipschitz functions. Proposition 14.1 corresponds to the special case 

where p equals the Lebesgue measure. 
The above was used in [37] in order to establish Proposition 12.5. Other 

applications con~rn s?me evol~tion problems [44, 45] of irreversible character. 
Unilatercdity in t1me 1s a dominant feature of these problems, so derivation 
properties involving t~e interval [t -s, t+s], as previously proposed by Daniell 

(36]. will not do the JOb. 

Re•rk 14.5: The decomposition property stated in Corollary 14.3 may be 
connected with the Lebesgue decomposition of a measure. Let us return to the 
setting of Remark 13 .4, restricting ourselves for simplicity's sake to a pair of real
valued countab~y additive set functions land p., defined on the a-field E. Then 1 
is said to he p-.vmgular if there exists a set Eo e E, with v (p., E0) = 0, on which l is 

cont't'ntrutt~d. i.e. 
V EeE :l(E)=l(EnE0 ); 

equivalently.p is A.-singular. Lebesgue's decomposition theorem states (cf. [19], 
Sect. 111.4) that, for given p., every countably additive real-valued set function 
defined on E is ~niquely representable as a sum ex+ {J, where ex is p-continuous 

and (I is 11-singular. 
This may be applied with p. equal to the Lebesgue measure dt on some 

compact interval J. To that end, take as Ethe a-field of the Borel subsets of I. The 
above decomposition property yields that, for every f e bv (/, JR.), the differential 
measure d.flcts it~elf be expressed in a single way as the sum of a dt-continuous 
measure. ~ay Jw. and of a dt-singular measure, say ds. Now it is known that a 
function .H: b\' (1, ll) has zero derivative dt -a. e. iff ds is dt-singular (see [46], 
Chap. In. Sect.. 4). Therefore, dw equals the differential measure of the 
'"absolutely continuous component" WE W1

'
1
(/, JR.) off, asitisintroduced(upto 

an arbitrary additive constant) by Corollary 14.3. 
Since u· is coot inuous, the measure dw is diffuse, or continuous, in the sense 

that its integral over any singleton is zero. The reader should take care not to 
confuse the above with another decomposition property, in which the Lebesgue 

measure dt plays no part. 
We still assume, for simplicity's sake, that I is a compact interval and consider 

only real measures in the sense of the functional theory. In Bourbaki's 
terminology [20] a real measure is atomic iff it is singular with regard to every 
continuous real measure (some authors, e. g. Dinculeanu [21 ], use this word with 
another mt:~ming, namely the existence of at least one atom). Such a measure 
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may be characterized as concentrated on a countable I. Also observe that the real 
measures on a compact interval form a Banach space under the norm defined by 
the variation: a measure is found to be atomic iff, with regard to this norm, it 
equals the sum of a series of point measures. It is shown that every real measure 
lets itself be uniquely decomposed into the sum of an atomic measure and a diffuse 
measure. 

Coming now to bv functions, one may say that an element of bv (I, JR.) is a 
jump function iff its differential measure is atomic. Accordingly, any fe bv (I, JR.) 
equals the sum of a continuous bv function, unique up to an additive constant, 
and a jump function. 

15. Isometric and Lipschitz Factorizations 

Proposition 15.1 : Let f E lbv (/, X), with variation function v : I .... JR. Denote by r 
the smallest real interval containing the range v(I), i.e. the convex hull of this 
range in JR. 

There exists afactorizationf =yo v, where y: r -+Xis a curve-isometry, i.e. for 
every cx<P in r 

var (y; a., {3)= p -ex. (15.1) 

If the Banach space X is strictly convex (see Remark 7.11), the function y is 
uniquely determined. 

Remark 15.2: If/is discontinuous, gaps are expected in its rangef(I). For every 
discontinuity point off, say sel, one may fill the possible gaps between/- (s) 
and f(s) and between f(s) and j+ (s) by rectifiable arcs, in particular by line 
segments. The union off(!) with this collection ofline segments will be called the 
filled-in range off The following proof consists in showing that the filled-in 
range equals the range of a rectifiable curve and that, for every t e I, the oriented 
arc length locating the point f(t) on this curve equals v(t) (cf. Sect. 5). 

ProofofProposition 15.1: Sincev: 1-+JR is nondecreasing, foreveryainv(I), the 
set v = (a)= { t e I: v ( t) =a} is a nonempty subinterval of I, possibly reduced to a 
singleton. For every [a, b] c v = (a), the variation var (f; a, b) is zero, hence f 
assumes a constant value throughout v""' (a); denote this value by Yv(a), thereby 
defining the unique mapping Yv of v(I) to X such that 

V t E I :f(t) =yv(v(t)). (15.2) 

We now have to define y as an extension of Yv to the whole of r. 
The structure of F\v(I) may be investigated as follows. Let a e T\v(I); 

due to the definition of r, the two sets v<(a)={tel:v(t)<a} and v>(a) 
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= { t e I: v (t) >a} are nonempty; they are disjoint, with union equal to I. Because 
v is nondecreasing these two sets are subintervals of I with a common endpoint, 
say sei. Necessarily, s is a discontinuity point of v; the largest real interval 
containing a and contained in F\v(l) is either [v- (s), v(s)[ or ]v- (s), v(s)[ or 
]v(s), v+ (s)] or ]v(s), v+ (s)[. In short, F\v(l) equals the union of connected 
components which are intervals of some of the four forms above, with s ranging 
through the set of the discontinuity points of v. 

In any nonempty interval of the form [v- (s), v(s)[, let us define y as 

y(a)= r(s)+ ~>v-~sl) (f(s)-r<s)) 
v s -v s 

(15.3) 

and, in any nonempty interval of the form ]v(s), v+ (s)], as 

a-v(s) + 
y(a)=f(s)+ +c) () (f (s)-/(s)). v s -v s 

(15.4) 

The definition (15.3) of y raises the question of consistency with Yv if v- (s) e v(l); 
then the nondecreasing function v actually equals a constant in some interval 
[s-e,s[ and so does f Hence v-(s)=v(s-e) and Yv(v-(s))=y,(v(s-e)) 
=f(s-e)=f-(s), which agrees with y(v-(s)) as expressed in (15.3). The 
consistency of (15.4) withy, in the case v+(s)ev(I) is similarly checked. 

Convention 3.5 will be used if s equals an endpoint of I. 
In view of Proposition 4.3, the elements {f(s)-f- (s))/(v(s) -v- (s)) and 

(f+ (s)-f(s))/(v+ (s) -v(s)) of X have unit norm. Therefore, the definitions 
(15.3) and (15.4) of y secure equality (15.1) as soon as [a, p] is contained in the 
interval concerned. 

If, in addition, the Banach space X is assumed to be strictly convex, one may 
check that (15.3) and (15.4) provide the only expression ofy possible for (15.1) to 
hold; the argument is detailed, for a similar situation, in the proof of Proposition 
15.3 below. This is the uniqueness statement. 

With a view to establishing (15.1) for every [a, p] c r, let us frrst show that 
var (y; a, p) < p -a, i.e. equivalently 

v [IX, p] c r: IIY{/J) -y(a>ll ~p-IX. (15.5) 

If a and p lie in v(I), there exist a and bin I such that a=v(a), P=v(b) and 

ljy(p) -y(a)jl = llf(b) -f(a)ll <v(b) -v(a) 

which is (15.5). 
Suppose now a= v(a), but p e F\v(I); then, for some s >a in I, either 

Pe]v(s),v+(s)] or fle[v-(s),v(s)[. In the first case, (15.4) yields 

IIYCP)-y(v(s))ll =P-v(s) 
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while !ly(v(s)) -y(II) II <v(s) -II as above; this implies (15.5) through the triangle 
inequality. In the second case, there exists in ]a, s[ a sequence t, tending to s; then 
limv(t,)=v-(s). Since v(t,)ev(J), one has 

II y(v(t,)) -y(II) II< v(t,) -II. 

Hence, by the triangle inequality, due to y(v(t,))= f(t,), 

IIY<P) -y(II) II< II y(fJ)-f(t,) II +v(t,) -II· 

When t, tends to s, the right-hand member tends to IIY<P)-f- (s) II +v- (s) -II; 
in view of (15.3), this equals p -II. 

The case IIEF\v(I), pev(I) is treated similarly. 
If II and p belong to different connected components of F\v(I), there exists 

some point of v(I) in between and one goes back to the preceding situations 
through the triangle inequality. 

The end of the proof will consist in establishing var (y; ex, p) > p -II. 
First suppose ex=v(a) and P=v(b ). Choose e > 0; there exists a finite sequence 

a=t0 < t1 < ... < t,=b in I such that 

11 

e+ L 11/(ti)-f(ti-t)ll >var (f;a,b)=v(b)-v(a). 
i=l 

Therefore, after putting -ri=v(ti), one has 

n 

fJ -II<e+ L lly(-ri) -y(-ri-t)ll <e+var (y; ex, p) 
i=l 

whatever e is; this yields the expected inequality. 
Suppose now II= v( a), but fJ e F\v (I); there exists s >a in I and either 

p e ]v(s), v+ (s)] or p e [v- (s), v(s)[. In the frrst case one has, thanks to the above 
result, 

var (y; ex, v(s)) > v(s) -II 

while, in view of (15.4), 

var (y; v(s), fJ) = fJ -v(s), 

which yields the expected inequality by addition. In the second case, one 
considers a sequence t, in ]a, s[ tending to s and 

var (y; II, /J) = var (y; II, v(t,)) + var (y; v(t,), p) 

>v(t,) -ex+var (y; v(t,), [3). 

Inequality (15.5) shows that y has locally bounded and continuous variation; 
hence the above right-hand side tends to 

v- (s) -II +var (y; v- (s), p) = [3 -II. 
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Finally, if ~ and p belong to different connected components of F\v(l), there 
exists a point of v(l) in between, and one is reduced, by addition, to the preceding 
situations. D 

We shall now define a Banach norm on the product space 1R x X, by choosing 
a strictly positive constant K and putting, for every element (r, x) of this product 
space, 

(15.6) 

From the standpoint of analysis, little would be lost by restricting " to equal1. 
We introduce this coefficient mainly to recall, in applications to mechanical 
evolution problems, that the real numbers r and llxllx measure physical 
quantities of different natures -usually time and speed; the presence of" allows 
one to develop calculations independent of the choice of physical units. 

The mapping (id, f) : t..,.... ( t, f (t)) of I to 1R x X possesses as range a subset of JR. 
x X which is nothing but the graph off; it is disconnected iff/is discontinuous 
(one may check that, for a regulated function, thus in particular for an lbv 
function, continuity is equivalent to the connectedness of its graph). By using line 
segments in order to fill in the gaps of this set, in the way we have described in 
Remark 15.2 above, one constructs the filled-in graph off This equals the union 
if gr f with the collection of "vertical" line segments [(t,f- (t)), (t,f(t))] and 
[(t,f(t)), (t,f+ (t))], fort ranging through the set of discontinuity points off(or, 
equivalently, through the whole of I). It is easily verified that (id,f) belongs to 
lbv (I, 1R x X); thus Proposition 15.1 shows that the filled-in graph off equals the 
range of a rectifiable curve in 1R x X. Proposition 15.4 below will make this more 
precise, through the use of the following preliminary result. 

Proposition 15.3: Let us equip 1R2 with a norm by putting, for every pair (r, u), 

!l(r, u) II= lrl + K!ul. (15.7) 

Let v : I-+ 1R be a nondecreasing real function; denote by r the smallest interval 
containing v(l). 

Then the mapping (id, v) : t-+(t, v(t)) belongs to lbv (I, JR?) and admits as 
variation function 

t-+w(t)=t+KV(t). (15.8) 

The smallest interval containing w(l) is A= I+ KF. 
In this special case (though strict convexity does not hold for the norm defined 

in (15.7)), the factorization of (id, v) through its variation function and a curve
isometry, asserted in general by Proposition 15.1, is unique and rna y be described 
as follows. There exist, uniquely, two nondecreasing real functions, say p of A 
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onto /and q of .d onto r such that (id,v)={p,q)ow, i.e. 

Vte/: t=p(w(t))J v(t)=q(w(t)), (15.9) 

and that the mapping {p, q) : .d-+ IR? is a curve-isometry with regard to the norm 
(15.7); hence pis Lipschitz with ratio 1, and q with ratio K- 1. 

Summing up, one has the following relations between the functions involved 

w=id1 +KV: /-+.d 

p+ Kq=idL1: J -+J 

p o w=id1 : /-+/ 

qow=v:I-+T. 

(15.10) 

(15.11) 

(15.12) 

(15.13) 

Proof: That w equals a variation function of (id, v) is easily checked, after 
observing that t-+t and t-+v(t) are nondecreasingrealfunctions; (15.10)is only a 
repetition of (15.8). 

According to Remark 15 .2, the factorization amounts to the bridging of the 
possible gaps in the range of (id, v) (i.e. the graph of v) by rectifiable arcs, so as to 
obtain the range of a rectifiable curve along which every point of the special form 
(t, v(t)), t e/, is located by an arc length 0 equal to w(t). Each of these gaps arises 
from the discontinuity of vat some point of I, says; its extremities have either the 
form (s, v- (s)), (s, v(s)) or the form (s, v(s)), (s, v+ (s)). Take a gap of the frrst 
form; the isometry condition requires that the length of the bridging arc A be 
w(s) -w- (s)=K(v(s) -v- (s))). Let us show that A is necessarily a line segment. 
In fact, for (x, y) e A; the length of A is minorized by 

ll(s, v(s)) -(x,y) II+ ll(x,y) -:-{s, v- (s) II 
' 

=21s-xl +K(Iv(s) -yi+IY -v- (s)l) 

which shall be strictly greater than K(v(s) ~v- (s)), unless x=s and 
v- (s)<y<v(s); this means that (x,y) belongs to the line segment admitting the 
prescribed endpoints. Along this line segment, the correspondence between the 
location of (x,y) and the arc length 0 consists in affine interpolation; hence the 
definition of the mapping {p, q) : 0-+(x,y) in the present case is identical to the 
construction of y in the proof of Proposition 15 .1. Similar reasoning applies to a 
gap of the second form; so the uniqueness of the factorization is proved. 

Formulas (15.12) and (15.13) are only a rewriting of(15.9). As for (15.11), it is 
clear that p + Kq equals identity at every point of w(/); now this equality is 
preserved under the affine interpolation procedure used to define p and q in every 
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gap. Since o~(p(O), q(O)) is, by construction, a curve-isometry of Ll to 1R2 , one 
has, for every 0 and 0' in J, 

lp(lJ') -p(O)I + Klq(O') -q(O)I < 19' -01' 

which implies the Lipschitz properties of p and q. 
That p and q are nondecreasing real functions easily follows from the fact that 

the filled-in graph of vis a monotone increasing subset of1R2 , i.e. for every (x, y) 
and (x',y') in this subset, one has (x-x')(y-y')~O. D 

It is also useful to visualize the mappings p and q as follows. For every 6 eLl, 
the line {(r,u)eiR2 :r+Ku=O} intersects the fU.led-in graph ofv at exactly one 
point; this is the elementary one-dimensional version of the general theorem of 
Minty and Kachurowski, concerning maximal monotone correspondences in 
Hilbert spaces. IfO= w(t), tel, this point coincides with (t, v(t)); hence it equals 
(p(lJ), q(O)) as previously defined. If, on the contrary, 0 belongs to some gap of 
w(I), the intersection point lies on some of the (vertical) line segments used to fill 
in the corresponding gap of gr v; its dependence on 0 clearly agrees with the 
affine interpolation procedure used above in constructing {p, q). 

Having completed the proof, let us additionally observe the following. 
Knowledge of the mapping {p, q): A~1R2 involves knowledge of the filled-in 
graph of v, namely the range of (P, q), but not knowledge of gr v. In other words, 
the function v cannot be reconstructed exactly from p and q; but v- and v + can. 
In fact, forte I, the limits v- (t) and v+ (t) equal the values of qat the ends of the 
interval p = (t). 

Proposition 15.4: The notations ofPropositions 15.1 and 15.3 are used jointly, 
i.e. v equals a variation function of f e lbv (/, X); the space 1R x X is equipped 
with the Banach norm (15.6). 

Then (id,f) belongs to lbv (/, 1R x X), with variation function w, as expressed 
in (15.8). 

Let 
(id,f)=(n, b) ow (15.14) 

with (n, c5) a curve-isometry of L1 to 1R x X (Proposition 15.1 secures the existence 
of such a factorization); then n equals the function p involved in Proposition 
15.3. 

In any factorization of the form (15.14), the function c5: L1~X may be 
modified on the subset Ll\w(l) of its domain so that fJ=yoq, with q defined by 
Proposition 15.3 andy: r~x. 

Every y : r ~X is a curve-isometry iff {p, yo q) : L1 ~ 1R x X is a curve-isometry; 
in such a case y o q is Lipschitz with ratio "-l. 
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A necessary and sufficient condition for the factorization 

(id,f)={p, yo q) oW (15.15) 

to hold, with {p, yo q) a curve-isometry, is that y satisfy the conditions of 
Proposition 15 .1. 

Proof: Let [a, b] c I; the variation of (id,f} on [a, b] is the supremum, over all 
sequences a=-r0 <-r1 < ... <-r,.=b, of the expression 

n 

I (1-ri-'tt-li+KII/(-ri)-f(-r,_l)llx) 
i=l 

n 

=h-a+K I llf(-ri)-f(-r,_l)llx· 
i=l 

This supremum equals b-a+K(v(b)-v(a)), so w is a variation function 
of (id,f). 

Suppose that (15.14) holds and that (n, b) is a curve-isometry of L1 to 1R x X, 
relatively to the norm (15.6); let us prove that n=p. Since now=id1 =pow, 
one has n(O)=p(9) for every 9Ew(l). Let us now study the restriction of(n, b) 
to any connected component of L1 \w(I), say [w- (s), w(s)[, sEl (the case of a 
connected component of the form ]w(s), w+ (s)] will be treated similarly; 
observe that, due to the fact that w is strictly increasing, the situation is simpler 
than in the proof of Proposition 15.1, involving the function v which is only 
nondecreasing). Since (n, b) is a curve-isometry, its restriction to [w- (s), w(s)[ is 
a rectifiable arc A in 1R x X, with endpoints (s, f- (s)) and (s, f(s)), and with 
length equal to w(s)-w-(s)=K(v(s)-v-(s)). Let (~,x)EA; the length of A is 
minorized by 

ll<s,f(s)) -(e,x>llaxx+ l!<e,x) -(s,f- (s))ll~txx 

=2ls -el +K(j!f(s) -xllx+ llx -f-(s)llx) 

>21s -el +" llf(s)-f-(s)llx. 

In view of Proposition 4.3, the last term equals K(v(s) -v-(s)); hence the length 
of A can have this value only if e=s. This proves that n(9) equalss, namely p(9), 
for every £JE [w- (s), w(s)[. The same holds for all connected components of 
Lt\w(I), hence n=p. 

The formula (15.14) is equivalent to no w=id1 and bow= f Since/ equals a 
constant on every level set of v, there exists, uniquely, Yv: v(I}-+X such that 
f-Yv 0 V. Now v=qow, so 

V£JEw(I): <5(9)=yv(q(£J)). 
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The values that~ takes on L1\w(J) are immaterial regarding the factorization 
(15.14); hence, if y denotes any extension of y., to the whole of r, (15.14) is 
preserved by taking~= yo q. (Incidentally, observe that if y: r--+ X is required to 
be a curve-isometry and if X is strictly convex, Proposition 15.1 implies the 
uniqueness of this extension of y.,.) 

Let y:T-+X and [oc,JJ]cL1. The variation of {p,yoq) on [oc,p] is the 
supremum, over all sequences oc = 90 < 91 < ... < 9,. = p, of 

,. 
L lp(Oi) -p(0,-1)1 + K II (y 0 q) (6i) -(y 0 q) (9,_1)11x 
i=l 

,. 
=p(JJ)-p(rx)+rc L !ly(q(Oi))-y(q(Oi-l))jjx 

i=l 

(recall that pis nondecreasing). Since q is nondecreasing and surjective of L1 tor, 
this supremum equals 

p(JJ) -p(rx) + K var (y; q(rx), q(/J)) = p -Kq(JJ) -rx+ Kq(rx) +K var (y; q(rx), q(/J)). 

The mapping {p, yo q) is a curve-isometry iff this equals p -rx, i.e. equivalently 

var (y; q(rx), q(p)) = q(/J) -q(rx). 

As q is surjective the latter means that y is a curve-isometry of r to X. 
If (p, yo q) is a curve-isometry the definition of the norm in 1R x X yields 

!p(p) -p(rx)!+" II(Y 0 q) (JJ) -(yo q) (rx)llx<P -rx 

which clearly implies that y o q is Lipschitz with ratio "-1. 
Observe finally that, due to (15.12) and (15.13), (15.15) is equivalent to 

f=yov; this is precisely the requirement imposed on yin Proposition 15.1. 0 

Remark 15.5: The factorization pattern which is the object of this section was 
frrst introduced in [47] in the framework of multifunctions with finite retraction 
(see Remark 4. 7); it has also been exploited in [43]. 

16. Conclusion 

We shall conclude this chapter by giving examples of how the material presented 
applies to the investigation of some measure differential inclusions. 

In the notation of Sect. 13, a differential inclusion of the ordinary sort, with 
unknown u E Wt!c1 (/, X), is a condition of the form 

u: E T(t, u(t)), (16.1) 
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to be satisfied for Lebesgue-almost every t in the interval I by some 
representative of the element u; e L}oc(I, dt; X). Here (t, x)-+ F(t, x) c Xis a given 
multifunction (i.e. a set-valued mapping) of I x X to X. A general reference on this 
subject is [48], a book motivated by applications to economics and control 
theory. 

The existence of solutions to (16.1) is naturally conditioned by topological 
assumptions about r. In common cases, these topological assumptions entail 
that anyfunctionuwhichis a solution in the above sense verifies F(t, u(t)):#:Bfor 
every t; in some other problems, the latter condition is additionally imposed. 
Then the definition of a solution u becomes equivalent to requiring the existence 
of a representative of u; satisfying (16.1) for every tin I. 

A natural generalization of(16.1) consists in replacing the Lebesgue measure 
dt by some prescribed nonnegative real measure p. on the interval I. The 
unknown u is then assumed to be an element of lbv (I, X), with differential 
measure du = u~p., and the element u~ of Lloc (I, Jl; X) is required to possess a 
representative satisfying for every t in I the condition 

u~ e F(t, u(t)) ; (16.2) 

this implies that, for every t, the right-hand member is nonempty. 
Of primary interest in that connection is the case where the given multi

function r takes only conical values, i.e. for every (t, x) elx X and every 
A.e:R+ = [0, + oo[ one has A.F(t,x) c F(t,x). Equivalently, we can assume that 
the latter holds for every A. e ]0, + oo [ and additionally that 

F(t, x) :#:9=>0e F(t, x). (16.3) 

In this special case, there is no need to specify the measure Jl in advance. In 
fact, suppose that u e lbv (J, X), associated with a certain nonnegative mea
sure Jl, is a solution to (16.2). Let v denote any other nonnegative measure 
relative to which du happens to possess a density function, say u~e..2'1!c(I, v;X). 
Put {J = Jl + v; the Radon-Nikodym theorem shows the existence of functions Jlp 
and v/J, belonging to ..2' oo (I, {J; R + ), such that Jl = Jlp {J and v = v(t p. Then 
du = u~p(t{J = u~ v(t{J; hence the X-valued functions u~Jlp and u~ Vp are equal, 
except in some ,8-negligible subset B of I. The set N={tei: vj,(t)=O} is 
v-negligible; outside BuN one has u~ = U~Jlj,/vj,. Since pj,/v/J > 0 (16.2) implies, in 
view of r being a cone, 

u~er(t, u(t)), (16.4) 

except for tin the v-negligible set BuN. It has been observed that the right-hand 
member is nonempty for every t. So (16.3) entails that, after replacing by zero the 
values that u~ may take in BuN, one obtains a density function of du relative to v 
which satisfies (16.4) everywhere in I. 
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If X possesses the Radon-Nikodym property, it may prove convenient to use 
as v the modulus measure ldul. 

In any event, provided that the multifunction r has conical values, we shall 
formulate the equivalent conditions (16.2) and (16.4) by writing simply 

due r(t, u(t)). (16.5) 

Let us assume throughout the following that I contains its left end t0 , the 
"initial instant". Leaving aside now the question of the existence of solutions, let 
us come back to the differential inclusion of the ordinary sort (16.1). Because r is 
not in general a singleton, there is no reason to expect the uniqueness of 
ue Wi!~1 (/,X) verifying (16.1) and some initial condition u(t0)=Uo· A common 
problem of control theory is to minimize some cost functional over the set of such 
solutions. 

There is, however, a celebrated uniqueness case. Suppose that X= H, a real 
Hilbert space, and that, for every tel, the multifunction x-+A (t, x)= -r(t, x) is 
monotone in the sense of Kachurovski-Minty, i.e. 

yeA(t, x), y' eA(t, x')=>(x -x') · (y -y')>O; (16.6) 

here the dot refers to the scalar product in H. Then, by calculating elementarily 
the derivative of a squared norm, one finds that, for every two solutions u1 

and u2 of 

-u; eA(t, u(t))., (16.7) 

the distance llu1 (t)-u2 {t)jj is a nonincreasing function oft. This implies in 
particular that at most one such solution can agree with some initial condition. 
The book [35] remains the standard reference on the differential inclusion (16. 7), 
although many papers on the subject have been published since; see also [48], 
Chap. 3. In applications, condition (16.6) usually reflects the dissipative 
character of the process investigated. 

With a view to transposing (16.7) into the setting of measure differential 
inclusions, we shall assume, in addition to (16.6), that, for every t and x, the 
subset A(t,x) of His a cone. Then the following may be established [32]: for 
every t there exists C(t), a closed convex subset of H, such that 

Vte/, VxeH:A(t,x) c:. oljJC<t>(x). (16.8) 

Here 1/Jc<t> denotes the indicator function of C(t) (the function which takes the 
value zero in C(t) and + oo outside), a convex lower semi-continuous extended 
real .. valued function on H. The subdifferential 81/Jc<t>(x) of this function at point 
xis known to equal the normal cone to C(t) at x in the sense of convex analysis (it 
is empty iff xf= C(t); otherwise this is a nonempty closed convex cone, possibly 
reduced to the zero of H). 
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Classically, on the set of the monotone multifunctions H-+ H, a partial 
ordering is induced by the inclusion of the corresponding graphs, as subsets of 
H x H. Multifunctions such as ot/J are well known to be monotone and maximal 
elements relative to the above ordering. It is usual in the study of the differential 
inclusion (16. 7) to assume that, for every t, the monotone multifunction A (t,.) is 
maximal. If this is supposed here, (16.8) implies that A(t,.)=ot/Jc<t>· 

The corresponding measure differential inclusion 

-duE ot/Jc(t)(u(t)) (16.9) 

defines what is called a sweeping process [4, 5]. This is the simplest instance of an 
evolution problem of the unilateral type. Let us visualize here t-+u as a moving 
point in H; the derivative du/ dt, if it exists, will then be seen as the velocity of u. 
The given multifunction t-+C(t) may be visualized as a moving (closed convex) 
subset of H. In the special case where this set has a nonempty interior and where 
t -+u is continuously differentiable, one may interpret condition ( 16.9) as follows. 
As long as the moving point happens to lie in the interior of C (t), the normal cone 
ot/Jq,,(u) reduces to the zero of H; hence u has zero velocity. It is only when 
"caught up with" by the boundary of C(t) that u takes on a motion, in an inward 
normal direction, as if pushed by this boundary, so as to go on belonging to the 
moving set. 

When the given motion of C(t) is not smooth enough, the continuous 
differentiability of a possible solution to ( 16.9) cannot be expected. It is however 
desirable that, for two possible lbv solutions u1 and u2 to (16.9), the same 
property as for the W.!~1 solutions of (16.7) hold: the distance llu1(t)-u2 (t)IJ 
should be a nonincreasing function oft. This property which ensures uniqueness 
for the possible solution to the initial value problem, will easily be derived from 
Proposition 12.1 above (see also [5]), provided that, in addition to (16.9), it is 
stipulated that the unknown u e lbv (/,H) should be right-continuous. In fact, the 
right-continuity of solutions has been generally prescribed from the very 
beginning of the theory of measure differential equations [3]. 

In previous sections, we have stressed that the values taken by an lbv function 
at possible discontinuity points are immaterial with regard to its differential 
measure. So, instead of requiring right-continuity, an equivalent way of dealing 
with the present evolution problem would be to replace in the right-hand 
member of (16.9) the value u(t) by u+ (t). 

The existence of solutions was established in [5) under the assumption that 
t-+C(t) has bounded "retraction" [27]. Another class of existence results has 
been initiated in [49] and [50]; along this line, [44] and [45] assume that C(t) has 
nonempty interior. 

Generally, the existence proofs of bv solutions to evolution problems, on a 
time interval I which, at the first stage, is assumed compact, rest on the 
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construction of sequences (or of nets) of approximate solutions. These may be 
defined as the solutions to ordinary differential equations resulting from some 
regularization of the investigated problem. They may also be step fwtctions 
similar to what is obtained in numerical algorithms of time discretization. In any 
case, the crucial stage consists in proving that the constructed collection of 
approximate solution has uniformly bounded variation on/. After that, various 
extraction procedures will play a role similar to that of Ascoli's theorem in the 
standard theory of differential equations. The proof will end with checking that 
the function obtained at the limit is in fact a solution to the problem investigated; 
at this stage, the key often lies in integral formulae, of which our Proposition 12.4 
displays an example, or in Fatou's lemma. 

For finite-dimensional H, the Ascoli-like procedure of extraction is fre
quently provided by Helly' s selection theorem (the same idea was also present in 
S. Banach's thesis [51]) an exposition of which may be found, e. g. in [52, 53]. Let 
us quote from [54] the f~llowing infinite-dimensional version of this theorem. 

Proposition 16.1: Let X be a reflexive separable Banach space with separable 
dual. Let (w,.) be a sequence of elements ofbv ([a, b ], X) such that II w,.(t) II< Cfor 
te [a,b] and var (w,.;a,b)<C for all n. Then there exists a subsequence (wJ of 
the above and a function we bv ([a, b ], X) such that 

Vte[a,b]: wk(t)-+w(t) weakly in X, 

b b 

Vcpe%([a,b]): J cpdwk-+J cpdw weakly in X. 
a a 

In {16.9) only a very special example of a measure differential inclusion 
involving a multifunction with conical values is displayed. The motion 
t-+q(t) e JR." of a mechanical system with a finite number n of degrees of freedom, 
submitted to frictionless unilateral constraints, under the assumption of 
inelasticity of the possible impacts, has been shown [7, 8] to be governed by 

i 

q(t)=q(t0)+ J u('r:)d-r:, (16.10) 
to 

-du + Q(t, q, u)dt E at/fv(q)(u+). (16.11) 

Here Q : I x 1R" x JR."-+ JR." is a given continuous function and dt refers to the 
Lebesgue measure on the interval!. By V( q) one denotes the tangent cone at 
point q(t) to the region 9t of JR." permitted to q by the given (time-independent) 
unilateral constraints. This cone is easily defined if the unilateral constraints may 
be described by a finite system of inequalities fa.(q) <0, a= 1, ... , I, and if the 
functions Ia. are C1 with nonzero gradients; in particular V(q) equals the whole 
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of 1R." when q is interior to fJl (concerning the concept of a tangent cone in more 
general situations, see [55], Chap. 4). 

Analogous formulations also hold if dry friction is taken into account at the 
possible contacts. One source of interest is to suggest a numerical algorithm for 
the treatment of the corresponding evolution problems [9, 56]. 

The existential study of solutions to such problems is currently in progress 
[57], following the line described above. This question is essentially different 
from that of the elastic bounce problem-treated, e.g. in [10-12]. 

Let us conclude by suggesting an alternative approach to problems with lbv 
unknowns. Since the set of the discontinuity points of u is Lebesgue-negligible, 
the values that u may take at these points are immaterial with regard to (16.10); 
the same is true for (16.11), since Q is assumed continuous. 

Consequently, there is no loss of generality in assuming that u has aligned 
jumps (cf. Sect. 7). After that, one may introduce G, the filled-in graph of u. 
According to an observation made in Sect. 15, the function u cannot be 
completely reconstructed from the knowledge of this subset of Ix X; but u+ and 
u- can. So G conveys the information needed to make (16.10) and (16.11) 
meaningful. 

Therefore, a consistent policy will be to look at G as the proper unknown in a 
measure differential inclusion of the form (16.11) or (16.9) (recall that the latter 
was understood with u=u+). The initial condition u(t0)=Uo is equivalent toG 
possessing {t0 , Uo) as its starting point. 

Also, in all that concerns the approximation of lbv evolutions, the filled-in 
graphs appear to be the right objects to consider. In fact, let G and G' be filled-in 
graphs of two elements u and. u' of lbv (I, X). Using in 1R. x X the distance lJ 
associated with the Banach norm (15.6), let us introduce the Hausdorff distance 
of these two sets 

h(G, G') =max {e(G, G'), e(G', G)}, 

with the same notation as in Sect. 4, namely 

e(G, G ')=sup inf fJ(g, g'). 
geG g'eG' 

The nonnegative number h(G, G') makes a realistic measurement of the 
discrepancy between u and u'. The numerical handling of a function u :I-+ X 
commonly involves some uncertainty about the point t e I at which u is 
evaluated, concurrent with the uncertainty affecting the value u(t). The use of h 
provides a way of controlling both errors jointly. 

Suppose, in particular, that u has to be approximated by a sequence of 
functions ui : I-+ X. For discontinuous u, uniform approximation usually cannot 
be expected. In fact, suppose that u possesses, at some unknown point t, a 
discontinuity with oscillation >e. Then any function u' approximating u with an 
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error uniformly less than e necessarily has a discontinuity at this point; thus the 
construction of u' will in practice require the exact knowledge oft. In contrast, 
the approximation of u in the sense of h is feasible, even by means of continuous 
functions. More details may be found in [58] (but with another choice of the 
distance~ in the product space Ix X). In [59], the convergence of the filled-in 
graphs for the Yosida approximants of a sweeping process is established. 

The convergence of filled-in graphs may also be used in existence proofs. 
Assume here that I is compact and that a sequence of presumably approximate 
solutions u, E vb (I, X) to the problem investigated has been constructed. 
According to Proposition 15.4, for every i there exists a real interval Li1 (com
pact in this case), with two nonexpanding mappings p 1 : Li1-+I (nonincreasing) 
and ~i: Lii-+X, such that the filled-in graph G1 of ui equals the range of 
(ph~~): Ai-+Ix X. 

Suppose now that the crucial research of ME lR, an upper bound of all 
var (u;, I), has been successful. Then, the increasing affine bijections 
a,: [0, 1]-+Ar, which exist in any case, are equicontinuous. Consequently, the 
mappings Pi= Pt o a1 : [0, 1 ]-+I (non-decreasing) and IIi=~~ o ai: [0, 1 ]-+X are 
uniformly Lipschitz and so are the mappings (Ph IIi): [0, 1]-+Ix X. The latter 
possess the Gt as respective ranges. In the case where X has finite dimension, 
Ascoli's theorem may then be applied, yielding a subsequence (P"' II ~c) 
converging uniformly to (P, II) : [0, 1]-+ I x X, a Lipschitz mapping. The range G 
of (P, II) equals the filled-in graph of some u E vb (I, X) and G equals the limit of 
the sequence G" in the sense of Hausdorff distance. 

More refinement of this approximation procedure could be made by also 
observing that the derivatives of the mappings (P~u II ~c) are elements of a ball in 
L00 ([0, 1], Lebesgue; 1R x X). Then some standard arguments of weak* com
pactness may be used, with a view to proving that a solution of the formulated 
problem is obtained at the limit. 
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