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When to make a step? Tackling the timing problem in multi-contact
locomotion by TOPP-MPC

Stéphane Caron1 and Quang-Cuong Pham2

Abstract— We present a Model-Predictive Controller (MPC)
for multi-contact locomotion where predictive optimizations are
realized by Time-Optimal Path Parameterization (TOPP). The
key feature of this design is that, contrary to existing planners
where step timings are provided as inputs, here the timing
between contact switches is computed as output to a linear opti-
mization problem based on a dynamic model of the robot. This
is particularly appealing to multi-contact locomotion, where
proper timings depend on the terrain topology and suitable
heuristics are unknown. Thanks to recent advances in multi-
contact stability computations, we improve the performance of
TOPP for COM trajectories, which allows us to integrate it
into a fast control loop. We implement the complete control
pipeline and showcase it in simulations where a model of the
HRP-4 humanoid climbs up and down a series of hills.

I. INTRODUCTION

For walking on horizontal floors, step timing was mostly
a question of parameter tuning: the ground being isotropic, it
was sufficient to tune fixed durations for single-support (SS)
and double-support (DS) phases, which would work for any
future number of steps. However, in order to fully exploit
the locomotory capabilities of humanoids, current research is
now moving away from this isotropic assumption. In general
environments, the ability to step in a given time depends
both on the terrain topology and robot dynamics, which led
e.g.the authors of [1] to conclude that, in multi-contact, “time
parameterization of the contact formation/release and their
transition phases can hardly be left for tuning”.

Model-predictive control (MPC) is a paradigm that can
give controllers the level of foresight required to tackle this
question. Its applications to multi-contact locomotion are
relatively recent, and can be split in two groups. In one line
of research, contact forces are jointly considered as control
variables used to optimize a quadratic cost function on
future whole-body motions [1], [2], [3]. In such formulations,
inequality constraints (namely, that contact wrenches lie
inside their wrench cone) are straightforward to calculate,
at the cost of a large number of control variables.

Another line of research seeks to reduce both control
variables and contact constraints at the center of mass
(COM), i.e., focusing on centroidal dynamics [4]. In [5],
ZMP support areas were generalized to multi-contact and ap-
plied to whole-body motion generation, but it was observed
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that these areas vary with the position of the COM. This
is indeed a general phenomenon: once reduced at the COM,
contact stability constraints yield quadratic inequalities, with
a product between COM position and acceleration. In [6],
these inequalities were kept linear by bounding variations
of a nonlinear term, resulting in a ZMP controller that can
raise or lower its COM. Polyhedral boundaries were also
used in [7] to formulate a linear MPC problem controlling
3D COM accelerations to locomot: in multi-contact.

Yet, all of the works [1], [2], [5], [6], [7], [8], [9] are based
on pre-defined timings. In the literature, the alternative to
fixed timings seems to be nonlinear optimization [10], [11],
[3]. Walking on non-flat terrains was showed in [10] using
a SLIP model and on-line foot-step planning, solved using
the Covariance Matrix Adaptation method. Meanwhile, [11]
showcased a broad set of tasks, but noted that the perfor-
mance and numerical stability of nonlinear solvers were still
problematic. Latest developments [9], [8] reported that a few
iterations of a Sequential Quadratic Programming solver can
be performed fast enough for the control loop; yet both works
used pre-defined timings.

In the present work, we explore another way to linearize
quadratic constraints at the center of mass; namely, by
alternating path interpolation with trajectory retiming. A key
feature of this approach is that all timings (step durations,
COM transfer durations, etc.) are produced as output to our
optimization problem, which allows the controller to discover
suitable timings automatically from the terrain topology and
robot dynamics used to formulate its constraints.

Our contribution is twofold. First, building upon recent
advances in contact-stability cone computations, we develop
a new formulation for TOPP of COM trajectories which solve
faster than the state-of-the-art. Second, we leverage these
fast computations to design a multi-contact model-predictive
controller based on TOPP (TOPP-MPC for short).

II. BACKGROUND

A. Contact stability

Let m denote the mass of the robot and G its center of
mass (COM). Denote by O the origin of the inertial frame
and pA the coordinate of a point in this frame (so that pO =
0). The Newton-Euler equations of movement of the robot
are [

mp̈G
L̇G

]
=

[
mg
0

]
+ wG, (1)

where LG denotes the angular momentum of the robot
around G, g the gravity vector and wG the net contact
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wrench taken at G. The latter is given by:

wG :=

K∑
i=0

[
fi−−→

GCi × fi

]
,

where fi is the contact force exerted onto the robot at
the i-th contact point Ci (this formulation includes surface
contacts, see e.g. [12]). Next, one can rewrite the Newton-
Euler equations (1) at a fixed reference point O as:

wO =

[
m(p̈G − g)

L̇G +mpG × (p̈G − g)

]
. (2)

Next, under the assumption of linearized friction cones,
valid contact wrenches (i.e., corresponding to contact forces
that lie inside their respective linearized friction cones) are
exactly characterized by

AOwO ≤ 0, (3)

where AO is the matrix of the Contact Wrench Cone (CWC),
which can be computed based uniquely on the positions and
orientations of the contacts [13].

B. TOPP and TOPP-Polygon

Consider a robot with n degrees of freedom and a path
q(s)s∈[0,1] in its configuration space. Assume that constraints
on the robot motion along the path can be expressed in the
form:

s̈a(s) + ṡ2b(s) + c(s) ≤ 0. (4)

Finding the time-optimal parameterization s(t)t∈[0,T ] sub-
ject to constraints (4) is the classical TOPP problem in
robotics. Efficient methods have been developed to address
this problem, see e.g. [14] for a historical review.

A wide range of constraints can be put into the form of (4),
including pure acceleration bounds, torque bounds for serial
manipulators [15], contact-stability constraints for humanoid
robots in single- and multi-contact [12], [13], etc. Constraints
on overactuated systems, such as closed-chain manipulators
and humanoid robots in multi-contact, cannot be put into the
form of (4). Rather, such constraints can be expressed in a
more general form [16] as:

(s̈, ṡ2) ∈ P(s), (5)

where P(s) is a convex polygon in the (s̈, ṡ2)-plane. In [17],
the authors developed TOPP-Polygon, an extension of the
numerical integration method [15], [14] to the case of
“polygon constraints” of the form (5). Because it is based on
direct integration, this method can find time-optimal param-
eterizations orders of magnitude faster than its counterparts
based on convex optimization [16], [18].

Historically, these methods have been used in the contex
of motion planning rather than control. The main bottleneck
that prevented the application of TOPP-Polygon to real-time
applications is the polygon reduction step (computing poly-
gons P(s) from contact-stability constraints), which could
take up to tens of milliseconds per path discretization step.
In this paper, we reduce this time to less than a millisecond.

III. TOPP FOR MULTI-CONTACT LOCOMOTION

A. Reduction of TOPP Polygons

We start from the TOPP reduction presented in [13].
Consider a path pG(s)s∈[0,1] of the center of mass. Differ-
entiating twice, one obtains

p̈G = pGss̈+ pGssṡ
2, (6)

where the subscript s denotes differentiation with respect to
the path parameter.

Assume that the angular momentum at the center of mass
is regulated to a constant value (L̇G = 0), which corresponds
to the Linear Pendulum Mode. Substituting the expression of
p̈G into the equation of motions (2), one has

wO =

[
m(pGss̈+ pGssṡ

2 − g)
pG ×m(pGss̈+ pGssṡ

2 − g)

]
. (7)

Thus, the contact-stability condition (3) can be rewritten as

s̈AO

[
pGs

pG × pGs

]
+ṡ2AO

[
pGss

pG × pGss

]
≤ AO

[
g

pG × g

]
,

(8)
which has the canonical form (4) of TOPP. Equation (8)

usually contains a large number of inequalities (up to 150
in double rectangular contact). Usual TOPP solvers (either
based on numerical integration [14] or on convex opti-
mization [16]) cannot solve this large path parameterization
problem in less than a few seconds, which makes them
unpractical for MPC. In [16], the author proposed an iterative
method to prune the inequalities before applying TOPP. The
complexity of his algorithm is O(KN), where N is the initial
number of inequalities and K is the maximum number of
intermediate inequalities.

In the context of computing ZMP support areas and
COM acceleration cones, the authors of [7] remarked that
pruning inequalities as in [16] actually amounts to finding
the convex hull of the dual of these inequalities. They could
then compute their volumes using state-of-the-art convex hull
algorithms, with complexity O(N logN) and for which fast
implementations are readily available. Here, we apply this
idea to TOPP-Polygon reduction.

Specifically, Equation (8) can be put in the canonical form
used in [7]

B[s̈ ṡ2]> ≤ c (9)

where the matrix B and vector c are defined by:

B, c := AO

[
pGs pGss

pG × pGs pG × pGss,

]
,AO

[
g

pG × g

]
.

If the polygon thus describes contains the origin (0, 0) in
its interior, i.e., if c ≥ 0, then a convex hull algorithm
can be run on the rows of B (dual vectors) to enumerate
polygon edges [7]. Intersecting consecutive edges in the
counter counterclockwise enumeration provided by off-the-
shell 2D convex hull algorithms finally provides the list of
vertices. When (0, 0) is not in the interior of the polygon, [7]
noted that it is necessary to compute an interior point in
order to apply this algorithm. The condition c ≥ 0 describes
the Static-Equilibrium Prism (SEP) [19], which contains all
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Fig. 1. Contact locations and interpolated COM paths for the test
case reported in Table I. Contacts corresponding to the successive Double-
Support (DS) and Single-Support (SS) phases are contoured in dotted lines.

TABLE I
POLYGON SIZES AND COMPUTATION TIMES FOR POLYGON REDUCTION

BY CONVEX HULL (CH) AND BRETL & LALL’S METHOD (B&L)

Contact # ineq. bef. # ineq. aft. Hull B&L
Single (SE) 16 3.6 ± 0.5 0.46 ms 1.51 ms

Single (NSE) 16 3.0 ± 0.0 0.90 ms 1.27 ms
Double 145 6.1 ± 1.5 0.60 ms 6.42 ms

COM positions where the robot can stop. When pG belongs
to the SEP, the convex-hull algorithm can be applied readily,
but one needs to:

• find a point x̊ such that Bx̊ < c;
• apply the convex-hull algorithm to the polygon defined

by Bx′ ≤ c′, where c′ := c−Bx̊;
• translate the resulting polygon by x̊.

To find an interior point, we use the following procedure
inspired from [19], [16]: first, we find three extremal points
x1,x2,x3 of the polygon by solving the linear program:

max
x

v>i x subject to Bx ≤ c,

where v1,v2,v3 are three planar vectors pointing in different
directions; then, we choose x̊ := (x1 + x2 + x3)/3.

Alternatively, one can compute the polygon directly
from (8) using the polytope projection method [19], [16]. Ta-
ble I reports an experimental comparison of the two methods
(convex hull versus polytope projection), in three different
scenarios: single-contact in static equilibrium (SE), single-
contact non-static-equilibrium (NSE) and double contact. We
report the number of inequalities before and after pruning,
averaged across multiple positions pG. Computation times
are averaged across 100 iterations. The convex-hull method
outperforms the polytope projection method in all scenarios,
and significantly so in double contact. Note that the convex-
hull method took more time in the non-static-equilibrium
scenario than in the other scenarios because of the overhead
associated with the search for the interior point. Contact
locations and implementation details are distributed in our
public code repository [20].

s = 0.4 (DS1) s = 0.7 (SS)
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s = 0.76 (SS) s = 1.45 (DS2)
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Fig. 2. Constraint polygons in the (s̈, ṡ2)-plane for various values of s.
Here, the contact switches happen at s1 = 0.67 (DS1 to SS) and s2 = 1.33
(SS to DS2). Note that the beginning of the single-contact phase is not in
static equilibrium, as illustrated by the polygon at s = 0.7 which does not
contain the origin (red dot).

B. TOPP through contact changes

Consider a smooth three-dimensional COM path
pG(s)s∈[0,1] and a sequence of foot stances DS1–SS–DS2,
where DS and SS stand respectively for double- and
single-support, see Fig. 1. Assume that one switches from
DS1 to SS at path position s1 and from SS to DS2 at
path position s2. Note that s1 and s2 correspond to two
geometric positions and do not include any timings.

Consider now the TOPP problem through contact
switches. The contact-stability matrices (computed only once
per stance based on footstep locations [13]) ADS1, ASS,
ADS2 are used in the path portions [0, s1], [s1, s2], [s2, 1]
respectively. Fig. 2 shows examples of polygons computed
in each portion. Next, TOPP can be run on the full path [0, 1],
subject to the constraints provided by the polygons. The
Maximum Velocity Curv and profiles computed by TOPP
are shown in Fig. 3.

C. Geometric nature of contact switches

As noted above, the contact switches are given a priori by
the positions s1 and s2 on the paths, which are geometric
objects. This is a key feature of our approach.

Single-support phases allow bipeds to transfer one foot
(the swing foot) to a new foothold location while the other
(the support foot) stays fixed to ensure contact stability. A
central question is then: how should the COM move during
these phases? One answer is to maintain it inside the Static-
Equilibrium Prism (SEP) of the support foot,1 a behavior
that can be observed in many walking patterns reported in
the literature (see e.g.Fig. 4 in [21], Fig. 1 in [22], Fig. 2
and 3 in [8], ...). However, having the COM in the SEP is an

1 When walking on horizontal floors, this is equivalent to keeping the
COM over the single-foot support area.
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Fig. 3. A: Integrated profiles in the (s, ṡ)-plane. By Pontryagin’s
Maximum Principle, the time-optimal profile is obtained by integrating
alternatively maximum and minimum accelerations (black curves). The
switches (colored dots) between max and min accelerations are to be
found on the Maximum Velocity Curve (cyan). For more details about
the TOPP algorithm, the reader is referred to [14]. Black vertical dashed
lines indicate the stance changes (s1 = 0.67 and s2 = 1.33). Red
vertical dashed lines indicate the boundaries of the static equilibrium portion
(s∗1 = 0.76 and s∗2 = 1.26): any position between the two red lines is
in static equilibrium. Note that the path is time-parameterizable despite
having non-quasi-statically stable portions ([0.67, 0.76] and [1.26, 1.33]).
B: Switching to the single-contact stance too early (black vertical dashed
line at s1 = 0.51) leads to the path being non time-parameterizable: the
max acceleration profile hits zero around s = 0.7.

indicator of quasi-static walking. It precludes the discovery
of dynamic walking patterns, where the COM need not even
enter the SEP of the support foot if foot swings are fast
enough. Our framework allows the discovery of dynamic
motions where the COM leaves the SEP even during single-
support phases. We achieve this geometrically by varying the
parameters s1 and s2 to achieve different behaviors.

Let s∗1 and s∗2 denote respectively the first and the second
intersection of the COM path with the Static-Equilibrium
Prism (s∗1 and s∗2 are represented by the red vertical lines in
Fig. 3A). Choosing s1 = s∗1 and s2 = s∗2 corresponds to the
“safe” quasi-static executable option. By contrast, choosing
s1 < s∗1 and s2 > s∗2 gives rise to portions of the path
that are not quasi-statically executable. However, if the path
is time-parameterizable, then there will exist a dynamically-
stable execution. Furthermore, as s1 gets smaller and and
s2 gets larger, the time-parameterized behavior will be more
aggressive, up to a point when no valid time-parameterization
exists. For the same path as in Fig. 1, if one chooses s1 =
0.51 instead of s1 = 0.67, then the path becomes non time-
parameterizable, see Fig. 3B.

IV. LOCOMOTION BY RETIMED PREDICTIVE CONTROL

The generic control loop of a predictive controller can be
described as follows: at each iteration,

Fig. 4. Preview of swing-foot (green) and COM (ligh and dark red)
trajectories during a single-support phase. Retiming the swing foot path
under conservative constraints yields a swing duration Tswing. This value
is then converted into retiming constraints on the COM trajectory, so that
TOPP uses the single-support CWC up to pG(s1) (light red) and the double-
support one afterwards (dark red).

• generate or update a trajectory of future system dy-
namics (the preview trajectory) leading it to a desired
configuration, then

• apply the first controls of this trajectory until the next
iteration.

To keep up with the high rates of a control loop, the
preview trajectory is commonly found as the solution to an
optimization problem, be it a linear-quadratic regulator [23],
[24], a quadratic program [1], [7] or a generic optimal-control
problem [25]. Here, our optimization unfolds in two steps:
interpolating preview paths, and retiming them using TOPP.

For humanoid walking, there are two kinds of trajectories
to interpolate: COM trajectories, and swing-foot trajectories
in single-support phases. Similarly to [26], we adopt a
simplified dynamics model where the COM is represented
by a point-mass and the swing foot by a rigid body (Fig. 4).
Contact dynamics are reduced at the COM under zero
angular momentum as described in Section III-A, while
joint kinematic and dynamic constraints are modeled by
workspace velocity and acceleration limits on the swing foot.
All of these constraints are taken into account when retiming
by TOPP. Retimed foot and COM accelerations are then
sent as reference to a whole-body controller that converts
them into joint accelerations sent to the robot. Our complete
pipeline is summarized in Fig. 5. We provide technical details
on its consecutive steps in the following subsections.

A. Finite State Machine

Our locomotion state machine is simpler than those of
previous works like [7] as it is does not need to take time
into consideration. Transitions between single- and double-
support phases are triggered by straightforward geometric
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Fig. 5. Overview of the predictive control pipeline. A finite state machine sends the current walking phase (single- or double-support) as well as contact
locations to TOPP-MPC. COM and (in single support) swing-foot trajectories are then interpolated from the current robot state to a desired future state,
and sent to TOPP. The initial COM and foot accelerations of the retimed trajectory are finally converted to joint accelerations by a whole-body controller
and sent to the robot.

conditions, namely:
• SS → DS when ‖pswing − pgoal

swing‖ ≤ ε, i.e., when the
swing-foot touches down on its target foothold.

• DS → SS when ‖pG − pgoal
G ‖ ≤ dtrans, i.e., when the

COM enters the vicinity of its preview target.
While ε should be a small value scaled upon the ability of
the robot to estimate its foot displacements, dtrans depends on
the contact geometry and preview target velocity. We used
dtrans = 5 cm in our experiments, which corresponds roughly
to the half-width of static-equilibrium polygons.

B. Path Interpolation

Path interpolation is constrained by our closed feedback
loop: the beginning of the path p(s) needs to coincide with
the current robot state (pcur, ṗcur), where we use p to refer
equivalently to the COM position pG or swing-foot position
pswing. Then,

p(0) = pcur (10)

cos ̂(ps(0), ṗcur) = 1 (11)

The latter states that the initial path tangent must be posi-
tively aligned with the current velocity (the norms of the two
vectors will be matched as well at the retiming stage, so that
the output trajectory velocity ṗ(0) = ps(0)ṡ(0) = ṗcur).

Target positions and velocities (pgoal, ṗgoal) by the end of
the preview window are also provided:
• for swing-foot paths, the target position is taken at the

contact location and the target velocity is zero;
• for COM paths, the target position is taken at the center

of the Static-Equilibrium Prism for the next single-
support phase, while the target velocity is a fixed-norm
vector parallel to the contact surface and going forward
in the direction of motion.

Boundary conditions at the end of the preview path are then:

p(1) = pgoal (12)

cos ̂(ps(1), ṗgoal) = 1 (13)

Like [16], we interpolate the path p(s) by a cubic Hermite
curve, i.e., a third-order polynomial H(p0,v0,p1,v1) such
that H(0) = p0, H ′(0) = v0, H(1) = p1 and H ′(1) = v1.
This construction ensures that position constraints (10) and
(12) are satisfied. However, velocity constraints (11) and (13)

are not vector equalities: they only impose vector directions
and signs, leaving norms as a free parameter. Our path
interpolation problem therefore has two degrees of freedom:
we can select any path Iλ,µ(s) given by

Iλ,µ = H(p0, λv0, p1, µv1) (14)

where λ, µ > 0, (p0,p1) = (pcur,pgoal) and (v0,v1) =
(ṗcur, ṗgoal). The values of λ and µ can be selected so as to
optimize additional path smoothness criteria. This problem
has been studied in computer graphics, where Yong et al. [27]
introduced the Optimized Geometric Hermite (OGH) curves
that minimize strain energy

∫ 1

0
‖pss(s)‖2ds of the path:

OGH(p0,v0,p1,v1) = arg min
λ,µ

∫ 1

0

‖I ′′λ,µ(s)‖2ds (15)

An interesting feature of this problem is that the values
λ∗OGH, µ

∗
OGH that yield this minimum are found analytically

from boundary conditions (pcur, ṗcur,pgoal, ṗgoal), so that
there is no need for numerical optimization at runtime.

We experimented with OGH curves in our framework, but
found them to be rather unfit for multi-contact trajectory
retiming. The reason behind this is that, when boundary
velocity vectors ṗcur, ṗgoal deviate significantly from the
direction of motion ∆ = pgoal − pcur, OGH curves tend to
start or end with very sharp accelerations. Such accelerations
have little impact on strain energy but jeopardize trajectory
retiming.

To avoid this phenomenon, we optimize another criterion.
We call Hermite curves with Optimized Uniformly-Bounded
Accelerations (HOUBA) the polynomials defined by:

HOUBA(p0,v0,p1,v1) := arg min
λ,µ

max
s∈[0,1]

‖I ′′λ,µ(s)‖2 (16)

Because this bound is uniform rather than integral, it is
less prone to sharp boundary accelerations. Optimum values
λ∗HOUBA and µ∗HOUBA corresponding to this criterion are given
by (see Appendix I for calculations):

λ∗HOUBA = 6 · 3(∆ · v0)(v1 · v1)− 2(∆ · v1)(v0 · v1)

9‖v0‖2‖v1‖2 − 4(v0 · v1)2
(17)

µ∗HOUBA = 6 · −2(∆ · v0)(v0 · v1) + 3(∆v1)‖v0‖2

9‖v0‖2‖v1‖2 − 4(v0 · v1)2
(18)

We note how these two formulas have the same structure as



those reported for λ∗OGH and µ∗OGH [27], yet with different
integer coefficients. In what follows, we interpolate all our
swing-foot position and COM paths by HOUBA curves.

C. Retiming with Contact Switches

Let us assume that the robot is undergoing a single-support
phase. Retiming the COM and swing-foot paths are not two
independent operations: TOPP contact constraints for COM
retiming should be computed using the single-support CWC
while the foot is in the air, and the double-support CWC
once contact is made.

One way to take this coupling into account is to synchro-
nize both path retimings. Denote by s and sswing the indexes
of the COM and swing-foot paths respectively. Synchroniza-
tion amounts to setting sswing = s/strans and reformulating all
foot constraints (limited workspace velocity and acceleration)
on (s̈swing, ṡ

2
swing) as constraints on (s̈, ṡ2). This approach has

the merit of conciseness and computational efficiency, but we
chose not to do so due to an undesired side effect: at the end
of the swing-foot trajectory, we want the foot velocity to go
to zero so as to avoid impacts, but under synchronization
this implies that the COM velocity goes to zero as well, and
thus that the contact switch is quasi-static.

To avoid this issue, we adopted the two-stage retiming
strategy depicted in Fig. 4:

1) first, retime the swing-foot trajectory, and let Tswing
denote the duration of the resulting trajectory;

2) second, retime the COM trajectory under the additional
constraint that t(strans) > Tswing, i.e., that the retimed
COM trajectory will spend at least Tswing of its time in
the single-support section s ∈ [0, strans].

We will now see that, given the initial path velocity ṡ0 =
‖ṗcur‖/‖ps(0)‖, the constraint t(strans) > Tswing can be
formulated as a path acceleration constraint s̈ ≤ s̈max suitable
for TOPP.

Property 1: A sufficient condition for t(strans) > Tswing is
that s̈ ≤ s̈max, with

s̈max
def
=

1

2strans

[(
strans

Tswing

)2

− ṡ20

]
(19)

The proof of this property is given in Appendix II.
In the (s̈, ṡ2)-plane where TOPP-polygons are computed,

Equation (19) amounts to adding two vertical boundaries
at s̈ = ±s̈max and can be done readily using the existing
software.

D. Whole-body Controller

The last step of our pipeline converts COM and foot
reference accelerations p̈G, p̈swing into joint commands that
are finally sent to the robot’s motor controllers. We used
our own differential inverse kinematics solver for this,
which is implemented in the pymanoid library.2 The solver
is based on a single-layer Quadratic Program (QP) with
weighted tasks (see [5] for details). We used the following
tasks, by decreasing priority: support foot contact, swing

2https://github.com/stephane-caron/pymanoid

foot tracking, COM tracking, constant angular-momentum
and joint-velocity minimization, with respective weights
104, 100, 10, 1.. We used joint-velocity minimization as the
regularizing task. Each iteration of the QP solver updates a
vector of joint-angle velocities q̇ref which is finally sent to
the robot.

V. EXPERIMENTS

We implemented the whole pipeline described so far and
ran simultations with a model of the HRP-4 humanoid robot.
All our code is publicly released at [20]. The reader may
refer to it for any technical point that would not be detailed
below.

A. Preview targets tuning

The only external input required by our controller is a
sequence of foothold locations, which we assume to be pro-
vided by a parallel perception-and-planning module. From
these footholds, target COM and swing-foot positions and
velocities are computed as follows. Let (ti, bi,ni) denote the
frame of the ith contact in the sequence, where ni is pointing
upward. Then, for the DS phase ending on this contact and
the SS phase of the (i− 1)th contact, preview targets are set
to:
• pgoal

G is the center of the SEP of the next SS footstep
• ṗgoal

G = vref ti, where vref = 0.4 m.s−1

• pgoal
swing is the position of the ith contact

• ṗgoal
swing = αti − (1 − α)ni, where α tunes the forward

inclination of the foot landing velocity.
Similarly, we used v0 = βti−1 + (1 − β)ni−1 for the foot
takeoff direction. In the accompanying video, we set α = 0.5
and β = 0.3. Recall that only the signs and directions of
these velocity vectors matter since we are using HOUBA
curves for interpolation.

B. TOPP tuning

Once a path is interpolated, we retime it by TOPP using
a discretization step ds = 0.1. As a consequence of the
minimum-time criterion, retimed trajectories always saturate
their inequality constraints, which means in particular that
output contact wrenches wG will lie on the boundary of the
CWC. This behavior is undesirable as it makes our controller
sensitive to disturbances. To palliate this, when computing
the CWC matrix AO given to TOPP, we scale foothold
dimensions and friction coefficients by 0.75. This results in
a conservative contact-stability criterion, leaving room for
error compensation at runtime.

C. Simulations

Fig. 6 shows one application of our controller on an
artificial scenario where the robot has to climb up and down
a series of meter-high hills, with slopes ranging from 0◦ to
30◦. In this example, swing-foot accelerations were bounded
by ‖p̈swing‖ ≤ 5 m.s−1. Phase timings were automatically
derived by the controller. On average, DS phases in this
setting last 0.88±0.06 s, while SS phases last 0.65±0.22 s.

https://github.com/stephane-caron/pymanoid
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Fig. 6. Locomotion over uneven terrain by HRP-4 running the TOPP-MPC controller. The only external input to the system is a foothold sequence.
From this, the controller automatically deduces the timings of its single- and double-support phases (which depend on terrain topology), along with COM
and swing-foot motions that guarantee contact stability. TOPP previews are run in a closed feedback loop with an update period of 40 ms. In the simulations
depicted above, the robot climbs up and down two meter-high hills with slopes ranging from 0◦ to 30◦. Feasibility of the motion has been checked by
computing at each time instant valid supporting contact forces, which can be seen in the accompanying video.

TABLE II
TOPP PERFORMANCE IN THE CLOSED MPC FEEDBACK LOOP.

Phase Convex Hull Bretl & Lall
DS 18.6 ± 5.5 ms 26.2 ± 7.0 ms
SS 30.0 ± 5.6 ms 38.9 ± 7.5 ms

These statistics are only provided for information, as proper
timings depend on terrain topology.

Table II reports times taken to build and solve TOPP
instances in this simulation. All computations were run on
a laptop computer equiped with an Intel(R) Core(TM) i7-
6500U CPU @ 2.50 Ghz. We compare the convex-hull
reduction presented in Section III-A with Bretl and Lall’s
method [19], and observe that it is 20 to 30% faster in
practice.

VI. CONCLUSION

We have presented a Model-Predictive Controller whose
underlying optimization routine is based on Time-Optimal
Path Parameterization (TOPP-MPC). The key feature of
TOPP-MPC is that it determines by itself proper timings
between contact switches, based on terrain topology and
its model of system dynamics. By keeping the problem
formulation linear and exploiting recent advances in contact-
stability cone computations, we were able to run TOPP
computations fast enough for the control loop. We showcased
the performance of the overall controller in simulations
where the humanoid model HRP-4 climbs up and down a
series of hills (Fig. 6 and accompanying video).

There are many avenues for further improvements. By
construction, time-optimal parameterizations switch between

maximum and minimum acceleration, which causes discon-
tinuities in accelerations and, hence, in contact forces. To
mitigate this effect, an active line of research seeks to extend
the underlying TOPP routine so as to enforce continuity
constraints on accelerations [28] or jerk bounds [29].
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APPENDIX I
CALCULATION OF HOUBA PARAMETERS

In this problem, we seek to minimize an upper-bound M
and the accelerations ‖H ′′(s)‖2 of the curve. By definition
of Hermite curves,

3H ′′(0) = −3∆ + λv0 + 2µv1 (20)
3H ′′(1) = 3∆− 2λv0 − µv1 (21)

By convexity of the cost function ‖H ′′(s)‖2, extrema are
realized at the boundaries s ∈ {0, 1} of the interval:
∀s ∈ [0, 1], ‖H ′′(s)‖2 ≤ max(‖H ′′(0)‖2, ‖H ′′(1)‖2). Our
problem is therefore the joint minimization of (20)-(21).

By Minkowski inequality,

3‖H ′′(0)‖2 ≤ ‖3∆− λv0 − µv1‖2 + ‖µv1‖2 (22)
3‖H ′′(1)‖2 ≤ ‖3∆− λv0 − µv1‖2 + ‖λv0‖2 (23)

Using the symmetry in λ and µ, we reformulate this as the
minimization of E(λ, µ) := ‖3∆−λv0−µv1‖2+ 1

2λ‖v0‖2+
1
2µ‖v1‖2. Differentiating with respect to λ and µ yields:

∂E

∂λ
= −6(∆ · v0) + 9λ‖v0‖2 + 6µ(v0 · v1) (24)

∂E

∂µ
= −6(∆ · v1) + 6λ(v0 · v1) + 9µ‖v1‖2 (25)

Finally, solving for critical points the linear system given by
(24) = 0, (25) = 0 yields the formulas (17) and (18).

APPENDIX II
PROOF OF PROPERTY 1

Using the same notations as [18], let us define a(s)
def
= s̈,

b(s)
def
= ṡ2, and denote by b′(s) def

= db
ds and ḃ(s) def

= db
dt . The

definitions of a and b imply that b′(s) = 2a(s), so that

b(s) = ṡ20 +

∫ s

0

b′(s)ds = ṡ20 + 2

∫ s

0

a(s)ds. (26)

An upper bound a(s) ≤ s̈max then implies that

b(strans) ≤ ṡ20 + 2stranss̈max. (27)

Next, the output switching time t(strans) can be written as:

t(strans) =

∫ strans

0

ds√
b(s)

≥ strans√
ṡ20 + 2stranss̈max

(28)

A necessary condition for t(strans) > Tswing is thus that
s2trans ≥ Tswing(ṡ20 + 2stranss̈max). Equation (19) is finally a
rewriting of the latter inequality.

https://github.com/stephane-caron/topp-mpc
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