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Introduction

Describing a motion consists in defining the state or position q of the investigated system as a function of the real variable t, the time. Commonly, q takes its values in some set Q, suitably structured for the velocity u to be introduced as the derivative of t-+q, when it exists. This, in fact, makes sense if Q is a topological linear space or, more generally, a differential manifold modelled on such a space.

For smooth situations, classical dynamics rests, in turn, on the consideration of the acceleration. This is the derivative of t-+u, if it exists in the sense of the topological linear structure of Q, or, when Q is a manifold, in the sense of some connection. But, from its early stages, classical dynamics has also had to face shocks, i.e. velocity jumps. For isolated shocks, one traditionally resorts to the equations of the dynamics of percussions. Even in the absence of impact, it has been known for a long time [START_REF] Lecomu | Sur Ia loi de Coulomb[END_REF] that systems submitted to such nonsmooth effects as dry friction may exhibit time discontinuity of the velocity. Furthermore, nonsmooth mechanical constraints may also prevent t-+u from admitting a derivative. In all these cases, the laws governing the motion can no longer be formulated in terms of acceleration. Incidentally, one may find in [START_REF] Moreau | Une formulation de Ia dynamique classique[END_REF] an attempt at gaining a synthetic view: a formulation of classical dynamics is proposed, valid for continuous media as well as for systems of finite freedom, without reference to acceleration.

It should be understood below that t-+u takes its values in some real Banach space X and is locally Lebesgue-integrable. So this function will be connected with the motion t-+qeX through t q(t)=q 0 + f u(-c)d-r:. (1.1) to The usual problems of dynamics are governed by first-order differential conditions imposed on u and involving q through expression (1.1 ). These may be viewed equally as second-order differential conditions for t-+q, as first-order differential equations for t-+(q, u) or as frrst-order integro-differential conditions for t-+u.

We shall therefore concentrate on conditions formulated in terms of the velocity u. As long as t-+u is locally absolutely continuous, these conditions can be differential equations in the classical (Caratheodory) sense. If this is not the case, then the next available analytical framework in which some object playing the role of derivative may be associated with t-+u is the following. By writing u E lbv (I, X), we mean that u is a function of the real (time) interval I to the Banach space X with locally bounded variation, i.e. it has bounded variation over every compact subinterval of I. Then, an X-valued measure on I, which we shall denote by 4u, is known to be associated with the function u. Characteristically, for every compact subinterval [a, -r] of I one has J du =u+ (-r) -u-(a)., (1.2) [a, t] where u+ and urefer, respectively, to the right-limit and the left-limit of the function u at a point of I (under an ad hoc convention for the possible endpoints of I; see Sect. 3 below). In particular, if at some -rei the two limits are different, the vector measure du possesses at this point an atom, with value u + ( -r)-u-( -r ).

When I is open in lR, the vector measure du may also be seen as the derivative of t -+u in the sense of distributions. But for applications it is essential not to restrict ourselves to this case.

We shall call du the differential measure of u. The smooth case corresponds to du admitting a density function, say u;., relatively to the Lebesgue measure on I.

For reflexive X (more generally, for a Banach space possessing what is called the Radon-Nikodym property; see Sect. 13 below) the existence of such a density function is equivalent to the absolute continuity of u over every compact subinterval of I.

Assuming u E lbv (I, X) is enough for u to be involved as the unknown in a measure differential equation, as in the following example. Take I= [0, + oo [; one looks for u, a right-continuous lbv function verifying some initial condition u(O) = Uo, and this equality of X-valued measures on I: du=F(t, u(t))dt+G(t, u(t))df.

Here dt denotes the Lebesgue measure on I (it equals the differential measure of t-+t) and dfa given (signed) real measure; F and G are given functions of /x X to X, regular enough for the X-valued functions t-+F(t, u(t)) and t-+G(t, u(t)) to be locally integrable relative to dt and df, respectively. The monograph [3] is devoted to problems of this sort, with X= lR"; it contains numerous references to papers motivated by operations research, control theory or mathematical physics, possibly also involving stochastic versions of measure differential equations.

Better matched to the needs of contemporary nonsmooth mechanics are measure differential inclusions, about which we shall give more information in the concluding section of this chapter. These consist in requiring the density function u~ of du, relative to some nonnegative real measure dJl, to be a selection of t-+F(t, u(t)), where (t, x)-+r(t, x) c X denotes a given multifunction. The real measure dp, may be prescribed in advance; alternatively, provided every F(t, x) is a conic subset of X, dp, has not to be given and may indifferently equal any nonnegative real measure relative to which du happens to possess a density function. The latter setting has been introduced when extending to noncontinuous situations the abstract unilateral evolution problem called the sweeping process [4, 5]. In Sect. 16 we shall come back to this problem, which was initially motivated by the quasistatic motion of elastoplastic systems and which has also been studied under a stochastic version [START_REF] Castaing | Equations differentielles. Rafle par un convexe aleatoire a variation continue a droite[END_REF]. It has been shown more recently that the dynamics of systems of finite freedom in the presence of unilateral constraints is governed by measure differential inclusions of the same conical type [START_REF] Moreau | Liaisons unilaterales sans frottement et chocs inelastiques[END_REF][START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF]. This holds even if the unilateral contacts involve dry friction [START_REF] Moreau | Une formulation du contact a frottement sec; application au calcul numerique[END_REF]. The existential and numerical study of measure differential inclusions with such a dissipative character is currently in progress; further references on this subject will be given in Sect. [START_REF] Hudjaev | Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics[END_REF].

Investigation is also under way of the dynamics of systems submitted to frictionless unilateral constraints, under the assumption that the possible shocks are elastic, i.e. energy is conserved. Various formulations have been proposed for this type of mechanical problem; they are closely connected with measure differential inclusions and naturally involve lbv velocity functions [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF][START_REF] Buttazzo | On the approximation of the elastic bounce problem[END_REF][START_REF] Carriero | Uniqueness of the one-dimensional bounce problem as a generic property in L 1[END_REF].

Apart from in mechanics, the variational problem of Lagrange in 1Rn has been extended in [START_REF] Rockafellar | Dual problems of Lagrange for arcs of bounded variation[END_REF], under a convexity assumption for the integrand, to arcs of bounded variation; instead of the traditional Hamilton-Jacobi system of differential equations, there appears a measure differential inclusion.

Without explicitly resorting to measure differential equations or inclusions, some authors have been induced to accept functions of bounded variations as "weak" solutions to problems primitively formulated in a stronger setting (see, e.g. [START_REF] Benilan | Solutions faibles d'equations d'evolution dans les espaces de Hilbert[END_REF]).

As all this currently has created an active domain of research, it is considered helpful to devote the present chapter to a systematic exposition of lbv (/, X). In fact, the basic information about functions of bounded variation on an interval is scattered throughout various treatises on real analysis and measure theory, without sufficient emphasis having been placed on the points specifically pertinent to evolution problems. This chapter also includes some recently developed material, partly unpublished or available only from seminar reports.

We shall generally assume that X is an infinite-dimensional Banach space, because a large part of the current mathematical work on evolution problems is done in such a setting. Actually, it should be acknowledged that the most effective mechanical applications of lbv (/,X) so far concern systems of finite freedom, whose treatment only requires finite dimensionality for X. In fact, mechanical systems of infinite freedom are continuous media, the dynamics of which is commonly expressed by partial differential equations in some domain of time-space. The consideration of the solutions of such partial differential equations as functions of time, with values in some function space, is only one of the possible approaches. Even when such a standpoint is adopted, it frequently happens that the velocity function t -+u is defined in some indirect way, so that it does not take its values in the same space as the system state; in turn, acceleration may be conceived of as an element of yet another space ..

In the context of partial differential equations, the space BV (0, JRP) of the functions of bounded variation in an open subset 0 of JR." should also be recalled, with the books [START_REF] Giusti | Minimal Surfaces and Functions of Bounded Variation[END_REF] and [START_REF] Hudjaev | Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics[END_REF] as standard references. For n= 1, one naturally recov-ers the functions of bounded variation in an open real interval, with values in JR.'. But the virtual absence of overlap between the content of this chapter and the mentioned books above attests to the essential difference between these subjects. Significantly, defining the variation of a function on a (not necessarily open) real interval relies only on the ordering of 1R., without any reference to Lebesgue measure. In contrast, the Lebesgue measure on the subset 0 of 1R" is inherent in the definition ofBV (0, JRP). Incidentally, for n> 1, the relevance of BV (/J, JRP) to mechanics emerges through the theory of minimal surfaces, which may be viewed as an aspect of the statics of membranes. Also connected with BV (!2, JRP) are vector fields of bounded deformation, primarily motivated by the field of plasticity [START_REF] Suquet | Surles equations de la plasticite[END_REF][START_REF] Temam | Problemes mathematiques en plasticite[END_REF].

The concept of a measure with values in a Banach space naturally plays the central role in this chapter. References [START_REF] Dunford | Linear Operators, Part 1: General Theory[END_REF][START_REF] Bourbaki | Integration, Hermann[END_REF][START_REF] Dinculeanu | Vector Measures[END_REF][START_REF] Diestel | Vector Measures[END_REF] are standard books on this matter. By extracting from them some key facts and subsequently relying only on basic knowledge in real integration, we have attempted to spare the reader from being obliged to refer to these texts.

Recall that two different approaches compete in the expositions of measuretheory. Most commonly, a measure on a set S is introduced as a countably additive function defined on some u-field of subsets of S. In contrast, the duality approach, as developed by Bourbaki [START_REF] Bourbaki | Integration, Hermann[END_REF], defines a measure on a locally compact topological space T, with values in JR, ([ or in any locally convex topological linear space, as a linear functional, say m, on the space :K (T, JR.) of the real continuous functions with compact support in T, meeting the following continuity requirement: For every compact subset K ofT, the restriction of the functional q>-+m(cp) to the subspace of :K{T,JR) consisting of the continuous functions with support contained in K is continuous in the norm supgjq>l.

We have preferred the latter standpoint for several reasons. First this makes measures appear to be a special case of Schwartz's Distributions, a notion which is familiar in any case to the theoretically minded researcher of mechanics. The procedure readily carries over to the definition of vector or tensor distributions and measures on differential manifolds,. in line with de Rham's theory of currents. The author [2, 23 2 24] has recently drawn attention to the use of such concepts in classical mechanics. But, above all, the duality of linear spaces appears to be a cornerstone in the whole of mechanics. Researchers in mechanics may claim precedence in implementing such a duality, prior even to any attempt at axiomatizing linear algebra. We are referring to the method of virtual work (or virtual power), which consists in placing some linear space ofdisplacements (or velocities) in duality with a linear space of efforts. Starting with mechanical instances, the duality of linear spaces has today also become a general tool in numerical analysis, at the stage of constructing finite~dimensional approximations to functional problems. From another viewpoint, the relevance of duality to nonsmooth mechanics is evident throughout this book.

In any case., what in. measure theory is considered a definition from one ofthe two standpoints appears as a proposition from the other one. We have tried, especially in Sects. 13 and 14, to bridge the gap between the respective approaches, for the reader accustomed to the set functions setting to easily recover his familiar background.

The author is indebted toM. Valadier for helpful criticism throughout this .chapter.

Review of Contents

Section 3 presents some elementary facts concerning the right-side limit J+ and left-side limit],. for a function f ofa real interval I to a regular topological space E, when such limits exist. If 1 includes its possible left endpoint, say t 0 , Convention 3.5, frequently used in the following; stipulates that/-(t 0 ) should be understood as equal to f(t 0 ); symmetrically, J+ _.! at the possible right endpoint. In connection with this, the meaning of initial conditions for evolution problems is discussed.

It is supposed in Sect. 4 that f is a function of the real interval! to a metric space E. The variation var (f, J) off over a subinterval Jofl is defined. We mean by f E lbv (J, E) that /has locally bounded variation, i e. it has finite variation over every compact subinterval of I. This is equivalent to the existence of Pf :I-+ lR, said to be a varz'ation function of [, nondecreasing and such that for every

[a, b]ci one has var (f, [a, b])= Vf(b)-Vf(a).
The connection of Vf with the possible one-sided limits off at a point (they are sure to exist if E is complete) is investigated, and an approximation property off e lbv (I, X) through local step functions is established.

Section 5 develops the effect of a monotone change of variable upon a function oflocally bounded variation. This produces the basis of the concept of a rectifiable curve which is to play an essential role in Sect. 15.

From Sect. 6 onward, X denotes a real Banach space. Associated with every f e lbv (I, X) is its differential measure, an X-valued measure on the interval I denoted by df Section 7 begins with discussion, along the line of Bourbaki [START_REF] Bourbaki | Integration, Hermann[END_REF], of the concept of a majorable X-valued measure, say m, on some locally compact topological space; such is the case, in particular, of every X-valued measure if X has finite dimension. In alternative constructions of vector measure theory, the corresponding notion is that of an X-valued measure with finite variation [START_REF] Dinculeanu | Vector Measures[END_REF].

Associated with such an m is its modulus lml, a nonnegative real measure on the same space. It is involved in some inequalities and calculation rules concerning the integral of a real function relative to the vector measure m. A typical instance of a majorable X-valued measure is provided by defining m from a given nonnegative real measure J.l., through a density function ~~ e Ltoc (J1, X). This one expresses by writing m=m~J.I.•

When the locally compact space we have considered equals a real interval/, the differential measure df of any f e lbv (I, X) is found to be majorable. In the sense of the ordering of real measures, its modulus me~sure satisfies I dfl < dV to open or semi-open intervals with endpoints in I. For every subinterval J of I, one defines (df) 1 , the measure induced by df on J. The restrictionf 1 off to J is an element oflbv (J, X) whose differential measure may differ from (df) 1 , if J is not open relative to I. Section 9 extends to vector measures a procedure familiar in probability theory. It is shown that every majorable X-valued measure on the interval I equals the differential measure of some f E lbv (I, X). This function may be constructed left-continuous (alternatively right-continuous) in the interior of I, a requirement which permits that this function be determined uniquely, up to an additive constant.

Section 1 0 introduces three Banach spaces X, Y, Z and a continous bilinear mapping 4J : X x Y ~ Z. If m is a majorable Y-valued measure on a locally compact space and if geLloc(lml; X), aZ-valued measure denoted by 4J(g,m) is defined. Calculation rules are established, involving in particular the case where m is defined through a nonnegative real measure Jl. and a density function m~.

In the same three-space setting, two functions x E lbv (/, X) andy E lbv (/, Y) are considered in Sect. 11. Then t-+tl>(x(t), y(t)) belongs to lbv (/, Z) and some differentiation formulas are established; in particular (2.1) As a special case, this is used to show thai the differential measure of an lbv vector function in an open interval equals its derivative in the sense of distributions.

In Sect. 12, the above is particularized by making Y =X and Z =JR. It is assumed that tl> : X x X-+ 1R is a symmetric continuous bilinear mapping such that the quadratic form a-+tl>(a,a) is nonnegative. Then, for every xelbv (I, X), the following inequalities hold, in the sense of the ordering of real measures:

2tl>(x-, dx) <dtl>(x, x) <2tl>(x+, dx). (2.2)
This is applied to the study of certain integral quadratic functionals on bv (I, X):

positivity and lower semicontinuity in the norm supt llx(t) II• Some generalizations of (2.2) to functions more general than the quadratic form tl>( .. , . ) are reviewed. All this is motivated by energy inequalities in evolution problems. Section 13 is devoted to the connection between the absolute continuity of a function f: I-+ X and the existence of a density ft' E Lfoc (I, dt; X) for the differential measure df, relatively to the Lebesgue measure dt. The notation f E wrr:; (/,X) is used to express this existence. The Radon-Nikodym property of the Banach space X, which holds in particular if it is reflexive, here plays the central role. This section, as well as the next, is mainly a review without proofs of some significant facts from the literature. In particular the reader may here find some conceptual and terminological links between the functional measure theory, used throughout the chapter, and the widespread concept of a countably additive set function.

Because almost every point of /is a Lebesgue point of ft' elJoc(I,dt;X), the corresponding function f E Wi~<! (/,X) possesses ft' as derivative almost everywhere. On the other hand, the differentiability almost everywhere for any felbv(/, X) is equivalent to the Radon-Nikodym property for X. Section 14is a review of fads connected with this. In particular, a recent result on unilateral derivation involving a base measure other than Lebesgue is quoted. The final part of this section, limited for brevity to real functions, explains the relevance of Lebesgue's decomposition theorem to the questions investigated. To preclude any possible confusion, the traditional decomposition of a bv function into the sum of a jump function and of a continuous component is also recalled. to X such that f = ~ o w; the indefinite variation ~ is concomitantly factorized through w ~ The proof consists in filling the possible gaps in the graph off in I x X by line segments and constructing from that a rectifiable curve in JR. x X. The relevance of this result will be demonstrated in the concluding section by the graph approximation of lbv unknowns. Section 16 illustrates the material in this chapter by some indications on how the theory of lbv vector functions applies to evolution problems governed by measure differential inclusions. This gives the occasion to review a few other facts from the literature, in particular Helly's selection theorem.

One-sided Limits and Initial Conditions

Let I denote a real interval, including or not its possible ends. Letfbe a mapping of Ito a Hausdorff topological space E; in all that follows, for every tel different from the possible right end of this interval, we shall denote by/+ (t) the right-side limit

j+ (t)= lim f(s) s-+t,s>t
if it exists; symmetrically, for t different from the possible left end of I, the leftside limit, if it exists, will be denoted by f-(t).

Recall that a Hausdorff topological space Eis said to be regular (see, e. g. [START_REF] Kelley | General Topology[END_REF]) iff for each point x and each neighborhood U of x there exists a closed neighborhood V of x such that V c U; equivalently, the family of closed neighborhoods of each point is a base for the neighborhood system of the point. Such are, in particular, every metric space and every Hausdorff topological linear space. Proposition 3.1: Let E be regular and letf:J~E be such that for every tEl different from the possible right end of I, there exists f+ (t); then lim /+ (s) f+ (t). In short,(/+)+ 1+, (f-)+ =I+ and, through the symmetric property after exchanging sides, (/-)-= 1-, (/+)-= 1-. 

Remark 3.2:

The situation appears especially clear when I is an open interval, possibly unbounded. The proposition shows that f+ and /-, defined by assumption at every point of I, are, respectively, right-continuous and leftcontinuous functions. This introduces two operations: the right-continuous and left-continuous regularizations. Proposition 3.1 expresses that, if these operations are applied alternately and/or iteratively, the final result is the same as if the operation performed last had been applied to f itself.

Remark 3.3: Suppose that Eisa complete metric space. Then, classically [START_REF] Bourbaki | Fonctions d'une variable reelle[END_REF] the existence of the right-and left-limits off at every interior point of I, together with the existence of the appropriate one-sided limits if I includes some of its possible ends, is equivalent to f being regulated in the sense that, on every compact subinterval [a, b] of I,f equals the uniform limit of a sequence of step functions. By definition, a step function on [a, b] equals a constant over each member of a finite partition of [a, b] into subintervals of any sort (some of them possibly reduced to singletons). The elementary theory of differential equations rests on the definition of possible solutions as indefinite Riemann integrals of regulated functions [START_REF] Bourbaki | Fonctions d'une variable reelle[END_REF].

Remark 3.4:

In Dynamics, the time interval I considered commonly contains its left end t 0 , the initial instant. Suppose that a function u from I to some Banach space represents the velocity of the investigated mechanical system; the initial data usually involve some given initial velocity Uo• In the most traditional situation, the system evolution is governed by differential equations, assumed to be satisfied in the interior of I. The initial conditions are then interpreted as imposing the right-limits at t 0 of the functions one is investigating. This is similar to what is more generally done with physical phenomena governed by partial differential equations in some open subset of JRn: boundary conditions involve some "trace" operators whose simplest instance is the construction of limits at boundary points. But, if the dynamical process is not smooth enough to secure continuity of the velocity function t~u(t) in the interior of the time interval!, imposing the right-limit u+ (t 0 ) looks inconsistent: why should not a jump also occur at the very instant t 0 ? Therefore, the governing conditions of such a nonsmooth process have to place t 0 on the same footing as the other instants.

A simple way of describing things is to imagine that the investigated process Is already in progress before t 0 , i.e. it takes place over a time interval! containing I in its interior. While the evolution for t > t 0 is the object of prediction, the "initial" data are understood to convey abridged information on the system history before t 0 : we shall interpret them as the left-limits of the considered functions at t 0 • It will then prove expedient, as soon as a function u is defined on I, to extend it into a function u defined on !with the constant value u(t)=u(t 0 ) fort< t 0 ; this implies a-(to)= u(to).

Accordingly, the following convention will often be used in the following sections. Convention 3.5: If the real interval! contains its possible left end T,, then for a function/ defined on I we shall agree that/-(T,) representsf(T,); symmetrically, if I contains its possible right end T,., we shall agree that/+ (T;) f(T,.). Warning: The above convention clearly preserves the calculation rules j++=f+ and~-f-but IT IS NOT CONSISTENT with/-+ j+ and f+--!-. This reflects the fact that the extension off on the left ofT, with the constant value f(T,) does not commute with right-continuous regularization; similarly for the extension of f on the right of T,..

Functions of Locally Bounded Variation

Let I be a real interval of any sort and E a metric space, with distance denoted by b. Letf: I~E and let J be a subinterval of I. The variation off on J is, by definition, the nonnegative extended real number n var (f,J)=sup L b(/(-ri-1), /(-r,)), i=l where the supremum is taken over all strictly increasing finite sequences 'to< 't' 1 < ... < 't'n of points of J; this supremum refers to the ordering of [0, + oo ], i.e. sup 0 = 0. One may equivalently accept finite sequences which are only nondecreasin~.

Clearly var (f, J) is zero iff f equals a constant on J.

If J is a compact subinterval [a, b] of I, we shall also write var (f; a, b) instead ofvar (j, [a, b]); this symbol will be considered as meaningless if a> b. Evidently var (j; a, a)= 0 and, if a < b < c in I, one readily finds var (j; a, c) = var (j; a, b) + var (j; b, c) . The addition rule (4.1) elementarily implies that f belongs to lbv (I, E) iff there exists a (nondecreasing) function

Vf :I-+ JR such that V[a,b] c I: var (f;a,b)= V 1 (b)-V 1 (a). (4.2)
This real function, called a variation function or an indefinite variation off, is defined up to the addition of an arbitrary constant. One readily sees thatf: I-+ Eis Lipschitzian on Iiffjelbv (I, E) with~: I-+1R

Lipschitzian in the usual metric of IR; then f and Vf admit the same Lipschitz constant.

Recall that f: I-+ E is said to be absolutely continuous on I iff, for every 8 > 0, there exists 17 > 0 such that, denoting by ]ai, hi[ any finite collection of nonoverlapping open subintervals of I, one has the following implication

L (hi -ai) < 11 ~ L b(j(ai), f(bi)) < 8. i i
The function is said to be locally absolutely continuous on I if it is absolutely continuous on every compact subinterval of I.

It is easily proved that f is absolutely continuous (alternatively locally absolutely continuous) iff felbv (I,E) with variation function Vf absolutely continuous (locally absolutely continuous respectively) in the usual metric of :JR.

We shall now investigate one-sided limits of lbv functions. Proof: Let t 0 <tin I and let e> 0. By the definition ofvar (f;t 0 ,t) there exists a strictly increasing finite sequence t 0 = -r 0 < -r 1 < ... Proof: Lets < t in I; if sis not the left end of I, one has, due to the continuity of o,

< 't'n -1 < 'tn = t such that n var (f; t 0 , t) < e + L b(f( 't'i-1),/(-ri)). i=1 Let se [-rn-1 ,
t)= V 1 (t)-V 1 (s)
~(f-(s), f-(t)) = lim lim ~{f(u), f(7: )) .
a-+s,a<s t-+t,-r<t Since ~(f(u),f(7:))<1V 1 (7:)-V 1 (u)l, one obtains, by going to limits, The end of this section is devoted to the approximation by local step functions. By writing P E lfp (I) we shall mean that Pis a partition of I into subintervals of any sort (some of them possibly reduced to singletons) and that this partition is locally finite, i.e. every compact subset of I is covered by a finite collection of members of P.

~(f-(s), f-(t)) < v,-(t)-Yt-(s).
For P and Q in lfp (/), we shall write Q >-P iff Q is a refinement of P, i.e. every member of Q is contained in a member of P. Visibly this partial ordering makes of lfp (I) a directed set (see, e.g. [START_REF] Kelley | General Topology[END_REF]) in the sense that every two elements of lfp (I) possess a common refinement.

A function I of I to a set E is said to be a local step function iff there exists P E lfp (I) on each member of which I equals a constant.

For every f: I--+-E and every Q E lfp (I) let us agree to denote by /Q a local step function I--+-E constructed as follows: on every member of Q, fQ assumes the constant value f ( 1: ), where 1: is a point chosen in the said member. Proposition 4.6: Let (E, ~)be a metric space and felbv (/,E). For every e> 0, there exists P E lfp (I) such that, for every Q E lfp (I) which is a refinement of P, Proof: Take a locally finite partition of 1R into intervals with lengths <e. The inverse images of these intervals by the nondecreasing function ¥f : I -+-lR are subintervals of I; the nonempty ones constitute a partitionPelfp (/).Let Q>-P; if two points t and -r belong to the same member of Q, they belong a fortiori to the same member of P, say J, hence fJ(f(t), f(-r)) <var (f, J) <e.

By taking as -r in each member of Q the point where, by construction, fQ equals f, one obtains the inequality (4.3).

Those intersections of [a,b] with members of Q which are nonempty will be indexed from left to right as J is defined (here sup and inf refer to the ordering of [0, + oo ], i.e. sup 8=0 and inf 8 = + oo ). This generates the theory of multifunctions with finite retraction, motivated by some mechanical evolution problems of the unilateral sort [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]. The same statements are true for nonincreasing c : H ~I, provided the righthand member of (5.1) is replaced by var {f; c(b ), c(a)).

Monotone Change of Variable

f>((f o c) (cri-1), (f o c) (cri)) = f>{f(c(cri-1 )), f(c(cri))) <var {f; c(cr 1 -1 ), c(uJ).
The definition of the variation off readily yields inequality (5.1).

Let e>O; except in the trivial case where c(a)=c(b), there exists a finite sequence -r 0 < -r 1 < ...

< 't'n in [c(a), c(b )] such that n var {f; c(a), c(b))<e+ I f>{f(-ri-d,f(-ri)). i=1 If the nondecreasing function c is surjective of [a, b] to [c(a), c(b )], there exist u 0 <cr 1 < ... <an in [a, b] such that -ri=c(ui); hence n n I f>{f(-ri-d, /(-ri)) = I f>((fo c) (cri-1 ), {fo c) (cri)) <var (f o c; a, b). i=1 i=1
As e may be taken arbitrarily small, this establishes equality in (5.1). D

Increasing changes of variables make the basis of the concept of oriented curve in the metric space E. Let I and I' be two real intervals; let f: I~ E and f' : I'~ E denote two continuous mappings. Suppose that no subinterval of their respective domains exists on which/ or f' are constant. One defines an equivalence relation by writing f ""f' iff there exists c : I'~ I, nondecreasing and bijective (hence continuous strictly increasing, with continuous inverse) such that/' f o c. Every equivalence class relative to ,...., is called an oriented curve in E; every member of such a class is called a proper parametrization of the oriented curve.

As a consequence of Proposition 5.1, if some member of the class is an lbv function, so are all members. In that case the class is called an oriented curve of locally bounded variation, or also a rectifiable curve, an archaic way of saying that the length of any of its arcs may be defined. In fact, letfelbv (/,E) and f' fo celbv (I', E) be two proper parametrizations; lett' range through some compact subinterval [a',b'] of I'; equivalently t=c(t') ranges through the subinterval [a,b]= [c(a'), c(b')] of I. Then the pointf(t)= f'(t') of Eis said to describe an arc of the curve, withf(a)=/'(a') andf(b)=f'(b') as endpoints. Proposition 5.1 entails var (f; a, b)= var {f'; a' ,b'); this is, by definition, the length of the arc, a real number independent of the parametrization used.

Since f is continuous and nowhere constant, a variation function ~of/is a continuous and strictly increasing mapping of I onto a real interval r. Therefore, y-fo v 1 -1 elbv (r, E) is also a proper parametrization of the curve; if a= Vj (a) and p = V 1 (b ), the length var (f; a, b)= P -a is found, through Proposition 5.1, to be equal to var(y;a,p). This equality holds for every [a,p]cr; in other words, y admits as variation function the identity mapping of r. We shall express this property by saying that y is a curve-isometry; in fact, y maps any compact subinterval of r onto an arc of equallentgh. It is commonly said that r= V 1 (t) E r is the oriented arc length (or curvilinear abscissa) locating the point f(t)=y(t) on the curve. If one starts from/' instead off, the same procedure yields another curve-isometry, say y', and for every 1:er it results easily that y(r)=y'(r-r 0 ), with r 0 a constant.

Incidentally, observe that a rectifiable curve may be generated from any continuous lbv function g of an interval J toE; to recover the above setting, it suffices to perform on the interval J a reducing manipulation: every possible subinterval over which g is a constant will be contracted to a singleton. If such nonzero subintervals exist, g is said to be an improper parametrization of the corresponding curve.

Differential Measures

As before, I denotes a real interval of any form; in all the following the metric space considered will be a real Banach space X, with norm denoted by I I . II• For every fi, / 2 :I---+-X, every A. 1 , A. 2 in lR and every subinterval J of I, one easily establishes

var (A. 1 fi + A-2 / 2 , J) < IA-1 1 var (/1, J) + IA-2 1 var (h, J).
This shows that bv (I, X) and lbv (I, X) are linear subspaces of X 1 .

Call [I' the totality of the finite subsets of I; every memberS of !7 may be uniquely enumerated as a strictly increasing finite sequence of points of I, say

S: to< t1 < • . • < 't"n• (6.1)
By an intercalator, we shall mean an assignment-call it fJ-associating with every S E [I', as written in the form ( 6.1 ), and every i E { 1, ... , n} an element denoted by (Jk of the compact interval [ti-t, rd. By q> E %(I) it is classically expressed that q> is a continuous real function on I whose support (relative to I) is compact.

Let f: I-+ X; for every S, (J and ({J as above let us construct the following element of X: n M(S,{},tp)= L q>((Jk)(f(tJ-/(ti-1)).

(6.2) i=l

The inclusion ordering makes out of.9' a directedset, i.e. for every two elements S, S' of .9', there exists S"e.9' such that S"::::>S and S"::::>S~, namely S"=SuS'. This enables one to use the concept of the convergence of a mapping, say S-+ M 8 , of (S, =>)to the topological space X (see, e. g. [START_REF] Kelley | General Topology[END_REF]; such a mapping is also called a generalized sequence of elements of X, indexed in (S, => ), or, in short, a net). Proposition 6.1: Let f e lbv (I, X); for every qJ e .Yt'(I) and every intercalator 8, the mapping S-+ M(S, 8, qJ) of the directed set {S, =>) to X converges to a limit independent of 8; convergence is uniform with regard to the choice of 8.

Denote this limit by J qJdf; for every compact subinterval [a, b] of I containing the support of qJ the inequality

II J qJdf I I <max !({JI var (f; a, b) (6.3)
holds, showing that the linear mapping qJ-+J qJdf of .Yt(I) to X constitutes a vector measure on I in the sense of Bourbaki. Definition 6.2: The X-valued measure above will be called the differential measure (or Stieltjes measure) of the function f e lbv (I, X) and be denoted by df Proof of Proposition 6.1 : Let [a, b] be a compact subinterval of I containing the support of qJ. As the members of .9' which include a and b constitute a cofinal subset of (9', ::::>) (see, e.g. [START_REF] Kelley | General Topology[END_REF]), one may restrict oneself to such members. Besides, the points of .9' which do not belong to [a, b] may be neglected when introducing the enumeration (6.1) since they have zero contribution in such expressions as ( 6.2), due to the vanishing of qJ outside [a, b ]. Hence we shall only take S under the form S:a=-r 0 <-r 1 < ... <-r,=b. (6.4) Let us first consider the special intercalator IJ, which consists in taking If~= -r 1 , and prove the convergence of S-+M(S, lJ, ((J).

Let e > 0; as qJ is uniformly continuous on [a, b ], the finite subset S may be chosen such that the following holds: for every i and for every -r, -r' in [-r 1 _ 1 , -ri] I((J(-r) -qJ(-r')l <e. The intervals delimited by S' and contained in [ri-b ri) contribute to M(S', 0, q>) by terms whose sum equals p L q>(r{) (j('r:{)-f('r:{-1))' (6.6) j=1 to be compared with the following term of M(S, 0, q>)

p q>(ri) (f(rt)-f(ri-1))= L q>(ri) (f(r{)-f(r/-1 )). (6.7) j=1
If S meets the requirement (6.5), the difference between expressions (6.6) and (6. 7) lets itself be bounded as follows:

p L (q> (ri) -q>(r{)) (f(r{) -f(r{-1 )) j=1 p <e L llf(r{)-f(r{-1 )11<evar(j;ri-t,'td. (6.8) j=1
After summation with respect to i, this yields IIM(S, 0, q>) -M(S', 0, q>ll <e var (j; a, b). (6.9) Therefore, if S" denotes another member of .9, also contained in [a, b), one has the implication S':::) S, S":::) S ==> IIM(S', 0, q>)-M(S", 0, q>) II <2e var (j; a, b), meaning that the generalized sequence S-+-M (S, {f, q>)eXpossesses the Cauchy property; this establishes convergence.

As for the use of another intercalator 0, one observes that, if S meets the requirement (6.5), a calculation similar to that in (6.8) yields, for every S' ef// which is a refinement of S,

IIM(S', 0, q>)-M(S', 0, q>) II< e var (f; a, b).
This proves that, uniformly with regard to the choice of 0, the same limit is approached.

Since q>-+-M(S, 0, q>) is, for fixed Sand 0, a linear mapping of%(/) to X, it results, after going to the limit, that q>-+-J q>df is linear.

Finally, the definition of M trivially implies IIM(S, 0, q>)ll <maxlq>l var (j; a, b), yielding (6.3) at the limit.

That the linear mapping q>---+-J q>df of :ft (I) to the Banach space X constitutes a vector measure on I in the sense of Bourbaki means , as recalled in Sect. 1, that it possesses the following continuity property: for every compact subset K of/, the restriction of this mapping to the subspace consisting of the elements of :K(l) with support contained in K is continuous in the supremum norm. Since K is necessarily contained in some [a, b ], this in fact follows from the inequality (6.3). 0 Remark 6.3: One similarly finds that, if S meets the requirement (6.5), then for every S' :::> S in .9

IIJ cpdf -M(S, 8, q>)ll <e var (/;a, b).

(6.10) Remark 6.4: The totality of the X-valued measures on I naturally constitutes a real linear space. As the first calculation rule concerning differential measures, there readily results the linearity of the mapping f-+df.

Furthermore, if the vector function f is a constant, then df 0. Remark 6.6 below shows that the converse is not true in general; however, Corollary 8.4 will describe a situation free from this inconvenience. We now calculate dfin the case where f is a local step function, i.e. ( cf. Sect. 4) there exists P E lfp (/) on each interval of which f is a constant. Every point of I which equals an end of some of the intervals constituting P will be called a node of P, and also a node off Such a function is readily found to belong to lbv (/,X).

Proposition 6.5: Iff: I-+ X is a local step function and q> E :Yf' (I), one has, under Convention 3.5 if needed,

p J cpdf= I cp(tk) (f+(tk)-f-<tk)), (6.11) 
j=1
where t 1 , t 2 , ••• , tp are the nodes off contained in the support of q>.

In other words, the differential measure df equals the sum of a locally finite collection of point measures placed at the discontinuity points off, the respective values of which are equal to the jumps f+ -f-. Remark 6.6: If one of the intervals over which f is constant reduces to a singleton, say {ts}, interior to I, the value f(ts) may be fixed independently ofthe values f+ {t 8 ) and f-{t 8 ) that the function takes on the two intervals adjacent to ts; hence the measure dfhas no relationship withf(ts). In particular, one may take f equal to a constant throughout /, except at some isolated interior points: this gives an example of a nonconstant lbv function with zero differential measure. By definition, J cpdf equals the limit of the convergent net S--+ M(S, 0, <p ), as expressed in (6.2), with S:

a= to < t'1 < • • • < t'n = b •
Take the same intercalator lJ as in the proof of Proposition 6.1. Using Remark 6.3, one observes that J <pdf also equals the limit of M(Si, lJ, cp), where Sb j EN, denotes an infinite sequence of choices of S, agreeing with the following requirements:

(a) There exists a sequence 1'/i > 0, tending to zero, such that the distance between any two successive points of Si is less than t'/J Since f is a constant between the points ( 6 .12) the only possible nonzero terms in M{SJ, IJ, cp) correspond to the p values of i such that ]-ri-l, -ri[ contains one of the points tk. The term so associated with tkequals <p(-ri) (f(-ri)-/(-ri-1 )). Whenj tends to infinity this clearly has the limit <p(tk) (/+ (tk)-f-(t,:)), hence (6.11) is proved.

So far we have supposed I open in IR. If I possesses, for instance, a left end 1i and includes it, the support of <p may contain this point; then necessarily a= 1i.

Again, let t 1 < t 2 < ... < tP denote the nodes of P contained in [a, b]; it may happen that t 1 =a= T,, so the term corresponding to i = 1 in M(SJ, lJ, cp ), namely cp(-r 1 ) {f(t 1 }-/(1i)), possesses the limit cp(Ti) (f+{Ti)-/('Ji)) whenj tends to infinity. According to Convention 3.5, /(T,) is interpreted as/-(T,); this agrees with (6.11). 0 Remark 6.7: We acknowledge a certain lack of consistency in the use of the notation df to represent the differential measure of f In fact, the symbol d usually does another job when the integral of a function h, relative to some measure called J1., is written down as J hdf.J, or, if a dummy variable is needed,

f h(t)df.J,(t) (also J h(t)dt(J1,))
. So some authors are entitled to prefer using Dfto mean the differential measure off [3]. An integral relative to this measure would then logically be expressed as J hdDf or J h(t)dDf(t). Ifthat system of notation were strictly implemented, the Lebesgue measure on an interval would stand out as Did (since it equals the differential measure of the identity function id: I-+1)

and the traditional integral J h(t)dt relative to it would take on the form J h(t)d Did (t) or f h(t) Did (dt). Clearly, for simplicity's sake, some consistency has to be sacrificed.

The Modulus Measure

In the following definitions, one may take as I a locally compact topological space which, for simplicity, will be supposed "countable at infinity", i.e. it equals the union of a countable collection of compact subsets; such is evidently the case when I is a real interval.

Defmition 7.1: The vector measure m is said to be majorable iff there exists a nonnegative real measure J.l on I such that, for every tp E %+ (/) (the subset of f (I) consisting of nonnegative functions), one has

liS cpdm II < S cpdJL. (7.1)
This is equivalent to Bourbaki's terminology (cf. [20], Chap. VI, § 2, No. 3, where, more generally than X, a locally convex topological linear space, with a collection of semi-norms characterizing its topology, is considered).

Note that every cp E% (/) equals the difference of two elements cp _ and cp + of f+(I), with cp_ +cp+ =lcpl. Hence the above property is equivalent to

liS cpdm II < J lcpldJ.l (7.
2) holding for every <p E .:ft (I).

If X has fmite dimension, any X-valued measure is majorable. This easily follows from the use of a base in X and from the complete lattice property of real measures Let us consider the dual Banach space X' of X, with duality pairing denoted by (., .). Inequality (7.1) is equivalent to saying that, for every x' eX',

V cp E .:ft + (/): (x', S cpdm) < llx'll S cpdJ.l. (7.3)
For fixed x' in X', the linear mapping <p-+(x', S cpdm) of%(/) to 1R clearly constitutes a real measure, which we shall denote by x' o m, in accordance with the customary notation for the composition of mappings (the writing (x', m) could also be used, consistent with Sect. 10 below, where more general bilinear expressions will be considered). Then (7 .3) means equivalently that the collection of real measures x' om, for x' ranging through the unit ball B' of X', is majorized by J.l in the sense of the ordering of real measures. Hence this collection possesses a supremum, majorized by J.l, which we shall denote by lml (or ldml when it appears in an integral). Equivalently, lml equals the supremum, for x' E B', of the collection of nonnegative real measures lx' om! =sup { -x' om, x' om}; therefore lml is nonnegative and vanishes iff m vanishes. Clearly (7 .1 ), (7 .2) and (7.3) hold with J.l=lmj .. More generally, a similar procedure is used in [START_REF] Bourbaki | Integration, Hermann[END_REF], Chap. VI, § 2, No. 3, starting with a continuous semi-norm q on X, in order to define some real measure denoted by q(m). Regarding diverse situations where a measure is also constructed by extending the symbol of a real function, see [START_REF] Bourbaki | Integration, Hermann[END_REF], Chap. V, § 5, No. 9, and [START_REF] Goffman | Sublinear functions of measures and variational integrals[END_REF][START_REF] Demengel | Convex functions of a measure and applications[END_REF][START_REF] Demengel | Convex function of a measure. The unbounded case[END_REF]. Defmition 7.2: For every majorable vector measure m, the nonnegative real measure lml introduced above is called the modulus (or absolute value) of m.

If X= IR, this is nothing but the traditional absolute value of a real signed measure.

When vector measures are treated from the standpoint of set functions, the concept corresponding to majorability is that of a measure offmite variation (or locally bounded variation); then lml is introduced as the variation measure of m, also called the modulus of m in [START_REF] Dinculeanu | Vector Measures[END_REF], § 3, No. 4.

Counterexample 7.3: Let us show a nonmajorable vector measure. Suppose that I is a compact topological space and take as the Banach space X the function space :Yf' (I) equipped with the supremum norm. Then the identity mapping of :K (I) constitutes an X-valued vector measure, say m; in other words, for every cpE:Yf'(I), the integral J cpdm equals the element cp itself. Asserting m to be majorable would mean the existence of a nonnegative real measure Jl majorizing x' om for every x' in the unit ball of X'. Any element of X' is a real measure on I; take in particular x' = f>a, the Dirac measure at point a E I. Clearly llf>,ll = 1 and f>a om is nothing but the real functional associating with every cp E :K (I) the value that cp takes at point a; in short f>, om= b 11 • Now, one may easily check that, provided I contains more than a finite number of points, the collection of real measures f>a, for a ranging through I, cannot be majorized by any real measure.

Let us come now to the integration of a rea/function with respect to a vector measure. Commonly, a function h :I-+ 1R is said to be scalarly integrable relative to m iff h is integrable relative to all real measures x' o m, x' EX'. Since the mapping x'-+ J hd(x' om) i~ linear of X' to JR., this leads one to define the integral J hdm as an element of X'*, the algebraic dual of X', in which Xis naturally imbedded. Sufficient conditions may be found in [20], Chap. VI, for J hdm to lie in X; here we shall only need the following. Proposition 7.4: If m is majorable, for every hE .fR 1 (I, lml; JR.) the integral J h dm is an element of X satisfying IIJ hdml! <J lhlldml. (7.4) Proof: Let lfJn be a sequence of elements of :K(l) conver~g to h in !£ 1 (/, lml; JR.).

Using inequality (7 .2) with J..L = lml, one finds that lfJn is a Cauchy sequence in !i' (I, lx' o ml; lR) for every x' EX'; this entails the existence of J hdm as an element H of X'*. Now, for every two integers n,p, inequality (7.2) with J..L=Iml yields showing that the sequence J lfJndm is Cauchy in X; its limit is readily identified with H. Finally, by applying (7.2) to lfJn and going to the limit in fi' 1 (I, lml; 1R) one obtains (7 .4). 0

What precedes naturally leads to this extension of the dominated convergence theorem.

Proposition 7.5:

Let hn be a sequence of elements of .P 1 (J, lml; lR) satisfying:

(a) There exists g E !£ 1 (/, lml; lR+) such that lhnl <g holds lml-a.e.

(b) For lml-almost every value oft, the real sequence hn(t) possesses a limit, say h(t).

Then hE !£ 1 (I, lml; lR) and, normwise in X, lim J hndm= J hdm.

n~oo Proof: The dominated convergence theorem implies that the sequence hn converges to h in 2 1 (/, lml; 1R). Then, for every two integers nand p, (7.4) yields which entails that the sequence J hndm is Cauchy in X; the limit is readily found to be equal to the element J hdm of X. 0 Remark 7.6: Like many authors (e.g. those of [START_REF] Bourbaki | Integration, Hermann[END_REF][START_REF] Dinculeanu | Vector Measures[END_REF]) we use .Pin the notation of the non-Hausdorff topological linear spaces, whose elements are functions everywhere defmed in I, with some integrability properties relative to a given real measure. Taking the quotients of such spaces by the subspaces consisting of functions which are negligible relative to the said measure yields the corresponding Hausdorff spaces traditionally denoted by L; the elements of the latter are not properly functions. We strongly advise paying attention to this distinction when treating nonsmooth evolution problems, in which several real measures often appear jointly.

Oearly, in Propositions 7.4 and 7.5, hand hn could equivalently be considered as elements of L 1 (I, lml; lR).

We now come to a common way of constructing majorable vector measures. Let there be given a nonnegative real measure J1 on I and let m~ denote an Xvalued function, 11-integrable (in the sense of Bourbaki [START_REF] Bourbaki | Integration, Hermann[END_REF]; equivalently Bochner-integrable) over every compact subset of I; notation m~e!l'foc(I,Jl;X). Then, for every cp e % (I), the vector function cpm~ is 11-integrable and, if K denotes a compact subset of I containing the support of cp, IIJ cpm~d11ll <J llm~lldJlmax lcpl.

K

This shows that the mapping m: cp~J cpm~dJ1 constitutes a vector measure.

Defmition 7.7: The X-valued measure m constructed above is called the product of the real measure J1 by the vector function m~ E 2foc{I, 11; X); notation m=m~ J1 (and, when written in an integral, dm =m~dJ1). Also, m is said to admit -m~ as density relative to Jl.

(Observe that a weaker concept of density is developed in [START_REF] Bourbaki | Integration, Hermann[END_REF], Chap. VI, § 2, No. 4: instead of being an element of !l' 1 ~c (I, J1; X), the function m~ is only assumed scalarly locally 11-integrable ).

Clearly, the same vector measure m is obtained after replacing m~ by any 11-equivalent X -valued function. Therefore, the density of m relative to Jl-may be considered as an element of Lloc(/, 11; X) and, from that standpoint, it is unique.

Due tom~ e 2 1 ~c(I, 11; X), the nonnegative real function t~ II m~ (t) II, simply denoted by I I m~ II, belongs to !l' foe(/, J1; JR.) : this allows one to use the above definition with X= JR., thus obtaining the nonnegative real measure I I m~ I I Jl.

In some contexts, it will prove safer to use the lengthier notation Conversely, supposing that an arbitrary majorable X-valued measure is given, one may ask whether it is sure to admit a density relative to its modulus measure. The answer is affirmative for special choices of the Banach space X, said to have the Radon-Nikodym property (see [START_REF] Diestel | Vector Measures[END_REF]; we shall come back to this subject in Sect. 13). Such is in particular any reflexive Banach space, and hence every finite-dimensional normed space. Example 7.9: Suppose m =abr, i.e. the point measure located at point tEl, with value aEX(cf. Proposition 6.5). One finds lml =II all br; every function h :1-+JR. belongs to !l' 1 (I, lml; JR.) and the integral J hdm equals h(t)a. For this special X-valued measure, the existence of a density function, say m~, relative to its modulus measure p= llall br is trivially secured, without any additional assumption concerning X. In fact, every function m~ : I-+ X belongs to !l' 1 (I, tt; X) ; it does the job iff it takes a point t the value a/ I! all; the values ofm~ anywhere else are immaterial, since I\ { t} is J.L-negligible.

Let us finish this section by considering the case where I is a real interval, with m equal to the differential measure of an lbv function. Proposition 7.10: Let I be a real interval and let /Elbv (/,X) with variation function V 1 : I-+ JR. Then the differential measure df is majorable and, in the sense of the ordering of real measures, ldfl<d~. (7.5) Proof: Coming back to expression (6.2) one observes that ll/(ri)-/(ri-1)11 <var (/; -ri -1, -ri) = Jij(-ri)-Jij(-ri-1).

Hence, for every q> e% + (/),

n n 2: q>(Ok) (f(-ri)-/(-ri-1)) < I q>(Ok) (Vr(-ri)-Jij(-ri-1). i=1 i=1
By taking the respective limits, for S ranging in the directed set (f/, => ), one gets 

f(t)={u ~f t#t 1 • v tf t=t1
In view of Proposition 6.5 the vector measure df vanishes, and hence also ld/1; but Jif may be constructed as

{ 0 if t < tl Jij(t)= • llv-ul l if t=t 1 2llv-ull if t>t 1 ;
this makes dJif consist of the point measure located at t 1 , with value 211 v-u II• Recail that a normed space is said to be strictly convex iff {A.e ]0, 1 [, llxll = IIYII =r, x# y)=>ll lx+(1-A)YII <r. (7.6) Elementary reasoning from two-dimensional geometry shows that this property is equivalent to the following: equality

Ile-al!= llc-bll +lib-all holds (if and) only if b belongs to the line segment with endpoints a and c.

The following proposition will be established in Sect. 8; for another proof, developed from the viewpoint of set functions, see [START_REF] Moreau | Quelques resultats sur les fonctions vectorielles a variation bornee d'une variable reelle[END_REF]. Proposition 7.12: Iff has aligned jumps, i.e., for every tel, the value /(t) belongs to the line segment in X with endpoints /-(t), f+ (t), then ld/1 = dVr.

If, in addition, the Banach space is supposed strictly convex, equality ldfl = d~ conversely implies that f has aligned jumps.

Note that, under Convention 3.5, alignment of jumps holds trivially at an endpoint of /.

If, in particular, f is right-continuous (alternatively, left-continuous) in the interior of/, then it has aligned jumps.

Subintervals

Let m denote an X-valued measure on the real interval /. If function of [a,b ], in other words the m-measure of this subset of I. If m is majorable, Proposition 7.4 ensures that this integral is an element of X; in contrast, for a nonmajorable measure, Counterexample 7.3 may be used in order to exhibit an interval -for instance a singleton -whose measure, essentially an element of X'*, cannot belong to X.

In any case, if two vector measures on/, say m 1 and m 2 , yield as integrals, on each compact subinterval of/, the same element of X'*, then m 1 =m 2 ; this readily follows from consideration of the real measures x' o m 1 and x' o m 2 , with

x' eX'. Sefl' (8.4) For fixed p, the elements off/ containing the four points sP, aP, bP, tP constitute a cofinal subset of(f/, =>);therefore, this constraint maybe imposed on Sin (8.4). 

If an interval delimited by

llf(bp)-f(ap)-J (/Jpd/11 < Vj-(ap)-V 1 (sp)+ Vj-(tp)-V 1 (bp).
For p-+ oo, this tends to zero since the nondecreasing real function V 1 possesses a limit on the left at point a and a limit on the right at point b; equality (8.3) follows.

Let us now suppose that I contains its left end T,, with a= T, while b is different from the possible right end (otherwise I= [a, b ], hence Xra.bJ E:% (I), which makes the proof of (8.1) straightforward). The sequences tP and bP, b<bp<tp, only have to be introduced; cpP is constructed with support in [T,, tp] and with the value 1 throughout [~, bP]; thus Proof: If I does not contain its possible left end T,, this readily follows from (8.5).

J df =!+(b)-f(T,)
Otherwise one finds a constant C such that t > T, => h (t)-fi (t) =c. We are now able to justify a foregoing statement.

Proof of Proposition 7.12: Let us prove that, under the assumption made, the reverse inequality of (7 .5) holds; we shall first show that, for every a< bin/, one has J dV 1 < J ld/1. By adding to the right-hand member of (8.9) the nonnegative terms

II!-(tl) -!+ Cto) II, II!Ut) -!-Ut)ll, II!+ (t,.) -f(t,.
) II and II!-(t,.+l) -!+Ct .. ) II and using (8.1 0), one majorizes this right-hand member by

n+l n L: llf-(ti)-f+(ti-1)11+ L: <llf-(ti)-f(ti)ll+ll!+<ti)-f(tJII).
i=l i=l

Now, using inequality (7.4), one has Furthermore, if f has aligned jumps,

llf-(ti)-f(ti)ll+llf+(ti)-f(ti)ll=llf+(ti)-f-(ti)ll= J df < J ldfl. {ti} {ti}
In view of (8.11), since e may be taken arbitrarily close to zero, this establishes (8.8).

Secondly, consider a singleton {a} c I; using Convention 3.5, if a happens to be an end of /, one has

J dV 1 = V/ (a)-v,-(a)= V/ (a)-V 1 (a) + V 1 (a)-v,-(a). {a} Through Proposition 4. 3, if f has aligned jumps, this is found equal to II!+ (a)-!-(a) II= J df < J ld/1. {a} {a}
Combining this inequality with (8.8), one concludes that, over every compact subinterval of/, the integral of ldf I majorizes that of dV.,: this entails the expected inequality, in the sense of the ordering of real measures.

To finish the proof ofProposition 7.12, let us assume that Xis strictly convex and that equality dV 1 = ldfl holds. Imagine a point sel with nonaligned .

. What concludes this section is of use, in particular, when discussing the local character of evolution problems formulated in terms of differential measures and the possible extension of their solutions.

Let J be a nonempty subinterval of I; clearly, for every felbv (I, X), the restriction off to J, denoted by !J, is an element oflbv (J, X). Then d(fJ) is an Xvalued measure on J; we are to investigate its relationship with df.

In the special case where J is open in the topology of I (this means that, if J includes any of its possible ends, this point is also an end of I), the concept of the restriction of the measure df to J is readily available; this consists in the following. If J is open relative to I and cp e :/t (J), the function ijJ extending cp to I with value zero outside J belongs to :/t (I). Clearly, the mapping q>-+ J i[Jdf of :/t (J) to X is an X-valued measure on J, denoted by (df)J and called the restriction of df to the open subset J of /. Proposition 8.6 below implies that (df)J=d(fJ) in this special case.

For an arbitrary nonempty subinterval J of I and every cpe:/t(J), the same extension ijJ as above may be considered; this function is not expected to be continuous in I but it is bounded and its support, relative to I, is compact. In addition, ijJ is measurable with regard to any real measure on I; one way of proving this assertion is to observe that ijJ is regulated in the sense recalled in Sect. 3. Therefore, ijJ belongs to .P 1 (I, ldfl; lR.); in view of Proposition 7.4, cp-+ J i[Jdf is a linear mapping of :/t (J) to X meeting the continuity requirements in order to constitute a vector measure on J. We shall denote by (dj)J this vector measure, called the measure induced by df on the subset J of I. In the previous special case of J open relatively to I, this is obviously identical with the restriction of dfto J.

Let us write as xl>, the point measure on J, located at the point t e J, with value xeX, i.e. the mapping lfJ-+XqJ(t) of :/t(J) to X. Proof: Let us show that the above sum of measures yields the same integral as (df)J on every compact subinterval [s, t] of J. Denote by h the characteristic function of [s, t] in J; the function 1i extending h to I with value zero outside J equals the characteristic function of [s, t] as a subinterval of I. Through similar arguments as in the proof of Proposition 8.1, h equals the limit of a dominated sequence of functions q>p E% + (J). The corresponding extensions i{Jp to I converge pointwise to li; then Proposition 7.5 entails J h(df)J = J lid[ (8.12) First, suppose that J possesses a left end, say a, contains it, but does not contain its possible right end; suppose s=a (otherwise the expected equality is trivial).

Then (8.12) yields, in view of Corollary 8.2, J h(d/) 1 j+ (t) -!-(a), while through the same corollary, applied to J, one has J hd(/ 1 ) j+ (t)-f(a). The difference between these two expressions, namely f(a) -!-(a), equals the integral of h relative to the measure (f(a) -/-(a))(ja• Similar reasoning applies if J includes its right end, say b. 0

As an example, take as J a singleton; then a= b and Such is, in this special case, the measure (df);, while d(/ 1 ) = 0. 

Cumulative Distribution Functions

As was seen in Sect. 7, for every felbv (I, X), the differential measure df is majorable. The following states that, conversely, every majorable X-valued measure on I equals a differential measure. Recall that, when X has finite dimension, every X-valued measure is majorable. choose a reference point (! e I and define, for every t e I, In order to prove that f has bounded variation on every [s, t] c /, let us consider a finite sequence s = 1: 0 < 1: 1 < ... < -r:n = t. First suppose t < T,. ; then by making [a, b [=['ti-t, 1:i[ in (9.2) and using inequality (7.4), one obtains

J dm if t= T,. [Q,t] f(t)= J dm if a<t<T,. (9.1) [Q,t[ -J dm if t<g.
n n L llf('ti) -f('ti-1>11 = L IIJ X[tt-l.'li[dmll i=1 i=l n < L J ldml< J ldml< +oo. i = 1 [ti-t. t1[ [s, t]
If t= T,., a similar majorization may be constructed thanks to (9.4).

Therefore, felbv (I, X) and the equality m=df follows from (9.5). Corollary 8.4 entails that any other function in lbv (/, X), left-continuous on the interior of I and admitting m as its differential measure, can only differ from the above by a constant.

Finally, the same construction performed after replacing m by the nonnegative real measure lm I = ldfl yields a nondecreasing real function, left-continuous on the interior of I, whose differential measure equals ldfl. In view of Proposition 7 .12, this real function is a variation function off, since the latter has aligned jumps.

D

Remark 9.2: Suppose that I does not contain its possible left end T, ; in particular it may be unbounded from the left. Suppose that the nonnegative real measure lm I is bounded in the left of I, i.e. there exists t 0 e I such that the subinterval I-= { t e I: t < t 0 } has finite lm !-measure. Equivalently, a function f e lbv (I, X), with aligned jumps, admitting m as its differential measure, has bounded variation on 1-; this implies that f(t) possesses a limit when t decreases indefinitely in I. Then the additive constant in Proposition 9.1 may be adjusted for this limit to equal zero. Such is the familiar situation of probability theory; the probability law of a random variable with values in the real interval I (commonly I=lR) is defined by a nonnegative real measure m on I, with total equal to 1. One then constructs a nondecreasing real function t-+f(t) as the m-measure of the interval {sei:s<t}. This function, left-continuous on the interior of I, is usually called the cumulative distribution function of m, a denomination that we propose to also use in the general situation of Proposition 9.1.

A symmetric observation applies when lm I is bounded in the right of I; then the additive constant may alternatively be adjusted for f (t) to tend to zero when t increases indefinitely in I. Remark 9.3: Let us fix(} in I; the subset Lfl oflbv (/,X) consisting of functions which are leftacontinuous on the interior of I and which vanish at(} is clearly a linear subspace. Denote by Mm(I, X) the totality of the majorable X-valued measures on I. By adjusting the additive constant of Proposition 9.1, one associates with every me Mm(I, X) a unique element, say j,, of Lll such that m =dfz (in the situation described in Remark 9.2, one might alternatively avoid privileging a point(} in I by imposing on j,(t) the condition that it have zero limit when t decreases indefinitely in I). This one-to-one linear mapping is sometimes invoked to identify Mm(I,X) with Lfl; this would be confusing in evolution problems.

Symmetrically, Proposition 9.1 defines a one-to-one linear mapping, say m-+f,. of Mm(I, X) to the subspace Rfl of lbv (/,X) consisting of functions vanishing at Q, right-continuous on the interior of I. This also entails that m-"'Ui + f,.)/2 is a one-to-one linear mapping of Mm(I, X) to the subspace of lbv (I, X) consisting of functions f which vanish ate and which satisfy, for every t in the interior of I,

f(t) =t(f-(t) + t+ (t)).
Such lbv functions are of interest when dealing with Fourier series or Fourier integrals; they also have the advantage of giving a simple form to the differentiation formula presented in Sect. 11 below.

Another way of avoiding giving preference to some of the one-sided continuities will be presented in Sect. 16. Remark 9.4: N. Dinculeanu ([21], § 17) has presented a construction similar to what has been done above in the proof of Proposition 9.1. This gives us the opportunity to translate our assumptions into the language commonly used when vector measures are considered from the standpoint of set functions. What we call a majorable X-valued measure on the interval I is, in Dinculeanu's book, an X-valued Borel measure on I with finite variation. This means precisely, an Xvalued countably additive function, say m, defined on the collection !!I of the relatively compact Borel subsets of I, with the property that, for every Be !!I, one has sup I l!m(Bi)ll < + oo; i here the supremum is taken for all the finite families { Bi} of disjoint members of rJ1 contained in B (see also Remark 13.4 below).

Vector Measure Constructed Through a Bilinear Mapping

Let X, Y, Z be three real Banach spaces and let iP : X x Y-+ Z denote a continuous bilinear mapping. The norm of iP is the nonnegative real number N(iP)=sup{llcP(a,b)jj :aeX, beY, llall<1, llbll::;;1}. Here, as in Sect. 7, I may be understood as denoting any locally compact topological space, countable at infinity.

Let m be a majorable Y-valued measure on I. A proposition of Bourbaki ([20],

Chap. VI, § 2, No. 7) may be transcribed with the notation we are using as follows. There exists, uniquely, a continuous linear mapping of .f£/ 1 (1, lml; X) to Z, that we shall denote by x-+ J tP(x, dm), such that for every a eX and every real function r e !l' 1 (I, lml; 1R), J tP(ra, dm)= tP(a, J rdm).

(10.1) Furthermore, for every xe.!l' 1 (/, lml; X), IIJ tP(x, dm)!l <N(tP) J llxllldml. (10.2) Recall that we denote by llxll the rea/function t-+ llx(t)lj; in some contexts it will prove clearer to use the more cumbersome notation II x( •)II instead. This readily entails the following proposition.

Proposition 10.1: For every g e !l' 1 ~c(I, lml; X), the mapping q>-+ J tP(cpg, dm) of %(1) to Zis aZ-valuedmeasure on/that we shall denote by tP{g, m) (or tP(g, dm) when placed in an integral).

This measure is majorable and, in the sense of the ordering of real measures on/, its modulus measure 14>{g, m)l satisfies ltP(g, m)l <N(tP) llg( •)111m I.

(10.3)

The above system of notation results in the calculation rule Vcpe%(1) :J cptP(g,dm)= J tP(q>g,dm).

(10.4) This is an associativity property which may be generalized as follows.

Proposition 10.2: Let g E !l' 1 ~c(I, lml; X); then jjg( •)!lim I, shortly denoted by llg 111m I, is a nonnegative real measure on I. Every function he .!l' 1 (I, llg 111m I; JR.) (equivalently h llg II e .!l' 1 (I, lml; 1R)) is integrable relatively to the vector measure tP(g,m) and J htP(g, dm) = J tP(hg, dm) e Z.

(10.5)

Proof: The second member of (10.5) is a meaningful element of Z because hg e .!l' 1 (I, lml; X). In fact, under the convention 1/llg(t)ll =0 for llg(t)ll =0, the real function t--+1/llg ft)ll is lml-measurable on I; bywritinghg=h llgllgJIIB II, one obtains that the vector function hg :I--+ X is lm !-measurable, hence 1m I-integrable since II hg II = lh I II g II belongs to !l' 1 (I, lm I; 1R). In addition, by making x = hg in (10.2), one has

IIJ tP(hg,dm)jj <N(tP) J lhldCIIBIIIml).

The left-hand member of (10.5) is also meaningful because, in view of the measure inequality (10.3), h belongs to !l' 1 (/, ltP{g,m)l; JR.); this inequality furthermore implies IIJ htP(g,dm)ll <N(tP) J lhldCIIglllml).

This shows that both members of (10.5) depend in a linear continuous way on h in 9' 1 (I, llu 111m!; JR.). Now (10.4) means that equality (10.5) holds for every h in :YC (I), which is a dense subspace. Proof: Similarly to (10.3), the modulus measure of hm is majorized by the nonnegative real measure lhllml, since the norm of the bilinear mapping (r,b)-+rb is unity. Thus, the assumptions made imply ge..<l' 1 (l,lhmi;X), securing that the second member of ( 1 0.6) is a well-defined element of Z. As far as the first member is concerned, one may observe that the function sgn h, with values -1., 0 or 1, belongs to It' 00 (1, lml; JR.). Since lhlge.P 1 (/, lmi;X), the product hg=lhlg sgnh is also an element of 2 1 (/, lmi;X); this ensures the existence off iP(hg,dm)eZ.

For fixed h, the same inequalities as in the proof of Proposition 10.2 show that both members of (10.6) depend in a linear continuous way on g in 2 1 (/, lhllmi;X). Due to the property (10.1), equality (10.6) holds when g is taken in the form ra, re.P 1 (/, lhllmi;JR), aeX. Now the linear subspace of ft' 1 (/, lhllmi;X) generated by the elements of this form is dense. 0

Corollary 10.4: If heft' 1 ~(/,lmi;1R) and ge.P 1 ~c(l,lhllmi;X) the Z-valued measJlleS iP(hg, m) and iP(g, hm) are equal.

By bringing together Propositions 10.2 and 10.3, one obtains the following corollary.

Corollary 10.5: If he..P/oc(I, lmi;JR), ge.Pl~c(I, lmi;X) and lhlllull E e 2 1 (/, lml; JR.), all three expressions appearing in (10.5) and (10.6) are meaningful and equal. Remark 10.6: In all the preceding, It' could visibly be replaced by L. Such also is the case in the following proposition, which states the calculation rule which is to apply when the Y-valued measure m is defined through some density function relative to a real measure, according to Definition 7. 7. Proposition 10.7: Suppose there exists a nonnegative real measure p. on I and a vector function m~ E !l' 1 ~c (I, p.; Y) such that m = m~p. Then, for every g E !l' 1 ~c(I, lml; X) (equivalently g lim~ II E !l' 1 ~c(l, p.; X)), the vector measure fP(g, m) equals flJ{g, m~)p.. Proof: Due to Proposition 7.8, the modulus measure ofm=m;p equals the real measure II m~ II p.. Hence the assumption g E !l' 1 ~c (/, lm I; X) is in fact equivalent to g lim~ II E !l' 1 ~c(l, p.; X). In view of the definition (10.4) of the measure fP(g, m), one has to establish that, for every <p E :fl (I), J fP(<pg, dm) = J fP(<pg, m~)dp.

or, more generally, that for every f E !l' 1 (/, m; X), J flJ(f, dm) = J flJ(f, m~)dp.. (10.7) Takefunder the special formf=ra, with aEX and re!l' 1 (I,Imi;1R). Then, using (10.1), one transforms the left member of (10.7) into iP(a, J rdm), i.e. fP(a, J rm~dp.). Because, for fixed a EX, the mapping iP(a,.) is linear continuous of Y to Z, . a classical calculation rule for vector integrals yields fP(a, J rm~dp.) = J fP(a, rm;)dp. = J fP(ra, m~)dp.. This establishes (10. 7), for the said choice off; since the linear space generated in !l' 1 (/, lm I; X) by the functions f of this form is dense, this completes the proof. 0 Example 10.8: Here is a trivial instance we shall meet again in the following. Take m = bbr, i.e. the point measure located at the point t of I, with value bE Y.

Then lml=llbllbt and every function g:I-+X belongs to !l' 1 (I,Imi;X) (cf. Example 7.9). Proposition 10.7 yields fP(g,m)=fP(g(t),b)b,.

Remark 10.9: The reader preferring to treat measures from the standpoint of set functions may refer, instead of to [START_REF] Bourbaki | Integration, Hermann[END_REF], to [START_REF] Dinculeanu | Vector Measures[END_REF], § 8; in the latter book three Banach spaces, a continuous bilinear mapping and a vector measure (with finite variation) are similarly considered.

Differential Measure of a Bilinear Expression

In this section, I denotes a real interval. Let X, Y, Z be three Banach spaces and fP : X x Y---+-Z a continuous bilinear mapping.

For xelbv (/,X) and yelbv (I, Y) the function t-+iP(x(t), y(t)), denoted by fP(x, y) for short, belongs to lbv (/, Z). In fact, on every compact subinterval [a, b 1 of I, the real functions t-+ l!x(t) II and t-+ IIY(t) II possess some upper bounds, say A and B (e.g. A=Jix(a)jl +var (x;a,b)); then, for s<t in [a,b1, II4J(x(t), y(t))-4J(x(s), y(s)) II < II4J(x(t) -x(s), y(t)) II+ II4J(x(s), y(t)-y(s)) II

<N(<fJ) [(Vx(t)-Vx(s))B+(Vy(t)-Vy(s))A1;

this readily yields a majorization of var (<fJ(x,y); a, b).

Convention 3.5 will be used when writing one-side limits at some possible end of I.

Proposition 11.1: If x e lbv (I, X) and y e lbv (I, Y), the function <fJ(x, y): t-+<fJ(x(t),y(t)) is an element of lbv (I, Z) whose differential measure equals

d<fJ(x,y)= <fJ(dx,y-)+cP(x+, dy).

{11.1) Also, dcP(x,y) = 4J(dx,y+) + cP(x-, dy),

(11.2) ( y+ +y-) (x+ +x- ) dcP(x, y) = 4> dx, 2 + 4> 2 , dy • (11.
3)

The expressions written on the right-hand sides are meaningful vector measures; in fact x +, x -., y +, y -., being lbv functions, equal, on every compact subinterval of I, the uniform limits of sequences of step functions; consequently, these functions belong to .!£ 1 ~c of any real measure. on I.

We shall base the proof on the following approximation lemma, where the notation of Sect. 4 is used. In particular, for y : I-+ Y and Q E lfp (I), one denotes by Ya a local step function which takes on each member of Q the constant value y(t), where 't' is a point chosen in the said member.

Lemma 11.2: Let y e lbv (I, Y) and let u : I-+ X be a regulated function ( cf. Sect.

3). Then, for every [a, b 1 c I and every '1 > 0, there exists P E lfp (I) such that, whatever is Q E lfp (I), a refinement of P, any local step function Ya constructed as above verifies J f/!(u, dy)-J f/!(u, dya) <'7. Introducing the variation. functions V, and vcz of y and Ya, respectively, one obtains through inequalities (10.3) Proof: Assuming that x andy are local step functions involves the existence of partitions Px and P 1 in lfp (1), on the respective members of which, these functions equal constants. A commonrefmement P e lfp (I) of P x and P 1 may be constructed, meeting the following requirement: every member ofP is either an interval which does not contain any of its ends or a singleton, say { -r} ; points such as -r will be called the nodes of P.

In order to establish equality ( 11.1) for t~s• special choice of x andy, we shall and analogous formulas corresponding to (11.2) and (11.3).

Remark 11.5: The results of this section were first published in [32] and [33]. At the same time, R. T. Rockafellar [START_REF] Rockafellar | Dual problems of Lagrange for arcs of bounded variation[END_REF] obtained the integration by parts formula (11.9), with 4Jequal to the scalar product of1R.n; his proof was basedonaresultof E. Asplund and L. Bungart [START_REF] Asplund | A First Course in Integration[END_REF], involving a summation over the set of the discontinuity points of the considered pair of real lbv functions. This amounts to saying that y E lbv (I, JR.) with dy = y; dt (see also Sect. 13, concerning the absolute continuity of vector functions).

In applying ( 11.9) to this special case, one observes that x = x + = x-, except at the discontinuity points of x, which make a countable, hence Lebesguenegligible, subset of I. Therefore, (the same holds symmetrically after interchanging x+ and x-).

For simplicity, let us restrict ourselves in what follows to the case where I is an open real interval. More specifically than above, take ye~1 (I, JR.), i.e. y is continuously differentiable with compact support in I; the application of (11.1 0)

with [a, b] containing this support yields

Jydx=-Jxy'dt, (11.11)

I I
where y' denotes the derivative of y in the elementary sense. This equality holding for every ye ~1 (I, JR.) (equivalently, every ye~0 0 (I, JR.)), may be expressed by saying that the X-valued measure dx constitutes the generalized derivative of x, or derivative in the sense of Schwartz's distributions.

Observe that, in the right-hand side of (11.11), x may be understood as an element of Lfoc (I, dt; X), i.e. an equivalence class of locally Lebesgue-integrable functions. This could be taken as the starting point of an alternative theory of lbv (I, X): an element of Ltoc (/, dt; X) whose derivative in the sense of distributions happens to be an X-valued measure on I would be said to have locally bounded variation. In the author's view, the policy adopted here of defining the elements oflbv (I, X) as proper functions and making use only of the ordering of the real interval I, without reference to Lebesgue's measure, would seem to be better adapted to evolution problems. In contrast it should be observed that relying on Lebesgue's measure in order to define generalized derivation allows one to develop the theory of bounded variation for functions defined in an arbitrary open subset Q of1Rn, with values in 1R or JRP. This concept has been extensively studied for the past thirty years, with applications to minimal hypersurfaces and various problems of mathematical physics; [START_REF] Giusti | Minimal Surfaces and Functions of Bounded Variation[END_REF] and [START_REF] Hudjaev | Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics[END_REF] are reference books on the subject. Let us finally quote from [START_REF] Brezis | Operateurs maximaux ti)Onotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] a proposition, which makes precise the connection between the variation of a function I--+ X and the integration relative to Lebesgue measure. For simplicity, the interval I is assumed compact, say I= [0, T].

Proposition 11.7: Let X be a reflexive Banach space, with dual X', and let 

f E L 1 ([0, T], dt; X).

Quadratic Forms, Chain Rule and Inequalities

Let us apply the results of the preceding section by making X= Y and by assuming that the continuous bilinear form iP : X x X--+ Z is symmetric. Then the function F: X -+Z defined by F(a) = iP(a, a) constitutes, by definition, the most general Z-va/ued continuous quadratic form on X. Proposition 11.1 entails that, for every x e lbv (I, X), the function t-+ F(x(t)), shortly denoted by F(x), belongs to lbv (I, Z) and that the following equality of Z-valued measures holds:

dF(x) = iP(x+ + x-, dx). (12.1)
In the special case X= Z = 1R, with iP equal to the usual product, a similar formula was derived by P. J. Daniell [START_REF] Daniell | Differentiation with respect to a function of limited variation[END_REF].

If xelbv (1, X) is continuous, (12.1) reduces to dF(x)=2~(x, dx).

(12.2)

Observe that u~2 ~(a, u) is the tangent linear mapping, or gradient of Fat point a. So the differentiation formula {12.2) has the familiar aspect of a chain rule.

Now we shall suppose that Z;::: JR. and that the real quadratic form F is nonnegative; this holds in particular if X is a real Hilbert space with~ equal to the corresponding scalar product.

Proposition 12.1: Let If) : X x X-+ 1R be a real continuous symmetric bilinear form on the Banach space X, such that the quadratic form a-+ ~(a, a) is nonnegative.

Then, for every x e lbv (I, X), the real measure 4'(x + -x-, th) is nonnegative.

In the sense of the ordering of real measures, one has (12.3) Proof: Let us show that ~(x + -x-, dX) yields a nonnegative integral on every

. . compact subinterval [a; b] of I.
This is true if x :I-+ X is a local step function; in fact, x then equals a constant on each member of some P e lfp (J). Denote by t 1 < t 2 < ... < t. For arbitrary x in lbv (I, X), an appro:ximation procedure based on Lenuna 11.2 will establish the expected nonnegativity. Inequalities (12.3) follow from combination with (12.1).

o.

The above was published in [32, 33], with a view to the study of some evolution problems in a Hilbert space (see, e.g. [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]). Physically, inequalites such as (12. 3) express the irreversibility of processes (see, e. g. [7; 8]); they are exploited through integration over a time interval, as in the following proposition.

Proposition 12 .. 2: Let I= [1l, 7;] be a compact interval; denote by bv 0 (I, X) the linear subspace of bv (I; X) consisting of the functions which vanish at the "initial instant'' T,. Let iP be as in Proposition 12.1; suppose that two nonnegative real functions on the interval 1 are given: p :. _no.nincreasing and left-continuous, ex: universally integrable (for instance a regulated function).

Then, for every x E bv 0 (/,X), the real expression

Q(x) = J p4'((1 + oc)x+ + (1 -oc)x-, dx) (12.4) I is nonnegative.
If, in addition, it is assumed that p is strictly positive, strictly decreasing and that the quadratic form a-+4'(a, a) is positive definite on X, then x-+Q(x) constitutes a positive definite quadratic form on the linear subspace ofbv 0 (/,X) consisting of functions with aligned jumps (cf. Proposition 7.12).

Proof: Since t-+p(t) and t-+4'(x(t), x(t)) are elements ofbv (/,JR.), Proposition 11.1, applied to the usual product in JR., yields in view of (12.1),

d(p4'(x, x)) =p-4'(x+ +x-, dx)+4'(x+, x+)dp.

Since pis left-continuous, one obtains through integration on/, J p4'(x+ +x-, dx) =p(T,.)4'(x(T,.), x(T,.))-J 4'(x+, x+)dp, which is nonnegative by virtue of the assumptions made. Besides, as the product poe is a nonnegative universally integrable function, Proposition 12.1 implies

J poc4'(x+ -x-, dx) >0. 1
The nonnegativity of Q in (12.4) follows, by addition.

In order to prove the second assertion, let us suppose that the lefthand member of (12.4) vanishes. Then both nonnegative expressions p(T,.)4'(x(T,.), x(T,.)) and -J 4'(x+, x+)dp vanish. This first entails x(T,.) =0.

Denote by t 1 an interior point of I and assume that x has aligned jumps. If x(t 1 ) were different from zero, then at least one of the two limits x+ (t 1 ) and x-(t 1 ) would be nonzero; therefore there would exist on one side of t 1 some nonempty open interval J throughout which 4'(x(t), x(t)) would be greater than some m>O; hence -J 4'(x+,x+)dp> -mJ dp. where). is a universally integrable real function on/, satisfying).> 1/2. As soon as x + :/:: x-, one rna y characterize A.x + + ( 1 -).) xas a point of the straight line drawn in X through x+ and x-, lying on the same side as x+ relative to the midpoint (x+ +x-)/2. Proposition 12.2 was motivated by the treatment of energy inequalities in some discontinuous evolution problems. In the same context one needs some semi-continuity properties of the quadratic functional Q. To this end, we shall equip the linear space bv 0 (/, X) with the norm of uniform convergence, I I x I I oo =sup !lx(t) llx • tel Proposition 12.4: With the same assumptions as in the first part of Proposition 12.2, one additionally supposes that the nonnegative function a is leftcontinuous, with bounded variation; then Q: bv 0 (/, X)-+JR is lower semicontjnuous in the I I • I I oo norm.

If A denotes a subset ofbv 0 (/,X) whose elements have variations bounded by some fixed M> 0, then the restr~ction of Q to A is continuous in the ll•lloo norm.

Proof: Concerning any nonnegative quadratic form, such as Q, standard calculation yields that, for every y and u, one has

Q(y + u) = Q(y) + Ly(u) + Q(u) < Q(y) + Ly(u),
where Ly denotes a linear form. Hence Q equals the supremum of the collection of affine functions

x-+Q(y)+Ly(x -y), (12.5) withy ranging throughout bv 0 (/, X). We shall establish the expected lower semicontinuity by showing that for fixed y, the linear form Ly is continuous in the I I •II oo norm. In fact Ly(u) equals the sum of the following two expressions: As for ~, one performs some integrations by parts:

L 1 (u) = J p4>((1 + a)u+ +(1 -a)u-, dy), I L 2 (u)= J p4>((1 +a)y+ +(1-a)y-,du).
<P(y+, du) =d<P(y. u) -<P(dy, u-), and, since q = (1 + a.)p is left-continuous, with bounded variation, one may again apply Proposition 11.1 so as to obtain:

qtP(y+, du) =d(qtP(y, u)) -tP(y+, u+)dq -qtP(dy, u-).

Consequently, J qtP(y+, du) <N(q,) [q(J;) IIYIIoo I +II y II«> var (q, I)+ sup lql var (y, I)] llu II«>.

I (12.7)
Similar majorizations apply to the terms involving (1-a.)yin ~' so the

continuity of u-+ ~ (u) in the norm II u II«> is established.
Now, if xis restricted to the subset A, one may express Q(x) as the supremum of the affine functions (12.5), for y ranging through A only. Then var (y, I) <M, so (12.6) and (12.7) show that this collection of affine functions is equicontinuous in the I I • II«> norm. This proves the continuity of the restriction Q 1 A.

D

We shall finish this section with a review of some generalizations of what precedes, referring to [START_REF] Moreau | Chain rule involving vector functions of bounded variation[END_REF] for the proofs; an arbitrary real interval is denoted by I.

The first line of generalization consists in replacing the nonnegative real quadratic form a-+tP(a, a) of Proposition 12.1 by a convex continuous real function y, defined on an open convex subset Q of the Banach space X. Then oy(a) denotes the subdifferential of y at point aeQ, in the sense of convex analysis, i.e. the closed convex subset of the dual space X' of X (the bilinear duality pairing will be denoted by < . , . ) ) consisting of the elements a' such that the affine function x-+(a', x -a) +y(a) minorizes y. Because y is convex and ' continuous on Q, it is known that, for every aeQ, the subdifferential oy(a) is nonempty and that this subset of X' reduces to a singleton iffy is Gateauxdifferentiable at point a (a sufficient condition for this is the strict convexity of the conjugate convex function y*: X'-+]oo, + oo ]). Observe also that, if a function y : D-+ 1R. is Gateaux-differentiable at every point of Q, then the convexity of this function ensures its continuity (in fact, in that case, y equals the supremum of a collection of continuous affine functions; hence it is I. s. c. and therefore continuous throughout the open convex set Q, because X is a barelled space [START_REF] Rockafellar | Level sets and continuity of conjugate convex functions[END_REF]).

Proposition 12.5: Let f e lbv (/, X) with differential measure df admitting a density/~ e !l't' 00 (J, p,; X) relative to some nonnegative real measure p,. Let Q be an open convex subset of X andy: Q-+JR be continuous and convex. Assume that, for every compact subinterval

[a, b] of I, the closure off ([a, b]) is contained in Q.
Then the real function y of: t-+y(f(t)) belongs to lbv (/, lR) and its differential measure possesses, relative to Jl., a density (yo/)~ E fl'l"oc(l, Jl.; lR).

The When the above proposition is specialized to the case of a convex Gateauxdifferentiable function y, with gradient at point a denoted by Vy(a), it yields that a chain rule of the familiar form (yo/)~= (Vy(f),J;> (12.8) holds Jl-a. e. in Ic (and, a fortiori, in the set of the continuity points of f); generally, Jl-a.e. in I one has ( Vy(f-),J;) <(yo/)~< ( Vy(f+),J;>. These inequalities extend (12.3).

H. Brezis ([35], Lemma 3.3, p. 73) has obtained a formula of the same sort as (12.4) by taking X equal to a Hilbert space Hand assuming fe Wi~~2 (1, H), but requiring only of y : H-+] -oo, + oo] that it be convex and 1. s. c.: if there exists g E fl't!c(I, H) such that g(t) E oy(f(t)) holds Lebesgue-a. e., then, with Jlequal to the Lebesgue measure on I, he proved that yo fis locally absolutely continuous and that, for almost every t,

v he oy(f(t)): (yo f)' (t) = (h, f'(t)>.
For the second line of generalization of (12.1) and (12.3), the convexity assumption of y: Q-+JR. is dropped; instead, this real function is supposed Lipschitz on every bounded subset of Q. Then by oy(a) is denoted Clarke's generalized gradient [39] of y at point a, a convex compact subset of x; (i.e the dual space of X, equipped with the weak* topology). It is known [40] that By(a) is a singleton for every a in the open subset Q of X iffy is Gateaux-differentiable in Q with gradient mapping a-+ Vy(a) continuous from Q to x;. Proposition 12.6: With X, Q, I, f, df, J.l, f~ as in Proposition 12.5, suppose that y: Q-. JR. is Lipschitz on every bounded subset of Q. Then yo f belongs to lbv (/,JR.) and d(y of) admits, relative to J.l, a density (yo f)~ e .P 1 ~c(I, }.l; JR.).

For ,u -almost every t in /, there exists x in the closed line segment [f-(t), f+ (t)] of X and x' in Clarke's generalized gradient oy(x) such that

(yo f)~(t)= (x', f~(t)).
(12.9)

If j+ f-, at ,u-almost every point of/, the convexity of Q is required no more;

if, in addition, y is supposed Gateaux-differentiable, (12.9) turns into a chain rule of the same familiar form as (12.8).

In [START_REF] Moreau | Chain rule involving vector functions of bounded variation[END_REF] the more special case is also studied where y: Q-.JR is continuously Frechet-differentiable; then an expression for (yo f)~ is obtained, which may be seen as a generalization of (12.2).

Densities and the Radon-Nik.odym Property

The question of deciding whether a real function of a real variable equals an indefinite integral of its derivative has been posed since the beginnings of Lebesgue's theory ofintegration. The extension to more general situations of the results obtained along this line has led to the word "derivative" being used in a sometimes confusing way. The purpose of this section and of the next is to review some facts connected with our subject matter, using the most common terminology.

As an immediate consequence of Sects. 7 and 8, one has the following.

Lemma 13.1: Let X be a Banach space and I a real interval, with Lebesgue measure denoted by dt. Denote by fa function of I to X and by g an element of L 1 ~c (I, dt; X). Then the following statements are equivalent:

(a) V[u,-r]c:I: J gdt f(-r)-f(u), (13.1) 
[a, t} (b) felbv (/,X). and df=gdt, (

i.e., according to Definition 7. 7, df admits g as density relative to the Lebesgue measure.

Notation 13.2: One expresses by f e W/o~1 (I, X) the existence of g E £.~(1, dt; X) such that the above statements are true. In accordance with Definition 7. 7, g will then be denoted by ft'.

Oearly .Jv.!~ 1 (I, X) is a linear space, the elements of which are continuous functions of I to X, since the Lebesgue measure has no atom.

For p e [1, + oo ], one denotes by 'Wi~P(I, X) the linear subspace of W.!~1 consisting of the functions f such that ft' E Ll'oc (I, dt; X).

If the interval I is compact, the subscript loc becomes immaterial. For I not necessarily compact there is also a natural definition for some spaces denoted by W"•P(I, X), equipped with Banach norms. They make an essential tool is studying some evolution problems; a review of important facts about them be found in [START_REF] Brezis | Operateurs maximaux ti)Onotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. They do not fall into the scope of the present chapter, which is mainly aimed at the treatment ofless smooth functions. Recall that the notation W is more generally used, with I replaced by an open subset of 1R 11 , to denote Sobolev spaces.

Let us reformulate in the normed space setting the classical definition already met in Sect. Proof: Let f E WI!~ 1 (I, X); with the corresponding ft' e £.~(I, dt; X) is associated the element II ft' II of Lloc (I, dt; IR) (the class of dt-equivalent real functions, a representative of which is t-+!ly(t)jjx, where y denotes a representative offt').

For every u<r in I, (13.1) yields

llf(r)-f(u)ll = J f,'dt < J ll!t'lldt. ( 13.4) 
]cr, t[ Jcr, t( Denote by A any dt-measurable subset of [a, b 1; it is a basic fact of integration theory that, for every e > 0, there exists 17 > 0 such that J dt < ,.,=> J 11 !t' II dt <e.

(13.5)

A A
Therefore, implication (13.3) is established by taking as A the union of the collection ]ah bi[ and by using (13.4). 0 Remark 13.4: Let us review the standard background of implication (13.5), referring to [START_REF] Dunford | Linear Operators, Part 1: General Theory[END_REF], Chap. III, as the main source. Let 'E be a a-field of subset of a setS and let J. L be a countably additive set function defined on 'E, with values in R, in JR. u { + oo }, in JR. u {-oo }, or in a Banach space X; in the latter case, the Banach norm will be denoted here by the same symbol I •I as the absolute value of extended real numbers. For every E e I, the variation (also called total variation) of J. L on E is, by definition,

v(J.L, E)=sup I IJ.L(E,)I i
where the supremum is taken over all finite collections { Ei} of pairwise disjoint members of 'E, with Ei c: E. Clearly, when J. L takes only nonnegative values in JR.

or 1R u { + oo }, then v(J.L, E)= J.L(E).

If the countably additive set function J. L takes its values in JR. or X, it is shown ( [START_REF] Dunford | Linear Operators, Part 1: General Theory[END_REF], Sect. III.4) that the set of these values is bounded. In such a case, pis said to be finite and the set function E-+v(p, E), with values in JR. u { + oo }, is found to be countably additive. Let .II. denote another countably additive set function defined on the same a-field 'E as J.L. Then .II. is said to be continuous with respect to J.L or simply J.L-continuous if lim .ll(E) = 0.

(13.6)

v(p,E)-+0

An interesting fact is that, if .II. is finite, p-continuity is equivalent to the implication v(p,, E)=O=>l(E)=O.

The classical Radon-Nikodym theorem states that, if the countably additive set functions .II. and p. are real-valued, with p, > 0, then .II. is p,-continuous if and only if there exists (uniquely) an element g of L 1 {S,p,;1R) such that ' v' E e 'E: .II.( E)= J gdp,.

(13.7) E Under these conditions v(A., S) equals the L 1 (S, p.; JR)-norm of g.

Let us now attempt to connect the above and the functional theory of measures used in the foregoing sections. Of course, one may also establish the Radon-Nikodym theorem within the functional theory (see [START_REF] Bourbaki | Integration, Hermann[END_REF], Chap. V, § 5). Suppose that T is a locally compact topological space, and denote by B the collection of the Borel subsets of T (by definition, B is the smallest a-field containing all the closed subsets ofT). For every compact subset K ofT, the members of B contained inK constitute a a-field, say BK. Let p, denote a real-valued measure on T, in the sense of the functional theory. It is found that for every EeBK, its characteristic function XE belongs to L 1 (T, J.L; lR). Its integral is denoted as usual by J dJ.L or J.L(E) and it results that E-+ J dJ.L is a countably

E E
additive set function on the a-field BK. The Radon-Nikodym theorem may be applied in that context. Through the use of a base in X, this yields a partial converse to Proposition 13.3.

Proposition 13.5: If X is finite dimensional, every locally absolutely continuous function of I to X belongs to Wt!~ 1 (J, X).

For an infinite-dimensional Banach space X the same is readily found true if and only if X meets the following requirement. Definition 13.6: A Banach space X is said to have the Radon-Nikodym property if, for every absolutely continuous/: [0, 1]-+ X, the differential measure df admits a density relative to Lebesgue's measure. Admit that fr' e L 1 (I, dt; X), the density of df relative to Lebesgue's measure, exists. Then, for every element x' of the dual of X, i.e. x' is a real measure on I, (x', f(s)) = ( x', 1 f,'(t)dt) = l (x', J,'(t))dt, (13.8) since f vanishes at the origin. Take, in particular, x' = ~r' the Dirac measure at point rei. By definition (~r,/(s)) is the value that the elementf{s) of$"(/) takes at point r, namely s-r if r<s and zero otherwise. One sees that the real function s-+(~,/(s)) possesses a derivative equal to 1 for s>r, and zero for s < r. If (13.8) were true, this derivative would equal ( ~, fr' (s)) for almost every s=Fr in /. Since fr'(s) is, by assumption, an element of X=:Yf(I), this real expression, namely the value offr' (s) at point r, should depend continuously on r; this is a contradiction.

A large part of the book [START_REF] Diestel | Vector Measures[END_REF] by J. Diestel and J. J. Uhl is devoted to discussing the Radon-Nikodym property (from a starting point other than our Definition 13.6). In a summary (Chap. VII, Sect. 6), there are listed no fewer than 23 properties equivalent to this one (plus 6 others concerning the special case where X is a dual). Several items on this list attest to the geometrical nature of the Radon-Nikodym property, not essentially connected with the Lebesgue measure on [START_REF] Aubin | Differential Inclusions[END_REF][START_REF] Lecomu | Sur Ia loi de Coulomb[END_REF], for instance: if D is a nonempty closed bounded subset of X, then a bounded linear functional on X assumes a maximum value on D.

More important with respect to our subject matter is the following, which removes the prominence of Lebesgue measure.

Let us come back to the setting of Remark 13.4. Let us suppose that, on the u-field I of subsets of S, two countably additive set functions are defined: p. with nonnegative real values and A. with values in the Banach space X. Suppose that X has the Radon-Nikodym property; then it is established that A. is p.-continuous, with v(A., S) < + co, if and only if there exists g e £ 1 (S, p.; X) ensuring (13. 7).

As in Remark 13.4, this may be transferred into the functional theory of measures, by considering the a-field BK of the Borel subsets of every compact K c T. If the X-valued measure m on Tis majorable, it results from Proposition 7.4 that the integral J dm, denoted by m(E), is an element of X for every EeBK.

E

This defines on BK a countably additive X-valued set function, with finite variation. Take as Jl. the modulus measure lml (as a set function, the latter is equivalently the variation E -+v(m, E)). Then inequality (7 .4), with h equal to the characteristic function of E, implies the p.-continuity of m. Hence, on account of Proposition 7.8, one has the following proposition.

Proposition 13.8: If X possesses the Radon-Nikodym property, every majorable X-valued vector measure m possesses, relative to its modulus p. = lml, a density m~ e L IX) (I, Jl.; X). Every representative of m~ is a function taking values of unit norm at p.-almost every point of /. Also established in [START_REF] Diestel | Vector Measures[END_REF] is the equivalence of the Radon-Nikodym property of X with the Riesz representation property: for each bounded linear operator A of L 1 (S, Jl.; JR.) to X, there exists geL IX) (S, Jl.; X) such that V feL 1 (S, p.; JR.): Af= J fgdp.. s Let us conclude this section by quoting some items from Diestel and Ubi's lists. 

Derivative at a Point

Let X be an arbitrary Banach space and f E W~'! (I, X). The element ft' of Lloc (I, dt; X) involved in Notation 13.2 is connected with the possible derivative off at a point of I through the concept of a Lebesgue point of a locally integrable function.

Letg ELfoc(I, dt; X). Classically (see, e.g. [START_REF] Dunford | Linear Operators, Part 1: General Theory[END_REF], Chap. III, Sect.12, Theorem 8, In that sense, every function belonging to W 1 ~'! (I, X) equals an indefinite integral of its derivative.

When a connection with absolute continuity is wished, the Radon-Nikodym property has to be assumed for X. In fact, an item on Diestel and Uhl's list asserts that X possesses this property if and only if every absolutely continuous f: [0, 1] ~X is differentiable almost everywhere.

Another item on the list states that the Radon-Nik:odym property of X is equivalent to asserting that every f: [0, 1]-+ X with bounded variation possesses a derivative almost everywhere. Since every compact interval may be reduced to [START_REF] Aubin | Differential Inclusions[END_REF][START_REF] Lecomu | Sur Ia loi de Coulomb[END_REF] through some affine change of variable, we shall use this to establish the following. Proposition 14.2: Let X possess the Radon-Nikodym property and let f e lbv (I, X). The derivative j ( 1:) exists for Lebesgue -almost every point 1: and, after arbitrary extension to the whole of I, it constitutes an element of ~t!c(I,dt;X). Lebesgue-almost everywhere in I one has lli<t>ll<! Jlj(t), and this holds as an equality iff f e W.!e: 1 (I, X). Suppose I to be C?Ompact. Then J lli(t)lldt<var({,J), I with equality iff f e W 1 • 1 (I, X). In fact, the left-hand member is majorized by

T-h T J (Jif(t+h)-v 1 (t))dt< J Jlf(t)dt<hV 1 (T). 0 T-h Since the existence of . 1 /(t)=lim -h (f(t+h) -f(t)) 11-+0
is granted for almost every t, let us consider a sequence of positive values of h tending to zero. Thanks to (14.4), Fatou's lemma yields that the restriction ofjto every interval of the form [0, T-ho], hoe ]0, T[, is Lebesgue integrable and, finally, that j e ~ 1 (I, dt; X). As an element of bv (I, 1R), the nondecreasing real function fJ possesses a derivative almost everywhere. Inequality (14.2) is obtained by going to the limit from ~ (f(t+h)-f(t)) :s~ (Jif(t+h)-Jij(t)). If/e W'-• 1 (I, X), then in view of Propositions 14.1 and 7.12, equality holds in (14.2) and (14.3).

Conversely, suppose that (14.2) is verified as an equality. For every se [0, T], this implies J lli(t)jjdt+ J lli(t)!ldt=var(f;O,s)+var(f;s,T). Since inequality (14.3) possesses a decomposition into the sum of an element of W.!c 1 (I, X), unique up to the addition of a constant, and an element of lbv (I, X) with zero derivative Lebesgue -a. e. This demonstrates that, for a function/ e lbv (I, X), the derivative j, though it exists Lebesgue -a. e., conveys deficient information aboutf In particular, an evolution problem with/ as unknown cannot be posed well by asserting only that the said derivative verifies a certain condition Lebesgue -a. e., unless it is specifically stipulated that/belongs to WI!c This generalizes a theorem of Jeffery [START_REF] Jeffery | Non-absolutely convergent integrals with respect to function of bounded variation[END_REF][START_REF] Ellis | Derivatives and integrals with respect to a base function of generalized bounded variation[END_REF] concerning real-valued measures on an interval. A proof, based on Jeffery's result, may be found in [START_REF] Moreau | Chain rule involving vector functions of bounded variation[END_REF]. may be characterized as concentrated on a countable I. Also observe that the real measures on a compact interval form a Banach space under the norm defined by the variation: a measure is found to be atomic iff, with regard to this norm, it equals the sum of a series of point measures. It is shown that every real measure lets itself be uniquely decomposed into the sum of an atomic measure and a diffuse measure.

Coming now to bv functions, one may say that an element of bv (I, JR.) is a jump function iff its differential measure is atomic. Accordingly, any fe bv (I, JR.) equals the sum of a continuous bv function, unique up to an additive constant, and a jump function. There exists afactorizationf =yo v, where y: r -+Xis a curve-isometry, i.e. for every cx<P in r var (y; a., {3)= p -ex. (15.1) If the Banach space X is strictly convex (see Remark 7.11), the function y is uniquely determined. Remark 15.2: If/is discontinuous, gaps are expected in its rangef(I). For every discontinuity point off, say sel, one may fill the possible gaps between/-(s) and f(s) and between f(s) and j+ (s) by rectifiable arcs, in particular by line segments. The union off(!) with this collection ofline segments will be called the filled-in range off The following proof consists in showing that the filled-in range equals the range of a rectifiable curve and that, for every t e I, the oriented arc length locating the point f(t) on this curve equals v(t) (cf. Sect. 5). ProofofProposition 15.1: Sincev: 1-+JR is nondecreasing, foreveryainv(I), the set v = (a)= { t e I: v ( t) =a} is a nonempty subinterval of I, possibly reduced to a singleton. For every [a, b] c v = (a), the variation var (f; a, b) is zero, hence f assumes a constant value throughout v""' (a); denote this value by Yv(a), thereby defining the unique mapping Yv of v(I) to X such that

Isometric and Lipschitz Factorizations

V t E I :f(t) =yv(v(t)). ( 15.2) 
We now have to define y as an extension of Yv to the whole of r.

The structure of F\v(I) may be investigated as follows. Let a e T\v(I);

due to the definition of r, the two sets v<(a)={tel:v(t)<a} and v>(a) If, in addition, the Banach space X is assumed to be strictly convex, one may check that (15.3) and (15.4) provide the only expression ofy possible for (15.1) to hold; the argument is detailed, for a similar situation, in the proof of Proposition 15.3 below. This is the uniqueness statement.

With a view to establishing (15.1) for every [a, p] c r, let us frrst show that var (y; a, p) < p -a, i.e. equivalently v [IX, p] c r: IIY{/J) -y(a>ll ~p-IX. Finally, if ~ and p belong to different connected components of F\v(l), there exists a point of v(l) in between, and one is reduced, by addition, to the preceding situations. D

We shall now define a Banach norm on the product space 1R x X, by choosing a strictly positive constant K and putting, for every element (r, x) of this product space, (15.6) From the standpoint of analysis, little would be lost by restricting " to equal1.

We introduce this coefficient mainly to recall, in applications to mechanical evolution problems, that the real numbers r and llxllx measure physical quantities of different natures -usually time and speed; the presence of" allows one to develop calculations independent of the choice of physical units.

The mapping (id, f) : t..,.... ( t, f (t)) of I to 1R x X possesses as range a subset of JR. x X which is nothing but the graph off; it is disconnected iff/is discontinuous (one may check that, for a regulated function, thus in particular for an lbv function, continuity is equivalent to the connectedness of its graph). By using line segments in order to fill in the gaps of this set, in the way we have described in Remark 15.2 above, one constructs the filled-in graph off This equals the union if gr f with the collection of "vertical" line segments [(t,f-(t)), (t,f(t))] and [(t,f(t)), (t,f+ (t))], fort ranging through the set of discontinuity points off(or, equivalently, through the whole of I). It is easily verified that (id,f) belongs to lbv (I, 1R x X); thus Proposition 15.1 shows that the filled-in graph off equals the range of a rectifiable curve in 1R x X. Proposition 15.4 below will make this more precise, through the use of the following preliminary result. Proposition 15.3: Let us equip 1R 2 with a norm by putting, for every pair (r, u), !l(r, u) II= lrl + K!ul. Then the mapping (id, v) : t-+(t, v(t)) belongs to lbv (I, JR?) and admits as variation function

t-+w(t)=t+KV(t).

(15.8)

The smallest interval containing w(l) is A= I+ KF.

In this special case (though strict convexity does not hold for the norm defined in (15.7)), the factorization of (id, v) through its variation function and a curveisometry, asserted in general by Proposition 15.1, is unique and rna y be described as follows. There exist, uniquely, two nondecreasing real functions, say p of A onto /and q of .d onto r such that (id,v)={p,q)ow, i.e.

Vte/: t=p(w(t))J v(t)=q(w(t)), (15.9) and that the mapping {p, q) : .d-+ IR? is a curve-isometry with regard to the norm (15.7); hence pis Lipschitz with ratio 1, and q with ratio K- According to Remark 15 .2, the factorization amounts to the bridging of the possible gaps in the range of (id, v) (i.e. the graph of v) by rectifiable arcs, so as to obtain the range of a rectifiable curve along which every point of the special form (t, v(t)), t e/, is located by an arc length 0 equal to w(t). Each of these gaps arises from the discontinuity of vat some point of I, says; its extremities have either the form (s, v-(s)), (s, v(s)) or the form (s, v(s)), (s, v+ (s)). Take a gap of the frrst form; the isometry condition requires that the length of the bridging arc A be w(s) -w-(s)=K(v(s) -v-(s))). Let us show that A is necessarily a line segment.

In fact, for (x, y) e A; the length of A is minorized by

ll(s, v(s)) -(x,y) II+ ll(x,y) -:-{s, v-(s) I I ' =21s-xl +K(Iv(s) -yi+IY -v-(s)l)
which shall be strictly greater than K(v(s) ~v-(s)), unless x=s and v-(s)<y<v(s); this means that (x,y) belongs to the line segment admitting the prescribed endpoints. Along this line segment, the correspondence between the location of (x,y) and the arc length 0 consists in affine interpolation; hence the definition of the mapping {p, q) : 0-+(x,y) in the present case is identical to the construction of y in the proof of Proposition 15 .1. Similar reasoning applies to a gap of the second form; so the uniqueness of the factorization is proved.

Formulas (15.12) and (15.13) are only a rewriting of(15.9). As for (15.11), it is clear that p + Kq equals identity at every point of w(/); now this equality is preserved under the affine interpolation procedure used to define p and q in every gap. Since o~(p(O), q(O)) is, by construction, a curve-isometry of Ll to 1R 2 , one has, for every 0 and 0' in J,

lp(lJ') -p(O)I + Klq(O') -q(O)I < 19' -01'

which implies the Lipschitz properties of p and q.

That p and q are nondecreasing real functions easily follows from the fact that the filled-in graph of vis a monotone increasing subset of1R 2 , i.e. for every (x, y) and (x',y') in this subset, one has (x-x')(y-y')~O. D

It is also useful to visualize the mappings p and q as follows. For every 6 eLl, the line {(r,u)eiR 2 :r+Ku=O} intersects the fU.led-in graph ofv at exactly one point; this is the elementary one-dimensional version of the general theorem of Minty and Kachurowski, concerning maximal monotone correspondences in Hilbert spaces. IfO= w(t), tel, this point coincides with (t, v(t)); hence it equals (p(lJ), q(O)) as previously defined. If, on the contrary, 0 belongs to some gap of w(I), the intersection point lies on some of the (vertical) line segments used to fill in the corresponding gap of gr v; its dependence on 0 clearly agrees with the affine interpolation procedure used above in constructing {p, q).

Having completed the proof, let us additionally observe the following. Knowledge of the mapping {p, q): A~1R 2 involves knowledge of the filled-in graph of v, namely the range of (P, q), but not knowledge of gr v. In other words, the function v cannot be reconstructed exactly from p and q; but v-and v + can. In fact, forte I, the limits v-(t) and v+ (t) equal the values of qat the ends of the interval p = (t).

Proposition 15.4:

The notations ofPropositions 15.1 and 15.3 are used jointly, i.e. v equals a variation function of f e lbv (/, X); the space 1R x X is equipped with the Banach norm (15.6).

Then (id,f) belongs to lbv (/, 1R x X), with variation function w, as expressed in (15.8). Let In any factorization of the form (15.14), the function c5: L1~X may be modified on the subset Ll\w(l) of its domain so that fJ=yoq, with q defined by Proposition 15.3 andy: r~x.

Every y : r ~X is a curve-isometry iff {p, yo q) : L1 ~ 1R x X is a curve-isometry; in such a case y o q is Lipschitz with ratio "-l.

A necessary and sufficient condition for the factorization (id,f)={p, yo q) oW (15.15) to hold, with {p, yo q) a curve-isometry, is that y satisfy the conditions of Proposition 15 .1.

Proof: Let [a, b] c I; the variation of (id,f} on [a, b] is the supremum, over all sequences a=-r 0 <-r 1 < ... <-r,.=b, of the expression n

I (1-ri-'tt-li+KII/(-ri)-f(-r,_l)llx) i=l n =h-a+K I llf(-ri)-f(-r,_l)llx• i=l This supremum equals b-a+K(v(b)-v(a)
), so w is a variation function of (id,f). Suppose that (15.14) holds and that (n, b) is a curve-isometry of L1 to 1R x X, relatively to the norm (15.6); let us prove that n=p. Since now=id 1 =pow, one has n(O)=p [START_REF] Moreau | Une formulation du contact a frottement sec; application au calcul numerique[END_REF] for every 9Ew(l). Let us now study the restriction of(n, b) to any connected component of L1 \w(I), say [w-(s), w(s)[, sEl (the case of a connected component of the form ]w(s), w+ (s)] will be treated similarly; observe that, due to the fact that w is strictly increasing, the situation is simpler than in the proof of Proposition 15.1, involving the function v which is only nondecreasing). Since (n, b) is a curve-isometry, its restriction to [w-(s), w(s)[ is a rectifiable arc A in 1R x X, with endpoints (s, f-(s)) and (s, f(s)), and with length equal to w(s)-w-

(s)=K(v(s)-v-(s)). Let (~,x)EA; the length of A is minorized by ll<s,f(s)) -(e,x>llaxx+ l!<e,x) -(s,f-(s))ll~txx =2ls -el +K(j!f(s) -xllx+ llx -f-(s)llx) >21s -el +" llf(s)-f-(s)llx.
In view of Proposition 4.3, the last term equals K(v(s) -v-(s)); hence the length of A can have this value only if e=s. This proves that n(9) equalss, namely p(9), for every £JE [w-(s), w(s)[. The same holds for all connected components of Lt\w(I), hence n=p.

The formula (15.14) is equivalent to no w=id 1 and bow= f Since/ equals a constant on every level set of v, there exists, uniquely, Yv: v(I}-+X such that f-Yv 0 V. Now v=qow, so V£JEw(I): <5( 9)=yv(q(£J)).

The values that~ takes on L1\w(J) are immaterial regarding the factorization (15.14); hence, if y denotes any extension of y., to the whole of r, (15.14) is preserved by taking~= yo q. (Incidentally, observe that if y: r--+ X is required to be a curve-isometry and if X is strictly convex, Proposition 15.1 implies the uniqueness of this extension of y.,.)

Let y:T-+X and [oc,JJ]cL1. The variation of {p,yoq) on [oc,p] is the supremum, over all sequences oc = 9 0 < 9 1 < ... < 9,. = p, of ,.

L lp(Oi) -p(0,-1)1 + K II (y 0 q) (6i) -(y 0 q) (9,_1)11x i=l ,.

=p(JJ)-p(rx)+rc L !ly(q(Oi))-y(q(Oi-l))jjx i=l (recall that pis nondecreasing). Since q is nondecreasing and surjective of L1 tor, this supremum equals p(JJ) -p(rx) + K var (y; q(rx), q(/J)) = p -Kq(JJ) -rx+ Kq(rx) +K var (y; q(rx), q(/J)). The mapping {p, yo q) is a curve-isometry iff this equals p -rx, i.e. equivalently var (y; q(rx), q(p)) = q(/J) -q(rx).

As q is surjective the latter means that y is a curve-isometry of r to X.

If (p, yo q) is a curve-isometry the definition of the norm in 1R x X yields !p(p) -p(rx)!+" II(Y 0 q) (JJ) -(yo q) (rx)llx<P -rx which clearly implies that y o q is Lipschitz with ratio "-1.

Observe finally that, due to (15.12) and (15.13), (15.15) is equivalent to f=yov; this is precisely the requirement imposed on yin Proposition 15.1. 0 Remark 15.5: The factorization pattern which is the object of this section was frrst introduced in [START_REF] Moreau | Factorisation d'un processus de rafle discontinu[END_REF] in the framework of multifunctions with finite retraction (see Remark 4. 7); it has also been exploited in [START_REF] Moreau | Derivation d'une mesure vectorielle sur un intervalle[END_REF].

Conclusion

We shall conclude this chapter by giving examples of how the material presented applies to the investigation of some measure differential inclusions.

In the notation of Sect. 13, a differential inclusion of the ordinary sort, with unknown u E Wt!c 1 (/, X), is a condition of the form to be satisfied for Lebesgue-almost every t in the interval I by some representative of the element u; e L}oc(I, dt; X). Here (t, x)-+ F(t, x) c Xis a given multifunction (i.e. a set-valued mapping) of I x X to X. A general reference on this subject is [48], a book motivated by applications to economics and control theory.

The existence of solutions to (16.1) is naturally conditioned by topological assumptions about r. In common cases, these topological assumptions entail that anyfunctionuwhichis a solution in the above sense verifies F(t, u(t)):#:Bfor every t; in some other problems, the latter condition is additionally imposed.

Then the definition of a solution u becomes equivalent to requiring the existence of a representative of u; satisfying (16.1) for every tin I.

A natural generalization of(16.1) consists in replacing the Lebesgue measure dt by some prescribed nonnegative real measure p. on the interval I. The unknown u is then assumed to be an element of lbv (I, X), with differential measure du = u~p., and the element u~ of Lloc (I, Jl; X) is required to possess a representative satisfying for every t in I the condition u~ e F(t, u(t)) ; (16.2) this implies that, for every t, the right-hand member is nonempty.

Of primary interest in that connection is the case where the given multifunction r takes only conical values, i.e. for every (t, x) elx X and every A.e:R+ = [0, + oo[ one has A.F(t,x) c F(t,x). Equivalently, we can assume that the latter holds for every A. e ]0, + oo [ and additionally that F(t, x) :#:9=>0e F(t, x). (16.3) In this special case, there is no need to specify the measure Jl in advance. In fact, suppose that u e lbv (J, X), associated with a certain nonnegative measure Jl, is a solution to (16.2) If X possesses the Radon-Nikodym property, it may prove convenient to use as v the modulus measure ldul.

In any event, provided that the multifunction r has conical values, we shall formulate the equivalent conditions (16.2) and (16.4) by writing simply due r(t, u(t)). (16.5) Let us assume throughout the following that I contains its left end t 0 , the "initial instant". Leaving aside now the question of the existence of solutions, let us come back to the differential inclusion of the ordinary sort (16.1). Because r is not in general a singleton, there is no reason to expect the uniqueness of ue Wi!~1 (/,X) verifying (16.1) and some initial condition u(t 0 )=Uo• A common problem of control theory is to minimize some cost functional over the set of such solutions.

There is, however, a celebrated uniqueness case. Suppose that X= H, a real Hilbert space, and that, for every tel, the multifunction x-+A (t, x)= -r(t, x) is monotone in the sense of Kachurovski-Minty, i.e. yeA(t, x), y' eA(t, x')=>(x -x') • (y -y')>O; (16.6) here the dot refers to the scalar product in H. Then, by calculating elementarily the derivative of a squared norm, one finds that, for every two solutions u 1 and u 2 of -u; eA(t, u(t))., (16.7) the distance llu 1 (t)-u 2 {t)jj is a nonincreasing function oft. This implies in particular that at most one such solution can agree with some initial condition.

The book [START_REF] Brezis | Operateurs maximaux ti)Onotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] remains the standard reference on the differential inclusion (16. 7), although many papers on the subject have been published since; see also [ Classically, on the set of the monotone multifunctions H-+ H, a partial ordering is induced by the inclusion of the corresponding graphs, as subsets of H x H. Multifunctions such as ot/J are well known to be monotone and maximal elements relative to the above ordering. It is usual in the study of the differential inclusion (16. 7) to assume that, for every t, the monotone multifunction A (t,.) is maximal. If this is supposed here, (16.8) implies that A(t,.)=ot/Jc<t>•

The corresponding measure differential inclusion -duE ot/Jc(t)(u(t)) (16.9) defines what is called a sweeping process [START_REF] Moreau | Solutions du processus de rafle au sens des mesures differentielles[END_REF][START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]. This is the simplest instance of an evolution problem of the unilateral type. Let us visualize here t-+u as a moving point in H; the derivative du/ dt, if it exists, will then be seen as the velocity of u.

The given multifunction t-+C(t) may be visualized as a moving (closed convex) subset of H. In the special case where this set has a nonempty interior and where t -+u is continuously differentiable, one may interpret condition ( 16.9) as follows.

As long as the moving point happens to lie in the interior of C (t), the normal cone ot/Jq,,(u) reduces to the zero of H; hence u has zero velocity. It is only when "caught up with" by the boundary of C(t) that u takes on a motion, in an inward normal direction, as if pushed by this boundary, so as to go on belonging to the moving set.

When the given motion of C(t) is not smooth enough, the continuous differentiability of a possible solution to ( 16.9) cannot be expected. It is however desirable that, for two possible lbv solutions u 1 and u 2 to (16.9), the same property as for the W.!~1 solutions of (16.7) hold: the distance llu 1 (t)-u 2 (t)IJ should be a nonincreasing function oft. This property which ensures uniqueness for the possible solution to the initial value problem, will easily be derived from Proposition 12.1 above (see also [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]), provided that, in addition to (16.9), it is stipulated that the unknown u e lbv (/,H) should be right-continuous. In fact, the right-continuity of solutions has been generally prescribed from the very beginning of the theory of measure differential equations [3].

In previous sections, we have stressed that the values taken by an lbv function at possible discontinuity points are immaterial with regard to its differential measure. So, instead of requiring right-continuity, an equivalent way of dealing with the present evolution problem would be to replace in the right-hand member of (16.9) the value u(t) by u+ (t).

The existence of solutions was established in [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] under the assumption that t-+C(t) has bounded "retraction" [START_REF] Moreau | Multiapplications a retraction finie[END_REF]. Another class of existence results has been initiated in [START_REF] Tanaka | Stochastic differential equations with reflecting boundary condition in convex region[END_REF] and [START_REF] Castaing | Sur une nouvelle classe d'equation d'evolution dans les espaces de Hilbert[END_REF]; along this line, [START_REF] Monteiro Marques | Rafle par un convexe semi-continu inlerieurement d'interieur non vide en dimension finie[END_REF] and [45] assume that C(t) has nonempty interior.

Generally, the existence proofs of bv solutions to evolution problems, on a time interval I which, at the first stage, is assumed compact, rest on the construction of sequences (or of nets) of approximate solutions. These may be defined as the solutions to ordinary differential equations resulting from some regularization of the investigated problem. They may also be step fwtctions similar to what is obtained in numerical algorithms of time discretization. In any case, the crucial stage consists in proving that the constructed collection of approximate solution has uniformly bounded variation on/. After that, various extraction procedures will play a role similar to that of Ascoli's theorem in the standard theory of differential equations. The proof will end with checking that the function obtained at the limit is in fact a solution to the problem investigated; at this stage, the key often lies in integral formulae, of which our Proposition 12.4 displays an example, or in Fatou's lemma.

For finite-dimensional H, the Ascoli-like procedure of extraction is frequently provided by Helly' s selection theorem (the same idea was also present in S. Banach's thesis [START_REF] Banach | Sur les operations dans les ensembles abstraits et leur application aux equations integrates[END_REF]) an exposition of which may be found, e. g. in [START_REF] Natanson | Theory of Functions of a Real Variable[END_REF]53]. Let us quote from [START_REF] Barbu | Convexity and Optimization in Banach Spaces[END_REF] the f~llowing infinite-dimensional version of this theorem. In {16.9) only a very special example of a measure differential inclusion involving a multifunction with conical values is displayed. The motion t-+q(t) e JR." of a mechanical system with a finite number n of degrees of freedom, submitted to frictionless unilateral constraints, under the assumption of inelasticity of the possible impacts, has been shown [START_REF] Moreau | Liaisons unilaterales sans frottement et chocs inelastiques[END_REF][START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF] to be governed by i q(t)=q(t 0 )+ J u('r:)d-r:, (16.10) to -du + Q(t, q, u)dt E at/fv(q)(u+). (16.11) Here Q : I x 1R" x JR."-+ JR." is a given continuous function and dt refers to the Lebesgue measure on the interval!. By V( q) one denotes the tangent cone at point q(t) to the region 9t of JR." permitted to q by the given (time-independent) unilateral constraints. This cone is easily defined if the unilateral constraints may be described by a finite system of inequalities fa.(q) <0, a= 1, ... , I, and if the functions Ia. are C 1 with nonzero gradients; in particular V(q) equals the whole

  Section 15 introduces a new way of studying lbv functions. It is established that, among other factorization properties, for every f E lbv (/,X) there exist an increasing function w of I to some real interval L1 and a Lipschitz function o of L1

( 3 . 1 )

 31 s-+t,s>tIf, in addition, for every t different from the possible left end of I, there exists f-(t), then (3.2) s-+t,s>t

(4. 1 )Definition 4 . 1 :

 141 The function f: I-+ E is said to be of bounded variation on I iff var (j, I)< + oo; notation f E bv (I, E). It is called function of locally bounded variation on I iff var (j; a, b)< + oo for every compact subinterval [a, b] of I; notation f E lbv (I, E). Observe that var (f, I) equals the supremum of var (f; a, b) for all [a, b] c I.

  This inequality is similarly established, under Convention 3.5, if s happens to be the left end of I. It readily implies V [a, b] c I: var {f-; a, b)< Yt-(b)-Yt-(a); therefore, fe lbv (/, E). 0 Incidentally, the above does not imply that Yjequals a variation function off-.

  any function fQ constructed as above satisfies \/tel: ~(f(t), fQ(t)) <e, V[a,b) c/:var (JQ; a,b)<2e+var (f; a, b).

Proposition 5 . 1 :

 51 •Let H and I be two real intervals and let c :H-+ I be nondecreasing. Iff e lbv (/, E), then the function f o c: s-+ f(c(s)) belongs to lbv (H, E) and, for every [a, b] c H, var (fo c; a, b) <var {f; c(a), c(b )) . (5.1) If, in addition, cis assumed continuous on [a,b] (equivalently, cis surjective of [a,b] to [c(a),c(b)]) equality holds in (5.1).

( 6 . 5 )

 65 Let S' e .9' such that S c S' c [a, b]; with S written in the form (6.4), for every i e { 1, 2, ... , n} let us denote by -r{ the points of S' which lie in [ -ri -It -ri], so that (p= 1 whenS' possesses no point in ]-ri-1 , -ri[; ifi<n thesamepointof S' appears as tf and as -r?+ 1 ).

  Proof of Proposition 6.5: Let [a, b] c I contain the support of q>. First suppose I open in JR.; then a and b may be chosen to be different from all the nodes of P. The partition P induces a finite partition of [a, b] whose nodes will be enumerated as a<t 1 <t 2 < ... <tp<b.(6.12)

  • (b) No point of Si equals a node of P. (c) Every open interval ]ti-1 , ti[ determined by Si contains at most one of the said nodes.

  [a, b] c /, the notation J dm classically stands for the integral Jxra,b]dm of the characteristic [a, b)

Proposition 8 . 1 :

 81 Let f E lbv (/,X); for every compact subinterval [a, b] of I, under Convention 3.5 if needed, one has J df= f+(b)-f-(a).

  particular, for every ael, the d.f-measure of the singleton {a} equals J df=f+(a)-f-(a).

  first consider the case where [a, b] is contained in the interior of I; then we may approach Xra,bJ by the following sequence (/)p of elements of :K (1). Denote by sP and aP, with sp<ap<a, two infinite sequences of points of /tending to a; denote by tP and bP, withb <hp< tP, two infinite sequences of points of /tending to b. Choose the function cp P E :K (I), with values in the interval [0, 1 ], with support contained in [sp, tp] and taking the value 1 throughout[ap, bp]. By establishing that, normwise in X,lim J cpPdf = f+ (b)f-(a),(8.3) p-+oo we shall prove (8.1), thanks to Proposition 7.5; in fact, the sequence ({Jp converges to Xra,bl pointwise, with lcpPI majorized by the characteristic function of some compact interval containing all [sp, tp]. Now, under the definition (6.2) of M, J cpPdf =lim M(S, e, cpp).

[ 7 ; 0 Corollary 8 . 2 :

 7082 , b 1 which, in view of Convention 3.5, is again equality (8.1). Similar reasoning applies if b is equal to the right end of I and a different from the possible left end. If a, b are two elements of I and a< b, one has, under Convention 3. 5 if needed, J df=f+(b)-j+(a), b[ furthermore, if a< b, J df=f-(b)-j+(a).

(8. 7 ) 0 Corollary 8 . 3 : 0 Corollary 8 . 4 :

 7083084 ]a,b[ Proof: Since X[a.b] = X{a} + XJa.bl'(8.5) follows from(8.1) and similar reasoning applies to(8.6). For a=b the notations ]a, b],[a, b[ and ]a, b[ are naturally understood as representing the empty subset of I; therefore, equality X£a,b£= X{al + XJa,b£ holds iff a< b, so (8.7) follows from(8.6). Iff e lbv (/,X), the function ft equal to j+ (respectively/-) at every interior point of I and to fat the possible ends of /belongs to lbv (/,X) and has the same differential measure as f Proof: That.ft elbv (/,X) results from Proposition 4.5. Using Propositions 3.1 and 8.1, one readily checks that dfi and dfyield the same integral over every compact subinterval of I. If two elements ft and fi of lbv (/,X) have the same differential measure and are right-continuous in the interior of I (alternatively, leftcontinuous in the interior of I), then ft -fi equals a constant.

0 Remark 8 . 5 :

 085 Therefore ft.+ (T,)-f 2 +(T,)= C; in view of (8.2) and the assumption dfi. =d/ 2 , this implies / 1 (T,)-/ 2 (T,) =C. If I contains its left end Tz, the right-continuity of a function f e lbv (/,X) at this point is equivalent to J df = 0, i.e. { T,} is not an atom of d f {Tr} A similar remark applies to left-continuity at the possible right end.

  hand member equals v 1 -(b)-J-f+ (a), i.e. var (/;]a, b [), due to Proposition 4.3; now, for every e > 0 there exists an increasing finite sequence t1 < t 2 < ... < t 11 of points of ]a, b[ such that II -e+var{f;]a,b[)< L llf(ti)-f(ti-1)11.

  )-f(ti-1)11 < llf(ti)-f-(ti)ll + llf-(ti)-f+(ti-1)11 +II!+ {ti-l)-f<ti-1) II• (8.10) Define t 0 =a, t,. + 1 = b; then ]a, b [ rna y be expressed as the following union of disjoint intervals:]a,b[=]t 0 ,t 1 [u {td u]tbt 2 [u ... u{t,.}u]t,.,t,.+ 1 [.(8.11) 

Jumps, 1

 1 .e. II!+ (a)-!-(a)ll <II!+ (a) -f(a)ll + llf(a) -r(a)ll• By the same calculation as above, this yields J dV 1 > J ld/1, {a} {a} which is contradictory.0

Proposition 8 . 6 :

 86 The measure (df)J equals the sum of d(fJ) and the following measures on J: (a) the measure {f(a) -f-(a))l>a if J possesses a left end, say a, contained in it; (b) the measure {f+ (b) -f(b))l>b if Jpossesses aright end, say b, contained in it. In the case of a orb being endpoints of I, f-(a) and f+ (b) are understood in the sense of Convention 3.5.

Remark 8 . 7 :

 87 That (d/) 1 differs from d(/ 1 ) may be seen as an inconvenience. In contrast, everything runs smoothly for the variation of the restriction: var (/, J) = var (/;, J); equivalently, for every[a, b] c J, var (/; a, b)= var (/ 1 ; a, b).

Proposition 9 . 1 :

 91 Let m denote a majorable measure on the interval/, with values in the Banach space X. There exists f E lbv (/, X), left-continuous in the interior of I (alternatively right-continuous in the interior of I) whose differential measure equals m. Within the addition of a constant, this function is unique.The real nondecreasing function, left-continuous (respectively right-continuous) in the interior of I, which corresponds in the same way to the modulus measure lml, equals a variation function off Proof: In the case when I contains its possible right end, denote this end by T,.;

  [t,(l( We shall avoid uninteresting discussion by assuming(}< T,.. After examining three possible locations of(} with regard to a subinterval [a, b [ of I, one obtains that, for every a< b < T,. in I, J dm f(b)-f(a).

  b[ Let b lie in the interior of I; take an arbitrary sequence an < b tending to b. Apply Proposition 7.5, with hn equal to the characteristic function of [an, b [;replacing a by an in (9.2), one obtains lim (f(b) -f(an)~=O, which is .the left-continuity off at point b.n->ooLet a e I, with a < T,. if I contains its right end; take an arbitrary sequence bn >a tending to a. By applying Proposition 7.5 with hn equal to the characteristic function of [a, bn[, one similarly derives from (9.2) that the right-limit f+ (a) exists and J dm f+ (a) -f(a).

{a}

  In the case of I containing its right end, similar reasoning shows the existence of f-(T,.) and J dm f(T,.) -f-(T,.). (9.4) {T,} Altogether, for every [a, b] c I, J dm f+(b)-f-(a).

  The norms in X, Y or Z, indistinctly, are denoted by11•11• 

  u is regulated, there exists for every ex> 0 a local step function "": I-+X such that !lu -u«ll <ex everywhere in [a, b 1. The left-hand side of(11.4)is majorized by J f/!(u-ufndy) + J <fJ(u«-u,dya) + J 4>(u«,dy-dya) . (11.5) [a,b] [a,b} [a,b]

  show that the vector measures appearing in both members yield the same integral on every compact subinterval [a,b] of I. Corollary 11.4: For every [a, b] c I, under Convention 3.5 if a orb happen to equal an end of I, one has J 4J(dx,y-)+ J 4J(x+,dy)=4J(x+(b),y+(b))-4J(x-(a),y-(a)) (11.9) [a,b) [a,b)

J

  ydx+ J xy;dt=y(b)x+(b)-y(a)x-(a) (11.10) [a,b) [a,b)

  The following assertions are equivalent: (a) There exists Ji E bv ([0, T], X), a representative of f, such that var (Ji, [0, T]) < C; T-Il (b) Vhe]O, T[: f llf(t+h) -f(t)lldt<Ch; 0 (c) V q> e !'4 oo (]0, T[, X') : I (t (t), : (I)) dt < C sup, II q>(t) llx-.

  the nodes of P belonging to _[a, b ]. Under Convention 3.5 if t 1 or t,. happen to equal an end of I. it results that, as in Example 7 .9, lJ f ~(x+-x-.;dx)= L <P(x+(ti)-x-(tt},x+(tt)-x-(t,})>O.[a,b]. l=l

1 D:flemark 12 . 3 :

 1123 Since p is strictly decreasing, one has -J dp > 0; this contradicts the vanishing of -J 4'(x+, x+)dp. After dividing by 2, one may write equivalently(12.4) in the form J p4'(A.x+ +(1-A.)x-,dx)>O,[START_REF] Lecomu | Sur Ia loi de Coulomb[END_REF] 

I

  For every t E /, I I u + (t) I I x and I I u-(t) I I x are majorized by I I u I I oo ; then, through inequality (10.2) and Proposition 10.2, one obtains ILt (u)l <N{<P)IIulloo J (11 +al + 11-al)pldyl (12.6) I which proves the continuity of L 1 .

  Again, it is assumed that for every [a, b] c: I, the closure of f([a, b]) is contained in Q.

  4. A function/: I-+X is said to be locally absolutely continuous if, whatever the compact subinterval [a, b 1 of I is, one has the following property: for every e > 0, there exists 17 > 0 such that, denoting by ]ah b 1 [ any finite collection of nonoverlapping open subintervals of [a, b ], the implication L (bi-a,)<1'f=>L !lf(bt)-f(at)ll <e (13.3) i i holds. Equivalently f e lbv {/, X) with variation function Jif locally absolutely continuous of I to JR. Proposition 13.3: For any Banach space X, every element of J¥t'!~1 (I,X) is a locally absolutely continuous function.

Counterexample 13 . 7 :

 137 It is to be shown that X= :Yt (I), equipped with the supremum norm, does not possess the Radon-Nikodym property. Let I=[START_REF] Aubin | Differential Inclusions[END_REF][START_REF] Lecomu | Sur Ia loi de Coulomb[END_REF] and let/: 1-+Xbe defined as follows; for every tel, the elementf(t) of Xis the continuous function [a,b] c/, one finds ll/(b)-/(a)ll =b-a; hence/is absolutely continuous on I.

  Banach spaces that have the Radon-Nikodym property-Reflexive spaces (in particular finite-dimensional spaces, Hilbert spaces, etc.) -Separable duals -LP(S, p,; X), 1 <p < + oo, if X has the Radon-Nikodym property -Every closed linear subspace of a Banach space having the Radon-Nikodym property• Banach spaces that do not have the Radon-Nikodym property -L 1 (S, p,; 1R) if p, is not purely atomic -C(K, 1R), i.e. the space of the continuous real functions on an infinite (Hausdorff) compact space -L 00 of the Lebesgue measure on[START_REF] Aubin | Differential Inclusions[END_REF][START_REF] Lecomu | Sur Ia loi de Coulomb[END_REF] 

Proposition 14 . 1 :

 141 concerning, more generally, a function of an open subset of1R"), every point -r in the complement of a Lebesgue-negligible subset of I is a Lebesgue point of g, i.e. there exists an element y ( -r) EX such that lim /( 1 C) J g(t)dt=y(-r), any closed subinterval of I containing -r, with length /(C). The function y, after arbitrary extension to the whole of I, makes a representative of the element g of Lfoc (I, dt; X).In view of Lemma 13.1 and Notation 13.2, this readily implies the following proposition. A function/ E Jfl~~ 1 (I, X) possesses, at Lebesgue -almost every point -r of I, a derivative, sayj(-r); the functionj, arbitrary extended to the whole of I, constitutes a representative of the element ft' E 1-toc(I, dt; X).

  It is enough to assume from the start that I is a compact interval, say [0, T], and that the variation function J1f vanishes at 0. Then, for every he ]0, T[, T-h J llf(t+h)-f(t)lldt~h var {f; 0, T). (14.4) 0

( 14 . 5 )

 145 Inequality (14.3) follows through integration.

Proposition 15 . 1 :

 151 Let f E lbv (/, X), with variation function v : I .... JR. Denote by r the smallest real interval containing the range v(I), i.e. the convex hull of this range in JR.

4 )

 4 The definition(15.3) of y raises the question of consistency with Yv if v-(s) e v(l); then the nondecreasing function v actually equals a constant in some interval[s-e,s[ and so does f Hence v-(s)=v(s-e) and Yv(v-(s))=y,(v(s-e))=f(s-e)=f-(s), which agrees with y(v-(s)) as expressed in(15.3). The consistency of (15.4) withy, in the case v+(s)ev(I) is similarly checked. Convention 3.5 will be used if s equals an endpoint of I. In view of Proposition 4.3, the elements {f(s)-f-(s))/(v(s) -v-(s)) and (f+ (s)-f(s))/(v+ (s) -v(s)) of X have unit norm. Therefore, the definitions (15.3) and (15.4) of y secure equality (15.1) as soon as [a, p] is contained in the interval concerned.

(15. 5 )

 5 If a and p lie in v(I), there exist a and bin I such that a=v(a), P=v(b) and ljy(p) -y(a)jl = llf(b) -f(a)ll <v(b) -v(a) which is (15.5). Suppose now a= v(a), but p e F\v(I); then, for some s >a in I, either Pe]v(s),v+(s)] or fle[v-(s),v(s)[. In the first case, (15.4) yields IIYCP)-y(v(s))ll =P-v(s)

(15. 7 )

 7 Let v : I-+ 1R be a nondecreasing real function; denote by r the smallest interval containing v(l).

(

  id,f)=(n, b) ow (15.14) with (n, c5) a curve-isometry of L1 to 1R x X (Proposition 15.1 secures the existence of such a factorization); then n equals the function p involved in Proposition 15.3.

  u: E T(t, u(t)), (16.1)

Proposition 16 . 1 :

 161 Let X be a reflexive separable Banach space with separable dual. Let (w,.) be a sequence of elements ofbv ([a, b ], X) such that I I w,.(t) II< Cfor te [a,b] and var (w,.;a,b)<C for all n. Then there exists a subsequence (wJ of the above and a function we bv ([a, b ], X) such that Vte[a,b]: wk(t)-+w(t) weakly in X, b b Vcpe%([a,b]): J cpdwk-+J cpdw weakly in X. a a

  => f(s)eW.

	For every sin the open interval ]t, t+'1[ one has	
	f('r) eel f(]t, t+'1 [) c W.	
	r-+s, -r e ]s, t + rr[	
	Since the closed neighborhoods such as W make a base of neighborhoods of
	f+ (t), this establishes (3.1).	
	Similarly, for every sin ]t, t+17[,	
	f-(s)= lim f('r)E W,	
	-r-+s,-re]t,s[	
	hence (3.2).	0

Proof: Let W c Ebeaclosedneighborhood of f+(t); thereexists,.,>Osuchthat SE ]t,t+

'1[ 

  JR is non decreasing, the left-limit Vj ( t) exists for every t>inf /.Thus V 1 (s) possesses the Cauchy property for s tending tot from the

	left. In view of the inequality <5(/(s), f(s')) <I V 1 (s')-J'{(s)l, the same is true
	furf	0
	Proposition 4.3: Let f e,. • (I, E); then, for every t E I different from the possible
	left end, there exists	
	lim <5(/(s), f(t))	
	s->t,s<t	
	equal to	
	lim var (/; s, t) = V 1 (t)-Vj (t). s-+t,s<t	
	If/-(t) exists, these expressions equal 8(/-(t),f(t)).	
	Symmetrical properties hold true for right-limits, as long as tis different from
	the possible right end of I.	
	Proposition 4.2: If the metric space ( E, {J) is complete and f E 1 bv (I, E), then f	
	possesses a left-limit f-(t) for every t E I different from the possible left end of I	
	(otherwise, Convention 3.5 makes f-(t) trivially meaningful); the symmetric	
	statement holds for j+ (t).	

Proof: Since Vr :I-+

  Elementarily, the set of the discontinuity points in I of the nondecreasing real function Jif is (finite or) countable; Corollary 4.4 shows that the same is true for every f E lbv (/, E).

	Proposition 4.5: Let felbv (/,E); iff-(alternatively f+) exists at every point	
	of/, under Convention 3.5 if needed, this constitutes a function belonging to	
	lbv (/,E).	
	admits, for s-+t, s<t, a limit equal to Jif(t)-Jif-(t), since Vr :1-+JR is non-
	decreasing; this proves the first statement.If f-(t) exists, the asserted equality
	follows from the continuity of 8.	0
	Corollary 4.4: The function felbv (/,E) is left-continuous at a point of I
	(alternatively right-continuous), iff such is the real function Vr.	

  0 , J 1 , ... , J m. If a point ri is chosen in each interval

	Ji, one trivially has	m var (fQ; a, b)= L fJ(fQ(-ri-1), /Q(-rJ) •
		i=1
	In particular, let us take -r 0 =a, Tm =band for 0 < i < m let us choose as -ri the point
	at which /Q equals f Then var (fQ; a, b)= fJ(fQ(a), f(-r1)) + L fJ(f(-rf-t), f(ri)) +fJ(f(-rm-1), /Q(b )) . m-1
		i=2
	Using the triangle inequality and, at points a and b, inequality (4.3), this yields
	m var(fQ; a,b)<2s+ L EJ(f(-ri-1 ),f(-ri))<2e+var{f;a,b).	D
		i=l
	Remark 4. 7: A concept weaker than that of variation may be developed by
	considering, instead of the metric space (E, fJ), a space F equipped with a
	nonsymmetric pseudo-metric; this means that, for every x andy in F, some ecart
	e(x, y) e [0, + oo] verifying the triangle inequality e(x, z) <e(x, y) +e(y, z) is
	defined. But possibly e(x, y)#e(y,x) and possibly e(x, y)=O for x=/=y. This is
	done in [27], where a multifunction of the interval I to the metric space (E, fJ) is
	considered, i.e. a function of I to F = 2E. For any two elements A, B ofF, the ecart
		e(A, B)= sup inf fJ(a, p)
		aeA fJeB

  Proof: Clearly, for every x' in the unit ball B' of X', the nonnegative real measure lx' o ml = lx' om~ IJ1 is majorized by I I m~ll 11; hence m is majorable, with modulus lml majorized by llm~IIJl• Through the.Radon-Nikodym theorem, this implies that lml admits a density relative to Jl, say v~E!l'foc(I,p;JR.+) and The collection of real measures lx' o ml = lx' o m~!Jl, for x' ranging throughout B' equals the collection of IY' o ml = ly' o m~IJl, for y' ranging throughout the unit ball C' of Y' ~X'jY1.. Since Y is separable, C' contains a countable subset D', dense in the weak* topology o-(Y', Y). By definition, lml majorizes the real measure ly' o ml,y' E C'; hence the corresponding density function satisfies IY' o m~ ( t) I < v~ ( t) with the possible exception of a p-negligible Since D' is weak*-dense in C', the left-hand side equals llm~(t)jj.

lim~{•) I I to refer to the real function I I m~ II• Proposition 7.8: For every nonnegative real measure J1 on I and every m~ e .P foe(/, J1; X), the vector measure m = m~ J1 is majorable; its modulus measure lml equals II m~ II Jl. v~(t) < llm~(t) II for 11-almostevery value oft in/. Let us now prove the reverse inequality. Being an element of !l' foe (I, J1; X) the vector function m~ takes p. -a. e. its values in some separable Banach subspace Y of X. The measure m is Y-valued, in the sense that, to every lm !-integrable real function it assigns as integral an element of Y. subset N(y') of values of t in I.. If y' ranges throughout D ', the union of the corresponding N(y') is a J.L-negligible subset, say N, of I. The above inequality implies that, for t E I\ 1V, sup ly'om~(t)l<v~(t). y'eD' 0 The above expression for lml implies that the subset of I on which the real function II m~ I I vanishes is lml-negligible. Outside this subset, the vector function m~j I I m~ II, with values of unit norm, is defined; arbitrarily extended to the whole of I, it constitutes a density function of m relative to lml.

  S, say [-ri-h -ri], is not contained in [sp, tp] its contribution to M(S, 0, cpp) vanishes; the total contributions of intervals contained in [ap, bp] equals f(bp)-f(ap), since cp(Ok) = 1 for all the corresponding values if i; finally, because lcpPI < 1, the contributions of the intervals

contained in [sp, ap] and [bp, tp] have their norms bounded by var (j; sP, ap) and var (/; bP, tp), respectively. Consequently,

0

  Defining the product, denoted by hm, (or hdm, when written in an integral) of the Y-valued vector measure m by he ft' 1 ~c (I, lm I; JR.) may be seen as a special case of what precedes: take X= JR., Z = Yand tl!: (r, b )-+rb. This gives rise to another associativity rule, in the following proposition.Proposition 10.3: If hE It' 1 ~c(I, lml; JR.) and g E .P 1 (/, lhllml; X) one has

	f tl!(hg,dm)=f tl!(g,hdm)eZ.	(10.6)

  and (7.5)t . . I . tP(u-u«j dy)II<N(4'J)a. J dVy, Lemma 11.3; Equality (11.1) holds true if x andy are local step functions.

	~~	~»
	~ J 4)(u« .--u, dyQ)II <N(tl> )a. J dvfJ. n~" . ~~
	Under Convention 3.5 if needed, one has	
	. I dva=va(b)-va(a)<var(ya;a,,b'), . ~~	(11.6)
	where the compact interval [a•~, b '] is assumed to be a neighborhood of [a, b]

relative to I. In view ofProposition4.6, a partition P elfp (I) may be constructed in such a way that the right-hand side of (1 1.6) admits a fixed bound, whatever the refi1;1elllent Q of Pis. Therefore, a. and Ur, may be chosen in order that the two first tetms in (11. S) are less than '1/4 for every such Q. Since "" is a local step function, there exists a partition of [a, b] into a finite number m of subintervals; on each of them. u« equals a constant, which for the subinterval J is denoted by u« (I). Denoting by U« an upper bound of II u« 11 throughout [a, h], one has, in view of (10.1), h qj(u,,dy-dya) = ,,(u,(J), f dy-dya)

<N(qJ)U. ! dy~dyal• (11.7)

Using the expressions found in Sect. 8 for the integral of a differential measure on a subinterval of I, one derives from Proposition 4.6 that the last member of(11. 7) is less than '112m, provided P has been constructed to be fine enough. The expected inequality follows by addition. o

  This shows that the function fJ equals an indefinite integral of an element of L 1 (I, dt; JR.). It is therefore absolutely continuous and so isf As X has been supposed to possess the Radon-Nikodym property, one concludes that fe wt,l(J, X).0 If X has the Radon-Nikodym property, every felbv (I, X)

	may be invoked for the intervals [O,s] and [s, T] as well,
	one concludes
	J IIi< (t)lldt=var (f;O,s)
	[O,s]
	for every s. Corollary 14.3:

  1 . Evolution problems concerning . lbv unknowns are the motivation of the following proposition, which involves a density function of df relative to a measure other than dt. Let X be an arbitrary Banach space and let an X-valued measure m on the interval I admit, relatively to some nonnegative real measure f.J., a density, say g e !i' 1 !c (I, fJ.; X). Then, for f.J.-almost every t in I,

	Proposition 14.4: () I . m([t,t+e]) 1 . m([t-a,t]) g t = tm tm e-+0 fJ.([t,t+a]) s-+0 f.J.([t-a,t]) e>O e>O	.
	Here, by m([t,t+a]) the integral of mover In[t,t+a] is meant; a similar
	convention applies to fJ. and to [t-e, t].	

  = { t e I: v (t) >a} are nonempty; they are disjoint, with union equal to I. Because v is nondecreasing these two sets are subintervals of I with a common endpoint, say sei. Necessarily, s is a discontinuity point of v; the largest real interval containing a and contained in F\v(l) is either [v-(s), v(s)[ or ]v-(s), v(s)[ or ]v(s), v+ (s)] or ]v(s), v+ (s)[. In short, F\v(l) equals the union of connected components which are intervals of some of the four forms above, with s ranging through the set of the discontinuity points of v.

	In any nonempty interval of the form [v-(s), v(s)[, let us define y as	
	y(a)= r(s)+ ~>v-~sl) (f(s)-r<s)) v s -v s	(15.3)
	and, in any nonempty interval of the form ]v(s), v+ (s)], as	
	a-v(s)	

+ y(a)=f(s)+ +c) () (f (s)-/(s)).

  1 . 

	Summing up, one has the following relations between the functions involved
	w=id 1 +KV: /-+.d	(15.10)
	p+ Kq=idL1: J -+J	(15.11)
	p o w=id 1 : /-+/	(15.12)
	qow=v:I-+T.	(15.13)

Proof: That w equals a variation function of (id, v) is easily checked, after observing that t-+t and t-+v(t) are nondecreasingrealfunctions; (15.10)is only a repetition of (15.8).

  . Let v denote any other nonnegative measure relative to which du happens to possess a density function, say u~e..2' 1 !c(I, v;X).Put {J = Jl + v; the Radon-Nikodym theorem shows the existence of functions Jlp and v/J, belonging to ..2' oo (I, {J; R + ), such that Jl = Jlp {J and v = v(t p. Then du = u~p(t{J = u~ v(t{J; hence the X-valued functions u~Jlp and u~ Vp are equal, except in some ,8-negligible subset B of I. The set N={tei: vj,(t)=O} is v-negligible; outside BuN one has u~ = U~Jlj,/vj,. Since pj,/v/J > 0 (16.2) implies, in view of r being a cone,

	u~er(t, u(t)),	(16.4)

except for tin the v-negligible set BuN. It has been observed that the right-hand member is nonempty for every t. So (16.3) entails that, after replacing by zero the values that u~ may take in BuN, one obtains a density function of du relative to v which satisfies

(16.4

) everywhere in I.

  48], Chap. 3. In applications, condition(16.6) usually reflects the dissipative character of the process investigated. With a view to transposing (16.7) into the setting of measure differential inclusions, we shall assume, in addition to (16.6), that, for every t and x, the subset A(t,x) of His a cone. Then the following may be established [32]: for every t there exists C(t), a closed convex subset of H, such that Jc<t> denotes the indicator function of C(t) (the function which takes the value zero in C(t) and + oo outside), a convex lower semi-continuous extended real .. valued function on H. The subdifferential 81/Jc<t>(x) of this function at point xis known to equal the normal cone to C(t) at

	Vte/, VxeH:A(t,x) c:. oljJC<t>(x).	(16.8)
	Here 1/	

x in the sense of convex analysis (it is empty iff xf= C(t); otherwise this is a nonempty closed convex cone, possibly reduced to the zero of H).

Let t 1 < t 2 < ... < 1 11 be the nodes of P belonging to [a, b ]. Since 4J(x, y) is a constant on each member of P, Proposition 6.5 implies that its differential measure equals the sum of point measures located at nodes of P. Hence, under Convention 3.5 Hence Proposition 11.1 generates a formula of "integration by parts", as follows.

Another proof~ valid if X has the Radon~Nikodym property (hence applicable to JefTery"s original case) was developed m [START_REF] Moreau | Derivation d'une mesure vectorielle sur un intervalle[END_REF]: there one notes the use of the technique of factorization (see Sect. ? ~ below) which reduces general lbv functions to Lipschitz functions. Proposition 14.1 corresponds to the special case where p equals the Lebesgue measure.

The above was used in [START_REF] Moreau | Chain rule involving vector functions of bounded variation[END_REF] in order to establish Proposition 12.5. Other applications con~rn s?me evol~tion problems [START_REF] Monteiro Marques | Rafle par un convexe semi-continu inlerieurement d'interieur non vide en dimension finie[END_REF]45] of irreversible character. Unilatercdity in t1me 1s a dominant feature of these problems, so derivation properties involving t~e interval [t -s, t+s], as previously proposed by Daniell [START_REF] Daniell | Differentiation with respect to a function of limited variation[END_REF]. will not do the JOb.

Re•rk 14.5: The decomposition property stated in Corollary 14.3 may be connected with the Lebesgue decomposition of a measure. Let us return to the setting of Remark 13 .4, restricting ourselves for simplicity's sake to a pair of realvalued countab~y additive set functions land p., defined on the a-field E. Then 1 is said to he p-.vmgular if there exists a set Eo e E, with v (p., E0) = 0, on which l is cont't'ntrutt~d. i.e.

V EeE :l(E)=l(EnE 0 ); equivalently.p is A.-singular. Lebesgue's decomposition theorem states (cf. [START_REF] Dunford | Linear Operators, Part 1: General Theory[END_REF], Sect. 111.4) that, for given p., every countably additive real-valued set function defined on E is ~niquely representable as a sum ex+ {J, where ex is p-continuous and (I is 11-singular.

This may be applied with p. equal to the Lebesgue measure dt on some compact interval J. To that end, take as Ethe a-field of the Borel subsets of I. The above decomposition property yields that, for every f e bv (/, JR.), the differential measure d.flcts it~elf be expressed in a single way as the sum of a dt-continuous measure. ~ay Jw. and of a dt-singular measure, say ds. Now it is known that a function .H: b\' (1, ll) has zero derivative dt -a. e. iff ds is dt-singular (see [START_REF] Shilov | Integral, Measure and Derivative: a Unified Approach (trans![END_REF], Chap. In. Sect.. 4). Therefore, dw equals the differential measure of the '"absolutely continuous component" WE W 1 ' 1 (/, JR.) off, asitisintroduced(upto an arbitrary additive constant) by Corollary 14.3.

Since u• is coot inuous, the measure dw is diffuse, or continuous, in the sense that its integral over any singleton is zero. The reader should take care not to confuse the above with another decomposition property, in which the Lebesgue measure dt plays no part.

We still assume, for simplicity's sake, that I is a compact interval and consider only real measures in the sense of the functional theory. In Bourbaki's terminology [START_REF] Bourbaki | Integration, Hermann[END_REF] a real measure is atomic iff it is singular with regard to every continuous real measure (some authors, e. g. Dinculeanu [START_REF] Dinculeanu | Vector Measures[END_REF], use this word with another mt:~ming, namely the existence of at least one atom). Such a measure while !ly(v(s)) -y(II) II <v(s) -II as above; this implies (15.5) through the triangle inequality. In the second case, there exists in ]a, s[ a sequence t, tending to s; then limv(t,)=v-(s). Since v(t,)ev(J), one has II y(v(t,)) -y(II) II< v(t,) -II.

Hence, by the triangle inequality, due to y(v(t,))= f(t,), IIY<P) -y(II) II< II y(fJ)-f(t,) II +v(t,) -II• When t, tends to s, the right-hand member tends to IIY<P)-f-(s) II +v-(s) -II; in view of (15.3), this equals p -II.

The case IIEF\v(I), pev(I) is treated similarly. If II and p belong to different connected components of F\v(I), there exists some point of v(I) in between and one goes back to the preceding situations through the triangle inequality.

The end of the proof will consist in establishing var (y; ex, p) > p -II.

First suppose ex=v(a) and P=v(b ). Choose e > 0; there exists a finite sequence

i=l Therefore, after putting -ri=v(ti), one has n fJ -II<e+ L lly(-ri) -y(-ri-t)ll <e+var (y; ex, p) i=l whatever e is; this yields the expected inequality. Suppose now II= v( a), but fJ e F\v (I); there exists s >a in I and either p e ]v(s), v+ (s)] or p e [v-(s), v(s)[. In the frrst case one has, thanks to the above result, var (y; ex, v(s)) > v(s) -II while, in view of (15.4), var (y; v(s), fJ) = fJ -v(s), which yields the expected inequality by addition. In the second case, one considers a sequence t, in ]a, s[ tending to s and var (y; II, /J) = var (y; II, v(t,)) + var (y; v(t,), p) >v(t,) -ex+var (y; v(t,), [3).

Inequality (15.5) shows that y has locally bounded and continuous variation; hence the above right-hand side tends to

of 1R." when q is interior to fJl (concerning the concept of a tangent cone in more general situations, see [START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications[END_REF], Chap. 4). Analogous formulations also hold if dry friction is taken into account at the possible contacts. One source of interest is to suggest a numerical algorithm for the treatment of the corresponding evolution problems [START_REF] Moreau | Une formulation du contact a frottement sec; application au calcul numerique[END_REF][START_REF] Jean | Dynamics in the presence of unilateral contacts and dry friction: a numerical approach[END_REF].

The existential study of solutions to such problems is currently in progress [START_REF] Monteiro Marques | Chocs inelastiques standards: un resultat d'existence[END_REF], following the line described above. This question is essentially different from that of the elastic bounce problem-treated, e.g. in [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF][START_REF] Buttazzo | On the approximation of the elastic bounce problem[END_REF][START_REF] Carriero | Uniqueness of the one-dimensional bounce problem as a generic property in L 1[END_REF].

Let us conclude by suggesting an alternative approach to problems with lbv unknowns. Since the set of the discontinuity points of u is Lebesgue-negligible, the values that u may take at these points are immaterial with regard to (16.10); the same is true for (16.11), since Q is assumed continuous.

Consequently, there is no loss of generality in assuming that u has aligned jumps (cf. Sect. 7). After that, one may introduce G, the filled-in graph of u. According to an observation made in Sect. 15, the function u cannot be completely reconstructed from the knowledge of this subset of Ix X; but u+ and ucan. So G conveys the information needed to make (16.10) and (16.11) meaningful.

Therefore, a consistent policy will be to look at G as the proper unknown in a measure differential inclusion of the form (16.11) or (16.9) (recall that the latter was understood with u=u+). The initial condition u(t 0 )=Uo is equivalent toG possessing {t 0 , Uo) as its starting point.

Also, in all that concerns the approximation of lbv evolutions, the filled-in graphs appear to be the right objects to consider. In fact, let G and G' be filled-in graphs of two elements u and. u' of lbv (I, X). Using in 1R. x X the distance lJ associated with the Banach norm (15.6), let us introduce the Hausdorff distance of these two sets

with the same notation as in Sect. [START_REF] Moreau | Solutions du processus de rafle au sens des mesures differentielles[END_REF], namely e(G, G ')=sup inf fJ(g, g').

geG g'eG'

The nonnegative number h(G, G') makes a realistic measurement of the discrepancy between u and u'. The numerical handling of a function u :I-+ X commonly involves some uncertainty about the point t e I at which u is evaluated, concurrent with the uncertainty affecting the value u(t). The use of h provides a way of controlling both errors jointly. Suppose, in particular, that u has to be approximated by a sequence of functions ui : I-+ X. For discontinuous u, uniform approximation usually cannot be expected. In fact, suppose that u possesses, at some unknown point t, a discontinuity with oscillation >e. Then any function u' approximating u with an error uniformly less than e necessarily has a discontinuity at this point; thus the construction of u' will in practice require the exact knowledge oft. In contrast, the approximation of u in the sense of h is feasible, even by means of continuous functions. More details may be found in [START_REF] Moreau | Approximation en graphe d'une evolution discontinue[END_REF] (but with another choice of the distance~ in the product space Ix X). In [START_REF] Monteiro Marques | Regularization and graph approximation of a discontinuous evolution problem[END_REF], the convergence of the filled-in graphs for the Yosida approximants of a sweeping process is established. The convergence of filled-in graphs may also be used in existence proofs. Assume here that I is compact and that a sequence of presumably approximate solutions u, E vb (I, X) to the problem investigated has been constructed.

According to Proposition 15.4, for every i there exists a real interval Li 1 (compact in this case), with two nonexpanding mappings p 1 : Li 1 -+I (nonincreasing) and ~i: Lii-+X, such that the filled-in graph G 1 of ui equals the range of (ph~~): Ai-+Ix X.

Suppose now that the crucial research of ME lR, an upper bound of all var (u;, I), has been successful. Then, the increasing affine bijections a,: [0, 1]-+Ar, which exist in any case, are equicontinuous. Consequently, the mappings Pi= Pt o a 1 : [0, 1 ]-+I (non-decreasing) and IIi=~~ o ai: [0, 1 ]-+X are uniformly Lipschitz and so are the mappings (Ph IIi): [0, 1]-+Ix X. The latter possess the Gt as respective ranges. In the case where X has finite dimension, Ascoli's theorem may then be applied, yielding a subsequence (P"' II ~c) converging uniformly to (P, II) : [0, 1]-+ I x X, a Lipschitz mapping. The range G of (P, II) equals the filled-in graph of some u E vb (I, X) and G equals the limit of the sequence G" in the sense of Hausdorff distance.

More refinement of this approximation procedure could be made by also observing that the derivatives of the mappings (P~u II ~c) are elements of a ball in L 00 ([0, 1], Lebesgue; 1R x X). Then some standard arguments of weak* compactness may be used, with a view to proving that a solution of the formulated problem is obtained at the limit.