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We propose a projection iterative algorithm based on a fixed point equation for solving a certain class of Signorini problem. The satisfaction of the 
Signorini boundary conditions is verified in a projection iterative manner, and at each iterative step, an elliptic mixed boundary value problem is solved 
by a boundary element method which is suitable for any domain. We prove the convergence of the algorithm by the property of projection. The 
advantage of this algorithm is that it is easy to be implemented and converge quickly. Some numerical results show the accuracy and effectiveness of

the algorithm.
1. Introduction

Domain discretization methods such as the finite element
method (FEM) and the finite differential method (FDM) have
been extensively applied for the numerical solution of Signorini
require the discretiza-
gh computational cost.

on the boundary of
thods are suitable for
lications of method of
fundamental solution (MFS) and boundary element method
(BEM) schemes for Signorini problems can be found in [6–20].

It is worth noting that some simple and practical iterative
algorithms linked with the BEM have been applied to Signorini
problems [18–20]. For example, the switching algorithm with the
BEM for Signorini problems of elliptic differential equations is
provided in [18]. Signorini problems for the Laplace equation are
solved by a decomposition–coordination method (DCM) in [19],
which is based on boundary variational inequality formulations.
The boundary element-linear complementary method (BE-LCM)
has been employed to solve Signorini problems, and a projected
successive over-relaxation iterative method is applied to the pro-
blem effectively in [20].

In recent years, the projection iterative algorithm has become
a popular method for finding numerical solutions of Signorini



problems [4,5,21–26]. The semi-smooth Newton method for
Signorini problems which bases on the projection algorithm was
proposed in [4,5]. Some projection iterative methods were
proposed for variational inequalities in [21–26].

In this paper, we propose a projection iterative algorithm based
on a fixed point equation. The equivalence between the Signorini
boundary condition considered and the fixed point equation on the
boundary is discussed in Section 2, where we propose a new
iterative algorithm for the fixed point problem and the proof of
convergence of the algorithm is given in Appendix. The implemen-
tation of BEM is introduced in Section 3. Some numerical results are
presented in Section 4, and we conclude the paper in Section 5.
2. An iterative algorithm for the Signorini problem

For the sake of simplicity, let us consider, as a model problem,
a Signorini problem in two dimensions. Let O be a bounded
domain in R2 with the smooth boundary G¼GD[GN[GS, and
GSa|. We want to find the solution u satisfying

Du¼ f in O
u¼ g on GD

@u
@n ¼ q on GN

8><
>: ð1Þ

and the following Signorini boundary conditions

uZh,
@u

@n
Z0, ðu�hÞ

@u

@n
¼ 0, on GS ð2Þ

where fAL2(O), gAH1/2(GD), hAH1/2(GS) and qAH�1/2(GN) are all
given functions. It is well known that this problem has a unique
solution.

In order to obtain our algorithm, we transfer the problem of
satisfaction for Signorini boundary conditions considered to a
fixed point problem. For aAR we define the projection operator

½a�þ ¼maxða,0Þ:

Then the Signorini boundary conditions (2) are equivalent to
the following fixed point problem

ðu�hÞ� ðu�hÞ�c
@u

@n

� �
þ

¼ 0, on GS ð3Þ

where c is any positive number [22,26]. By (3) we have
minu�h,ð@u=@nÞ ¼ 0, which is equivalent to u�hZ0, qu/qnZ0
and (u�h)qu/qn¼0. Clearly the fixed point Eq. (3) is equivalent to
the Signorini boundary conditions (2) [26].

According to the fixed point Eq (3), we propose an implicit
scheme on GS as follows:

uðkþ1Þ ¼ hþ ðuðkÞ�hÞ�c
@uðkþ1Þ

@n

� �
þ

: k¼ 0,1,2, � � � ð4Þ

In the numerical iterative algorithm, the projection operation
½ �þ needs be verified point-wise only on GS. For any initial value
u(0)

Zh and any positive constant c40, we can prove that the
sequence {uk} generated by the algorithm converges to the unique
solution of the problem, see Appendix.

The process of the iterative algorithm is the following [5]:

Step 1: Assume initially that the boundary condition on GS is

uð0Þ ¼ h on GS ð5Þ

Then solve the mixed boundary value problem (1) with the
boundary condition on GS (5) to obtain the normal derivative
qu(0)/qn on GS.
Choose a constant number c40, and a tolerance t40.
Step 2: Verify the following boundary conditions on GS. If on
some part of GS, which we noted by GðkÞSD

ðuðkÞ�hÞ�c
@uðkÞ

@n
o0 on GðkÞSD

Then we pose the Dirichlet boundary condition on the set of GðkÞSD

uðkþ1Þ ¼ h: ð6Þ

and the remaining part of GS, we noted GðkÞSR where the following
condition is imposed.

uðkþ1Þ ¼ uðkÞ�c
@uðkþ1Þ

@n
: ð7Þ

Step 3: Solve the following elliptic boundary value problem

Duðkþ1Þ ¼ 0 in O
uðkþ1Þ ¼ g on GD

@uðkþ 1Þ

@n ¼ q on GN

uðkþ1Þ ¼ h on GðkÞSD

@uðkþ 1Þ

@n ¼ ¼ 1
c ðu
ðkÞ�uðkþ1ÞÞ on GðkÞSR

8>>>>>>>><
>>>>>>>>:

ð8Þ

Then we obtain u(kþ1) and its normal derivative qu(kþ1)/qn¼

1/c (u(k)
�u(kþ1)) on the boundary GS. Or we solve another

mixed boundary value problem

Duðkþ1Þ ¼ 0 in O
uðkþ1Þ ¼ g on GD

@uðkþ 1Þ

@n ¼ q on GN

uðkþ1Þ ¼ h on GðkÞSD

uðkþ1Þ ¼ uðkÞ�c @uðkþ 1Þ

@n on GðkÞSR

8>>>>>>>><
>>>>>>>>:

ð9Þ

then obtain the normal derivatives qu(kþ1)/qn and u(kþ1)
¼

u(k)
�c (qu(kþ1)/qn) on the boundary GS.

Step 4: If :uðkþ1Þ�uðkÞ:GS
rt:uðkþ1Þ:GS

, the iteration is termi-
nated. Otherwise, we set k¼kþ1 and go back to Step 2.

3. Application of the algorithm with the boundary element
method

Since the numerical method needed in the iteration process to
solve the boundary value (8) or (9) should be convenient to
update the data on the boundary and to check the inequalities
on the boundary, so that the BEM is more appropriate for
the algorithm [27,28]. We need only boundary meshing, and the
checking of the inequalities is performed point-wise on the
boundary nodes only in the implementation of BEM.

For simplicity, we may assume that f�0. If fa0, domain
integrations are involved. While a dual reciprocity method
[29–31] or multiple reciprocity method [32] are used, the domain
integrals are avoidable. Otherwise, if we can find a particular
solution of the Poisson equation [33], the problem can be
transformed to a problem of Laplace equation.

The boundary integral equation relating the potential and
normal derivative on the boundary G is the following

aðyÞuðyÞ ¼
Z
G

@uðxÞ

@nx
unðx,yÞ dsx

�

Z
G

uðxÞ
@unðx,yÞ

@nx
dsx, yAG ð10Þ

where nx is the outward unit normal to the boundary G and
unðx,yÞ ¼ �1=2p ðln9x�y9Þ is the fundamental solution of Laplace



equation, aðyÞ ¼ yðyÞ=2p, and y(y) is the angle at the boundary
point yAG, a¼1/2 for any constant element.

When we use constant approximation for u(k) and qu(k)/qn on
each boundary element, the checking of the inequalities point-
wise on nodes element by element along GS in step 2 is easy
to implement. Each element on GS clearly belongs to either
GðkÞSD or GðkÞSR .

At the (kþ1)th iterative step, the boundary data u(kþ1)and
qu(kþ1)/qn are linked by the discrete form of the boundary integral
equation (10) while the nodes yi on GD, GN and GðkÞSD, which reads as

1

2
uðkþ1ÞðyiÞ�

XN

j ¼ 1

1

2p

Z
Gj

@ln9x�yi9
@nx

dsx

" #
uðkþ1ÞðxjÞ

¼�
XN

j ¼ 1

1

2p

Z
Gj

ln9x�yi9dsx

" #
@uðkþ1ÞðxjÞ

@nx
, yiAGD [GN [ G

ðkÞ
SD

ð11Þ

where N denotes the total number of boundary nodes on G.
If the Robin boundary conditions on GðkÞSR is applied

@uðkþ1Þ

@n
¼

uðkÞ�uðkþ1Þ

c
ð12Þ

the corresponding discrete form while yiAGðkÞSR reads

1

2
uðkþ1ÞðyiÞ�

XN

j ¼ 1

1

2p

Z
Gj

@ln9x�yi9
@nx

dsx

" #
uðkþ1ÞðxjÞ

�
XN

j ¼ 1

1

2cp

Z
Gj

ln x�yi

�� ��dsx

" #
uðkþ1ÞðxjÞ

¼�
XN

j ¼ 1

1

2cp

Z
Gj

ln9x�yi9dsx

" #
uðkÞðxjÞ, yiAGðkÞSR ð13Þ

If the Robin boundary conditions on GðkÞSR is given by another
form

uðkþ1Þ ¼ uðkÞ�c
@uðkþ1Þ

@n
ð14Þ

the corresponding discrete form while yiAGðkÞSR reads

c

2

@uðkþ1ÞðyiÞ

@n
�
XN

j ¼ 1

c

2p

Z
Gj

@ln x�yi

�� ��
@nx

dsx

" #
@uðkþ1ÞðxjÞ

@n

�
XN

j ¼ 1

1

2p

Z
Gj

ln x�yi

�� ��dsx

" #
@uðkþ1ÞðxjÞ

@n

¼
uðkÞðyiÞ

2
�
XN

j ¼ 1

1

2p

Z
Gj

@ln x�yi

�� ��
@nx

dsx

" #
uðkÞðxjÞ, yiAGðkÞSR ð15Þ

When the boundary conditions needed on boundary GD [ GN [

GðkÞSD for (kþ1)th step and u(k)(xj) on GðkÞSR being determined, we can
solve the linear equations (11) and (13) or (11) and (15) at
(kþ1)th step, which make up well-posed problems to obtain the
unknown u(kþ1) and its normal derivative qu(kþ1)/qn at the nodes
on GðkÞSR , so that we can reset the sets Gðkþ1Þ

SD and Gðkþ1Þ
SR through the

checking by Step 2.
In the iterative process, we found in the numerical tests that

the value of c has a little effect on the number of iteration steps in
general.
Fig. 1. Analytical and approximate solution for the potential on GS.
4. Numerical examples

In this Section, we choose t¼10�6 and present two numerical
experiments. In the first example an explicit solution is known in
an annular domain. In the second example the analytical solution
is not known in a square domain.
4.1. The Signorini problem for the Laplace equations (13,19)

We consider a test example in the annular domain O¼
xAR2 : ao9x9ob
n o

with a Dirichlet boundary condition on the

boundary GD ¼ xAR2 : 9x9¼ b
n o

and a complementary condition

on the Signorini boundary GS ¼ xAR2 : 9x9¼ a
n o

. The analytical

solution in the domain O is given by the following complex function

uðx1,x2Þ ¼ Imwðx1þ ix2Þ
3

where

wðx1þ ix2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1�x2
2

r2

� �2

þ
1

4

r2

a2
�

a2

r2

� �2
s

þ
1

4

x2
1�x2

2

r2

r2

a2
þ

a2

r2

� �vuut
sign x1

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1�x2
2

r2

� �2

þ
1

4

r2

a2
�

a2

r2

� �2
s

�
1

4

x2
1�x2

2

r2

r2

a2
þ

a2

r2

� �vuut
sign x2

and r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1þx2
2

q
, 9x9Za. Then we can easily obtain all boundary

conditions from the analytical solution.
The Signorini boundary conditions on GS are prescribed as

uZh,
@u

@n
Zj, ðu�hÞ

@u

@n
�j

� �
¼ 0

where

hðx1,x2Þ ¼minð0,uðx1,x2ÞÞ

jðx1,x2Þ ¼

� 6
a ðx240,9x9¼ aÞ

� 6
a5 ðx

2
1�x2

2Þ
2
ðx2r0,x2Z�9x19,9x9¼ aÞ

0 ðx2o�9x19,9x9¼ aÞ

8>><
>>:

The analytical solution on the Signorini boundary GS is

uðx1,x2Þ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0,

x2
2�x2

1

a2

� �3
s

sign x2,

@u

@n
ðx1,x2Þ ¼�

6

a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0,

x2
1�x2

2

a2

� �s
9x19x2:

Using the BEM, this problem has been solved by the linear
complementary method [13] and the DCM [19], respectively.

We take a¼0.1 and b¼0.25 and use the parameterizations
t-ðacos 2pt,�asin 2ptÞ and t-ðbcos 2pt,bsin 2ptÞ. We chose
c¼10,000 and apply our method to this problem on a uniform
grid for t. The discretization includes 32 boundary elements on GS

and 32 boundary elements on GD, so N¼64. The exact solution



and the numerical results for the potential on GS are shown in
Fig. 1. The results for the normal derivative are shown in Fig. 2.
It can be observed that our results are in a good agreement with
the exact solution.

By choosing different numbers of boundary elements N¼16,
32, 64, 128, and 256 on G, we investigate the convergence
behavior of our method. Our numerical results are shown in
Tables 1 and 2. Table 1 indicates that numerical results converge
well as the number of boundary elements N increases. In Table 2,
we choose different values of c and compare the number of
iterations between the DCM in Ref. [19] and our method. Because
of using the BEM for both methods, each step of our method takes
approximately the same computational cost as the DCM. Then,
we can observe that the convergence of our method is faster than
that of the DCM. In addition, the results show that the different
values of c do not affect the iteration steps of the algorithm.
Fig. 2. Analytical and approximate solution for the normal derivative on GS.

Table 1
Convergence with N of the solution for the potential on GS for c¼10,000.

t Approximate solution Exact solution

N¼16 N¼32 N¼64 N¼128 N¼256

0.125 �0.1829 �0.0795 �0.0334 �0.0137 �0.0056 0

0.25 0.9400 0.9778 0.9919 0.9971 0.9990 1

0.375 �0.1829 �0.0795 �0.0334 �0.0137 �0.0056 0

0.5 0 0 0 0 0 0

0.625 0.1829 0.0795 0.0334 0.0137 0.0056 0

0.75 �0.9400 �0.9778 �0.9919 �0.9971 �0.9990 �1

0.875 0.1829 0.0795 0.0334 0.0137 0.0056 0

1.0 0 0 0 0 0 0

Table 2
Iteration with increasing c and N.

N The method in this paper The method in

Ref. [19]

c¼1 c¼10 c¼100 c¼1000 c¼10,000 c¼100,000

16 3 3 3 3 3 3 21

32 4 4 4 4 4 4 24

64 4 4 4 4 4 4 28

128 5 5 5 5 5 5 36

256 6 6 6 6 6 6 48
4.2. The Signorini problem for the Poisson equation

In this example, we consider the following Signorini problem
for Poisson’s equation.

Du¼�cos
p
2
þpx1

� 	
�1 in O¼ ð0,1Þ � ð0,1Þ

u¼ 0, on GD ¼ ðx1,x2Þ : x1 ¼ 0,0rx2r1

 �

[ ðx1,x2Þ : x1 ¼ 1,0rx2r1

 �

@u

@n
¼�7x1ð1�x1Þ, on GN ¼ ðx1,x2Þ : 0rx1r1,x2 ¼ 1


 �
with the following Signorini boundary conditions on GS¼{(x1, x2):
0rx1r1, x2¼0}

urh,
@u

@n
r0 and ðu�hÞ

@u

@n
¼ 0 ð16Þ

where hðx1Þ ¼ 5x1ð1�x1Þð0:5�x1Þmaxðx1,1�x1Þ. This problem was
solved by the FDM and semi-Newton methods in [5]. Since f(x) is
simple in this example, a particular solution uP of the Poisson
equation may be determined analytically as the following

uP ¼
1

p2
cos

p
2
þpx1

� 	
�

x2
2

2

then the original problem can be transformed into the following
homogeneous equation through the substitution uH¼u�uP; that
is,

DuH ¼ 0 in O¼ ð0,1Þ � ð0,1Þ

uH ¼�
1

p2
cos

p
2
þpx1

� 	
þ

x2
2

2
, on GD

@uH

@n
¼�7x1ð1�x1Þþx2, on GN

with the following Signorini boundary conditions on GS

uH r5x1ð1�x1Þð0:5�x1Þmaxðx1,1�x1Þ�
1

p2
cos

p
2
þpx1

� 	
,
@uH

@n
r�x2

and

uH�5x1ð1�x1Þð0:5�x1Þmaxðx1,1�x1Þþ
1

p2
cos

p
2
þpx1

� 	� �
@uH

@n
þx2

� �
¼ 0:

Then we apply our method to solve the Signorini problem of
homogeneous equation and obtain uH. The final numerical solution
of the original problem can be obtained by adding the homo-
geneous solution and the particular solution; that is, u¼uHþuP.
Fig. 3. Approximate solution for the potential and h(x1) on GS.



The numerical results of the potential and its normal deriva-
tive for c¼10,000 are plotted in Figs. 3 and 4 as mesh size h¼1/40
(N¼160). It can be seen that our results are in a good agreement
with the Signorini boundary conditions (16).

In order to investigate the convergence behavior of our method,
we solve the problem by choosing c¼10,000 and different
Fig. 4. Approximate solution for the normal derivative on GS.

Table 3
Convergence with N of the solution for the potential on GS.

(x1, x2) Approximate solution

N¼40 N¼80 N¼160 N¼320 N¼640

(0.1,0) �0.0102 �0.0099 �0.0098 �0.0098 �0.0098

(0.2,0) �0.0261 �0.0256 �0.0255 �0.0255 �0.0255

(0.3,0) �0.0443 �0.0436 �0.0435 �0.0435 �0.0435

(0.4,0) �0.0626 �0.0616 �0.0615 �0.0615 �0.0615

(0.5,0) �0.0808 �0.0793 �0.0791 �0.0791 �0.0790

(0.6,0) �0.1032 �0.1003 �0.1000 �0.0999 �0.0999

(0.7,0) �0.1470 �0.1470 �0.1470 �0.1470 �0.1470

(0.8,0) �0.1920 �0.1920 �0.1920 �0.1920 �0.1920

(0.9,0) �0.1620 �0.1620 �0.1620 �0.1620 �0.1620

Table 4
Performance of the semi-smooth Newton method and the proposed method.

h The method in Ref. [5] The method in this paper

Iter CPU DOF (N) Iter CPU DOF (N)

1/10 3 0.047 9�11 3 0.188 4�10

1/20 3 0.125 19�21 3 0.312 4�20

1/40 4 4.797 39�41 5 0.859 4�40

1/80 6 18.98 79�81 5 3.141 4�80

1/160 9 75.42 159�161 6 15.05 4�160

Table 5
Iteration with increasing c and N.

c/N 1 10 100 1000 10,000 100,000

40 11 7 5 4 3 3

80 10 7 5 4 3 3

160 10 7 6 5 5 5

320 10 7 6 5 5 5

640 10 7 6 6 6 6
numbers of boundary elements N¼40, 80, 160, 320, and 640 on
G, and our numerical results are shown in Tables 3 and 4. We note
that numerical results converge well as the number of boundary
elements N increases. Table 4 compares the performance of the
method in [5] and our method by choosing different mesh sizes
h¼1/10, 1/20, 1/40, 1/80 and 1/160. Here, Iter, CPU and DOF refer
to the number of iterations, CPU times (sec) and the degree of
freedom, respectively. The results show that, when degree of
freedom of the problem is large, our method is more efficient than
the method in [5].

Here, we investigate that the value of c affects the convergence
of the algorithm again. The results of different c and N are
presented in Table 5 and show that the number of iterations
decreases slowly as c increase.
5. Conclusion

In this paper, we proposed an algorithm coupling BEM and a
projection iteration for the solution of Signorini problems and
proved its convergence. The advantage of our algorithm is that it
converges rapidly and it can be implemented easily for Signorini
problems defined in domain with arbitrary shape. We have put
some Signorini problems for the Laplace and Poisson equations to
numerical tests, and numerical results agree well with numerical
solutions obtained by other methods.
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Appendix. Convergence analysis of the algorithm

Let /U,US denote the extension of the usual L2(G) scalar
product to H1/2(G)�H�1/2(G). To investigate the convergence of
the iterative algorithm in Section 2, we will need the following
lemmas [26].

Lemma 1. Let un be the solution of the Signorini problem, then

@uðkþ1Þ

@n
,uðkÞ�un

� 

GS

Z
@uðkþ1Þ

@n
,uðkÞ�uðkþ1Þ

� 

GS

Proof. Since un is the solution of the Signorini problem, we
consider the (kþ1)th iteration and obtain

@un

@n
,uðkþ1Þ�un

� 

GS

¼
@un

@n
,ðuðkþ1Þ�hÞþðh�unÞ

� 

GS

¼
@un

@n
,uðkþ1Þ�h

� 

GS

�
@un

@n
,un�h

� 

GS

¼
@un

@n
,uðkþ1Þ�h

� 

GS

Z0:

Applying Green’s formula, we have
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Consequently,
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Lemma 2. Let un be the solution of the Signorini problem, then
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Proof. According to the algorithm (4), we use the projection
and have
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Hence,
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Using the above Lemmas, we can prove the following conver-
gence theorem for the iterative algorithm.

Theorem 3. Let {u(k)} be the sequence generated by the algorithm
of Section 2. Then u(k) converges to the unique solution u* of the
Signorini problem as k-N.

Proof. Since u* is the solution of the Signorini problem, by the
Lemmas and the projection principle we have
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Clearly, the sequence {u(k)} is bounded, and

X1
k ¼ 0
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implying that {u(k)} is a Cauchy sequence. Let lim
k-1

uðkÞ ¼ uð1Þ, then

u(N) satisfies the fixed point Eq. (3). So the sequence {u(k)}
converges to the unique solution un of the Signorini problem,
completing the proof.
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