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Abstract

The ability of the auditory system to change the perceptual 
weighting of acoustic cues when faced with degraded speech 
has  long  been  evidenced.  However,  the  exact  changes  that 
occur remain mostly unknown. Here, we proposed to use the 
Auditory Classification  Image  (ACI)  methodology to  reveal 
the acoustic cues used in natural speech comprehension and in 
reduced  (i.e.  noise-vocoded  or  re-synthesized)  speech 
comprehension.  The  results  show that  in  the latter  case  the 
auditory system updates its listening strategy by de-weighting 
secondary acoustic cues. Indeed, these are often weaker and 
thus  more  easily  erased  in  adverse  listening  conditions. 
Furthermore our data suggests that this de-weighting does not 
directly depend on the actual reliability of the cues, but rather 
on the expected change in informativeness. 

Index Terms: Auditory Classification Image (ACI), acoustic 
cues, phoneme categorization, speech-in-noise, noise-vocoded 
speech, synthetic speech.

1. Introduction

The  identification  of  phonemes  or  syllables  depends  on 
multiple,  redundant  acoustic  cues.  In  general,  it  is  assumed 
that no unique acoustic cue is absolutely mandatory for correct 
perception, and that some cues are sufficient. The analysis of 
confusion matrices however suggests that all different cues are 
not equally robust to noise and degradations  [1], [2]. On the 
perceptual  side,  listeners  attempting  to  categorize  speech 
signals can selectively attend to one dimension more than the 
other  (i.e.,  allowing  it  a  greater  “weight”)  [3].  These 
observations raise the question of the extent to which we adapt 
cue-weighting in response to signal reductions.

The ability of the auditory system to change the perceptual 
weighting  of  acoustic  cues  has  been  evidenced  in  several 
psychoacoustics studies. It has been shown that primary cues 
in a given listening situation can become secondary cues in 
other cases. When categorizing frequency-modulated sinusoids 
[4] or  complex  tones  [5] between  two  categories  differing 
along  two  parameters,  listeners  are  able,  in  some  cases,  to 
adapt  their  use  of  the  cues  depending  on  their  relative 
reliability,  even  during  the  course  of  the  experiment.  A 
comparable result  has been observed during speech-in-noise 
perception: while Voice Onset Time plays a major role in the 
perception of  voicing in  clear  speech,  the addition of  noise 
makes this cue ambiguous.  The listener then relies more on 
secondary  cues  such  as  f0  and  formant  transitions  [6].  A 
similar re-weighting of the f0 cue is also observed when the 
cues are artificially made equally informative (i.e., the tokens 

are chosen to  be at  the same perceptual  distance along two 
dimensions),  in  some cases  [7].  The spectral  distribution of 
masking noise  [8], or artificial manipulations of the cues [9], 
[10] can also be a cause of weighting changes. In all,  these 
experiments suggest that the auditory system is able to adapt 
its weighting strategy to selectively attend to the most reliable 
cues  in  a  particular  acoustic  context.  To  our  knowledge 
however, no study has directly explored the consequences of 
speech reductions on cue weighting strategies.

It  is  well  established  that  noise-vocoded  speech,  an 
artificial manipulation resulting in a dramatic loss of spectral 
details,  can  remain  highly  intelligible  after  a  short  training 
[11], [12], suggesting that listeners are able to switch to the use 
of temporal cues in this case. Up to now, however, no study 
has directly tackle the exact changes in the weighting strategy 
induced by noise-vocoding. An increased understanding of the 
processes by which normal-hearing listeners understand noise-
vocoded speech may have important applications for users of 
hearing aids or cochlear implants.

Synthetic  speech  is  another  type  of  speech  reduction 
abundantly  used  in  psychoacoustical  studies  as  a 
“simplification”  of  the  speech  signal  [13],  [14].  It  thus 
provides  a  means  of  controlling  for  the  multiple  covariant 
features in stimuli.  On the other hand, it has not been properly 
ascertained that such synthetic speech is processed in the same 
way as natural  speech by the auditory system,  which could 
reduce the scope of synthetic speech studies [15].

The recent development of Auditory Classification Images 
(ACI),  a  new  psychoacoustical  tool  for  studying  speech 
perception,  has  made  it  possible  to  precisely  identify  the 
acoustic cues involved during a phoneme categorization task 
[16]–[20].  In  a  typical  ACI experiment,  listeners  perform a 
large number of phoneme categorizations in noise. The exact 
distribution of noise at a given trial is then used to predict the 
corresponding  response  of  the  participant.  The  statistical 
model involves the estimation of a decision template, the ACI. 
This template can be seen as psychoacoustical maps showing 
greater weights in regions which have greater influence on the 
participants’  responses.  Therefore,  it  has  been  informally 
presented as  providing a  direct  visualization of the acoustic 
cues used by the listener.

Two  previous  ACI  experiments  conducted  on  normal-
hearing  participants  have  demonstrated  the  involvement  of 
multiple acoustic cues during phonetic categorizations:

1) In the first application of this method, Varnet et al. used 
two /aba/ and /ada/ recordings as targets  [17]. The resulting 
ACIs for the three listeners confirmed the role of the F2 onset 
in the /ba/-/da/ categorization, but also indicated the influence 
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of an additional anticipatory cue located on the F2 offset of the 
first syllable. In the following, this experiment will be referred 
to as “BD2013”.

2)  A second study on /da/-/ga/ categorization in context 
/al-/ or /aʁ-/ yielded similar findings [18]. The ACIs estimated 
on a group of 16 listeners revealed that the main cue in this 
task  was  the  height  of  F2  and  F3  onsets,  as  suggested  by 
previous  investigations.  However  additional  clusters  of 
weights were found in the low frequency bands, indicating that 
the  F1  onset  also  played  a  role  in  the  categorization. 
Anticipatory cues were also found in the first syllable. In the 
following, this experiment will be referred to as “DG2015”.

In the present paper, we asked whether the secondary cues 
observed in these tasks are also used when the listener has to  
cope  with  reduced  speech.  To  answer  that  question,  we 
replicated  the  previous  experiments  using  two  artificial 
manipulations  of  stimuli:  22-bands  noise-vocoding  and  re-
synthesized  speech.  Two  experiments  are  described  here, 
“BD2016” and “DG2016”, following the same scenario as in 
BD2013 and DG2015 with  noise-vocoded or  re-synthesized 
stimuli, respectively.

2. Materials & Methods

The experimental setup for the two experiments was identical 
as that used in BD2013 and DG2015.

Participants were seated in front of a video monitor in a 
quiet room, wearing Sennheiser’s HD 448 headphones. On a 
given trial, they were presented with one of the possible target 
words at random, embedded in white noise, and then asked to 
select the word they heard via a textual MATLAB interface. 
No feedback was provided during the main test. Overall, each 
participant  performed  a  total  of  10.000  trials,  for  a  total 
duration of 3 to 4 hours. For this reason, the listening test was 
broken into 4 days of experiment, each divided into 3 sessions 
lasting for about 15 min.

The SNR was automatically updated from trial to trial by 
means  of  an  adaptive  method  to  target  a  constant  correct 
response  rate  (75% for  /ba/-/da/  categorization  experiments, 
79% for /da/-/ga/ categorization experiments).

An additional practice session of ~10 trials was provided 
at  the  beginning  of  the  experiment  where  the  listener  was 
given feedback on their responses. 

/ba/-/da/ categorization experiment

One normal-hearing participant (LV,  coauthor  of this  paper) 
from BD2013 took part in this experiment.

In BD2013, Targets were two disyllabic non-word speech 
sounds composed of a recording of /a/, identical for the two 
targets, followed by a recording of /ba/ or a recording of /da/ 
(equalized in duration and RMS normalized).

In  experiment  BD2016,  noise-vocoded  versions  of  the 
same targets were used. Noise-vocoded stimuli were created 
by  dividing  the  frequency  axis  into  22  frequency  bands 
logarithmically  spaced.  The  amplitude  envelope  in  each 
frequency  band  was  applied  to  band-limited  noise.  The 
modulated  noises  were  then  summed  to  constitute  the  final 
sound.  By  construction,  the  first  syllable  is  also  identical 
between these two stimuli. Noise-vocoding on 22 channels  is 
considered  to  be  quite  understandable  without  any learning 
phase.

The  original  and  noise-vocoded  stimuli  are  shown  in 
Figure 1 (upper panel).

/da/-/ga/ categorization experiment

In  DG2015,  targets  were  4  natural  recordings  of  /alda/, 
/alga/,  /aʁda/  and  /aʁga/  (equalized  in  duration  and  RMS 
normalized). The task was to categorize the last syllable of the 
stimulus  as  /da/  or  /ga/,  independently  of  the  preceding 
consonantal context.

The 4 stimuli were re-synthesized for experiment DG2016. 
Formant  onsets  and  offsets,  syllable  durations  and  f0 
movements  were  close  to  the  original  ones,  but  formant 
trajectories  were  made  linear.  Furthermore,  in  the  synthetic 
stimuli  the two syllables were acoustically independent (e.g. 
/al/ was identical in /alda/ and /alga/).

Formant trajectories in the original and synthetic speech 
stimuli are represented by lines in Figure 2.

10 participants took part to the experiment DG2016. For 
comparison  purposes,  only  the  results  of  the  first  10 
participants of DG2015 are considered here.

ACI derivation

Several methods have been developed for deriving ACIs. All 
data  presented  in  this  paper  have  been  analyzed  using  the 
latest version of the algorithm [19]. 

During  the  experiment,  the  exact  distribution  of  noise, 
target  presented  and  participant's  response  are  collected  for 
each  trial.  By  linking  the  time-frequency  representation  of 
stimuli  (here,  the cochleogram  [21]) with the corresponding 
answer of the listener, via a Generalized Linear Model (GLM), 
a  psychoacoustical  map  indicating  the  contribution  of  each 
spectrotemporal bin to the decision can be obtained. To limit 
the  amount  of  over-fitting,  the  ACI  is  estimated  via  a 
Maximum  A Posteriori  algorithm  with  a  smoothness  prior. 
This method is very similar to that used for the estimation of 
Receptive Fields of sensory neurons from their firing rate [22]. 
For a more complete description of the algorithm, the reader is 
referred to [18], [19].

The obtained ACI is a linear approximation of the strategy 
used by the participant. It shows clusters of high positive or 
negative  weights  in  regions  where  the  presence  of  energy 
biases one response over the other. For instance, in Figure 1, 
red  clusters  correspond  to  regions  favoring  response  “ba”, 
whereas  blue  clusters  correspond  to  “da”  regions.  On  the 
contrary,  weights  close  to  zero  are  time-frequency  regions 
where noise  has  no marked influence on percept  formation. 
Groups of neighboring positive and negative clusters mark the 
positions of acoustic cues. In the following, the ACIs are z-
scored  and  all  weights  with  |Z|<2  are  plotted  in  gray  for 
legibility.
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3. Results

For  comparison  purposes,  the  SNR  was  varied  during  the 
experiment  in  order  to  maintain  a  constant  percentage  of 
correct answers across participants and conditions. The SNR 
levels and performances are given in Table 1.

BD2013 BD2016 DG2015 DG2016

% correct 70.5 73.4 78.8 ± 0.4 76.8 ± 2.0

Mean SNR (dB) -13.1 -13.0 -11.8 ± 0.7 3.3 ± 4.9

Table 1. Percentage of correct answers and mean SNR over all  
trials for the 4 experiments (mean and standard deviation over  

all participants the group experiments).

The two panels of Figure 1 show the two ACIs obtained 
for the same participant performing the /ba/-/da/ categorization 
task, with natural (A.) or noise-vocoded (B.) stimuli. Only one 
acoustic  cue  (composed  of  two  positive  and  two  negative 
clusters) is clearly identifiable in Figure 1B., around 0.2 s and 
1500 Hz. It is also visible in Figure 1A., as well as two other  
cues: one located at the same frequency position but in the first 
syllable (around 0.05 s and 1500 Hz), and one low-frequency 
cue at the same time position (around 0.2 s and 800 Hz).

Figure 1:  Stimuli  and ACI for participant LV in the  
two  /ba/-/da/  categorization  experiments.  A.  
Experiment with natural speech stimuli (BD2013). B.  
Experiment  with  noise-vocoded  stimuli  (BD2016).  
ACIs  are  rendered  as  Z-score  maps  (colored  pixels  
refer  to  |Z|>2).  A  dotted  line  indicates  0.2  s,  i.e.  
approximately the beginning of the second syllable.

Similarly, Figure 2 shows two ACIs obtained by averaging 
the  ACIs  of  10  participants  performing  the  /da/-/ga/ 
categorization experiment, with natural (A.) or re-synthesized 
(B.) stimuli. For clarity, the formant trajectories of the targets 
are superimposed. Figure 2A and 2B both present a central cue 
on the F2 and F3 onsets in the second syllable (around 2000 
Hz and 0.4 s). Additional cues are seen on Figure 2A. only, on 
the F1 onset of the second syllable and on the F1 and F2 in the 
first syllable.

Figure 2:  Stimuli and mean ACI over 10 participants  
in  the  two  /da/-/ga/  categorization  experiments.  A.  
Experiment with natural speech stimuli (DG2015). B.  
Experiment  with synthetic  speech stimuli  (DG2016).  
Format  as  in  Figure  1.  Lines  indicate  formant  
positions in the stimuli (black dotted line: “al”, black  
solid line: “ar”, red line: “da”, blue line: “ga”).

4. Discussion

In  this  paper,  two  previous  ACI experiments  (BD2013 and 
DG2015)  with  natural  speech  stimuli  were  replicated  using 
reduced stimuli (BD2016 and DG2016).

The ACIs obtained in the original experiments (Figure 1A. 
and  Figure  2A.)  confirmed  the  acoustic  cues  identified  by 
previous  synthetic  speech  studies  on  these  tasks  (e.g.  [23], 
[24]):  the  F2  onset  serves  as  primary  cue  for  the  /ba/-/da/ 
categorization,  whereas  both  F2  and  F3  onsets  are  used  in 
the  /da/-/ga/  categorization  (suggesting  that  the  distance 
between the two is the primary cue in this case).

Interestingly however, the ACI method also revealed the 
presence of additional acoustic cues in these two experiments, 
the categorization of a speech signal is not performed on the 
basis  of  a  single  acoustic  cue;  rather,  the  covariance  of 
multiple acoustical features allows for multiple cue extraction 
and combination, yielding more robust categorization. In both 
BD2013 and DG2015, we observed two types of secondary 
cues: anticipatory cues, located in the syllable preceding the 
target, and probably reflecting the extraction of coarticulatory 
information; and low-frequency cues on the F1 onset of the 
target syllable. It is important to note that these cues are visible 
on the ACI even in cases where they are not actually present in 
the  stimuli.  For  example,  the  ACI  in  BD2013  shows  an 
anticipatory cue on the F2 onset of the first syllable, although 
the targets do not contain any relevant information for the task, 
as they both begin with the same recording of /a/.  A tentative 
explanation  is  that  the  auditory  system,  used  to  extract 
anticipatory  information  on  the  F2  offset  of  the  syllable 
preceding  /b/  or  /d/,  is  highly  sensitive  to  the  variations 
introduced by noise on this region, resulting in large positive 
and negative weights on the ACI [20].

In  the  present  study  we  investigated  how  artificial 
reduction of the speech signals affect the participants' listening 
strategy and the weighting of secondary cues.  Two types of 
reductions  were  employed:  noise-vocoding,  reducing  the 
number of spectral channels used to encode the signal, and re-
synthesized  speech,  a  simplification  of  the  spectrotemporal 
details of the targets (such as exact formant trajectories). Re-
synthesis appears to be more deleterious than 22-band noise 
vocoding, as it results in a much larger SNR threshold increase 
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(Table  1).  However  it  should  be  noted  that  the  participant 
enrolled  in  BD2013  and  BD2016  is  very  used  to  ACI 
experiments, unlike those enrolled in DG2015 and DG2016. 

The corresponding ACIs are shown in Figure 1B. and 2B., 
respectively.  In both cases the primary cues for the task are 
preserved  (although  slightly  delayed  relatively  to  formant 
onsets  in  DG2016),  confirming  that  participants  are  still 
processing  the  stimuli  as  speech  signals.  However  the 
secondary cues are given less weights, comparatively, and do 
not reach the |Z|>2 threshold on the ACIs. These observations 
suggest  that,  when  they have  to  cope  with  reduced  speech 
signal, listeners selectively focus on the main cues by ignoring 
the secondary cues. 

Previous  experiments  on  cue  weighting  adaptation  with 
speech and non-speech stimuli have proposed that the auditory 
system modulates its cue-weighting strategy to target the most 
reliable  (i.e.  less  variable,  less  degraded)  cues  [4]–[6],  [9]. 
This  may  account  for  changes  observed  in  the  listening 
strategy  between  DG2015  and  DG2016.  Indeed,  while 
secondary cues may carry some coarticulatory information in 
the  former  case,  in  the  latter  they  are  likely  to  be 
uninformative, due to the re-synthesis. The listener is able to 
adapt  to  this  loss  of  information  by  de-weighting  the 
secondary cues.

Our  results  cannot  be  completely  explained  by  this 
interpretation,  however.  As  noted  earlier,  the  coarticulatory 
information  in  both /ba/-/da/  categorization  experiments  is 
irrelevant for the task, by construction of the stimuli. Still, this 
cue  is  extracted  in  BD2013  but  not  in  BD2016.  This 
demonstrates that the weighting of one cue can be changed 
without varying its reliability, at least for this participant and 
this type of noise. One plausible explanation would be that the 
weighting strategy does not only depend on the objective, but 
also on the predicted, informativeness of the cues, according to 
a  contextual  model  of  intelligibility.  The  auditory  system 
would  generate  a  mental  map  of  cue  informativeness, 
depending on the listening conditions.

ACIs in Figure 2 are averaged over 10 participants. The 
absence of secondary cues in DG2016 could therefore  be a 
result of an increase of the inter-individual variability, as often 
observed  in  degraded  speech  experiments.  No  participant 
show clear secondary cues in DG2016, but the individual ACIs 
also  appear  to  be  noisy,  compared  to  DG2015.  This  may 
explain,  at  least  partly,  the decrease in the weighting of the 
primary cue. An other possible explanation would be that the 
more  distant  formant  trajectories  in  the  synthetic  speech 
stimuli have resulted in broader (and hence weaker) clusters of 
weights. 

For comparison purposes we have chosen here to equalize 
the  performances  across  conditions  by  adapting  the  noise 
levels  as  a  function  of  participants'  responses.  As  a 
consequence, SNRs differed by 0,1 dB between BD2013 and 
BD2016, and by 15 dB between DG2015 and DG2016 (see 
Table  1).  To  put  it  another  way,  the  difficulty  of  the  task 
primarily results from the addition of noise in BD2013 and 
DG2015,  but  from  the  speech  reduction  in  BD2016  and 
DG2016. This is obviously an inherent constraint of this type 
of studies. Nevertheless it is unlikely that the diminution of the 
level  of  noise  in  BD2016  and  DG2016  has  caused  the 
observed reduction in the weighting of secondary cues.

The results of BD2016 remain to be replicated with more 
participants. Still, they already give an important insight on the 
processes by which users of hearing aids or cochlear implants 

adapt  to  their  new  input.  While  it  was  hypothesized  that 
speech  comprehension  with  a  reduced  number  of  channels 
implied switching form spectral cues to temporal cues [11], the 
ACI  shows  that,  for  22-band  noise-vocoded  speech,  the 
listener relies on the same primary acoustic cue as for natural 
speech. Synthetic speech has been used by speech researchers 
for  decades  [13],  [14],  and  is  still  widely  used  today,  in 
particular  in  neuroimaging  studies  [25],  [26].  One  major 
assumption underlying such studies is that reduced speech is 
processed in the same way as natural speech by the auditory 
system. However, the absence of secondary cues on the ACI in 
DG2016 calls into question this assumption.

5. Conclusion

To summarize, when it has to cope with reduced speech 
such as noise-vocoded speech or “rough” synthetic speech, the 
auditory system is able to update its listening strategy by de-
weighting secondary acoustic  cues and focusing on primary 
acoustic cues.  Indeed,  secondary cues are often weaker  and 
thus  more  easily  erased  in  adverse  listening  conditions. 
Furthermore our data suggests that this de-weighting does not 
directly depend on the actual reliability of the cues, but rather 
on the expected change in informativeness.
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