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MODIFIED SCATTERING AND BEATING EFFECT FOR COUPLED

SCHRÖDINGER SYSTEMS ON PRODUCT SPACES WITH SMALL INITIAL DATA

VICTOR VILAÇA DA ROCHA

September 9, 2016

Abstract. In this paper, we study a coupled nonlinear Schrödinger system with small initial data in
a product space. We establish a modified scattering of the solutions of this system and we construct a
modified wave operator. The study of the resonant system, which provides the asymptotic dynamics,
allows us to highlight a control of the Sobolev norms and interesting dynamics with the beating effect.
The proof uses a recent work of Hani, Pausader, Tzvetkov and Visciglia for the modified scattering, and
a recent work of Grébert, Paturel and Thomann for the study of the resonant system.

1. Introduction

The purpose of this paper is to study the asymptotic behavior of the following cubic defocusing coupled
nonlinear Schrödinger system with small initial data:

{
i∂tU +∆R×TU = |V |2 U, (t, x, y) ∈ [0,+∞)× R× T

i∂tV +∆R×TV = |U |2 V,
(1.1)

where T = R/2πZ is the one dimensional torus and U, V are complex valued functions on the spatial
product space R× T. We construct some solutions of this system which exhibit a modified scattering to
solutions of a nonlinear resonant system. Thanks to the nonlinearity, we construct solutions which exhibit
a beating effect, namely a transfer of energy between two different modes of the couple of solutions. This
is a genuine nonlinear behavior.

1.1. Motivations and background. When dealing with small solutions of nonlinear evolution equations,
there are usually two main axes of research. The first one is the linear approach. The idea is to show that
for small initial data, the solutions of theses equations tend to be close to solutions of the associated linear
equations. The second way to analyze these equations is the nonlinear approach. This is the approach
we choose in this paper. This time, the goal is to find some solutions with a nonlinear behavior, i.e a
behavior that doesn’t exist for the linear equation. From this point of view, we can expect a large range of
results, depending on the kind of nonlinear behavior we want to highlight. First, we can expect different
kinds of nonlinear behavior. For example, we can expect some growth of the Sobolev norms, or even a
blow-up of the solutions. We can also expect some interaction between the modes and frequencies of the
solutions (e.g. some exchange of energy), existence of solitons... Then, nonlinear effects can appear on
different time scales. This can be finite time behavior, large but finite time behavior depending of the size
of the initial data, or even infinite time behavior. Finally, we can make a new dichotomy with the way the
solutions are enjoying the behavior: are the solutions presenting themselves the nonlinear behavior, or are
they scattering to solutions of other equations which present this behavior ?
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From the point of view of the search of instability, the cubic nonlinear Schrödinger equation is a perfect
candidate due to this cubic nonlinearity that offers some resonant opportunities. Physically, the cubic
nonlinear Schrödinger equation

i∂tU +
1

2
∆U = λ|U |2U,

with λ ∈ R, appears in a large range of phenomena, like for example, the propagation of light in nonlinear
optical fibers, the Bose-Einstein condensates theory, the gravity waves, the water waves... This duality
between the physical and mathematical interest make this equation one of the most studied and one of
the most important models in nonlinear science. The kind of nonlinear behavior we can obtain depends
on the geometry of the spatial domain. Let us present some of theses nonlinear results.

For Euclidean spaces, we can show that the solutions exist globally, are decreasing and exhibit a modified
scattering to free solutions. We refer to Kato and Pusateri in [15] for the case of the space R, and to Hayashi
and Naumkin in [14] for the more general case of the Euclidean space Rn.

For hyperbolic spaces, Banica, Carles and Staffilani show in [2] that we also have a modified scattering
behavior and a wave operator in L2 and H1.

For compact domains, in the case of the torus, we can use the resonances between the modes of the
solutions to exhibit some growth of the Sobolev norms (see Colliander, Keel, Staffilani, Takaoka and Tao
in the case of the torus T2 in [6]). We can also use theses resonances to see that the equation is strongly
illposed on the Sobolev spaces Hs, with s < 0, in the torus Td for d ≥ 2 (see Carles and Kappeler in [4]);
or to see the equation is instable with respect to the initial value (see Carles, Dumas and Sparber in [3]).

Finally, for product spaces, we can expect to mix some of these geometric domains to obtain two different
kinds of nonlinearity at the same time. The initial idea of Tzvetkov and Visciglia in [17] is to study the
equation on the space Rn ×M, with M a compact Riemannian manifold. They show that the solutions
exist globally and scatter to free solutions for small initial data. The two authors extend their result to
the large data case with the compact manifold M = T in [18]. They obtain again a global existence
and a scattering behavior. As in the Euclidean spaces case, the problem is here that solutions of the
cubic Schrödinger equation scatter to free solutions, which prevents from all the compact-kind nonlinear
behavior such as a growth of the norms.

From the point of view of the product space, Hani, Pausader, Tzvetkov and Visciglia in [11] pass out
this problem by considering the space R× Td, for 1 ≤ d ≤ 4. The idea is to keep a direction of diffusion
with R to enable scattering results and to add the compact manifold Td to obtain interesting nonlinear
behaviors. The result here is very interesting because they show that, for small initial data, the solutions
of the cubic Schrödinger equation scatter to solutions of another equation call the resonant equation,
instead of free solutions. They also obtain a modified wave operator from this resonant equation to the
cubic Schrödinger equation. As a consequence, we can expect a whole new range of nonlinearity mixing
the scattering theory from the Euclidean part, and all the kind of nonlinearity we can highlight for the
resonant equation. In particular, they show how to transfer solutions of a reduced resonant equation on
the torus Td to solutions of the resonant equation. Therefore, we can expect all ’torus-kind’ of nonlinearity
(thanks to the resonances) for the resonant equation, as a growth of the Sobolev norms, and thus find
solutions to the the cubic Schrödinger equation that scatter to theses solutions.

One of the interest of this method employed by Hani, Pausader, Tzvetkov and Visciglia, is the fact that
it is adaptable. From example, adding a convolution potential in order to kill the resonances, Grébert,
Paturel and Thomann show in [10] that the modified equation admit modified scattering and a wave
operator too, but they show that all their solutions tend to be constant in Sobolev spaces. Another
example is given by Hani and Thomann in [12]. They add a harmonic trapping and obtain once again
a modified scattering result and the existence of the modified wave operator. The important fact here is
that the resonant dynamics allow them to justify and extend some physical approximations in the theory
of Bose-Einstein condensates in cigar-shaped traps. Finally, a last example is given by Haiyan Xu in [20].
By modifying the equation, she establishes a scattering theory between the cubic Schrödinger equation on
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the cylinder R× T and the Szegő equation. Thanks to the study of the Szegő equation, this allows her to
construct global unbounded solutions to this modified cubic Schrödinger equation.

As in the three previous examples, the goal of this paper is to transport the method of Hani, Pausader,
Tzvetkov and Visciglia to another problem, the study of the cubic coupled Schrödinger system. Indeed,
the cubic coupled Schrödinger systems present some interesting dynamical properties we can present now.

From the mathematical point of view, the study of systems offers more possibilities than a single
equation. However, the first step is often to check that we can extend the results of the equation case
study to the system case. In that optic, we can see from a general point of view on evolution systems
that the presence of a direction of diffusion seems to allow scattering. For example, for the Klein Gordon
equation on product spaces, Hari and Visciglia in [13] obtain scattering of the solutions to free solutions
for small initial data. In the case of Schrödinger systems, Cassano and Tarulli show in [5] a scattering
result and the existence of the wave operator, but this study doesn’t allow to look at the cubic case when
there is just one Euclidean space direction. Let us now deal with cubic coupled Schrödinger systems.

As the cubic coupled Schrödinger equation, the cubic coupled Schrödinger system present at the same
time a physical and a mathematical interest. Physically, the cubic coupled Schrödinger system occurs in
nonlinear optics while, for example, looking two orthogonally polarized components traveling at different
speeds because of different refractive indices associated with them. We can also study the coupling between
two different optical waveguides, that can be provided by a dual-core single-mode fiber. Another example
is given by two distinct pulses with different carrier frequencies but with the same polarization. For more
precisions on theses examples, we can refer to the book [1] of G. Agrawal and R. Boyd on nonlinear optics.

Of course, the kind of result we obtain for systems depends on the geometry of the space domain. For
Euclidean spaces, the role of the coupling is not predominant. Basically, we obtain same kind of results as
in the one equation case. As in the Hayashi-Naumkin article [14], the Euclidean direction can provide some
decrease of the L∞ norms. For example, Donghyun Kim studies in [16] a cubic coupled Schrödinger system
with different mass. He obtains the global existence and a decay of the solutions. The diffusion direction
allows extension of the results of Kato and Pusateri ([15]) in the case of a cubic coupled Schrödinger
system on R, with global existence, a scattering result and a decreasing of the solutions (see [19]). For
bigger Euclidean spaces, we can cite the recent work of Farah and Pastor who show global existence and
scattering in H1(R3) in [7].

For the torus case, the study of systems allows to create more nonlinear behaviors by creating mixing
between the different modes of the solutions. This is the main interest of the study of the cubic coupled
Schrödinger systems. For example, Grébert, Paturel and Thomann in [9] highlight a beating effect for cubic
coupled Schrödinger systems on T. This beating effect consists in an exchange of energy between different
modes of the solution. This surprising behavior can be observed by simple experiences, for example, with
two identical clothespins on a wire. In this experience, with a small perturbation, we can observe a beating
effect between the two clothespins (see the video [8], in French). The existence of the beating effect for the
cubic coupled Schrödinger systems, based on a Birkhoff normal form decomposition of the Hamiltonian of
the system, is thus proved for large but finite time. This kind of nonlinear behavior is made possible by
the mixing effect mentioned above.

In this paper, we choose the spatial domain R × T. The goal is to use the diffusion direction to get
a scattering result and a wave operator by using the method of Hani, Pausader, Tzvetkov and Visciglia;
and to use the compact component T to obtain interesting dynamics such as the beating effect of Grébert,
Paturel and Thomann. By mixing these two approaches, we obtain a couple of solutions of our system (1.1)
that scatters to a solution of a resonant system that provides a beating effect.

1.2. The results. In this section, we present the main theorems of the paper. In the following results, we
denote by FH(ξ, p) = Ĥ(ξ, p) = Ĥp(ξ) the Fourier transform of H : R×T −→ C at the point (ξ, p) ∈ R×Z.
Moreover, the norm S+ we consider here is a strong L2 based norm introduced in Section 2 and N ≥ 12
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is an integer. We recall that we study the system
{
i∂tU +∆R×TU = |V |2 U, (t, x, y) ∈ [0,+∞)× R× T

i∂tV +∆R×TV = |U |2 V.

Due to the approach of Hani, Pausader, Tzvetkov and Visciglia in [11], we want to make a link between
the behavior of the system (1.1) and a resonant system we define here:

{
i∂τWU (τ) = R [WV (τ),WV (τ),WU (τ)] ,

i∂τWV (τ) = R [WU (τ),WU (τ),WV (τ)] ,
(1.2)

with

FR [F,G,H ] (ξ, p) =
∑

p,q,r,s∈Z

p−q+r−s=0
p2−q2+r2−s2=0

F̂ (ξ, q)Ĝ(ξ, r)Ĥ(ξ, s).

The links between these two systems are presented in Section 3 through the modified scattering and
modified wave operator theorems. Thanks to these theorems, we obtain the two main results of this paper.

First, by using the modified scattering operator of Theorem 3.1, we have a control of all the Sobolev
norms with the following theorem:

Theorem 1.1. There exists ε > 0 such that if U0, V0 ∈ S+ satisfies

‖U0‖S+ + ‖V0‖S+ ≤ ε,

and if (U(t), V (t)) solves (1.1) with initial data (U0, V0), then (U, V ) ∈ C([0,+∞) : HN)×C([0,+∞) : HN )
exists globally and, for all s ∈ R, we have

‖U(t)‖Hs
x,y

+ ‖V (t)‖Hs
x,y

. ε. (1.3)

Moreover, there exists a constant c ≥ 0 such that

lim
t→+∞

(
‖U(t)‖Hs

x,y
+ ‖V (t)‖Hs

x,y

)
= c. (1.4)

This theorem shows that for small initial data, the solutions stay small in every Sobolev spaces. More
precisely, we see in the second part of the theorem that the sum of the Sobolev norms of the couples of
solutions tends to be constant.

Then, thanks to the construction of the modified wave operator in Theorem 3.2, the idea is to find some
interesting nonlinear behavior of the resonant system (1.2) in order to transfer this behavior to the initial
system. As a consequence, we follow the strategy of [9] to construct couples of solutions of the initial
system (1.1) which scatter to beating effect solutions of the resonant system (1.2):

Theorem 1.2. Let I be an open interval, (p, q) a couple of different integers and 0 < γ < 1
2 . Assume that

the initial conditions WU,0,WV,0 ∈ S+ satisfy ‖WU,0‖S+ + ‖WV,0‖S+ ≤ ε. Then there exists:

• a constant 0 < Tγ . | ln(γ)| and a 2Tγ−periodic function Kγ : R → (0, 1) such that

Kγ(0) = γ, Kγ(Tγ) = 1− γ;

• a couple of solutions (WU ,WV ) of the resonant system (1.2) with initial data (WU,0,WV,0) which
exhibits a beating effect in the following sense:

{
ŴU (t, ξ, y) = F(WU )(t, ξ, p)e

ipy + F(WU )(t, ξ, q)e
iqy ,

ŴV (t, ξ, y) = F(WV )(t, ξ, p)e
ipy + F(WV )(t, ξ, q)e

iqy ,

and ∀ξ ∈ I, {
|ŴV (t, ξ, p)|

2 = |ŴU (t, ξ, q)|
2 = ε2Kγ(ε

2t),

|ŴU (t, ξ, p)|
2 = |ŴV (t, ξ, q)|

2 = ε2(1 −Kγ(ε
2t));
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• a couple of solutions (U, V ) of the initial system (1.1) which exhibits modified scattering to this
couple (WU ,WV ).

With this theorem, we see the importance of both parts of the product space. On the one hand, the
bounded component allows us to construct couple of solutions with very nonlinear behavior such as this
beating effect (see [9]). On the other hand, the Euclidean component gives an infinite time behavior (see
[19]). Therefore, thanks to the product space, we have here an asymptotic convergence to the beating
effect, which is a new result. The counterpart of this construction is the fact that this behavior is local in
the Euclidean coordinate.

1.3. Overview of proofs.

1.3.1. The modified scattering and the wave operator. According to previous results in scattering theory
for Schrödinger equations and systems ([2],[5],[10],[11],[12],[13],[14],[15],[17],[18],[19],[20]), it is relevant to
introduce the profiles (F,G) of the solutions (U, V ), which are the backwards linear evolutions of solutions
to the nonlinear equations:

F (t, x, y) := e−it∆R×TU(t, x, y) G(t, x, y) := e−it∆R×TV (t, x, y).

The system described by the profiles looks like
{
i∂tF (t) = N t[G(t), G(t), F (t)],

i∂tG(t) = N t[F (t), F (t), G(t)].

To isolate a resonant system, the idea is to work on the structure of the nonlinearity N t. According to
a stationary phase intuition, we decompose the nonlinearity as

N t =
π

t
R+ E .

The integrable part E enjoys a fast decrease. The idea is to show that it doesn’t play a role in the
asymptotic dynamics of F and G. Thus, the system described by R is our resonant system, the system
which contains all the asymptotically dynamics. The goal is thus to find interesting dynamics such as
the beating effect for this resonant system. For that purpose, we construct a new system, the reduced
resonant system, which is obtained from the resonant system by deleting the Euclidean variable. This
reduced resonant system lives on the torus T, where we have the beating effect thanks to [9]. Therefore,
we have to show how to transfer solutions of the reduced resonant system to solutions of the resonant
system.

Thanks to the fast decrease of the E part of the nonlinearity, fixed point arguments allow us to prove
the existence of the modified scattering and modified wave operators.

1.3.2. The dynamical consequences. Both theorems (the modified scattering and the modified wave oper-
ator) imply dynamical consequences for the initial system (1.1).

The modified scattering theorem shows that all solutions of the initial system (1.1) scatter to solutions
of the resonant system (1.2). Thus, proving that all the solutions of the resonant system (1.2) are bounded
in Sobolev spaces, we obtain that all the solutions of the initial system (1.1) are also bounded in Sobolev
spaces. This prevents any kind of growth of Sobolev norms for our cubic coupled Schrödinger system on
R× T.

The modified wave operator theorem shows that for all solution of the resonant system (1.2), there
exists a solution of the initial system (1.1) which scatters to this resonant system solution. Thanks to this
operator, we can transfer the beating effect from the resonant system to the initial system and thus obtain
solutions of the system (1.1) which scatter to beating effect solutions of the resonant system.

This strategy is summarized in the following schema:
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Coupled
Schrödinger

system

Resonant
system

Modified
scattering

Wave
operator

Bounded
solutions

Bounded
solutions

Reduced
resonant
system

Transfer of

solutions

Beating
effect

Beating
effect

Transfer of solution
and Wave Operator

Modified
scattering

1.4. Plan of the paper. In Section 2, we introduce the different norms and notations we need and state
some preliminary estimates. In Section 3, we present the modified scattering and wave operator results,
which are extensions of the results of [11]. Finally, the resonant system is introduced and studied in Section
4. In particular, we obtain here the boundedness of the solutions and we construct the solutions which
provide some beating effect.

2. Preliminaries

In this section, we first introduce in Subsection 2.1 all the notations and norms we use in the paper.
Then, in Subsection 2.2, we introduce the profiles and the nonlinearity associated to the profile system.

2.1. Norms and notations.

2.1.1. Some notations. We mainly follow the notations of [11].
Concerning standard notations, we use the notation f . g to denote that there exists a constant

c > 0 such that f ≤ cg. This notation allows us to avoid dealing with all the constants in the different

inequalities. We also use the usual notation 〈p〉 :=
√
1 + p2.

Most of the time, we use the distinction between lower case letters and capitalized letters to specify
on which spatial domain the functions are defined. On the one hand, we use lower case letters to denote
functions of the Euclidean variable f : R → C or sequences a : Z → C. On the other hand, we use
capitalized letters to denote functions on the product space F : R × T → C. Exceptions are given by
Littlewood-Paley operators and dyadic numbers which are capitalized.

We define the spatial Fourier transform in Schwartz space, for ϕ ∈ S(R× T), by

F(ϕ)(ξ, p) = ϕ̂p(ξ) :=
1

(2π)2

∫

R×T

e−ixξe−iypϕ(x, y)dxdy.

We see with this definition that we use the notation f̂(ξ) for the Fourier transform of a function defined on
R, and the notation ap for the Fourier transform of a function defined on the torus T. One of the interest
of this Fourier transform convention is that there is no π-coefficient for the inverse Fourier transform.

As mentioned in the motivations, it seems to be relevant to introduce the profiles (F,G) of a solution
(U, V ), defined by

F (t, x, y) := e−it∆R×TU(t, x, y) G(t, x, y) := e−it∆R×TV (t, x, y).
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As we work with small initial data, we can expect the nonlinearity to stay small, and thus the solutions of
the system (1.1) to stay close to their profiles which are the solutions of the linear system.

Concerning the frequency sets we use here, we first introduce the momentum level set

M := {(p, q, r, s) ∈ Z
4 : m(p, q, r, s) := p− q + r − s = 0}.

Thanks to this set, we define the resonant level sets by

Γω := {(p, q, r, s) ∈ M : ω(p, q, r, s) := p2 − q2 + r2 − s2 = ω}.

In particular, the resonant level set associated to our resonant system is the set Γ0. Due to the dimension
one for the torus, it is straightforward to check that

(p, q, r, s) ∈ Γ0 if and only if {p, r} = {q, s} .

Finally, for the constants used in the paper, we fix the small parameter δ ≤ 10−3 and the integer N ≥ 12
for the definitions of the norms we present just below.

2.1.2. The norms. First, for the sequences a = (ap)p∈Z, we defined the associated Sobolev norm by

‖a‖2hs
p
:=
∑

p∈Z

(1 + p2)s|ap|
2.

Then, for the functions, we use two strong norms S and S+ defined by

‖F‖S := ‖F‖HN
x,y

+ ‖xF‖L2
x,y
, ‖F‖S+ := ‖F‖S + ‖(1− ∂xx)

4F‖S + ‖xF‖S .

The subscripted letters x, y and p in the definitions of the norms indicate the variable concerned by the
integration, and thus the canonical integration domain associated (R for the variables x, y and ξ; and Z

for the variable p). We remark that the S+ norm is a stronger norm than the S norm, but only in x.

2.2. Introduction of the profiles. By writing the system (1.1) with the profiles we get




i∂tF (t) = e−it∆R×T

(
eit∆R×TG(t)e−it∆R×TG(t)eit∆R×TF (t)

)
= N t[G(t), G(t), F (t)],

i∂tG(t) = e−it∆R×T

(
eit∆R×TF (t)e−it∆R×TF (t)eit∆R×TG(t)

)
= N t[F (t), F (t), G(t)],

where

N t[F (t), G(t), H(t)] := e−it∆R×T

(
eit∆R×TFe−it∆R×TGeit∆R×TH

)
.

Let us compute the Fourier transform of N t[F (t), G(t), H(t)]. We first remark that, taking the Fourier
transform with respect to the y variable, we get for F

eit∆R×TF (t, x, y) =
∑

q∈Z

eiqye−itq2
(
eit∂xxFq(t, x)

)
.

Thus, by taking this expression for F ,G and H , we obtain

FN t[F,G,H ](ξ, p) =
eitξ

2

(2π)2

∫

R×T

e−ixξ
∑

q,r,s∈Z

e−im(p,q,r,s)yeitω(p,q,r,s)
(
eit∂xxFqe

−it∂xxGre
it∂xxHs

)
(x)dxdy

=
eitξ

2

2π

∑

(p,q,r,s)∈M

eitω(p,q,r,s)

∫

R

e−ixξ
(
eit∂xxFqe

−it∂xxGre
it∂xxHs

)
(x)dx

=
∑

(p,q,r,s)∈M

eitω(p,q,r,s) ̂It[Fq, Gr, Hs](ξ),

where

It[Fq, Gr, Hs](x) := e−it∂xx
(
eit∂xxFqe

−it∂xxGre
it∂xxHs

)
(x).
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We compute ̂It[Fq, Gr, Hs] using the properties of the Fourier transform, we have

̂It[Fq, Gr, Hs](ξ) = eitξ
2 ̂(
eit∂xxFqe−it∂xxGreit∂xxHs

)
(ξ)

= eitξ
2

∫

R2

̂(eit∂xxFq)(ξ − a− b) ̂(e−it∂xxGr)(a) ̂(eit∂xxHs)(b)dadb

= eitξ
2

∫

R2

eit(b
2−a2−(ξ−a−b)2)F̂q(ξ − a− b)Ĝr(a)Ĥs(b)dadb,

we now use the changes of variable η = a+ b and κ = ξ − a to get

=

∫

R2

e2itηκF̂q(ξ − η)Ĝr(ξ − η − κ)Ĥs(ξ − κ)dηdκ.

Thus, back to N t, we have

FN t[F,G,H ](ξ, p) =
∑

(p,q,r,s)∈M

eitω(p,q,r,s)

∫

R2

e2itηκF̂q(ξ − η)Ĝr(ξ − η − κ)Ĥs(ξ − κ)dηdκ.

From this equation, by a formal stationary phase intuition, we define the resonant part of the nonlinear-
ity N t by

FR[F,G,H ](ξ, p) =
∑

(p,q,r,s)∈Γ0

F̂q(ξ)Ĝr(ξ)Ĥs(ξ).

3. The modified scattering and the wave operator

We state here two theorems which are extensions of the results of Hani, Pausader, Tzvetkov and Visciglia
in [11] to our coupled system case. We refer to their paper for the proofs of these theorems, because the
pass from the equation to the system doesn’t bring new technical difficulties. In the two theorems, S+ is
a strong L2

x,y based Banach space, introduced in Subsection 2.1, which contains the Schwartz functions.
Moreover, N ≥ 12 is an integer.

3.1. The modified scattering. First, the following theorem show that solutions of the initial system
(1.1) scatter to solutions of the resonant system (1.2).

Theorem 3.1. There exists ε > 0 such that if U0, V0 ∈ S+ satisfies

‖U0‖S+ + ‖V0‖S+ ≤ ε,

and if (U(t), V (t)) solves (1.1) with initial data (U0, V0), then (U, V ) ∈ C([0,+∞) : HN)×C([0,+∞) : HN )
exists globally and exhibits modified scattering to its resonant dynamics (1.2) in the following sense: there
exists (WU,0,WV,0) satisfying

‖WU,0‖S + ‖WV,0‖S+ . ε, (3.1)

such that if (WU (t),WV (t)) is the solution of (1.2) with initial data (WU,0,WV,0), then
{
‖U(t)− e−it∆R×TWU (π ln(t))‖HN (R×T) → 0 as t→ +∞,

‖V (t)− e−it∆R×TWV (π ln(t))‖HN (R×T) → 0 as t→ +∞.

Furthermore, we have the following decay estimate



‖U(t)‖L∞

x H1
y

. (1 + |t|)−
1
2 ,

‖V (t)‖L∞

x H1
y

. (1 + |t|)−
1
2 .
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3.2. The modified wave operator. After the existence of a scattering result, the natural question is to
look for a wave operator. Indeed, if we know that each couple of solutions of the system (1.1) scatters to
a couple of solutions of the resonant system (1.2), we want to know if all the couples of solutions of the
resonant system (1.2) are limits of couples of solutions of the initial system. The answer is given by the
following theorem:

Theorem 3.2. There exists ε > 0 such that if WU,0,WV,0 ∈ S+ satisfies

‖WU,0‖S+ + ‖WV,0‖S+ ≤ ε,

and if (WU (t),WV (t)) solves the resonant system (1.2) with initial data (WU,0,WV,0), then there exists a
couple (U, V ) ∈ C([0,+∞) : HN )× C([0,+∞) : HN ) solution of (1.1) such that

{
‖U(t)− e−it∆R×TWU (π ln(t))‖HN (R×T) → 0 as t→ +∞,

‖V (t)− e−it∆R×TWV (π ln(t))‖HN (R×T) → 0 as t→ +∞.

The aim now is to use these two theorems to obtain some dynamical consequences for the initial
system (1.1).

4. Study of the resonant system

In this section, we want to study the resonant system
{
i∂τWU (τ) = R [WV (τ),WV (τ),WU (τ)] ,

i∂τWV (τ) = R [WU (τ),WU (τ),WV (τ)] ,

with FR [F,G,H ] (ξ, p) =
∑

(p,q,r,s)∈Γ0

F̂ (ξ, q)Ĝ(ξ, r)Ĥ(ξ, s) and Γ0 =
{
(p, q, r, s) ∈ Z4, {p, r} = {q, s}

}
. In

the definition of R, the Euclidean variable ξ acts just like a parameter. According to this idea, we define
the reduced resonant system for two vectors a = {ap}p∈Z

and b = {bp}p∈Z
, by

{
i∂ta(t) = R (b(t), b(t), a(t)) ,

i∂tb(t) = R (a(t), a(t), b(t)) ,
(4.1)

with R (a(t), b(t), c(t))p =
∑

(p,q,r,s)∈Γ0

aq(t)br(t)cs(t).

First, we study the behavior of the resonant system in Subsection 4.1 in order to obtain the local
existence of the solutions of the resonant system. Then, in Subsection 4.2, we prove the control of the
Sobolev norms of the solutions of system (1.1) and the global existence of the solutions. In order to take
advantage of the reduced resonant system, we want to show in Subsection 4.3 that we can transfer solutions
from the reduced resonant system associated to R to solutions of the resonant system associated to R.
Thus, in Subsection 4.4, we study the structure of this reduced resonant system. Finally, we obtain in
Subsection 4.5 an example of nonlinear behavior with the beating effect.

4.1. Behavior of the resonant part. The first lemma we need concerns the resonant part R, we have

Lemma 4.1. For every sequences (a1)p, (a
2)p and (a3)p indexed by Z, we have

‖
∑

(p,q,r,s)∈Γ0

a1qa
2
ra

3
s‖ℓ2p . min

σ∈S3

‖aσ(1)‖ℓ2p‖a
σ(2)‖h1

p
‖aσ(3)‖h1

p
. (4.2)

More generally, for all ν ≥ 0, it holds

‖
∑

(p,q,r,s)∈Γ0

a1qa
2
ra

3
s‖hν

p
.
∑

σ∈S3

‖aσ(1)‖hν
p
‖aσ(2)‖h1

p
‖aσ(3)‖h1

p
. (4.3)
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Remark 4.2. The operator we deal with here is not really the resonant nonlinearity R, because we don’t
deal with the ξ variable. In fact, this operator is the reduced resonant nonlinearity we introduce later in
Subsection 4.4.

Proof. We proceed by duality. Set the sequence (R)p = (
∑

(p,q,r,s)∈Γ0
a1qa

2
ra

3
s)p. For a0 ∈ ℓ2p we have

〈
a0, R

〉
ℓ2p×ℓ2p

=
∑

(p,q,r,s)∈Γ0

a0pa
1
qa

2
ra

3
s.

Once again, we use that in one dimension, (p, q, r, s) ∈ Γ0 implies {p, r} = {q, s}. Thus
〈
a0, R

〉
ℓ2p×ℓ2p

=
∑

p,r∈Z

a0pa
1
pa

2
ra

3
r +

∑

p,r∈Z

a0pa
1
ra

2
ra

3
p −

∑

p∈Z

a0pa
1
pa

2
pa

3
p.

For the first term, we have by Cauchy-Schwarz in p and r

∑

p,r∈Z

a0pa
1
pa

2
ra

3
r =


∑

p∈Z

a0pa
1
p



(∑

r∈Z

a2ra
3
r

)
≤ ‖a0‖ℓ2p‖a

1‖ℓ2p‖a
2‖ℓ2p‖a

3‖ℓ2p .

The same holds for the second term. For the last term, we have by Cauchy Schwarz
∑

p∈Z

a0pa
1
pa

2
pa

3
p ≤ ‖a0‖ℓ2p min

σ∈S3

‖aσ(1)‖ℓ2p‖a
σ(2)‖ℓ∞p ‖aσ(3)‖ℓ∞p ,

which is sufficient due to the embedding h1p →֒ ℓ2p →֒ ℓ∞p . Therefore, we get
〈
a0, R

〉
ℓ2p×ℓ2p

. ‖a0‖ℓ2p min
σ∈S3

‖aσ(1)‖ℓ2p‖a
σ(2)‖h1

p
‖aσ(3)‖h1

p
.

This completes the proof of (4.2). For equation (4.3), we remark that

for (p, q, r, s) ∈ Γ0, p2 − q2 + r2 − s2 = 0 ⇒ 〈p〉ν ≤ 〈q〉ν + 〈r〉ν + 〈s〉ν .

In fact, here we have 〈p〉 = 〈q〉 or 〈s〉, but the previous inequality is sufficient for the estimate. Indeed,
this inequality implies

〈
a0, 〈p〉ν R

〉
ℓ2p×ℓ2p

≤
∑

(p,q,r,s)∈Γ0

|a0p|
(
〈q〉ν |a1qa

2
ra

3
s|+ |a1q| 〈r〉

ν |a2ra
3
s|+ |a1qa

2
r| 〈s〉

ν |a3s|
)
.

Then, it suffices to apply (4.2) to each part of the sum, taking the ℓ2p for the term in the sum with the
weight. This concludes the proof of this lemma. �

Remark 4.3. The fact that we take p, q, r, s ∈ Z is crucial for this proof. In higher dimension (in R×Td

with 2 ≤ d ≤ 4), this method doesn’t fit anymore, whereas the result always holds. Taking (p, q, r, s) ∈ Γ0

implies that p, q, r, s are the vertices of a rectangle. Thus, in dimension one, we have a flat rectangle and
Γ0 is a trivial set. In dimension 2 or more, Γ0 becomes much harder, and the proof of Lemma 4.1 becomes
more technical, as we can see in [11, Lemma 7.1].

From this lemma, we deduce the local existence of the solutions of the resonant system (1.2) through
the following corollary. The global existence is given in the next subsection by Lemma 4.7.

Corollary 4.4. Let ν ∈ N∗. For any (WU,0,WV,0) ∈ Hν
x,y × Hν

x,y, there exist T > 0 and a couple
(WU ,WV ) ∈ C([0, T ) : Hν

x,y) × C([0, T ) : Hν
x,y) of local solutions to the resonant system (1.2) with initial

data (WU,0,WV,0).

Proof. From the previous lemma, we have for three functions F 1, F 2 and F 3 on R× T,

‖
∑

(p,q,r,s)∈Γ0

F 1
q F

2

rF
3
s ‖hν

p
.
∑

σ∈S3

‖F σ(1)‖hν
p
‖F σ(2)‖h1

p
‖F σ(3)‖h1

p
.
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Thus, we obtain

‖R[F 1, F 2, F 3]‖Hν
x,y

.
∑

σ∈S3

‖F σ(1)‖Hν
x,y

‖F σ(2)‖L∞

x h1
p
‖F σ(3)‖L∞

x h1
p
.

The embedding H1
x →֒ L∞

x allows us to conclude that

‖R[F 1, F 2, F 3]‖Hν
x,y

. ‖F 1‖Hν
x,y

‖F 2‖Hν
x,y

‖F 3‖Hν
x,y
.

This implies the local existence of the solutions. �

4.2. Control of the Sobolev norms. In this subsection, we study the behavior of solutions of the
resonant system (1.2) in order to obtain dynamical consequences for the initial system (1.1). The following
lemma ensures the control of the Sobolev norms and the global existence of solutions of resonant system
(1.2).

Lemma 4.5. Assume WU,0,WV,0 ∈ S(+), and let (WU ,WV ) be the solution of the resonant system (1.2)
with initial data (WU,0,WV,0). Then, for t ≥ 1, we have

‖WU (t)‖Hσ
x,y

+ ‖WV (t)‖Hσ
x,y

= ‖WU,0‖Hσ
x,y

+ ‖WV,0‖Hσ
x,y
, ∀σ ∈ R. (4.4)

Proof. Let us see the computations for WU . By definition of the resonant system, we have

i∂tFWU (t, ξ, p) = FR [WV ,WV ,WU ] (t, ξ, p) =
∑

(p,q,r,s)∈Γ0

ŴV,q(t, ξ)ŴV,r(t, ξ)ŴU,s(t, ξ).

Thus, for h : R → R a real function, we have

∂t
∑

p∈Z

h(p)|ŴU,p|
2 = 2

∑

p∈Z

h(p)ℜ
(
∂tŴU,p.ŴU,p

)

= 2
∑

p∈Z

h(p)ℑ
(
i∂tŴU,p.ŴU,p

)

= 2
∑

(p,q,r,s)∈Γ0

h(p)ℑ
(
ŴU,pŴV,qŴV,rŴU,s

)
.

Let us rewrite the right-hand side by developing the imaginary part. We have

∂t
∑

p∈Z

h(p)|ŴU,p|
2 = −i

∑

(p,q,r,s)∈Γ0

(
h(p)ŴU,pŴV,qŴV,rŴU,s − h(p)ŴU,pŴV,qŴV,rŴU,s

)
.

By symmetry this equation becomes

∂t
∑

p∈Z

h(p)|ŴU,p|
2 = −i

∑

(p,q,r,s)∈Γ0

(h(p)− h(s)) ŴU,pŴV,qŴV,rŴU,s.

Here, we have no more symmetry because of the different ŴU and ŴV terms. To avoid this problem, we
take advantage of the coupling effect by looking the sum of the norms of the solutions. We have

∂t
∑

p∈Z

h(p)(|ŴU,p|
2 + |ŴV,p|

2) = −i
∑

(p,q,r,s)∈Γ0

(h(p)− h(s)) ŴU,pŴV,qŴV,rŴU,s

− i
∑

(p,q,r,s)∈Γ0

(h(p)− h(s)) ŴV,pŴU,qŴU,rŴV,s.

Now, by symmetry we have

∂t
∑

p∈Z

h(p)(|ŴU,p|
2 + |ŴV,p|

2) = −i
∑

(p,q,r,s)∈Γ0

(h(p)− h(q) + h(r) − h(s))ŴU,pŴV,qŴV,rŴU,s.
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By the structure of set Γ0, we have {p, r} = {q, s}, thus

∂t
∑

p∈Z

h(p)(|ŴU,p|
2 + |ŴV,p|

2) = 0. (4.5)

Taking h(p) = 〈p〉2σ, the proof of the lemma follows immediately. �

From this lemma, we have a first dynamical consequence.

Remark 4.6. This estimate is related to the dimension one of the compact part T of the spatial domain.
In particular, due to the modified scattering of Theorem 3.1, this estimate prevents every kind of growth of
the Sobolev norms of the solutions of the initial system (1.1). We have thus a first dynamical consequence
of this theorem: all the couple of solutions of the system (1.1) are bounded in every Sobolev space Hs (for
all s ∈ R). In particular, we have proved the estimate (1.4). The estimate (1.3) comes from equation (3.1)
and Theorem 3.1, this completes the proof of Theorem 1.1.

Another consequence of this lemma is given by the global existence of the solutions of the resonant
system. Indeed, we have

Lemma 4.7. Let ν ∈ N∗. For any (WU,0,WV,0) ∈ Hν
x,y ×Hν

x,y, there exists a unique couple of solutions
(WU ,WV ) ∈ C(R : Hν

x,y)× C(R : Hν
x,y) of the resonant system (1.2) with initial data (WU,0,WV,0).

Proof. The local existence of the solutions is given by Corollary 4.4. Then, equation (4.4) allows us to
pass from local existence to global existence. �

4.3. From the reduced resonant system to the resonant system. As mentioned in the introduction
of the section, we want to take profit of the study of the reduced resonant system (4.1). In view of this
idea, the following computations show how to transfer informations from a solution of the reduced resonant
system (4.1) to a solution of the system (1.2). Therefore, the wave operator theorem allows us to transfer
these informations to solutions of the initial system (1.1). The idea is to take an initial data of the form

WU,0(x, y) = ϕ̌(x)α(y), WV,0(x, y) = ϕ̌(x)β(y),

where αp = ap(0), βp = bp(0), ϕ ∈ S(R) and ϕ̌ is the inverse Fourier transform of ϕ. Thus, thanks to
the separated variables x and y in the initial data, it’s straightforward to check that the solution of the
resonant system (1.2) with initial data (WU,0,WV,0) is given by

F(WU )(t, ξ, p) = ϕ(ξ)ap
(
ϕ(ξ)2t

)
, F(WV )(t, ξ, p) = ϕ(ξ)bp

(
ϕ(ξ)2t

)
.

Indeed, we have for example for WU :

i∂tF(WU )(t, ξ, p) = ϕ(ξ)3(i∂tap)
(
ϕ(ξ)2t

)
= FR[WV (t),WV (t),WU (t)]p(ξ).

In particular, if ϕ = 1 on an open interval I, then FWU (t, ξ, p) = ap(t) and FWV (t, ξ, p) = bp(t), for
all t ∈ R and all ξ ∈ I. Thus, for ξ ∈ I, the resonant system (1.2) behaves like the reduced resonant
system (4.1).

Remark 4.8. The solutions we obtain from this method for the resonant system (1.2) are constant with
respect to ξ on the interval I we choose. The idea is to take the interval I as big as we want. Thus, we
have a big interval in which we conserve the behavior of the resonant system on the torus. One can think
that we completely kill the role of the Euclidean variable x with this construction, whereas the goal of this
construction is to take profit of the dynamics of the resonant system and to gain a large time behavior
thanks to the Euclidean variable. Therefore, this method is really adapted to our aim which is to construct
a couple of solution of the initial system (1.1) with asymptotic dynamical properties of the reduced resonant
system.
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4.4. About the reduced resonant system, the Hamiltonian formalism. Let us now see some
properties of the reduced resonant system.

First, we can deduce some results for this system from the computations of Subsection 4.2. From
Lemma 4.7, we deduce the global existence of the solutions of the reduced resonant system:

Lemma 4.9. Let σ ∈ R. For any (a0, b0) ∈ hσp × hσp , there exists a unique couple of solutions (a, b) ∈
C(R : hσp )× C(R : hσp ) of the resonant system (4.1) with initial data (a0, b0).

The computations of estimate (4.5) imply that R[b, b, .] is self-adjoint and satisfy

〈iR[b, b, a], a〉h1
p×h1

p
= 0, ∀a, b ∈ h1p. (4.6)

More generally, the computations of (4.4) give us, for a solution (a, b) of the system (4.1), ∀σ ∈ R

‖a(t)‖hσ
p
+ ‖b(t)‖hσ

p
= ‖a0‖hσ

p
+ ‖b0‖hσ

p
. (4.7)

Then, we remark that the system (4.1) is Hamiltonian, for the Hamiltonian

H :=
∑

(p,q,r,s)∈Γ0

apaqbrbs =
∑

{p,r}={q,s}

apaqbrbs.

Indeed, with H thus defined, we have the infinite system:




i∂taj =
∂H

∂aj
, −i∂taj =

∂H

∂aj
, j ∈ Z,

i∂tbj =
∂H

∂bj
, −i∂tbj =

∂H

∂bj
, j ∈ Z.

The associated symplectic structure is given by −i
∑

j∈Z

(daj ∧ daj + dbj ∧ dbj). Thus, the Poisson bracket

between two functions f and g of (a, a, b, b) is given by

{f, g} = −i
∑

j∈Z

(
∂f

∂aj

∂g

∂aj
−
∂f

∂aj

∂g

∂aj
+
∂f

∂bj

∂g

∂bj
−
∂f

∂bj

∂g

∂bj

)
.

In order to rewrite the Hamiltonian, we set

I :=
∑

n∈Z

= |an|
2, J :=

∑

n∈Z

= |bn|
2, S :=

∑

n∈Z

= anbn.

Therefore, considering that {p, r} = {q, s} in Γ0, we can write the Hamiltonian H as

H = IJ + |S|2 −
∑

n∈Z

|an|
2|bn|

2. (4.8)

With this new structure, we can give a new proof of estimates (4.4) and (4.7), for n ∈ N we have

∂t(|an|
2 + |bn|

2) = {|an|
2, H}+ {|bn|

2, H}

= −i

(
an
∂H

∂an
− an

∂H

∂an

)
− i

(
bn
∂H

∂bn
− bn

∂H

∂bn

)

= −i
(
anbnS − anbnS

)
− i
(
anbnS − anbnS

)

= 0.

This implies the conservation of the Hσ norms for the reduced resonant system (4.1), but also for the
resonant system (1.2), where the quantities an, bn, I, J and S depend on ξ too. We are now able to prove
the existence of the beating effect.
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4.5. Example of nonlinear dynamics: the beating effect. In this subsection, we adapt the proof of
the beating effect of Grébert, Paturel and Thomann in [9] to prove Theorem 1.2. We want to highlight an
exchange between two modes of the solutions. According to this idea, we introduce the reduced space

Jp,q = {(a, b), an = an = bn = bn = 0, n /∈ {p, q}},

and we note H̃ the reduced Hamiltonian defined by

H̃ = HJp,q
.

For more simplicity, we work in the symplectic polar coordinates (Ij , Jj, θj , ϕj) defined by:

aj =
√
Ije

iθj , bj =
√
Jje

iϕj .

This is a symplectic change of variables because we have the relation

dα ∧ dα+ dβ ∧ dβ = i (dθ ∧ dI + dϕ ∧ dJ) .

Therefore, the expression (4.8) of the Hamiltonian H becomes for the reduced case

H̃ = (Ip + Iq)(Jp + Jq) + (apbp + aqbq)(apbp + aqbq)− (a2pb
2
p + a2qb

2
q)

= (Ip + Iq)(Jp + Jq) + 2(IpIqJpJq)
1
2 cos(Ψ0),

where Ψ0 := θq − θp + ϕp − ϕq. We obtain thus the following Hamiltonian system




∂tθj = −
∂H̃

∂Ij
, ∂tIj =

∂H̃

∂θj
, j = p, q,

∂tϕj = −
∂H̃

∂Jj
, ∂tJj =

∂H̃

∂ϕj

, j = p, q.

(4.9)

Let us show that this system is completely integrable.

Lemma 4.10. The system (4.9) is completely integrable. Moreover, the following change of variables is
symplectic: {

K0 = Iq, K1 = Iq + Ip, K2 = Jq + Jp, K3 = Iq + Jq,

Ψ0 = θq − θp + ϕp − ϕq, Ψ1 = θp, Ψ2 = ϕp, Ψ3 = ϕq − ϕp.

Proof. First, we easily see that K1,K2 and K3 are constants of motion. Indeed, we can for example check
for K1 that

{
K1, H̃

}
=
∑

j=p,q

(
∂K1

∂Ij

∂H̃

∂θj
−
∂K1

∂θj

∂H̃

∂Ij
+
∂K1

∂Jj

∂H̃

∂ϕj

−
∂K1

∂ϕj

∂H̃

∂Jj

)

=
∂H̃

∂θp
+
∂H̃

∂θq
= 2
√
IpIqJpJq(sinψ0 − sinψ0) = 0.

Then, K1,K2 and K3 are independent of the angles θp, θq, ϕp and ϕq. Therefore, they are in involution:

{K1,K2} = {K1,K3} = {K2,K3} = 0.

Finally, K1,K2 and K3 are clearly independent (they do not depend on the same actions) and are inde-

pendent with H̃ which is the only to depend on an angle. Thus, the system is completely integrable.
Concerning the change of variables, we have

dΨ ∧ dK = dΨ0 ∧ dK0 + dΨ1 ∧ dK1 + dΨ2 ∧ dK2 + dΨ3 ∧ dK3

= dIq ∧ d(θq − θp + ϕp − ϕq + θp + ϕq − ϕp) + dIp ∧ dθp + dJp ∧ dϕp + dJq ∧ d(ϕp + ϕq − ϕp)

= dI ∧ dθ + dJ ∧ dϕ.

Thus the change of variables is symplectic. �
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Remark 4.11. The fact that the system (4.9) is integrable is not a surprise. Indeed, we can remark that

the Hamiltonian H̃ depends only on one angle (Ψ0). This gives us three constants of motion, which with the
Hamiltonian itself form a family of four independent constants of motions in involution. Thus the system
(4.9) is completely integrable. Another easy way to check this integrability is to consider the conservations
of the mass and moment of the solutions, given by the conservation of the h1 norm of the solution thanks
to equation (4.6). Therefore, the goal of this lemma is not to prove that the system is integrable, but to
find a new explicit set of variable in order to obtain a simpler system.

In this new system of coordinates, the Hamiltonian becomes

H̃ = H̃(Ψ0,K0,K1,K2,K3) = K1K2 + 2 (K0(K1 −K0)(K3 −K0)(K2 −K3 +K0))
1
2 cos(Ψ0).

K1,K2 and K3 and constants of motion. Thus, for initial data of the size ε, we can fixed

K1 = K2 = K3 = ε2.

Thus, we obtain a new Hamiltonian H̃0 defined by

H̃0(Ψ0,K0) = H̃(Ψ0,K0, ε
2, ε2, ε2) = ε4 + 2K0(ε

2 −K0) cos(Ψ0).

To deal with all the ε terms in the right-hand side of the previous equation, we make a change of unknown
by setting

Ψ0(t) =: Ψ(ε2t), K0(t) =: ε2K(ε2t).

We obtain the system: 



Ψ̇ = 2(2K − 1) cosΨ = −
∂H⋆

∂K
,

K̇ = 2K(K − 1) sinΨ =
∂H⋆

∂Ψ
,

(4.10)

where the new Hamiltonian H⋆ is defined by

H⋆ = H⋆(Ψ,K) := 2K(1−K) cosΨ.

The system (4.10) is a pendulum, we draw its phase portrait:
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From this phase portrait, we deduce the following lemma:

Lemma 4.12. For all γ ∈ (0, 12 ), it exists a time Tγ such that the system (4.10) admits an orbit of
period 2Tγ with {

(Ψγ(0),Kγ(0)) = (0, γ),

(Ψγ(Tγ),Kγ(Tγ)) = (0, 1− γ).

Remark 4.13. We can show that the period Tγ satisfies the bound

0 < Tγ . | ln(γ)|.

We refer to [9, Theorem 1.1] for the proof of this estimate.

From Lemma 4.12, we have the beating effect in the following sense: for any couple of different integers
(p, q), it exists a solution (a, b) of the reduced resonant system (4.1) such that

{
|bp(t)|

2 = |aq(t)|
2 = ε2Kγ(ε

2t),

|ap(t)|
2 = |bq(t)|

2 = ε2(1−Kγ(ε
2t)).

Indeed, we can for example check the identity for ap by writing

|ap(t)|
2 = Ip(t) = K1 −K0(t) = ε2(1 −K(ε2t)).

We can remark that we have a ε2 factor in the right-hand side which is not present in [9]. But in this
article, this factor is present in the system. This completes the proof of the first and second parts of
Theorem 1.2. The third part comes directly from the modified wave operator theorem from Section 3.

4.6. Persistence of the beating effect and convolution potentials. Going back to the single cubic
Schrödinger equation on R× Td:

i∂tU +∆R×TdU = |U |2U,

the method of Hani, Pausader, Tzvetkov and Visciglia in [11] allows to construct solutions that provide a
growth of the Sobolev norms when 2 ≤ d ≤ 4. The idea is to find some particular solutions of the resonant
equation and then to use the wave operator theorem.

In order to perturb the eigenvalues of the Laplacian, we can add a convolution potential:

i∂tU +∆R×TdU + V ⋆ U = |U |2U.

In this case, Grébert, Paturel and Thomann show in [10] that for generic choice of convolution potential,
the resonances are killed. For these potentials, there is no more any growth of the Sobolev norms. More
precisely, the Sobolev norms of small solutions are asymptotically constant.

The natural question is thus to transpose the question about potentials to the system case. Are the
potentials generically killing the beating effect ? Are the Sobolev norms of the couples of solutions asymp-
totically constants ? The answer of the first question is given by a simple observation. The key argument
in [10] to kill the resonances and the growth of the Sobolev norms is to perturb the equation, thanks to
the potentials, in order to obtain a smaller resonant set

Γ0,conv,d =
{
(p, q, r, s) ∈ (Zd)4 : p− q + r − s = 0, {|p|, |r|} = {|q|, |s|}

}
.

In our case, we already have this relation. Indeed, we have

Γ0 =
{
(p, q, r, s) ∈ Z

4 : {p, r} = {q, s}
}
= Γ0,conv,1.

Therefore, we can conclude that the add of convolution potentials generically doesn’t kill the beating effect.
Thus, why are the Sobolev norms constants in [10] and not in our coupled system case ? This is just a
consequence of the coupled effect: what we have in our case is the fact that the sums of the Sobolev norms
of the couples of solutions are asymptotically constants, which is the system equivalent of the result of [10].
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