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9 Abstract

10 Multiphonic sounds of brass instruments are studied in this article. They are produced
1 by playing a note on a brass instrument while simultaneously singing another note in the
12 mouthpiece. This results in a peculiar sound, heard as a chord or a cluster of more than two
13 notes in most cases. This effect is used in different artistic contexts.

14 Measurements of the mouth pressure, the pressure inside the mouthpiece and the radiated
15 sound are recorded while a trombone player performs a multiphonic, firstly by playing an Fj
16 and singing a Cy, then playing an F3 and singing a note with a decreasing pitch. Results high-
17 light the quasi-periodic nature of the multiphonic sound and the appearance of combination
18 tones due to intermodulation between the played and the sung sound.

19 To assess the ability of a given brass instrument physical model to reproduce the measured
20 phenomenon, time-domain simulations of multiphonics are carried out. A trombone model
21 consisting in an exciter and a resonator non-linearly coupled is forced while self-oscillating to
22 reproduce simultaneous singing and playing. Comparison between simulated and measured
23 signals is discussed. Spectral content of the simulated pressure match very well with the
24 measured one, at the cost of a high forcing pressures.

» I INTRODUCTION

2 A "monodic instrument", by its etymological meaning, is an instrument designed to play "mono-
27 phonic" sounds, that is sounds with a single pitch. However, most monodic instruments of the
s orchestra can also produce unusual sounds, called "multiphonic sounds". This term means that

20 the listener perceives multiple notes in the sound.
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A range of wind instruments can produce sounds called multiphonics [Castellengo, 1981]. Ac-
tually, this word designates two distinct phenomena. On the one hand, the term "multiphonic"
can refer to a multiple-pitched sound generated with an extension of the conventional playing
techniques: woodwind multiphonics, where quasi-periodic regimes are generated through spe-
cific embouchures and/or fingerings [Backus, 1978, Keefe and Laden, 1991, Dalmont et al., 1995,
Gibiat and Castellengo, 2000, Doc et al., 2014], belong to this category. A quasi-periodic os-
cillation is a deterministic oscillation whose energy is located at frequencies which are inte-
ger combinations of base frequencies. The ratios between the base frequencies are irrational
numbers. Flute-like instrument multiphonics are also based on an extended playing technique:
the oscillation of the air jet becomes quasi-periodic with no need to introduce another oscilla-
tor [Campbell and Greated, 1994, Blanc et al., 2010, Terrien et al., 2013|. Brass instrument mul-
tiphonics can be based on two distinct mechanisms: a spontaneous quasi-periodic self-oscillation,
similar to those in flutes and in reed instruments, can be involved [Castellengo et al., 1983|. But
on the other hand, the brass instrument player can also produce a multiphonic sound by singing
while he plays [Campbell and Greated, 1994, Sluchin, 1995]: two oscillators are then involved, the
lips and the vocal folds. This paper only focuses on this latter kind of multiphonic sound on the
trombone. In this situation, an intermodulation is observed, making non-harmonic frequencies
appear in the resulting sound.

According to the musical context, a multiphonic sound can be considered as a mis-
take made by the musician or due to a defect of the instrument: in occidental art-music,
a '"rolling sound" is generally considered to be a mistake the musician makes and a
bowed instrument with "wolf notes" [Iniacio et al., 2008| is considered to be of poor qual-
ity. However, multiphonic sounds can also be intentional. This applies to extra-European
traditional instruments such as pre-Columbian flautas de chinos producing sonidos raja-
dos [Wright and Campbell, 1998, Blanc et al., 2010, Terrien et al., 2013], or the Australian
aboriginal didjeridu [Wolfe and Smith, 2008] where the musician has several options for modifying
the sound by singing or tuning of vocal tract resonance while he plays. But European classical
music also includes examples of multiphonics: an example of cadenza of a French horn concertino
is displayed in the score in Figure 1. The technique is mentioned in teaching methods of
the 19" century, as reported in [Sluchin, 1995|. Jazz and avant-garde music have popularized

this musical effect with artists like James Morrison, Nils Landgren, Nat McIntosh and many others.

Multiphonics produced by a musician simultaneously singing and playing a brass instrument
have been documented in [Campbell and Greated, 1994, Sluchin, 1995] but, to the author’s knowl-
edge, simulations of this phenomenon have never been carried out. This paper examines the ability
of a simple instrument physical model to simulate trombone multiphonics. This helps a better un-
derstanding of the multiphonic phenomenon and defines the abilities of the considered model.

Comparisons between results of this model and measurements on trombone players are proposed
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on both multiphonic sounds studied: namely, playing an F3 while singing a Cy (referred to here-
after as F3 — C; multiphonic), and playing an F3 while singing a note whose pitch decreases from
Cy to slightly above Cs (referred to later as "decreasing playing frequency multiphonic"). The
measurement and simulation tools are first presented in Section 2; then, measurements and sim-
ulations of a selection of multiphonic sounds are compared in Section 3 to evaluate the ability of

the model to reproduce multiphonics.

IT TOOLS

II.A Experimental setup

An experimental device has been developed to measure some characteristic variables during a
trombone multiphonic performance. The acoustic pressure inside the instrument mouthpiece p(t),
characteristic of the response of the instrument, is measured. Another sensor measures the blowing
pressure as well as the acoustic pressure inside the mouth p,,(¢). The radiated sound, p..(t), is also
recorded. The measurements room has a short reverberation time, similar to that of a rehearsal

studio, for the musician’s convenience.

e The mouth pressure p,,(t) is measured with an Endevco 8510B-5 miniature pressure sensor,
through a capillary tube (1.5 mm inner diameter) inserted in the mouth of the musician.
The capillary tube is glued to a short piece of silicone tubing (4 mm diameter) connected
to the pressure sensor. The assembly of tubes forms a Helmholtz resonator which bandpass-
filters the signal. An ad hoc convolution filter is applied to the measured signal in order to

compensate for the transfer function of the tube.

e The pressure inside the mouthpiece p(t) is measured through the same sensor model. The
sensor is screwed into the mouthpiece wall. The microphone is small enough for the shape

of the mouthpiece cup not to be significantly altered.

e The radiated sound p..:(t) is recorded with a B&K 1/4” microphone, placed about 40 cm
downstream from the center of the trombone’s bell. The vicinity with the bell limits the

influence of the reflections in the room.

These sensors are connected to their respective conditioners/amplifiers. The signals are simul-
taneously recorded by a computer through NI-9234 and 9215 acquisition modules. The sampling
frequency is 51200 Hz.

II.B Time-domain simulation of a trombone’s physical model

All along this article, measurements are compared with time-domain simulations from a trombone
physical model. The retained self-sustained model relies on a linear exciter which is non-linearly

coupled with a linear resonator. Each of these three elements is described below. This kind of
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model has been widely used for wind instruments [Fletcher, 1993] including brass instruments
[Eliott and Bowsher, 1982, Yoshikawa, 1995, Cullen et al., 2000], since the seminal work of von
Helmoltz [von Helmholtz, 1877].

For brass instruments, the exciter consists of the lips of the musician, represented by a linear,
oscillator-like valve, linking the height between the lips h(¢) and the pressure difference across the
lips dp(t) = pm(t) — p(t). A one degree of freedom valve (referred to hereafter as "1-DOF valve")
[Fletcher, 1993] is enough to model the lips for common playing situations [Yoshikawa, 1995] with
a tractable number of parameters. Two kinds of 1-DOF valves can be considered : "striking
outward", which tends to open when dp grows, and "striking inward" which presents the opposite
behavior. For the reasons detailed in [Velut et al., 2016] we chose a "striking outward" valve to

model the lips of the trombonist. This model relies on the following equation:

Eho owdh 1
C0 D 2(h— o) = ~(pm — (1)), |
where w; = 27 f; (rad/s) is the lip resonance angular frequency; @); the (dimensionless) quality

factor of the lips; hg the value of h(t) at rest (m); u an equivalent surface mass of the lips (kg.m™2).

Lip parameters very similar to those chosen in [Velut et al., 2016] after a thorough bibliograph-
ical review are used. These parameters are given in Table I. The only difference is the quality
factor @ lessened from 7 to 5. Results previously obtained in [Velut et al., 2016| were satisfactory,
with reasonable threshold blowing pressures in the [1kPa : 15kPa] range for commonly played
notes. The refining of the ); value results in periodic playing on a larger range of f; on the Jupiter

JSL 2321 trombone used in the experiment.

ho(m) | L(m) | 1/p(m?*kg™") | Q
5.10~4 | 12.10°3 0.1 5

Table I: Lip parameters retained for this article.

In most studies about brasswinds, p,, is assumed to be constant in usual playing, corresponding
to the blowing pressure. However, in order to simulate a multiphonic, a forcing component is added
to the static value of p,,, corresponding to the acoustic pressure produced by the vibrating vocal
folds. For multiphonic simulations with a constant singing frequency, the p,, signal takes the

following form:
Pin(t) = D, + Py sin(27Lf), (2)

where p? and p! are respectively the constant blowing pressure and the amplitude of the singing
signal, and f, the singing frequency.
For simulations with a decreasing frequency, the signal is divided into 3 parts: first, the mouth

pressure is a constant blowing pressure for 6 seconds: this gives time to reach a steady-state

4
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oscillating regime. Then, the p,, signal is similar to Eq. (2) for 6 seconds with f; = f;. Then, the

frequency decreases from f; to fo taking this form:

Pu(t) = p%, + pl,.sin [m <fs St ;de)'tﬂ : (3)

where d is the duration of the frequency decrease (s).

In the measurements, the p! /pl ratio is about 0.02, but higher values are used in simulations,
to get computed spectra as close as possible to experimental ones. A value of p. = 0.3p? is
used all along this paper. This difference in p! values between simulation and measurement is a
limitation of our model.

This exciter is non-linearly coupled to a resonator: the bore of the trombone. Propagation in
brass instruments, particularly the trombone, is known to be nonlinear for loud tones. This causes
nonlinear distortion of the waveform, possibly leading to shockwaves [Hirschberg et al., 1996,
Myers et al., 2012]. In musical terms, the sound becomes "brassy" at louder playing dynam-
ics. However, since this study focuses on low and moderate playing dynamics, a linear model of
propagation is sufficient. Thus, the resonator is modeled by its input impedance Z. By definition,
Z is the ratio, in the frequency domain, of the pressure at the input of the resonator P(w) to the

acoustic flow U(w) taken at this same point :

Z(w) = ——2. (4)

The input impedance of the Jupiter JSL 2321 tenor trombone used for experi-
ments (with the slide fully pulled in) is measured with the impedance sensor described
in [Macaluso and Dalmont, 2011], then fitted by a sum of 13 Lorentzian functions -representing
the 13 first modes of the trombone- using a least squares method similar to that in [Silva, 2009).

The coupling between this resonator and the aforementioned exciter is non linear. It is provided
by the airflow through the lip channel. The air jet is assumed to be laminar in the lip channel,
then turbulent in the mouthpiece, all its kinetic energy being dissipated without pressure recovery.
Applying the Bernoulli law and the mass conservation law between the mouth and the lip channel
gives the following expression of the flow between the lips, depending on the pressure difference
and the height of the lip channel [Eliott and Bowsher, 1982, Hirschberg et al., 1995]:

u(t) = \@Lh@.sz’gn(pm — p(0) o =P, )

where u(t) is the airflow rate (m®-s™'), p = 1.19 kg - m™> the air density at 20 °C' and L the
width of the lip channel (m).

Simulations based on this model are carried out with MoReeSC [Silva, 2013|. This open-access
Python library solves the equations of the model numerically, based on the modal decomposition of

the pressure signal in the instrument. This provides values of p, the lip opening h and the airflow
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between the lips u at each time sample. It features the possibility of modifying input parameters
during the simulation, which is particularly useful in this study for defining time-varying mouth
pressure signals. In order to get a simulated pressure, a measurement of the transfer function
of the trombone, between p and p.,; is made. Filtering the simulated p with the given transfer

function results in a simulated pe;.

II.C Preliminary measurement on vocal folds

A preliminary experiment is carried out to assess the choice of a forcing term to model the singing
like in Eq. (2) and (3). The production of a multiphonic sound requires two exciters: the lips of
the musician and his vocal folds. In order to evaluate the independence of the vocal fold oscillation
with respect to the lip oscillation, an estimation of the vocal fold oscillation is carried out by
measuring the electrical conductivity of the glottis, similarly to what was done in the experimental
campaign conducted on the didjeridu [Wolfe and Smith, 2008]. The glottis conductivity is assumed
to be approximatively proportional to the contact area of the lips [Hezard et al., 2014|. Since we
are interested in comparing orders of magnitude, this approximative proportionality is sufficient.

An electroglottograph from VoceVista is used to measure the conductivity of the vocal folds
while the musician plays an F3 — Cy multiphonic. The spectrum of the resulting signal is shown
in Fig. 3.

Spectral components can be observed at the singing frequency f; = 262.5 Hz but also at
the playing frequency f, = 174.2 Hz, showing a coupling between the lips and the vocal folds.
However, the amplitude of the f;,, component is 20 dB lower than the amplitude of the f, one: this
indicates that the oscillation of the vocal folds is not much altered by the acoustic feedback. Thus,
since we are interested in identifying the simplest model simulating multiphonic sounds, modeling
the contribution of vocal folds through a forcing term seems to be a decent approximation, much
simpler than a model that would take into account the vocal folds, the vocal tract and the lips .
However, a time-domain simulation tool which would simulate the coupling with the impedance
of the vocal tract would probably be of some interest. The implementation of such a model could

be realized with the tools presented here.

IIT RESULTS

III.A  F3-C; multiphonic
III.A.1 Experiment

The study firstly focuses on the F3-Cy multiphonic, which is one of the most commonly played by
trombonists and proposed as a first exercise in [Sluchin, 1995]. Producing an F3 — Cy multiphonic
consists in playing an Fj3 while singing a Cy, i.e. a fifth above. In physical terms, this means

playing on the third register of the trombone, while simultaneously singing the note whose
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frequency is 1.5 times higher (fs/fis = 1.5). The musician is asked to successively sing a Cy, then

play an Fj, then perform an F3 — Cy multiphonic.

Figure 4 shows the spectrograms corresponding to this experiment and calculated for the
time-domain signals of p,, in Fig. 4 (a), p in Fig.4 (b) and pe,; in Fig.4 (c¢). The successive tasks
- singing, playing, multiphonic - successively appear on the spectrograms. During the singing,
a component appears at f, = 259.8 Hz with its harmonics. Similarly, f;,, = 173.6Hz and its
harmonics appear while the musician is playing an F3. A component at f;, can be observed
in Fig. 4 (b) and (¢) but also in the p,, spectrogram, because of the coupling with the vocal
tract of the musician [Chen et al., 2012, Fréour and Scavone, 2013|. When the multiphonic is
played, p(t) and pe.(t) contain the fundamental and harmonics of both f; and f,;. In addition,
other frequency components also appear, which do not belong to either the harmonic series
of fs or that of f5. These components are shown by arrows in Fig. 4 (b). Note that one of
these components has its frequency under fi,. Figure 5 superimposes the spectra of p(¢) during
the three phases of the performance: singing, playing, multiphonic. This highlights that some

peaks of the multiphonics spectrum clearly do not belong to the played signal or to the sung signal.

ITI.A.2 Simulation

This experiment (playing an F3 on a trombone while singing a Cj) is simulated, using the
method described in Section I1.B with the parameters given in Table I: the physical model of
trombone is set to play an Fj, on its 3¢ register, with a lip resonance frequency f; = 140 Hz
and a steady blowing pressure set to p? = 4500 Pa. This value is slightly above the threshold
pressure calculated by linear stability analysis, as in [Velut et al., 2016]. Then, the "sung" note
is included to simulate the multiphonic: a forcing sinusoidal component is added to the static
blowing pressure, at a frequency f, corresponding to the upper fifth, as written in Eq. (2). The
amplitude of the forcing sinusoidal component is set to 30% of p?, so that p! = 1350 Pa. This
forcing component starts 3 seconds after the blowing pressure, once the self-oscillation of the
instrument model has reached its steady state. This avoids interferences between the forcing

component and the transitory phase of the self-sustained oscillation.

Spectrograms of the simulation results for p,,, p and p., are displayed in Fig. 6 (a), (b) and (c),
respectively. First, the model auto-oscillates on its own until ¢ = 3s; then the forcing component
is added. Fig. 6 (a) does not display any spectral component at f,, because the retained model
does not take the coupling with the vocal tract into account. Before ¢ = 3s, Fig. 6 (b) and (c) only
display spectral components at f,, = 189 Hz and its harmonics. The oscillation frequency of the
simulation is higher than the experimentally recorded playing frequency in Fig. 4. This is consistent
with a well-known limitation of this brass model, known to oscillate at sharper frequencies than the
tempered scale notes [Campbell, 2004, Silva et al., 2007, Chaigne and Kergomard, 2016, p.547].
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Then, at ¢t = 3 s, the forcing component at f; = 282.7 Hz appears. As in the experiment, p(t) and
Pext(t) show frequency components which are neither fg, nor fi,;,, nor their harmonics. This is also
to be seen in the p spectra displayed in Fig. 7: some peaks of the multiphonic signal do not match

fsy fuo (solid lines) or their harmonics (dashed lines).

ITI.A.3 Discussion

Frequencies of the peaks appearing in the spectra of multiphonics, either simulated (Fig. 6 and 7)
or measured(Fig. 4 and 5), match very well integer combinations of f; and fi: the relative error
is less than 3% for the measured frequencies and less than 0.5% for the simulated frequencies.
Table II reports the frequencies appearing in the simulation and in the measurement, and
proposes one or two integer combinations giving the same frequency. A given integer combination
matches the peak of the same rank in the experiment and in the simulation. These frequency
components at integer combinations of f;, and fs are hereafter called combination tones (CT),
as in [Campbell and Greated, 1994, p.64|. In terms of amplitude, the peaks in the spectra of the
simulated and the measured multiphonics are not the same, even if the shapes of the spectral

envelopes remain comparable.

Peak No. 1 2 3 4 5) 6 7 8 9 10
feap(H2) 86.1 176 259.8 347.3 433.4 521 605.1 694.8 778.7 868.7
$3im (H 2) 94.15 189 282.7 377.9 471.4 | 567.6 661.1 756.6 850 946.2
lin. comb. | fs = firp | ftro Js 2 ferb Js+ Juv | 3feb | 3fs — furv | 205+ furv | 35 5 ferb
2fib — fs 3fev = fs | 4fev — [ 2fs | Dfwo—fs | Afem Afs — |
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Table II: (color online) Frequencies of first peaks of spectrum of p(t) measured ( f.,,) and simulated
(fsim) during an Fy — Cy multiphonic. Integer combinations of fs and f,, corresponding to each
combination tone are indicated.

Signals recorded during this multiphonic playing are periodic signals. However, the fundamental

frequency of these signals is an octave below the played note, at f;,;/2.

The radiated pressure signals p., of the recorded [soundl, | and the simulated [sound2, |
multiphonic are both heard as chords rather than as a single note. The playing and singing
Though,

informal listening tests highlights some perceptive differences. First, the sung note is heard louder

frequencies appear, along with other notes, notably the F, one octave below f;.;.

in the experimental recording than in the simulation. Then, while listening to the recording of
the musical performance, a third note, namely an A4, can be heard, whose fundamental frequency
is fs + fus- This note cannot be clearly heard in the simulated p.,; signal, although its frequency
components are present. One reason might be the differences in spectral balance between the
experiment and the simulation, which could be related to the simplicity of the forcing signal: this

latter hypothesis will be investigated later in the article.
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As a conclusion, the F3 — C4y multiphonic studied here appears to be quite a peculiar periodic
regime of oscillation. The spectral components are f,, fi4, their harmonics, and the combination
tones of frequencies for = qfip £ fs,q € NU{—1} (except negative frequencies). The simulation
model, based on a self-oscillating system, sinusoidally forced to model the contribution of the
singing voice, reproduces the emergence of a regime which is very similar in terms of frequency
content, but with some differences in the peak amplitudes.

Though it is periodic, this regime is not a usual self-sustained oscillation of a brass instrument:
the fundamental frequency is not the trombone’s oscillation frequency, but a combination tone.
Several harmonics are also combination tones, each one matching with several integer combinations
of fs and fi,5. This fact is related to this specific situation where fi,,/ fs is a rational value. The
system undergoes a 3:2 synchronization (also called an internal resonance in the dynamic system
terminology) which makes combination tones integer multiples of f;— fy,. It is a particular behavior
of a forced self-sustained oscillator. Academic case studies presenting this situation are developed
in [Nayfeh and Balachandran, 1995, p.156] with forced Van Der Pol oscillators for instance.
According to the oscillator theory, the system studied should generate a quasi-periodic oscillation
when there is no internal resonance. The following part will investigate multiphonic situations

with a variable singing frequency, leading to multiple situations where f;/ fi,;, is irrational.

ITI.B Variable singing frequency
ITI.B.1 Experiment

The trombone player is now asked to play a multiphonic with f;, as stable as possible, while
decreasing his singing frequency. He starts playing the same F3 — Cy multiphonic as before. Then,
he lowers its singing frequency f, as linearly as possible, until he reaches a frequency just above
firp, while he keeps playing an Fj. He then holds these playing and singing frequencies for a few
seconds.

Spectrograms of the resulting p,,, p and p.,; are shown in Fig. 8 (a), (b) and (c), respectively.
Fig. 8 (a) exhibits the evolution of the f, and f;, components in the mouth. The f;,, component
is fairly stable all along the measurement. The singing component remains stable between 0 and 5
seconds, then decreases between 5 and 10 seconds, and stays 152 musical cents above f;,, until the
end (fs/fis = 1.09). After t = 6 s, a new spectral component emerges in the mouth, at a frequency
growing towards f;,. The peak at f; has the highest amplitude all along the measurement.

The phenomenon that appears during the first 6 seconds of the spectrogram in Fig. 8 (b) and (c)
is very similar to the one appearing after 12s in Fig. 4. Then, when f, decreases, some frequency
peaks seem to "split" in two components, one with a decreasing frequency, the other one with
an increasing frequency. While the frequencies get closer to one another, other components with
increasing or decreasing frequencies become stronger in amplitude, collecting towards f;., and its

harmonics. This leads to a quite rich spectrum with several secondary peaks around f;, and its
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harmonics, after t = 8 s when the singing frequency stabilizes.

To follow the evolution of the components more easily, spectra are computed at each second on
the mouthpiece signal and plotted in Fig. 9. The splitting of certain frequency components is
noticeable: for illustration, the first peak at ¢ = 3.12 s at 85 Hz (Fig. 9 (a)) splits progressively into
two distinct peaks of frequency 75 Hz and 100 Hz, respectively, at t = 5.06 s (Fig. 9 (c)). The last

spectrum, at t = 10.12 s (Fig. 9 (h)), shows numerous peaks on either side of f;,, and its harmonics.

ITI.B.2 Simulation

The same simulation model as in Section III.A is used to reproduce this second experiment. Start-
ing with the same parameter values as in the previous section (f; = 140 Hz, p? = 4500 Pa,
ph = 1350 Pa, f, = 282.7 Hz i.e. a fifth above f;4), the singing frequency is decreased linearly
(sweep signal) between ¢t = 6 s and ¢t = 12 s, to 152 cents above the playing frequency: p,(t) follows
Eq. (3) with f; = 282.7 Hz, f, = 206 Hz and d = 6 s. The final frequency is chosen to stick
with the experiment, where the final singing frequency of the musician is also 152 cents above the
playing frequency. During the last two seconds, f; = 206 Hz. Just as above, spectrograms of p,,,
p and p..: are shown in Fig. 10 (a), (b) and (c), respectively. Fig. 11 represents the spectra of p
computed each second. Fig. 10 and 11 for simulation are equivalent to Fig. 8 and 9 for experiment.
According to Eq. (3), the mouth pressure only contains the forcing term, providing a convenient
view on the evolution of f,. The first seconds of the p and p.,; spectrograms of Fig. 10 (b) and (c)
are very similar to the spectrograms of Fig. 6 with components of f; and f,, plus the combination
tones. Then, when f, starts decreasing, each component at fs or its harmonics splits into two
components moving away from one another, one having a decreasing frequency and the other
having an increasing frequency. The amplitude of increasing-frequency components is weaker than
that of decreasing-frequency components. Between ¢ = 7s and t = 8s, a regime briefly emerges
at 38,5Hz = fy/5 and its harmonics, while f; = 265Hz: it can benoticed under the form of
evenly spaced lines (at 38.5 Hz, 77 Hz, 115.5 Hz, 154 Hz, 192.5 Hz, 231 Hz etc.) in Fig. 10 (b)
(between the dash-dotted lines) and (c¢). This is a periodic regime due to a 5 : 1 internal resonance.
Indeed, at this point the f,/ fi,;, ratio is rational and the resulting regime is periodic. The resulting
frequency is very close to the first acoustic resonance frequency of the trombone (38.9 Hz) so the
first mode may sustain this oscillation. This will be addressed in Section II1.C. After ¢t = 10s, the
existing components strengthen and new ones appear, to end up with several secondary peaks on
each side of the components of the auto-oscillation. These new peaks are particularly visible in

the last spectra in Fig. 11.

IT1.B.3 Discussion

As in the previous experiment, several frequency components appear to be harmonics of neither
firp nor fo. At the beginning, the frequencies are the same as in Section IIT.A. Certain integer

combinations result in the same combination tones, like for example 3f;,, = 2f;. Then, when f
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decreases, these integer combinations are no longer equal since f; and f;4 are no longer in a 3 : 2
ratio: the combination tone frequencies either increase or decrease, depending on the sign in front
of f; in the integer combination. The frequencies contained in the signal are no longer integer
multiples of the lowest frequency. The oscillation becomes quasi-periodic as soon as fs/ fi4 is no
longer rational.

Frequencies of the components of p during the phase where f, decreases are recorded, and plotted
with marks in Fig. 12 (a) (experimental measurement) and (b) (simulation). Some integer com-
binations of f; and fy4, of positive frequency qfi, £+ fs, ¢ € NU {—1} are also plotted with plain
lines on the same figures. The match between each peak frequency and one integer combination
is remarkable, with a maximum relative error of 2.5%. Therefore, the emerging frequency compo-
nents are integer combinations of f, and f;, just as the F3 — Cy multiphonic. It can be concluded
that this more complex multiphonic regime is due to the same phenomenon as in Section III.A,
emerging from the coupling between a self-sustained oscillator and a forcing term. However, here
the oscillation regime is quasi-periodic.

The simulated p.,; and the musical performance were heard as similar during the experiment, yet
differences exist. In the recorded multiphonic [sound3, |, an Az can be heard at the beginning.
When f, begins to change, this A3 rapidly decreases in loudness. During the decrease in f,, certain
notes become audible while others disappear. These notes can also be heard in the simulated
Pext [SOund4, | but their overall loudness is weaker. At the end of this multiphonic, fs and f,., are
close to each other. There, a "rolling" or "beating" sound can be heard, both in the experimental
and in the simulated p.,; signals. This could be explained by the very low f, — fip = 16Hz
component (16.3 Hz in measurements, 17.3 Hz in simulation), perceived as a modulation of the
sound.

These observations can be related to the spectral envelopes of the measured and the simulated
p: comparatively with the peaks at f;4, the combination tones and the harmonics of f; have a
smaller amplitude in simulation than in experimental measurements. The f; component of p is an
exception as it is weaker in measurement than in simulation. At the end of the multiphonic, the
peaks at harmonics of f;., are flanked by smaller peaks on both sides. These secondary peaks are
significantly weaker in measurement than in simulations.

It can be assumed that these amplitude differences between experiment and simulation are related
to the sinusoidal nature of the forcing whereas the singing is a more complex periodic signal. To
assess this hypothesis, another simulation is carried out, this time with a forcing signal reproducing
the three first harmonics of the recorded singing signal. The oscillating component of p,, now
consists of three sinusoids, with the same relative amplitudes and phases as the first components
of the measured sung signal. Figure 13 compares spectra of p simulated with a forcing signal
consisting of one or three harmonics (blue and red plots, respectively), at the begining (Fig. 13 (a)
and the end (Fig. 13 (b) of a simulation with decreasing f;. All parameters of the three-harmonic
forcing simulation are equal to those of the simulation presented in Fig. 10 and Fig. 11 except the

Pm Signal.
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Adding harmonics to the forcing signal only results in minor changes in the spectral envelope of the
signal. Apart from the components at 2f, and 3fs being logically stronger, the major difference
between these simulations is the relative height of the peaks as compared to the numerical
noise. Between amplitude peaks, the minima are visibly weaker with a three-component forcing
signal, particularly at the end of the simulation (Fig.13 (b)). The influence on the amplitude
of combination tones is not significant. The lack of major difference could be explained by the
weakness of the harmonics of the forcing, the second and third harmonics of f, being respectively
17.5 dB and 27.5 dB weaker than the fundamental.

From the results on multiphonics with a sliding f, described in this section the conclusions from
the previous section can be generalized: the self-oscillating model with an additional forcing term
is sufficient to simulate multiphonics, resulting in the same frequency components as the measured
ones. The frequencies of the components of both the simulated and the measured p match very
well with integer combinations of the instrument self-oscillation frequency and the singing or
forcing frequency: these components are either harmonics of f, and f;, or combination tones.
This consolidates the idea that multiphonic regimes of brass instruments are either quasi-periodic
regimes or, when the f;,/fs ratio is rational, periodic regimes. Both behaviors come from the
same phenomenon. The F3 — (), multiphonic considered in TII.A is a particular case, where all
frequencies in the signal are harmonic because of the 3:2 internal resonance.

The simulation model tested here reproduces this behavior accurately, in spite of the simplicity
of the model. The main difference is the spectral envelope. A forcing signal closer to the singing

signal does not significantly change this limitation.

ITI.C Simulations with one acoustic resonance

New simulations with an even simpler model are carried out. Not only the forcing is sinusoidal
as seen in Fig. 14, but the resonator is reduced to one resonance, the third acoustic mode of the
trombone - the one used for playing an F3.

A simulation with a decreasing sinusoidal forcing is carried out. The playing frequency with this
resonator is fi, = 180.5 Hz, so the playing frequency decreases from f; = 270 Hz to fo = 196.4

Hz for 6 seconds to keep the same frequency ratios as in Section III.B.

The frequency components of the internal pressure p are harmonics of f;,;, and fs or combination
tones, as in the previous simulations and measurements, for all values of f, tested. Thus, the
multiphonic behavior appears with this model. However, the amplitude of most frequency compo-
nents is weaker. This is illustrated by the amplitude differences reported in Table III: while the
amplitude of the component at f;,, remains fairly constant, all other components are significantly
weaker for the 1-mode simulation. Harmonics of f;, are no longer supported by the modes 6, 9
and 12, which affects the amplitude of combination tones. The f; component in p(t) is weaker,

even though the amplitude of the forcing is equal: the modulus of the resonator impedance is 13
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times weaker at f; with only one mode than with 13 modes, which reduces the amplitude of the
fs component in the mouthpiece. The lowest component f; — f;,, = 15.9 Hz at the end of the
simulation is also weaker, but it is perceived as a modulation of the sound, making a "rolling"
sound just like in previous simulations and in measurement. The brief regime at fundamental
frequency fi,5/5 which can be seen between t = 7s and t = 8s in Fig 10 does not occur here,
because of the absence of the first mode. Another simulation with all acoustic modes except the
first one does not make this regime appear, which strengthens this hypothesis. This simulation

result is not shown here for the sake of brevity.

frequency Js = Juo | Jov | Js | 2fern | S5+ Jero | 3ftrv | 3fs — Jird
difference (dB) at t =5's 0.6 0.3 | 10.7 | 27 11.7 | 23.2 16
difference (dB) at t =9 s 7.6 05| 4.8 | 274 14.2 27 8.7
difference (dB) at ¢t = 13 s 26 1.2 | 45 | 179 12.7 | 25.1 174

Table III: Differences (in dB) in the amplitudes of the first peaks for one-mode and 13-mode
simulations, measured on the data displayed in Fig. 14, at three time points: t = 5s when f, = 270
Hz, t = 9s when f; = 233 Hz and decreases, and t = 13s when f; = 196.4 Hz. While amplitudes
of the peaks at f;;, are equivalent, other components are much weaker when the resonator has a
single mode.

The quasi-periodic regime related to multiphonics therefore occurs even with a very simple in-
strument model: a one-DOF mechanical exciter non-linearly coupled with a one-mode acoustic

resonator, self-oscillating and forced with a sinusoidal signal.

IV. CONCLUSIONS

Both measurement and simulation results presented in this paper confirm the type of oscillating
regime of the multiphonic sounds studied. When the musician sings and plays different notes
simultaneously, the resulting pressure signal inside the instrument contains harmonics of the sung
and played frequencies, as well as combination tones, whose frequencies are integer combinations
of fs and f;,. This is verified not only in the particular case of an F3 — C; multiphonic as in
Section III.A but also in the case of a time-variable frequency. This generally corresponds to
quasi-periodic oscillation, except when an internal resonance occurs and the ratio between playing
and singing frequencies is rational. In this latter case, the oscillation is periodic, though it is
different from the usual periodic self-oscillation of a brass instrument.

To some extent ,the trombone physical model used in this paper is able to simulate this phe-
nomenon. Even if the simulated and measured f, are not exactly the same (as usual with an
outward-striking lip model), the frequency content of the simulated internal pressure of the in-
strument p is very similar to the probe microphone measurements inside the mouthpiece, with

harmonics of both the sung and played signals along with combination tones. This similarity
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also applies when f; decreases with time, and when the instrument model is simplified at most.
The major difference between simulation and measurement consists in differences in the spectral
envelopes: the amplitude of the peaks corresponding to combination tones is generally weaker in
measurement than in simulation when the forcing is sinusoidal. This is particularly true when
fs and f;, are close to each other, the secondary peaks being much weaker in measurement. A
richer forcing signal with three harmonics, closer to the measured sung signal, does not dramat-
ically change the results: changing the forcing signal does not seem the best way to improve the
simulation.

While the simulated blowing pressure p?, is of the same order of magnitude as blowing pressures
usually measured on trombone players [Bouhuys, 1968, Fréour and Scavone, 2013|, the amplitude
of the forcing signal p! wused in our simulations is about 15 times higher than the amplitude
measured in the recorded mouth pressure signal p,,. This is the main limitation of this model
for multiphonic simulation. Yet, these very different input parameters give comparable results in
terms of internal pressure p, the difference in amplitude between the peaks at f,, and f; being of
the same order of magnitude in the measured and simulated p spectra. This is the main limitation
of our model. A more complex model, taking into consideration the couplings between the lips,
the vocal folds, the resonances in the instrument and those in the vocal tract would possibly give
a better simulation of multiphonics in terms of amplitude of the frequency components, yet at the

expense of a far greater complexity.
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Figure 1: Cadenza from C.M. von Weber’s concertino for horn, including multiphonic sounds.

Figure 2: (color online) Sketch of the trombone positioning p,,(t), p(t) and pe,(t). Some variables
of the model defined in Section I1.B are written in green.

Figure 3: (color online) Spectrum of glottis signal when playing an F3 — Cy multiphonic. Verti-
cal lines indicate the playing frequency f, (black), the singing frequency f, (red) and fi,, first
harmonic (black, dash-dotted). Hanning window of width 0.2 s, zero-padding of the signal until
frequency precision is under 1 Hz.

Figure 4: (color online) Experiment: spectrograms of the pressures in the mouth p,, (a), in
the mouthpiece p (b) and radiated p.,; (c¢) measured in vivo. Hanning window of width 0.2 s,
95% overlap, zero-padding of the signal until frequency precision is under 1 Hz. The musician
successively sings Cy; (2.5 — 6.5s), plays F3 (7 — 11s), then performs an F3 — C; multiphonic
(12 — 21s). During multiphonic, the p and p.,; spectrograms exhibit spectral components which
do not belong to either the sung or the played note: they are designated with arrows in (b).
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Figure 5: (color online) Experiment: spectra of the mouthpiece pressure p(t) from the same
performance: playing (a), singing (b), multiphonic (¢). Spectra taken from the spectrograms
in Fig. 4b). Peaks appear in the multiphonic spectrum, whose frequencies match neither the
oscillation frequency f;,;, = 173.6 Hz nor the singing frequency fs; = 259.8 Hz nor their harmonics.
fus and fs are represented as vertical plain lines (fundamentals) and dash-dotted lines (harmonics).

Figure 6: (color online) Simulation: spectrograms of the simulated pressures in the mouth p,, (a),
in the mouthpiece p (b) and radiated pe, (¢). Hanning window of width 0.2 s, overlapping of 95%,
zero-padding of the signal until frequency precision is under 1 Hz. The blowing pressure p,, has
a stationary component (p® = 4500 Pa) and, after ¢ = 3 s, an oscillating component (amplitude
pL = 1350 Pa, frequency f, = 282.7 Hz). The transient occurs at ¢t = 1.3s, the forcing signal
is added after ¢ = 3s. As in the experiment, spectral components other than harmonics of the
playing and the singing frequencies appear.

Figure 7: (color online) Simulation: spectrum of the mouthpiece pressure p(t) from the simulation
of the multiphonics. Spectrum is taken from spectrogram in Fig. 6b). f,, = 189 Hz, f, = 282.7H 2
and their harmonics are shown. Some frequencies are neither harmonic of f; nor of f,, but are
integer combinations of those.

Figure 8: (color online) Experiment: Spectrograms of p,, (a), p (b) and pe,; (¢) measured during a
multiphonic. Hanning window of width 0.2 s, overlapping of 95%, zero-padding of the signal until
frequency precision is under 1 Hz. The singing frequency is constant at f; = 255H z (note Cy) for 5
seconds, then decreases towards f, = 185H z (slightly above f,;, note F3) and remains at this value
after t = 10s. The playing frequency remains as constant as possible, with f;,, € [167.2 : 173.4].

Figure 9: (color online) Experiment: Spectra taken from instants of Fig. 8b) each second between
approximately t = 3s and ¢t = 10s, when f, decreases. The plain lines represent f;, (black) and
fs (red), the dash-dotted lines represent their respective harmonics.

Figure 10: (color online) Simulation: Spectrograms of the simulated p,, (a), p (b) and pe.: (c).
Hanning window of width 0.2 s, overlapping of 95%, zero-padding of the signal until frequency
precision is under 1 Hz. The forcing term appears after ¢ = 4 seconds at f; = 282.7H z (a fifth above
furp), then is steady until ¢ = 6 s; then decreases linearly towards f; = 206 Hz (155 cents above
fup) for 6 seconds: then it stays at this frequency for 2 seconds. The playing frequency remains
stable at f;, = 188.7 Hz all along the simulation. Vertical dash-dotted lines in (b) highlight the
periodic oscillation regime at 38.5H z.

Figure 11: (color online) Simulation: Spectra of the simulated p, taken from the spectrogram in
Fig. 10b) each second, between approximately ¢ = 5s and ¢ = 12s where f, decreases. The plain
vertical lines represent f;., and f, the dash-dotted lines represent their respective harmonics.

Figure 12: (color online) Plot of f, (red), fi+ (black) and some integer combinations (plain lines)
along with the frequencies of the five first components of experimental (a) and simulation (b)
mouthpiece pressure (marks). These marks correspond to the peak frequencies in Fig. 9 and 11.
The recorded values very closely match the integer combinations.

18



580

581

Figure 13: (color online) Comparison of spectra of internal pressures simulated either with a
sinusoidal forcing component, or a 3-harmonic forcing component. Hanning window of width 0.2
s, zero-padding of the signal until frequency precision is under 1 Hz. Frequency decreases as in
Fig. 10. Fig. (a) is the spectra of p at the beginning of the simulations, Fig. (b) at the end.
Differences in terms of amplitude are small in (a) and reach 6 dB in (b). Vertical lines indicate
fus and f, (plain) and their harmonics (dash-dotted).

Figure 14: (color online) Simulation: Spectrograms of p,,, p and p.,; simulated with a one-mode
resonator. Hanning window of width 0.2 s, 95% overlapping, zero-padding of the signal until
frequency precision is under 1 Hz. f;, = 180.5 Hz, f, from 270 Hz to 196.4 Hz. The results are
comparable with those presented in Fig. 10 with weaker components at high frequencies.
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