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Abstract

Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different
combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of
the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray
photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF—SIMS) mapping. The orthogo-
nal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic
force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective

anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge.
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Introduction

The orthogonal self-assembly of different molecules onto a
patterned substrate was first demonstrated in 1989 by
Whitesides and co-workers [1]. Recently, especially with the
development of localized surface plasmon resonance (LSPR)
biosensors, this topic has become a major focus [2-8]. Indeed,
LSPR transduction is expected to yield enhanced signal as
compared to classical SPR transduction. However, the enhance-
ment of the LSPR limit of detection is effective only if the
molecular targets reach the surface of the metallic LSPR active
zones. When dealing with a low concentration of molecular
targets, it is necessary to reduce nonspecific adsorption of
targets outside of these LSPR active zones, and to increase the
specific capture of targets onto LSPR hot spot areas. Orthogo-
nal surface chemical functionalization appears to enable such

directed anchoring of target biomolecules (Figure 1) [6,8,9].

Despite the aforementioned publications, there is still much to
be investigated regarding the orthogonal functionalization of
patterned metal on dielectric surfaces for even greater enhance-
ment of LSPR-based biosensors. First, the orthogonality of the
functionalization is often assumed from “end of process
measurements” (i.e., SPR signal readout occurs after target
immobilization) rather than directly characterized prior to target
immobilization. Second, while biotinylated poly(ethylene
glycol) [5-8] may be well suited to immobilize some biomole-

cules (avidin derivatives), it is worth considering other surface
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chemistries. For instance, carboxylic acid-based [10-21], amine-
based [22-26] or other [27,28] self-assembled monolayers may
provide a higher diversity of potential biomolecules to immobi-
lize. Shorter spacer chains (e.g., short alkyl chains) may also be
useful to immobilize the target as close to the metal surface
(i.e., the maximum intensity of the evanescent field) as possible.
If the molecules used for the orthogonal functionalization are
truly selective for each material, it can be expected that the
functionalization of both may be performed simultaneously,
thus simplifying the whole process.

Therefore, this paper presents a facile single-step orthogonal
functionalization protocol to selectively bind different thiols
and silanes (mixed in organic solvent at room temperature) onto
the gold and silica areas of a patterned surface. The chemical
functionalization was verified by direct characterization using
XPS and ToF-SIMS mapping. To this end, microscale gold
structures were used to evaluate the different materials sepa-
rately (especially for XPS characterization, whose spatial reso-
lution is on the order of 10 um) and combined with perfluori-
nated thiols and silanes that give a strong fluorine signal both in
XPS and ToF-SIMS measurements. Finally, an orthogonal
functionalization with biologically pertinent molecules
(antifouling poly(ethylene glycol) silane and biotinylated thiols)
was used for the selective immobilization of proteins onto

metallic nanostructures relevant to the development of LSPR
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Figure 1: Schematic representation of the use of orthogonal functionalization techniques to enhance the sensitivity of a plasmonic biosensor (with a
constant number of molecules). (A) Functionalization is uniform over the entire surface. The immobilization of probes (c) onto the entire surface,
including the LSPR zone (a) and silica substrate (b). The targets (d) are captured far from the LSPR area. (B) Only the nanotransducer is functional-
ized. Selective immobilization of probes onto the LSPR area (a) only. The targets can absorb onto the silica substrate (b) far from the LSPR zone.
(C) Orthogonal functionalization on the nanotransducer and surrounding surface. Selective immobilization of probes onto the LSPR area only, and
selective nonfouling treatment (e) on the silica substrate. The targets only bind to the enhanced detection area.
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biosensors and characterized by atomic force microscopy
(AFM).

Results and Discussion

Micropatterned gold on a silica substrate (with features of
~100 um) functionalized with either (1) 1H,1H,2H,2H-per-
fluorodecanethiol and 2-[methoxy(polyethylene-
oxy)propyl]trimethoxysilane (F-thiol + PEG/Si) or (2)

Beilstein J. Nanotechnol. 2015, 6, 2272-2277.

trichloro(1H,1H,2H,2 H-perfluorooctyl)silane and 11-mercapto-
1-undecanoic acid (F-silane + MUA) were analyzed using XPS.
For both surfaces, an initial image was acquired using scanning
X-ray imaging (SXI; X-ray beam induced secondary electron
images). This allows the gold microsquares (brighter) and
surrounding silica areas (darker) to be visualized, as shown in
Figure 2 and Figure 3. Then, two different analysis areas
(=10 um in diameter) corresponding to the gold and silica
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Figure 2: An SXI image and XPS spectra of a micropatterned gold on silica substrate sample, orthogonally functionalized with F-thiol and PEG/Si.
The analyzed areas for the spectra were roughly 10 ym and their approximate localization is indicated on the image. The scale bar in the image is

100 pm.
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Figure 3: An SXI image and XPS spectra of a micropatterned gold on silica substrate sample, orthogonally functionalized with MUA and F-silane. The
analyzed areas for the spectra were roughly 10 ym and their approximate localization is indicated on the image. The scale bar in the image is 100 pym.
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surfaces were selected to perform a survey spectrum. High-
resolution spectra of the different peaks could not be obtained
due to the low signal from the small analysis areas. These
spectra show the following:

— When the sample was simultaneously functionalized with a
perfluorinated thiol and a PEG/silane (Figure 2)

1. On gold (left spectrum), fluorine is clearly present as evi-
denced by the F 1s and F KLL peaks, showing the presence of
the perfluorinated thiol (F-thiol, molecular structure given
above the spectrum). Furthermore, no Si 2s or O s peaks were
detected, verifying the absence of PEG/silane. This suggests
that, on the gold areas, F-thiol is specifically grafted while
PEG/Si is not adsorbed.

2. On silica (right spectrum), fluorine is clearly absent as evi-
denced by the lack of F 1s or F KLL peaks, verifying the
absence of the F-thiol. The presence of PEG/silane cannot be
assessed by the silicon or oxygen-related peaks since these are
present on the silica substrate. However, the presence of the
C 1s peak seems to suggest that the silane is indeed grafted,
though a contribution from other sources of carbon cannot be
ruled out.

— When the sample is simultaneously functionalized with
F-silane and an alkylthiol (Figure 3), the orthogonality of the
functionalization is proven by the same arguments as above, the
main one being the presence of fluorine on silica and not on

gold.

Beilstein J. Nanotechnol. 2015, 6, 2272-2277.

We also conducted fluorine mapping on similar orthogonally
functionalized surfaces using ToF-SIMS, which has been
shown to be especially well-suited for the characterization of
chemically patterned surfaces [29,30]. Figure 4 shows the pres-
ence of fluorine in both cases (F-thiol + PEG/Si and F-silane +
MUA). In each case, only fluorine is present (or is very
predominant) on the gold microsquares (Figure 4a) or the
surrounding silica (Figure 4b) but not on both, which demon-
strates the good orthogonality of the single-step orthogonal

functionalization.

(b)

GOLD

SILICA SILICA

Figure 4: ToF-SIMS fluorine mapping of patterned gold on silica
surfaces, orthogonally functionalized with F-thiol + PEG/Si (a) and
F-silane + MUA (b). The scale bars are 100 pm.

Additionally, a nanostructured gold-on-silica substrate was
functionalized with biotinylated thiols and antifouling
PEG/silanes. A similar approach was already used to direct the
immobilization of streptavidin-coated nanoparticles [31] onto
the gold nanostructures. Here, “single” (i.e., not adsorbed on
beads) proteins were immobilized as shown in Figure 5.
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Figure 5: AFM height profiles of gold nanostructures on silica. The reference sample (red) was not functionalized or subjected to protein incubation
and shows a height consistent with the deposition of 8 nm Ti + 30 nm Au. The streptavidin sample (black) was orthogonally functionalized and
subjected to protein immobilization. The increase in size is indicative of the binding of streptavidin on the nanostructure.
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Conclusion

The orthogonal chemical functionalization of patterned metal
on dielectric surfaces appears to be a key process to direct target
biomolecules onto individual nanostructures. This can be useful
in different fields of nanotechnology, especially in the develop-
ment of LSPR-based biosensors. In this paper, we reported
different single-step functionalization procedures of patterned
gold on silica surfaces with alkylthiols and silanes. The direct
chemical characterization using XPS and ToF—-SIMS provided
evidence of the orthogonality, and AFM topography measure-
ments showed the utility of this approach for biomolecule
immobilization. Current work is being undertaken to imple-
ment this methodology into LSPR biosensors.

Experimental

Substrate patterning

A silica thin film (100 nm) was sputtered onto clean silicon
wafers. UV lithography was used to define different patterns
(lines, squares) with typical dimensions ranging from 2 to
100 pm. Electron beam lithography was used to develop the
gold nanostructures (typical dimensions of 100 nm). Titanium
(8 nm) and gold (30 nm) were deposited by electron beam
evaporation. After lift-off, the samples were cleaned by oxygen
plasma treatment (Anatech) at 400 sccm of oxygen, 350 W of
forward power (10 W reflected), 90 Pa, for 5 min to ensure that
no residual resist remained on the surface.

Surface functionalization

HS-(CH3)1-NH-C(O)-Biotin 95% (MU-Biot) was purchased
from ProChimia. 1H,1H,2H,2H-Perfluorodecanethiol
(F-thiol) 97% was purchased from Sigma-Aldrich.
Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (F-silane) 97%
and 2-[methoxy(polyethyleneoxy)propyl]trimethoxysilane 90%
(PEG/Si, MW = 460 g/mol) were purchased from abcr.
Dichloromethane (DCM) 99.9% was purchased from Sigma-
Aldrich then degassed and dried over molecular sieves. The
thiols and silanes were dissolved in dry DCM at room tempera-

ture in different proportions, as given in Table 1.

After plasma cleaning, the resulting gold oxide is unstable and
the samples were allowed to deoxidize for 24 h in fluoroware.
Then, the samples were immersed in thiol/silane solutions under
nitrogen and allowed to react for 48 h. The samples were then

Beilstein J. Nanotechnol. 2015, 6, 2272-2277.

rinsed two times with fresh DCM for 5 min under sonication
(Branson, 42 kHz, 100 W) followed by a stream of ultrapure

water and dried with nitrogen.

Characterization

XPS

XPS characterization was conducted using an ULVAC-PHI
VersaProbe II spectrometer equipped with a monochromatic
Al Ko X-ray source (1486.6 eV). The analysis area can be
adjusted from 200 pm to 10 um and the energy scale was cali-
brated with reference to the C s line at a binding energy of
284.8 + 0.1 eV (C—C/C—H). The charging effect is controlled by
a dedicated neutralizer using a combination of ions and elec-
trons at very low energy (0.1 eV). The X-ray spot can be
scanned with a field of view of 1300 pm. This instrument
allows for the recording of both XPS spectra and SXI images.

ToF-SIMS

ToF-SIMS measurements were performed with a Physical
Electronics (Chanhassen, USA), TRIFT III instrument operated
with a pulsed 22 keV Au ion gun (ion current of 2 nA). Areas of
300 x 300 pm were scanned. Under the present operation condi-
tions, the lateral resolution is on the order of 1 um. Submicron
resolution can be achieved, albeit hindering mass resolution.
The ion dose was kept below the static conditions limits. The
data were analyzed using WinCadence software. The mass cali-

bration was performed on hydrocarbon secondary ions.
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