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EQUIDISTRIBUTION OF JELLIUM ENERGY FOR COULOMB AND RIESZ INTERACTIONS

For general dimension d we prove the equidistribution of energy at the micro-scale in R d , for the optimal point configurations appearing in Coulomb gases at zero temperature. At the microscopic scale, i.e. after blow-up at the scale corresponding to the interparticle distance, in the case of Coulomb gases we show that the energy concentration is precisely determined by the macroscopic density of points, independently of the scale. This uses the "jellium energy" which was previously shown to control the next-order term in the large particle number asymptotics of the minimum energy. As a corollary, we obtain sharp error bounds on the discrepancy between the number of points and its expected average of optimal point configurations for Coulomb gases, extending previous results valid only for 2-dimensional log-gases. For Riesz gases with interaction potentials g(x) = |x| -s , s ∈] min{0, d -2}, d[ and one-dimensional log-gases, we prove the same equidistribution result under an extra hypothesis on the decay of the localized energy, which we conjecture to hold for minimizing configurations. In this case we use the Caffarelli-Silvestre description of the non-local fractional Laplacians in R d to localize the problem.

Introduction

A long-standing question and direction of research at the intersection of mathematics and physics is to ask how solving the minimization problem of sums of two-body interactions between a large number of particles, or more simply between a large number of points, can lead to "collective behavior" of the minimizers, in which some better order structure is seen to emerge. A type of emergent phenomenon, in which a more rigid structure for minimizers tends to diminish the overall complexity of the configurations and is observed empirically in a large number of situations, is usually termed "crystallization". This name refers in the most restrictive meaning to the appearance of periodic structures for minimizers (see the recent review [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF]). From a statistical physics viewpoint, the case in which we have a more ordered structure with higher correlations than a random one fits within the framework of crystallization.

The particular model which we consider here comes from the theory of Riesz gases already studied in [START_REF]From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF]2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF]1D log gases and the renormalized energy: crystallization at vanishing temperature[END_REF][START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]. At zero temperature, we individuate and rigorously prove a rigidity phenomenon which is a weak version of crystallization. A corollary of our results is that minimizers of the renormalized Coulomb gases are very uniform configurations (see Theorem 3 below). The present work extends the result [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF] valid for the 2-dimensional Coulomb gases to the case of general dimension d and of Riesz gases with power-law interactions with power s ∈ [min{0, d -2}, d[, using the strategies for localizing the energy available in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], and inspired by [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF]. In particular, the present result completes the parallel between the work of Rota Nodari and Serfaty [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF] and the one of Alberti, Choksi and Otto [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF] to general dimensions, for the case s = d -2. A consequence of this parallel and of the result of the present work, is the conjecture that [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF] might have extensions to nonlocal interactions corresponding to Green functions for the fractional laplacian. In two dimensions the "Abrikosov conjecture" [START_REF]From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] valid in this range of exponents is that the renormalized energy is in fact minimized by a suitably rescaled copy of the triangular lattice Z + e iπ/3 Z. An analogous conjecture holds for the minimizers of the Ohta-Kawasaki type model of [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF]. It is believed that in high enough dimension the lattice structure is not characteristic of minimizing configurations.

Crystallization problems have up to now been solved only for specific short range interaction potentials (see [START_REF] Theil | A proof of crystallization in two dimensions[END_REF][START_REF] Bourne | Optimality of the triangular lattice for a particle system with Wasserstein interaction[END_REF][START_REF] Heitmann | The ground state for sticky disks[END_REF][START_REF] Sütő | Crystalline ground states for classical particles[END_REF][START_REF] Radin | The ground state for soft disks[END_REF] and references therein) that do not cover Coulomb forces, or in 1D systems [START_REF] Brascamp | Some inequalities for Gaussian measures and the long-range order of the onedimensional plasma[END_REF][START_REF] Kunz | The one-dimensional classical electron gas[END_REF][START_REF]1D log gases and the renormalized energy: crystallization at vanishing temperature[END_REF]. As a positive result, in [START_REF]From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] it was shown however that in dimension 2 and for the above range of exponents s, if the minimizer is a lattice, then it has to be the triangular one.

Recently, the study of one-component plasmas at positive temperature has received a lot of attention. Results to some extent parallel to ours in the case of 2-dimensional Coulomb gases was provided by Bauerschmidt-Bourgade-Nikula-Yau [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF] and Leblé-Serfaty [START_REF] Leblé | Fluctuations of two-dimensional coulomb gases[END_REF], whose main result is interpretable as a quantification of discrepancy at the microscopic scale at positive temperature. Again in the 2-dimensional case at positive temperature, bootstrapping techniques similar to ours have allowed Leblé [START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF] to prove microscopic energy distribution results. Other results in the same spirit concern universality of the law of eigenvalues of random matrices [START_REF] Ben Arous | Large deviations from the circular law[END_REF][START_REF] Bourgade | Edge universality of beta ensembles[END_REF][START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF][START_REF] Bourgade | The local circular law for random matrices[END_REF][START_REF] Valkó | Continuum limits of random matrices and the Brownian carousel[END_REF]. In the random setting the analogue of our discrepancy bounds (see Theorem 3 below) are so-called charge fluctuation results, see also [START_REF] Zabrodin | Large-N expansion for the 2D Dyson gas[END_REF] and the references therein.

1.1. General setting of the problem. We now pass to the precise description of our problem. We study the equilibrium properties of a system of n points in the full space of dimension d ≥ 1, interacting via Riesz kernel interactions and confined by an "external field" or potential V . More precisely, we consider energies of the form (1)

H n (x 1 , • • • , x n ) = i =j g(x i -x j ) + n n i=1 V (x i )
where x 1 , • • • , x n are n points in R d and the interaction kernel is given by either In the mean-field setting, the factor n multiplying the one-body potential term has the role of giving equal influence to this term as compared to the two-body interaction term. If V has some particular homogeneity, then often we can reduce to an energy of this form by an appropriate scaling. The case of s ∈ [d -2, d[, s < 0, which is not treated here, can happen only for d = 1 and this seems to be a more tractable situation. In particular the case s = -1, i.e. g(x) = |x|, was shown to be completely solvable [START_REF] Aizenman | Structure of Gibbs states of one dimensional Coulomb systems[END_REF][START_REF] Lenard | Exact Statistical Mechanics of a One-Dimensional System with Coulomb Forces[END_REF][START_REF]Exact Statistical Mechanics of a One-Dimensional System with Coulomb Forces. III. Statistics of the Electric Field[END_REF][START_REF] Brascamp | Some inequalities for Gaussian measures and the long-range order of the onedimensional plasma[END_REF][START_REF] Kunz | The one-dimensional classical electron gas[END_REF]. Note that, in what follows, we will take the convention that s = 0 when g(x) =log |x|, i.e. in the cases [START_REF] Ameur | Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates[END_REF] and [START_REF] Anderson | An introduction to random matrices[END_REF].

The reason why systems of particles with Coulomb and Riesz interactions are interesting in statistical physics is that they represent the most basic model containing the long-range interaction potentials typical of the electrostatic potential. For studies in the Coulomb case see [START_REF] Sari | On the ν-dimensional one-component classical plasma: the thermodynamic limit problem revisited[END_REF][START_REF] Lieb | Improved lower bound on the indirect Coulomb energy[END_REF][START_REF] Jancovici | Large charge fluctuations in classical Coulomb systems[END_REF][START_REF] Penrose | Thermodynamic limit for classical systems with Coulomb interactions in a constant external field[END_REF], and see [START_REF] Serfaty | Coulomb gases and Ginzburg-Landau vortices[END_REF] for a review. The possibility of changing the exponent s allows to "turn on" or "off" the locality of the interactions. The case s ≥ d (also called hypersingular case [START_REF] Saff | Distributing many points on a sphere[END_REF][START_REF] Brauchart | The Next-Order Term for Optimal Riesz and Logarithmic Energy Asymptotics on the Sphere[END_REF]) corresponds to interactions of more local nature. In [START_REF]From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF], the precise energy of our form is linked to the study of vortex systems, that appear in classical and quantum fluids [START_REF] Caglioti | A special class of stationary flows for twodimensional Euler equations: a statistical mechanics description[END_REF][START_REF] Correggi | Energy and vorticity in fast rotating Bose-Einstein condensates[END_REF][START_REF] Correggi | The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate[END_REF] and in fractional quantum Hall physics [START_REF] Girvin | Introduction to the fractional quantum Hall effect[END_REF][START_REF] Rougerie | Quantum Hall states of bosons in rotating anharmonic traps[END_REF][START_REF]Quantum Hall phases and plasma analogy in rotating trapped Bose gases[END_REF].

Our interaction energy is also appearing in the theory of random matrix ensembles [START_REF] Anderson | An introduction to random matrices[END_REF][START_REF] Mehta | Random matrices[END_REF][START_REF] Deift | Orthogonal polynomials and random matrices: a Riemann-Hilbert approach[END_REF]. Worth mentioning, especially the Ginibre ensembles, as was described in [START_REF] Ginibre | Statistical ensembles of complex, quaternion, and real matrices[END_REF][START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] and exploited by Dyson starting in [START_REF] Dyson | Statistical theory of the energy levels of complex systems. i[END_REF] for d = 2, s = 0 and GOE or GUE for d = 1, s = 0, as described in [START_REF] Forrester | Log-gases and random matrices (LMS-34)[END_REF] and the references therein.

Another direction of study in which this type of energy appears is related to Smale's 7th problem [START_REF] Smale | Mathematical Problems for the Next Century[END_REF], which asks to find fast algorithms for minimizing our energy up to a very small error. Studies of this question are related to the optimal conditioning for interpolation points and to the theory of quadrature (see [START_REF] Shub | Complexity of Bezout's Theorem: III. Condition Number and Packing[END_REF][START_REF] Saff | Distributing many points on a sphere[END_REF][START_REF] Saff | Logarithmic Potentials with External Fields[END_REF] and the references therein).

The leading order behavior of minimizers of H n is known: there holds

1 n n i=1 δ x i ⇀ µ V ,
where the convergence is the weak convergence of probability measures, and µ V is the equilibrium measure, i.e. the minimizer of the energy [START_REF] Atiyah | The Geometry of Point Particles[END_REF] I(µ) := ˆˆR d ×R d g(xy)dµ(x)dµ(y) + ˆRd V (x)dµ(x) .

The next-order behavior of H n and of its minimizers is observed at the scale n -1/d at which (after blowup) the points become well-separated. As first observed in [START_REF]2D Coulomb Gases and the Renormalized Energy[END_REF], [START_REF]1D log gases and the renormalized energy: crystallization at vanishing temperature[END_REF] via methods later extended in [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF] and [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] to our general setting, if µ V is the minimizer of I, then H n can be split into two contributions corresponding to a constant leading order term and a typically next order term as follows:

(6)

H n (x 1 , . . . , x n ) = n 2 I(µ V ) + 2n n i=1 ζ(x i ) + n 1+s/d w n (x 1 , . . . , x n )
in the case (2) and respectively

(7) H n (x 1 , . . . , x n ) = n 2 I(µ V ) - n d log n + 2n n i=1 ζ(x i ) + nw n (x 1 , . . . , x n )
in the cases (3) or ( 4), where w n will be made explicit in Proposition 2.2 and ζ is an "effective potential" (defined below in ( 15)) depending only on V , which is nonnegative and vanishes on supp(µ V ) := Σ. As shown in [START_REF]2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF]1D log gases and the renormalized energy: crystallization at vanishing temperature[END_REF][START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], w n has a limit W as n → ∞, which is our renormalized energy. The precise definition of W is given in Section 2.3 below in terms of the potential generated by the limits of configurations blown-up at the scale n 1/d . The renormalization procedure consists in considering first a version of the energy where the charges are "spread" at scale η, and defining an energy W η as the version of W where the self-interaction term of these spread charges, which becomes infinite as η → 0, is removed. Then W is defined as lim η→0 W η . Due to the splitting formulas ( 6), [START_REF] Bausch | Grain boundary scars and spherical crystallography[END_REF], minimizers of H n converge, after blow-up, to minimizers of W. As mentioned above, it is a hard mathematical conjecture corroborated by simulations and experimental evidence (the so-called "Abrikosov conjecture" in 2dimensions being the most celebrated case), that in low dimensions the minimum of W is achieved at simple crystalline configurations, i.e. minimizers of W are expected to ressemble perfect lattices. In [START_REF]2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF]1D log gases and the renormalized energy: crystallization at vanishing temperature[END_REF][START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] the analysis of the microscopic behavior of minimizers of H n was thus connected to the behavior of minimizers of W by allowing to rigorously formulate the crystallization conjecture in terms of W.

1.2. Statement of the main results. We now state the main results of our paper. As said before, these results are the generalization of the result of [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF] for the 2-dimensional Coulomb gases to the case of general dimension d and of Riesz gases with power-law interactions. More precisely, we prove that the renormalized energy W is equidistributed at the microscopic scale in an arbitrary square provided that the square is chosen sufficiently far away from ∂Σ. Moreover, we improve the result of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Thm. 4], where it was established that almost minimizers of H n tend to minimize W after blow-up at scale n 1/d around almost every point in Σ. Here we show that if we deal with a minimizer of H n this holds after blow-up around any point sufficiently far from the boundary of Σ (see Section 2 below for precise definitions). Note that for the case k = 1 we require the extra condition (8), which will be discussed in Section 2.4 below. We conjecture that this hypothesis is automatically verified for sequences of minimizing configurations, but it seems to be out of reach of the present methods. We expect that fundamentally new methods and ideas will be needed for proving this conjecture.

Theorem 1. Let (x 1 , • • • , x n ) be a minimizer of H n . Let µ V = m V (x)dx, µ ′ V = m ′ V (x ′
)dx ′ be respectively the equilibrium measure and its blow-up at scale n 1/d . Let Σ ′ be the support of µ ′ V and suppose that m V ∈ C 0,α (Σ) for some α ∈]0, 1].

Let E ′

n = ∇h ′ n be the vector fields expressed as the gradient of the potentials of blow-up configurations corresponding to these minimizers, as in (26) below. If k = 1, assume that [START_REF] Ben Arous | Large deviations from the circular law[END_REF] lim

t→∞ lim R→∞ lim n→∞ 1 |K R | ˆKR ×(R [-t,t]) |y| γ |E ′ n | 2 = 0
uniformly with respect to the choice of the centers of the hypercubes K R . If k = 0, there exists q ∈]0, 1[ such that for a n ∈ Σ ′ in the regime where dist(K ℓ (a n ), ∂Σ ′ ) ≥ n q/d , we have [START_REF] Bétermin | Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere[END_REF] lim (an) min

η→0 lim sup ℓ→∞ lim sup n→∞ W η (E ′ n , K ℓ (a n )) |K ℓ | - 1 |K ℓ | ˆKℓ
A m ′ V (x ′ )
Wdx ′ = 0 .

If k = 1, for every ε 0 > 0 there exists a convergence regime depending on (8) and compatible with the condition dist(K ℓ (a n ), ∂Σ ′ ) ≥ ε 0 n 1/d for a n ∈ Σ ′ × {0} such that (9) holds.

In the above result it is natural to ask under which conditions we can interchange the renormalization limit η → 0 with the other ones, obtaining a result valid for W rather than for the family W η . Our proof strategy for the above result is to select "good boundaries", and then use a screening procedure like in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], in order to compare different boundary conditions for the minimizers. In this case the requirement for a "good boundary" is that the field E η should not have a large concentration of energy on such boundaries.

Unfortunately the purely energetic considerations which we apply in our proof make it impossible to control whether or not the locations of the supports ∂B(p, η), p ∈ Λ of the smeared charges δ (η) p appearing in the second term in (39) "follow" the energy concentration of E η locally near such good boundaries, and governed by the first term in [START_REF] Kohyama | Defect scars on flexible surfaces with crystalline order[END_REF]. In this sense the definition (39) of our energy is really just a global one, and it may happen that large discrepancies between the behaviors W η (K ℓ (a)) and ´Kℓ (a)×R k |y| γ |E η | 2 occur for exceptional choices of K ℓ (a). This lack of control prevents the exchange of the η → 0 limit with the n, ℓ → ∞ limit without further assumptions on K ℓ (a).

However, if we allow ourselves to slightly perturb the cubes and if we use the charge separation result of Proposition 2.3, stated below, we can perform the desired interchange of limits for the perturbed hyperrectangles, and we obtain the following:

Theorem 2. Let (x 1 , • • • , x n ) be a minimizer of H n . Let µ V = m V (x)dx, µ ′ V = m ′ V (x ′
)dx ′ be respectively the equilibrium measure and its blow-up at scale n 1/d as above. Let Σ ′ be the support of µ ′ V and suppose that m V ∈ C 0,α (Σ) for some α ∈]0, 1].

Let E ′

n = ∇h ′ n be a sequence of blown-up vector fields corresponding to these minimizers as in (26) below. If k = 1, assume that (8) holds uniformly with respect to the choice of the centers of the hypercubes K R .

In either of the regimes valid for cases k = 0, k = 1 and linking a n , ℓ, n like in Theorem 1 there exists sets Γ n which can be expressed as bi-Lipschitz deformations

f n : K ℓ (a n ) → Γ n such that f n -id L ∞ ≤ 1
and such that we have [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF] lim sup

ℓ→∞ lim sup n→∞ W(E ′ n , Γ n ) |Γ n | - 1 |Γ n | ˆΓn min A m ′ V (x ′ ) Wdx ′ = 0 .
Moreover, we may assume that Γ n is a hyperrectangle.

Remark that in both theorems the result is slightly weaker in the case k = 1. As we will explain below, this is due to the fact that we do not know the decay in the extra dimension y of the energy vector fields E ′ n corresponding to minimizing configurations of points. This is why we need hypothesis [START_REF] Ben Arous | Large deviations from the circular law[END_REF]. If we were able to prove that the l.h.s. of (8) decays to zero as a negative power of t, then ( 9) and [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF] would hold in the regime where dist(K ℓ (a n ), ∂Σ ′ ) ≥ n q/d for some q ∈]0, 1[. 1.3. Bound on discrepancy. As a consequence of the k = 0 case of Theorem 1, we deduce a decay of discrepancies, valid for s = d -2, and which precisely shows that minimizers of the Coulomb jellium energy have a controlled discrepancy in all dimensions: Theorem 3 (Discrepancy bound of jellium minimizers). Assume that s = d -2, that there exist constants m, m > 0 such that m ≤ m V (x) ≤ m for all x ∈ supp(m V ). Further assume that we are in the regime in which (9) holds and that E ′ n satisfy the charge separation condition of Proposition 2.3. Then letting

ν ′ n := n i=1 δ x ′ i
we have a finite asymptotic bound of the discrepancy of the ν ′ n with respect to µ ′ V as follows:

(11) lim η→0 lim sup ℓ→∞ lim sup n→∞ 1 ℓ d-1 ν ′ n (K ℓ (a)) - ˆKℓ (a) m ′ V (x)dx < ∞.
We note that for the d = 2 case the above result is already present in [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF]. A weaker version in which, still for d = 2, the decay of the absolute value term in ( 11) is shown to be o(ℓ d ) rather than O(ℓ d-1 ) like here, was also proved via Beurling-Landau densities, in [START_REF] Ameur | Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates[END_REF].

It is interesting to compare the discrepancy bound [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF] with the notion of hyperuniform random point configurations [START_REF] Torquato | Local density fluctuations, hyperuniformity, and order metrics[END_REF][START_REF] Zachary | Hyperuniformity in point patterns and two-phase random heterogeneous media[END_REF][START_REF] Torquato | Hyperuniformity and its Generalizations[END_REF]. A random point configuration is called hyperuniform if the variance σ 2 (ℓ) of the number of points present in a window K ℓ (x) of size ∼ ℓ grows like a surface term, i.e. σ 2 (ℓ) ∼ ℓ d-1 . In our case, a notion of local number variance still can be defined by considering the number N ℓ,n := ν ′ n (K ℓ (n 1/d x)) as a random variable on the probability (Ω, B, P ) where Ω = supp(µ V ), B are the Borel sets of Ω and P is the uniform measure on Ω. In this case we are tempted to conjecture that configuratios are hyperuniform in the sense that asypmptotically in the regime 1 ≪ ℓ ≪ n the variance of N ℓ,n grows like O(ℓ d-1 ). Proving this however will require to face new difficulties in order to produce a quantitative study of two-point density correlations analogous to [START_REF] Torquato | Local density fluctuations, hyperuniformity, and order metrics[END_REF] for sequences of minimizers, and we leave this endeavor to future work.

Our above control of discrepancies could also prove useful in making more rigorous the study of scars, i.e. the study of topological defects appearing in numerical simulations of point configurations on manifolds. In this case it is apparent by numerical simulations that defects arise, with a large literature focussing on the case of points distributed on the 2-dimensional sphere [START_REF] Bowick | Interacting topological defects on frozen topographies[END_REF][START_REF] Bausch | Grain boundary scars and spherical crystallography[END_REF][START_REF] Bowick | Crystalline order on a sphere and the generalized Thomson problem[END_REF][START_REF]Crystalline particle packings on a sphere with long-range power-law potentials[END_REF] and also on more general surfaces and manifolds as in [START_REF] Atiyah | The Geometry of Point Particles[END_REF][START_REF] Kohyama | Defect scars on flexible surfaces with crystalline order[END_REF]. However in this case rigorous mathematical studies of the asymptotics of defects in the large-n limit seem to be difficult, also due to the lack of a well-accepted and easy to control notion of "defect". In the case of the 2-dimensional sphere, a first step in the study of the next-order term which may allow to obtain a version of our functional W on the sphere has been recently provided by Bétermin-Sandier in [START_REF] Bétermin | Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere[END_REF]. As the presence of scars may be detected by the presence of localized higher discrepancy regions, it seems that the above result, if transferred to the case of points living on compact manifolds, may provide a tool towards a rigorous proof of such asymptotics.

Assumptions and main definitions

2.1. Hypotheses on V and µ V . The minimization of I, defined by (5), on P(R d ), the space of probability measures on R d , is a standard problem in potential theory (see [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF] or [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF] for d = 2). In particular, if V satisfies the following assumptions:

V is l.s.c. and bounded below, [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] {x : V (x) < ∞} has positive g-capacity, (13) [START_REF] Bourgade | Universality of general β-ensembles[END_REF] then the minimum of I over P(R d ) exists, is finite and is achieved by a unique equilibrium measure µ V , which has a compact support Σ of positive g-capacity. In addition µ V is uniquely characterized by the fact that 1 h µ V + V 2 ≥ c q.e. , h µ V + V 2 = c q.e. on Σ. where h µ V (x) := ´g(xy)dµ V (y) and c := I(µ V ) -´V 2 dµ V .

lim |x|→∞ V (x) = +∞, resp. lim |x|→∞ V (x) 2 -log |x| = +∞ in cases (3) -(4),
Note that h µ V can be characterized as the unique solution of a fractional obstacle problem, and the corresponding regularity theory [START_REF] Silvestre | Regularity of the obstacle problem for a fractional power of the Laplace operator[END_REF][START_REF] Caffarelli | Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian[END_REF][START_REF] Caffarelli | Variational problems with free boundaries for the fractional Laplacian[END_REF] allows to obtain regularity results on h µ V and on the free-boundary ∂Σ in terms of the regularity of V . We will write [START_REF] Bourgade | The local circular law for random matrices[END_REF] ζ [START_REF]2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], it is assumed that µ V is absolutely continuous with respect to the Lebesgue measure, with density also denoted by m V , and in order to make the explicit constructions easier, we need to assume that this density is bounded and sufficiently regular on its support. More precisely, we make the following technical, and certainly not optimal, assumptions:

:= h µ V + V 2 -c ≥ 0. Like in
∂Σ is C 1 (16) µ V has a density which is C 0,β in Σ, (17) ∃c 1 , c 2 , m > 0 s.t. c 1 dist(x, ∂Σ) α ≤ m V (x) ≤ min(c 2 dist(x, ∂Σ) α , m) < ∞ in Σ,
with the conditions

(18) 0 < β ≤ 1, 0 ≤ α ≤ 2βd 2d -s .
Of course if α < 1 one should take β = α, and if α ≥ 1, one should take β = 1 and α ≤ 2d d-s . These assumptions include the case of the semi-circle law 1 2π √ 4x 2 1 |x|<2 arising for the quadratic potential in (3). In the Coulomb cases, a quadratic potential gives rise to the equilibrium measure c1 B where B ⊂ R d is a ball, a case also covered by our assumptions with α = 0. In the Riesz case, any compactly supported radial profile can be obtained as the equilibrium measure associated to some potential (see [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF]Corollary 1.4]). Our assumptions are thus never empty.

2.2. Blowup, regularization and splitting formula. The renormalized energy appears in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] as a next order limit of H n after a blow-up is performed, at the inverse of the typical nearest neighbor distance between the points, i.e. n 1/d . It is expressed in terms of the potential generated by the configuration x 1 , • • • , x n and defined by [START_REF] Bowick | Interacting topological defects on frozen topographies[END_REF] h

n (X) = g * n i=1 δ (x i ,0) -nm V δ R d .
Recall that the Riesz kernel g is not the convolution kernel of a local operator, as in the Coulomb case s = d -2 or (4), where g is the kernel of the Laplacian. It is the kernel of a fractional Laplacian, which is a nonlocal operator. It turns out however that, as originally noticed in [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF], if d -2 < s < d then this fractional Laplacian operator can be transformed into a local but inhomogeneous operator of the form div(|y| γ ∇•) by adding one space variable y ∈ R to the space R d . The number γ is chosen such that

(20) γ = s -d + 2 -k
where k will denote the dimension extension. We will take k = 0 in all the Coulomb cases, i.e. s = d-2 and d ≥ 3 or (4). In all other cases, we will need to take k = 1. In the particular case of s = d -1 then γ = 0, and this correspond to using a harmonic extension (see [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF][START_REF]1D log gases and the renormalized energy: crystallization at vanishing temperature[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] for more details). Points in the space R d will be denoted by x, and points in the extended space R d+k by X, with X = (x, y), x ∈ R d and y ∈ R k .

1 Recall that using the usual notation of potential theory [START_REF] Landkof | Foundations of modern potential theory[END_REF], here "quasi everywhere", abbreviated "q.e.", means "up to sets of zero g-capacity".

For the blown-up quantities we will use the following notation (with the convention s = 0 in the cases (3) or ( 4)):

x ′ = n 1/d x X ′ = n 1/d X x ′ i = n 1/d x i (21) m ′ V (x ′ ) = m V (x) (22) h ′ n (X ′ ) = n -s d h n (X). ( 23 
)
In particular if Σ = supp(m V ), Σ ′ = supp(m ′ V ) then there holds (24) Σ ′ = n 1 d Σ. We note that h n and h ′ n satisfy (25) -div(|y| γ ∇h n ) = c s,d n i=1 δ x i -nm V δ R d in R d+k , ( 26 
) -div(|y| γ ∇h ′ n ) = c s,d n i=1 δ x ′ i -m ′ V δ R d in R d+k ,
In order to define our renormalized energy we need to truncate and regularize the Riesz (or logarithmic) kernel. We define the truncated kernel as in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], in the following way: for 1 > η > 0 and

X ∈ R d+k , let (27) f η (X) = (g(X) -g(η)) + .
We note that the function f η vanishes outside of B(0, η) and satisfies that ( 28)

δ (η) 0 := 1 c s,d div(|y| γ ∇f η ) + δ 0
is a positive measure supported on ∂B(0, η), and which is such that for any test-function ϕ,

ˆϕδ (η) 0 = 1 c s,d ˆ∂B(0,η) ϕ(X)|y| γ g ′ (η).
One can check that δ (η) 0 is the uniform measure of mass 1 on ∂B(0, η), and we may write [START_REF] Correggi | Energy and vorticity in fast rotating Bose-Einstein condensates[END_REF] div(|y|

γ ∇f η ) = c s,d (δ 0 -δ (η)
0 ) in R d+k . We will also denote by δ (η) p the measure δ (η) 0 (Xp), for p ∈ R d × {0}. In the Coulomb cases, i.e. when k = 0, then δ (η) 0 is the same as in [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF]. If h can be written in the form [START_REF] Bowick | Interacting topological defects on frozen topographies[END_REF], then we will also denote [START_REF] Deift | Orthogonal polynomials and random matrices: a Riemann-Hilbert approach[END_REF] h

η := h - n i=1 f η (x -x i ).
Remark 2.1. For h = h n as in [START_REF] Bowick | Interacting topological defects on frozen topographies[END_REF] the transformation from h to h η amounts to truncating the kernel g, but only for the Dirac part of the r.h.s. Indeed, letting g η (x) = min(g(x), g(η)) be the truncated kernel, we have

h η = g η * ( n i=1 δ x i ) -g * (m V δ R d ).
In view of (29), h n,η and h ′ n,η , defined from h n and h ′ n via [START_REF] Deift | Orthogonal polynomials and random matrices: a Riemann-Hilbert approach[END_REF], satisfy

(31) -div(|y| γ ∇h n,η ) = c s,d n i=1 δ (η) x i -nm V δ R d in R d+k , ( 32 
) -div(|y| γ ∇h ′ n,η ) = c s,d n i=1 δ (η) x ′ i -m ′ V δ R d in R d+k ,
with the usual embedding of R d into R d+k . We now recall the splitting formula from [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF].

Proposition 2.2 (Splitting formula). For any n, any

x 1 , • • • , x n distinct points in R d × {0}
, letting h n be as in [START_REF] Bowick | Interacting topological defects on frozen topographies[END_REF] and h n,η deduced from it via (30), we have in the case (2)

(33) H n (x 1 , • • • , x n ) = n 2 I(µ V ) + 2n n i=1 ζ(x i ) + n 1+ s d lim η→0 1 c s,d 1 n ˆRd+k |y| γ |∇h ′ n,η | 2 -c s,d g(η)
,

respectively in the cases (3)-(4) (34) 
H n (x 1 , • • • , x n ) = n 2 I(µ V ) + 2n n i=1 ζ(x i ) - n d log n + n lim η→0 1 c s,d 1 n ˆRd+k |y| γ |∇h ′ n,η | 2 -c s,d g(η) .
One expects the repelling points x i to organise in a very uniform way, and thus that the interpoint distance asymptotically decreases like n -1/d . The following is proven in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], by potential-theoretic methods [START_REF] Landkof | Foundations of modern potential theory[END_REF][START_REF] Brauchart | Riesz external field problems on the hypersphere and optimal point separation[END_REF] and using the maximum principle.

Proposition 2.3 (Point separation, [49, Thm. 5]). Let (x 1 , . . . , x n ) minimize H n . Then for each i ∈ [1, n], x i ∈ Σ, and for each i = j, it holds |x i -x j | ≥ r (n max x |m V (x)|) 1/d ,
where r is some positive constant depending only on s and d.

The scale ∼ n -1/d is then termed the microscopic scale of our gases, and the two-scale reformulation of the energy H n as done in [START_REF]2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] involves separating the energy contributions from the macroscale and from this microscopic scale. In particular the distribution of points at the microscopic scale is governed by the renormalized energy W to be introduced below.

2.3.

The renormalized energy. Consider the formulas appearing in Proposition 2.2. As ζ ≥ 0 and ζ = 0 on supp(µ V ), it acts as an effective potential, favouring the configurations where the points x i are in the support of µ V . The last term produces the next-order term of the energy, and justifies the definition of the renormalized energy W of an infinite configuration of points. This functional W is defined via the gradient of the potential generated by the point configuration, embedded into the extended space R d+k . That gradient is a vector field that we denote E (like electric field, by analogy with the Coulomb case). Then E will solve a relation of the form

(35) -div(|y| γ E) = c d,s p∈Λ δ p -m(x)δ R d in R d+k .
where Λ is some discrete set in R d × {0} (identified with R d ). Due to the fact that (as recalled in Proposition 2.3) the minimizers of our energy have separated charges, we restrict in the present work to fields E corresponding to multiplicity-one charges, as opposed to general positive integer multiplicity case considered in [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]. For any such E (defined over R d+k or over subsets of it), we define, by a formula generalizing ( 30), ( 36)

E η := E - p∈Λ ∇f η (X -p).
We will write Φ η for the map that sends E to E η , and note that it is a bijection from the set of vector fields satisfying a relation of the form [START_REF] Girvin | Introduction to the fractional quantum Hall effect[END_REF] to those satisfying a relation of the form

(37) -div(|y| γ E η ) = c d,s p∈Λ δ (η) p -m(x)δ R d in R d+k .
The class of vector fields on which we are going to concentrate is thus the following:

Definition 2.4 (Admissible vector fields). Given a non-negative density function m : R d → R + , we define the class A m to be the class of gradient vector fields E = ∇h that satisfy

(38) -div(|y| γ E) = c s,d p∈Λ δ p -m(x)δ R d in R d+k
where Λ is a discrete set of points in R d × {0}.

In case m ∈ L ∞ loc , vector fields as above blow up exactly in 1/|X| s+1 near each p ∈ Λ (with the convention s = 0 for the cases (3)-( 4)); such vector fields naturally belong to the space L p loc (R d+k , R d+k ) for p < d+k s+1 . We are now in a position to define the renormalized energy for blow-up configurations like in [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]. In the definition, we let K R denote the hypercubes [-R/2, R/2] d . Definition 2.5 (Renormalized energy). Let E ∈ A m satisfy (35) and f : R d+k → R + be a measurable function. Then for 0 < η < 1 we define

(39) W η (E, f ) = ˆRd+k |y| γ f |E η | 2 -c d,s g(η) ˆRd+k f p∈Λ δ (η) p . For A ⊂ R d a Borel set we define W η (E, A) := W η (E, 1 A×R k )
where 1 S is the characteristic function which equals 1 on a set S and 0 outside S. We then define

(40) W(E, A) = lim η→0 W η (E, A), W(E) = lim η→0 lim sup R→∞ W η (E, K R ) R d . Remark 2.6. Note that if χ A,ǫ (x, y) = 1 A * ρ (d) ǫ (x)1 [-Rǫ,Rǫ] k * ρ (k) ǫ (y) are C ∞ c functions approximating 1 A×R k where R ǫ → ∞ as ǫ → 0 and ρ (n) ǫ (z) = ǫ -n ρ (n) (z/ǫ) denotes mollifiers based on a smooth radial probability density ρ (n) supported on the unit ball of R n then we have W η (E, A) = lim ǫ→0 W η (E, χ A,ǫ ), by monotone convergence in (39).
The name renormalized energy (originating in Bethuel-Brezis-Hélein [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF] in the context of twodimensional Ginzburg-Landau vortices) reflects the fact that ´|y| γ |∇h|2 which is infinite, is computed in a renormalized way by first changing h into h η and then removing the appropriate divergent terms c s,d g(η) corresponding to all points.

The above is a generalized version of the renormalized energy defined in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], and fits in the framework of the study of "jellium energies", for which we refer to [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF] and to the references therein. As in [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] the next-order functional W differs from the one defined in previous works by Sandier-Serfaty [START_REF]From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF]1D log gases and the renormalized energy: crystallization at vanishing temperature[END_REF] for the one and two-dimensional logarithmic interaction, essentially in the fact that the order of the limits R → ∞ and η → 0 is reversed. We refer to [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF] for a further discussion of the comparison between the two.

In the case of constant m, by scaling we may always reduce to studying the class

A 1 , indeed, if E ∈ A m and A is Borel, then Ê = m -s+1 d E(c s,d • m -1/d ) ∈ A 1 2 and (41) W η (E, A) = m 1+s/d W ηm 1/d ( Ê, m 1/d A) W(E) = m 1+s/d W( Ê).
in the case (2), and respectively

(42) W η (E, A) = m W mη ( Ê, m 1/d A) - 2π d log m W(E) = m W( Ê) - 2π d log m
in the cases (3)-(4).

2.4. Discussion on the hypothesis (8).

2.4.1.

Power-law bound. For studying the case k = 1 we need a further assumption regarding decay in the extra dimension (i.e. as |y| → ∞) of the energy vector fields E ′ n corresponding to minimizing configurations of points. It is tempting to conjecture that for fields E ′ n corresponding to minimizers there exist constants a, C 2 > 0 such that for each bilipschitz deformation of a cube K ⊂ R d there holds ( 43)

ˆK×(R\[-t,t]) |y| γ |E ′ n | 2 ≤ C 2 |K|t -a .
We use here the notation C 2 in order to allow the reader to directly compare the bounds here with those from Propositions 3.1 and 3.3 below. Such decay is not true for general configuratons for which W(E) < ∞, and it seems to be equivalent to a uniformity condition on the field-generating configurations. We note here that this condition holds in the case of lattice-like configurations:

Lemma 2.7 (Power-like decay for lattices). Assume that Λ ⊂ R d is a Bravais lattice of density one and consider the admissible vector field E ′ corresponding to Definition 2.4 with this choice of Λ and measure m ≡ 1. Then [START_REF] Leblé | Fluctuations of two-dimensional coulomb gases[END_REF] holds with a = sd + 2 > 0.

Proof. We prove the result in the case Λ = Z d but the same proof works for a general Bravais lattice of density one. We can calculate the norm of E loc := ∇h = ∇(g * ( p∈Λ δ pδ R d )) at a point (x 0 , y) with |y| = t. As Λ is periodic, so is E loc and we may suppose that x 0 ∈ [0, 1] d . Then we find,

h(x 0 , y) = -|S d-1 | ˆ∞ 0 r d-1 (t 2 + r 2 ) s/2 dr + p∈Z d +x 0 1 (t 2 + |p| 2 ) s/2 = -t d-s |S d-1 | ˆ∞ 0 ρ d-1 dρ (1 + ρ 2 ) s/2 + t -s q∈t -1 (Z d +x 0 ) 1 (1 + |q| 2 ) s/2 ,
and we see that this expression is t -s times the error in the approximation for the Riemann integral of (1 + |x| 2 ) -s/2 given by the partition of R d in cubic cells centered at t -1 (Z d + x 0 ). To compute ∇h = ∇(g * ( p∈Λ δ pδ R d )) at the same point we must take into account the fact that cancellations occur: for the continuum counterpart the horizontal contributions to ∇h from points symmetric with respect to x cancel, and the length of the vertical component is t/(t 2 + r 2 ) 1/2 . We thus find that |E loc |(x, t) is t -s-1 times the Riemann sum approximation error for the integral of |x|(1 + |x| 2 ) -(s+3)/2 corresponding to the decomposition of R d by cubic cells centered at t -1 (Z d + x 0 ). It follows that uniformly in x 0 we have the sharp power decay bound |∇h| ≤ t d-s-2 and thus (using also the relation

γ = s -d + 2 -k = s -d + 1 valid here) ˆR\[-t,t] |y| γ |E loc | 2 (x 0 , y)dy ≤ Ct 2d-2s-3+γ = Ct d-2-s ,
which implies (43).

2.4.2. Weaker decay bound. In general we were not able to find a way to prove a bound of the form (43) for our minimizers E ′ n , and we leave the question of whether the lattice-configurations have the same decay power a as the minimizers for future work. This can be seen as a uniformity conjecture on the minimizers, which therefore is a weaker version of the conjecture that lattices are minimizers.

Note also that so far we didn't exclude that there exist distinct minimizing configurations with different decay of the energy.

We will denote, compatibly with the notation [START_REF] Leblé | Fluctuations of two-dimensional coulomb gases[END_REF], that for a vector field E, a cube K ⊂ R d and a "height" t,

(44) 1 |K| ˆK×(R\[-t,t]) |y| γ |E| 2 := C 2 (E, t, K).
In the above notation [START_REF] Leblé | Fluctuations of two-dimensional coulomb gases[END_REF] states that C 2 (E, t, K) = C 2 t -a , independently of K. We denote as follows some more global bounds, provided that they are finite.

C 2 (E, t, L) := sup C 2 (E, t, K l (a)) : l ∈ [L/2, 2L], a ∈ R d , L > 0, C 2 (E, t) := sup {C 2 (E, t, L) : L > 1} .
We then see that, by expressing the average over K 2l (a) as the average of the 2 d averages over distinct subcubes K l (a ′ ) partitioning K 2l (a) up to measure zero, we find

(45) C 2 (E, t, 2L) ≤ C 2 (E, t, L) for all t > 0.
Recall that in [49, Prop. 7.1] it was proved that there exists a minimizer E of W η over A 1 which satisfies lim

t→∞ lim R→∞ C 2 (E, R, t) = 0,
and moreover (see [49, Sect. 5]) a weak limit of a subsequence of rescaled minimizers E ′ n provides an E with the above property for generic choices of the blow-up centers.

We need however to use the stronger fact that the choice of E ′ n corresponding to a blow-up sequence of minimizers in our problem, satisfies this type of uniform bound too as stated in hypothesis (8).

Screening lemmas

The following is the main tool for selecting the good boundaries in our constructions. This is used later in combination with our precise splitting formula of Proposition 5.1 in performing the screening construction.

Proposition 3.1 (Good boundary slices). Let K T be a rectangle of sidelenghts ∼ T , let ρ ∈ L ∞ (K T ) and fix η ∈]0, 1[. If Λ ⊂ R d is a discrete set, we define ν = p∈Λ δ p , ν (η) = p∈Λ δ (η)
p .

Assume that E = ∇h as in (26) on the rectangle K T , in particular

-div(|y| γ E η ) = c d,s ν (η) -ρ(x)δ R d in K T × R k .
Further assume that E is controlled in the following sense:

(46) 1 T d ˆKT ×[-t,t] k |y| γ |E η | 2 ≤ C 1 for some positive constant C 1 and t ∈ [0, T ]. Let ε 1 ∈]0, 1[, L i ∈ [ε 1/d 1 T i , T i ], i = 1, . . . , d and a ∈ R d × {0} such that the rectangle K L (a) of sidelenghts L i is included in K T and, if k = 1, assume that (47) 1 L d ˆKL ×(R\[-1 2 t, 1 2 t]) |y| γ |E η | 2 ≤ C 2 .
for positive constant C 

ˆ∂K ′ L ×[-t,t] k |y| γ |E η | 2 ≤ CC 1 ε -1 1 l -1 L d , (48) 
and when k = 1 there exists

t ′ ∈ [t/2, t] such that (49) ˆK′ L ×{-t ′ ,t ′ } |y| γ |E η | 2 < CC 2 L d t -1 .
Remark 3.2. We recall that if the charges corresponding to a vector field E are well-separated at distance r 0 then the value of W η (E, A) over a domain A is bounded in terms of the volume |A|. More precisely, if C r 0 = |B r 0 | -1 then we have

(50) ˆA×R k |y| γ |E η | 2 -C r 0 c d,s g(η)|A| ≤ W η (E, A) ≤ ˆA×R k |y| γ |E η | 2 ,
therefore in our error bounds on thin boundary layers of cubes the main difficulty is in estimating the L 2 |y| γ -norm of E η rather than the remainder of W η . In the setting of Proposition 3.1 we obtain the bound

(51) W η (E, K L ) |K L | ≥ W η (E, K ′ L ) |K ′ L | + C s,d,m (g(η) + 1) l L ,
where we include in the notation the fact, mentioned in Proposition 2.3 (see [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Thm. 5]) that r 0 depends on max x m(x), s, d only.

Proof. We consider the boundaries ∂K τ (a) for τ ∈ [L-2l, L-l]. Then the existence of K ′ L (a) such that (48) holds, follows by applying the mean value theorem and using [START_REF] Lieb | Improved lower bound on the indirect Coulomb energy[END_REF] and the fact that

L i ≥ ε 1/d 1 T i .
To obtain [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] for k = 1, we use a mean value principle and [START_REF] Mehta | Random matrices[END_REF] 

to find t ′ ∈ [t/2, t] such that ˆKL ×{-t ′ ,t ′ } |y| γ |E| 2 < 2C 2 L d t -1 ,
after which (49) follows.

3.1. Interchanging small energy boundary data by screening. The following is a version of proposition 6.1 of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] with a varying background measure instead of a constant one. We include the case where we pass with a small energy change from a good boundary datum on the inner hyperrectangle to zero on the outer one, and the case where such roles are inverted and we rather pass from a good boundary on the outer hyperrectangle to zero boundary datum on the inner one.

Proposition 3.3 (Screening). Let K T be a rectangle of sidelenghts ∼ T , let ρ be a C 0,α (K T +1 ) function with α > 0 for which there exist ρ, ρ > 0 such that ρ ≤ ρ(x) ≤ ρ. Fix η ∈]0, 1[, let Λ ⊂ R d
and assume there exists r 0 ∈]0, 1/2] such that min{|p -q| :

p = q ∈ Λ} ≥ √ dr 0 . Assume that E = ∇h such that -div(|y| γ E) = c d,s   p∈Λ δ p -ρ(x)δ R d   in K T × R k ,
and that E is controlled as in [START_REF] Lieb | Improved lower bound on the indirect Coulomb energy[END_REF] with

C 1 > 0. Moreover, let ε 1 ∈]0, 1[, L i ∈ [ε 1/d 1 T i , T i ] for i = 1, . . . , d and a ∈ R d × {0} be such that the rectangle K L (a) of sidelenghts L i is included in K T . If k = 1, assume also that C 2 is such that (47) holds, i.e. that C 2 ≥ C 2 (E, t, L). Let K ′ L (a)
, l be as in the claim of Proposition 3.1.

There exists a constant c 0 such that if L is sufficiently large and

(52) C 1 2 1 t -d+1 2 L d 2 ε -1 2 1 l -1 2 ≤ c 0 for k = 0 t γ-3 2 LC 1 2
2 ≤ c 0 and C

1 2 1 t -d+γ 2 L d 2 ε -1 2 1 l -1 2 ≤ c 0 for k = 1
, and if we denote

(53) err sc (η, t, L, l, ε 1 , C 1 , C 2 ) := C 1 ε -1 1 l -1 g(η) + C 2 t -1 L + C 1 ε -1 1 l -1 t + g(η)
L -1 t, then the following hold.

(1) There exists KL (a) such that K ′ L (a) ⊂ KL (a), dist(∂K ′ L (a), ∂ KL (a)) ∈ [t, 2t] and ´K L (a) ρ(x) dx ∈ N. There exist a vector field Ẽ ∈ L p loc ( KL (a)×R k , R d+k ) with p < min(2, 2 1+γ , d+k s+1 ) and a subset Λ ⊂ KL (a) such that

                   -div(|y| γ Ẽ) = c d,s   p∈ Λ δ p -ρ(x)δ R d   in KL (a) × R k Ẽ • ν = 0 on ∂ KL (a) × R k Ẽ • ν = E • ν on ∂K ′ L (a) × [-t, t] k Ẽ = E, Λ = Λ in K ′ L (a) × [-t, t] k .
Moreover,

1 L d ˆ( KL \K ′ L )×R k |y| γ | Ẽη | 2 ≤ Cerr sc (η, t, L, l, ε 1 , C 1 , C 2 ). ( 54 
)
Finally, the minimal distance between points in Λ\Λ, and between points in Λ\Λ and ∂( KL (a)\ K L (a) ′ ) is bounded below by r 1 with r 1 a positive constant depending only on d, ρ, ρ.

(2) There exists

K L (a) such that K L (a) ⊂ K ′ L (a), dist(∂K ′ L (a), ∂K L (a)) ∈ [t, 2t] and ´KL (a) ρ(x) dx ∈ N. There exist a vector field Ẽ ∈ L p loc (K L (a)×R k , R d+k ) with p < min(2, 2 1+γ , d+k s+1 ) and a subset Λ ⊂ K L (a) such that                    -div(|y| γ Ẽ) = c d,s   p∈ Λ δ p -ρ(x)δ R d   in K L (a) × R k Ẽ • ν = 0 on ∂K L (a) × R k Ẽ • ν = E • ν on ∂K ′ L (a) × [-t, t] k Ẽ = E, Λ = Λ in (K L (a) \ K ′ L (a)) × [-t, t] k . Moreover, 1 L d ˆ(K ′ L \K L )×R k |y| γ | Ẽη | 2 ≤ Cerr sc (η, t, L, l, ε 1 , C 1 , C 2 ). ( 55 
)
Finally, the minimal distance between points in Λ\Λ, and between points in Λ\Λ and

∂(K ′ L (a)\ K L (a)) is bounded below by r 1 .
The above result is obtained precisely along the lines of Proposition 6.1 in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], except for a series of modifications needed in order to accommodate the nonconstant ρ. Before describing the modifications of the proof, we prove a hyperrectangle subdivision lemma which generalizes [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Lem. 6.3] to the case of a controlled background measure. To re-obtain Lemma 6.3 of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] from the statement below, one must take ρ ≡ 1 and then scale the units of length by m -1/d .

Lemma 3.4 (Subdivision of a hyperrectangle). Let

H = [0, ℓ 1 ] × • • • × [0, ℓ d ] be a d-dimensional
hyperrectangle of sidelengths ℓ i and let ρ : H → R + be a function such that for two constants ρ, ρ there holds 0 < ρ ≤ ρ(x) ≤ ρ for all x ∈ H and assume ´H ρ = I ∈ N * . Assume that for all i, ℓ i ≥ 2/ρ. Fix a face F of H. Then there is a partition of H into I subrectangles R j , such that the following hold • all rectangles have volume 1,

• the sidelengths of each R j lie in the interval

[2 -d ρ -d ρ d-1 , 2 d ρ -d ρ d-1 ],
• all the R j 's which have a face in common with F have the same sidelength in the direction perpendicular to F .

Proof. We proceed by induction on the dimension. In case d = 1 the mean value theorem allows to successively find values 0 = p 0 < p 1 < • • • < p I = ℓ 1 such that ´pi+1

p i ρ = 1.
Then the lengths p i+1p i lie in [ρ -1 , ρ -1 ] due to the bounds on ρ. In case d ≥ 2 we may assume without loss of generality that the special face F is the one on {x d = 0}. Define We have lα

ρ := ´H ρ |H| ∈ [ρ, ρ], b := ℓ -1 d ˆH ρ = ⌊ρ|F |⌋ ,
|F |ρ ≤ b ≤ lα |F |ρ so lα ∈ b |F | [ρ -1 , ρ -1 ] = ⌊ρ|F |⌋ |F | [ρ -1 , ρ -1 ] ⊂ ρ -1 |F | ρ , ρ ρ . Since ℓ i ≥ 2/ρ, we have ρ -|F | -1 ≥ 1 2 ρ and thus (56) lα ∈ 1 2 ρ ρ , ρ ρ . Let H ′ α be the hyperrectangles [0, ℓ 1 ] × • • • × [0, ℓ d-1 ] × S α .
Then pushing forward by the projection onto F the restrictions µ H ′ α gives measures µ α = ρ α dx of integer total mass equal to b. Note that we have bounds, ρ α (x) ∈ l-1 α [ρ, ρ]. Now we apply the inductive hypothesis on F with the measure ρ α and we obtain a subdivision of F into (d -1)-dimensional unit ρ α -mass hyperrectangles R ′ j . Then by definition of ρ α the hyperrectangles R ′ j × S α are of unit ρ-mass. The sidelenghts of the R ′ j then lie in [START_REF] Sandier | Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement[END_REF] lα

[2 1-d ρ 1-d ρ d-2 , 2 d-1 ρ 1-d ρ d-2 ],
which via [START_REF] Saff | Logarithmic Potentials with External Fields[END_REF] gives the correct bound as in the thesis. We may perform the same procedure also for the last segment S 0 , the only difference being that we proceed with a different value b ∈ [b, 2b[ instead of b. The only effect of this change is that the bound (56) on l0 is perturbed by a factor belonging to [1, 2[, however combined with the bound (57) in the case α = 0, this still gives estimates within the range allowed in the thesis.

How to modify the argument in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] Section 6 to obtain the proof of Proposition 3.3: We consider only the first case where we desire to change our charges and vector fields only over K ′ L ⊂ KL , which corresponds to the same setting as in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Prop. 6.1]. The modifications needed for the case where we desire to modify the field and charges on K ′ L \ K L are straightforward and we leave them to the interested reader. Section 6 of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] is devoted to the proof of Proposition 6.1 there, which is the precise analogue of Proposition 3.3 here. The main difference to [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] is that here we work with nonconstant ρ. The changes to be made are as follows. Here KL , K ′ L correspond to K R , K ′ R of [49, Prop. 6.1], respectively.

In our case we work in the simplified situation where points in Λ have a minimal separation of r 0 > 0 and multiplicity 1 for all p ∈ Λ. Although most estimates work for more general Λ as considered in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] too, our present restrictions allow to formulate the conclusion in terms of W η rather than in terms of the quantity ´|y| γ |E η | 2 used in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF].

Part 1. Changes in the lemmas of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Sec. 6]:

• In all of [49, Sec. 6], we replace at all instances the volume measures |A| of subsets (usually hyperrectangles) A ⊂ R d , by the integrals ´A ρ. For example the hypothesis |K R | ∈ N of Proposition 6.1 is replaced by our hypothesis ´K L ρ ∈ N here, which plays the same role. • The vertical part of our domains is now endowed with a separate scale t. Thus t plays the role that in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] was that of ǫ 2 R, throughout the whole proof. • [49, Lem. 6.3] has to be replaced by our Lemma 3.4 here.

• In [49, Lem. 6.5] we replace the constant m by a function ρ such that 0 < ρ ≤ ρ(x) ≤ ρ throughout R. The constant C in [49, Lem. 6.5] now depends on ρ, ρ as well. • [49, Lem. 6.6] remains unchanged. Part 2. Changes in the proof of [49, Prop. 6.1]: We apply the following adaptations, besides the replacement of d-dimensional volumes by ρ-masses everywhere.

• The hypotheses analogous to ( 48), (49) of our Proposition 3.3 are the same as the estimates of step 1 of [49, Prop. 6.1] except for the different choices of constants. • The constant C 0 is defined only in case k = 1. It is now defined using the width t ′ ∼ t given by the thesis of Proposition 3.1 rather than ℓ like in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]. The role of the constant C 0 is to compensate the boundary datum

E η • ν along ∂K ′ L × [-t ′ , t ′
] by a constant boundary datum over K ′ L × {-t ′ , t ′ }, thus we define:

C 0 := (2(t ′ ) γ | KL \ K ′ L |) -1 ˆ( KL \K ′ L )×[-t ′ ,t ′ ] |y| γ E η • ν.
• We tile a neighborhood of ∂K ′ L in KL \ K ′ L by hyperrectangles H i of size ∼ t and we define again n i like in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] as the total mass of the smeared charges that intersect ∂K ′ L restricted to H i .

• For defining the hyperrectangles H i we first use a subdivision into size ∼ t strips of the tneighborhood above, done along the lines of Proposition 3.4. Observe that measure ρ+ p δ (η) p is larger than ρ and x → ´{x}×[-t,t] k |y| γ E η •ν is by Cauchy-Schwartz inequality an L 2 loc function on ∂K ′ L , therefore up to perturbing the H i slightly (following which also the n i will change with continuity) we obtain

ˆHi ρ -c -1 s,d ˆ∂D 0 ∩∂ Hi |y| γ E η • ν + 2C 0 t γ |H i | + n i ∈ N.
• Then we define the negative constantsmi which play the same role as (m i -1) in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], as follows

(58) c d,s mi |H i | = ˆ∂D 0 ∩∂ Hi |y| γ E η • ν -2C 0 t γ |H i | -n i .
This implies that ˆHi (ρmi ) ∈ N.

• The requirement replacing |m i -1| < 1/2 in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] is that | mi | ≤ ρ/2. Assuming this to hold, we then have ρmi ∈ [ρ/2, ρ + ρ/2]. • The R α are produced via our new Lemma 3.4, applied to the density ρmi , which by the two previous points satisfies the hypotheses in that lemma. • The bounds on sidelengths of the R α described in [49, par. following (6.43)] now contain another bounded factor ρ d-1 /ρ d . • The scale of the hyperrectangles in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] was ℓ = ǫ 2 R, whereas here we take the H i of size ∼ t, as given in the good boundary Proposition 3.1. • We find an analogue of [49, (6.45)] in our setting, by multiplying all the terms by a constant factor dependent on ρ, ρ, because ´Hi ρ ≥ ρ|H i | and the factors t -d in the right hand side are obtained from the analogue of [49, (6.34)](we recall again that the parameter t here corresponds to ℓ of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] in this case) via the comparison ct d ≤ |H i | ≤ Ct d , following from [49, Lem. 6.3] in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], whereas in our setting, Lemma 3.4 gives the extra factors as above. • Step 4 of the proof of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Prop. 6.1] provides the conditions ensuring |m i -1| ≤ 1/2. Our mi are defined precisely like m i -1 in that proof, thus our corresponding desired bound | mi | ≤ ρ/2 can be proved in the same way. The bounds we obtain change only by a constant depending on ρ, ρ, d. One simplification is that the sum of nα , α ∈ I i is in our case bounded by Cr d 0 t d-1 using the charge separation result of Proposition 2.3, therefore the corresponding term, which appears in our analogue of [49, (6.45)] multiplied by a t -d factor, is bounded for t large. The remaining estimates give precisely the condition [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF].

• The construction of the four vector fields E i,1 , . . . , E i,4 is conducted with the following modifications:

-The fields E i,1 , E i,2 are defined exactly as in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF].

-The field E i,3 has as the only change the replacement of the constant charge 1m i by the constant mi . -The field E i,4 is still defined as a superposition of fields obtained like in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Lem. 6.5] on the R α that cover H i , but now we use the background negative charge -(ρmi ), to which we add a charge at the center of R α . Note that the estimate of [49, Lem. 6.5] depends only on elliptic estimates and holds for the new charges that we use here. The constant obtained in such estimate now depends on ρ, ρ.

Choice of parameters.

In this subsection we are going to establish a set of parameters, which ensure that (52) holds and that (54), ( 55) are ≪ 1. In particular, this will imply a condition on ε 1 , which says that a good bound on err sc can be expected only for ε 1 not too small.

3.2.1.

Case k = 0. In the case k = 0, one can write ε 1 as a power of T and choose l and t to be powers of L. More precisely, let ε 1 , l and t be such that

ε 1 = T ( 1-δ δ )d , l = L b and t = L θ with δ > 1, b < 1 and θ < 1. Recall that L is such that ε d 1 T = T 1/δ ≤ L ≤ T which gives T ≤ L δ . A straightforward calculation shows that (52) holds if θ ≥ δd -b d + 1 and err sc (η, t, L, l, ε 1 , C 1 , 0) = C 1 g(η)L (δ-1)d-b + C 1 L θ+(δ-1)-b + g(η)L θ-1 .
As a consequence to ensure that err sc (η, t, L, l, ε 1 , C 1 , 0) ≪ 1 we have to choose

θ < b + (1 -δ)d. Note that, since δ > 1, b + (1 -δ)d < b < 1.
To sum up, θ as to be chosen such that

(59) δd -b d + 1 ≤ θ < b + (1 -δ)d.

This is possible if and only if

δd-b d+1 < b + (1 -δ)d.
As a consequence δ has to be such that

(60) 1 < δ < 1 + b(d + 2) -d d(d + 2)
which in particular gives a condition on the scale ε 1 T . Such a δ exists if and only if b(d+2)-d d(d+2) > 0. Hence b has to be chosen such that [START_REF] Sari | On the ν-dimensional one-component classical plasma: the thermodynamic limit problem revisited[END_REF] b > d d + 2

.

Finally remark that, with this choice of parameters (δ -1)db < 0 and ( 62) Hence, for all ε 2 > 0, for L ≫ ε

err sc (η, t, L, l, ε 1 , C 1 , 0) = (g(η) + 1)(1 + C 1 )o L→∞ (1). 3.2.2. Case k = 1. In the case k = 1,
1/2 2
and L, n large enough there holds

1 L d ˆKL × R\[-1 2 ε 1/2 2 L, 1 2 ε 1/2 2 L] |y| γ |E ′ n,η | 2 ≤ ε 2 .
Hence, by choosing t = ε

1/2 2 L, l = ε 1/4
2 L and C 2 = ε 2 in Proposition 3.3, we have that the first condition in [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF] holds. The second one is satisfied if

C 1 ε - 2(d-γ)+1 4 2 L (γ-1) ε -1 1 ≤ c 2 0 that is if L ≥ c -2 1-γ 0 ε -1 1-γ 1 ε -2(d-γ)+1 4(1-γ) 2 .
Moreover,

err sc (η, ε 1/2 2 L, L, ε 1/4 2 L, ε 1 , C 1 , ε 2 ) = C 1 1 ε 1 ε 1/4 2 L g(η) + ε 1/2 2 + C 1 ε 1/4 2 ε 1 + g(η)ε 1/2 2 .
To ensure that err sc (η, ε

1/2 2 L, L, ε 1/4 2 L, ε 1 , C 1 , ε 2 ) ≪ 1, ε 1 has to be such that (63) 1 ≥ ε 1 ≫ ε 1 4
2 . In this case the above bounds on L are implied by the condition [START_REF] Silvestre | Regularity of the obstacle problem for a fractional power of the Laplace operator[END_REF] L ≥ c

-2 1-γ 0 ε - (d-γ)+1 2(1-γ) 2 .
To summarize, if ( 63), (64) hold then [START_REF] Smale | Mathematical Problems for the Next Century[END_REF] err sc (η, ε

1/2 2 L, L, ε 1/4 2 L, ε 1 , C 1 , ε 2 ) = (1 + g(η))(1 + C 1 )o L,n→∞ (1) 
.

Proof of (9) of Theorem 1

By using the fact that for a minimizer of H n all the point are in Σ, and in view of Proposition 2.2 and the result of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Thm. 4], we have the a priori bound (66)

W η (E ′ n , R d ) ≤ n ˆΣ min A m ′ V (x) W dx + o n→+∞ (n) + o η→0 (1).
Moreover, in case k = 1 we work under the assumption [START_REF] Ben Arous | Large deviations from the circular law[END_REF]. Finally, we will use that since m V is C 0,α in Σ, we have

(67) m ′ V C 0,α (Σ ′ ) ≤ m V C 0,α (Σ) n α/d ,
and, whenever

K T (a) ⊂ Σ ′ , T n 1/d , 0 ≤ β < α ≤ 1 there holds (68) m ′ V C 0,α (K T (a)) T β ≤ C 1 (n 1/d ) α-β ≤ o n→+∞ (1)
The proof is based on a bootstrap argument as in [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF] : by a mean value argument, using the a priori bound on the energy (66) and T = n 1/d as initial scale, we can find a square close to K ℓ (a) which has a good boundary, i.e. such that ( 48), [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] are satisfied (relative to ℓ). This is only possible if ℓ is not too small compared to n 1/d , more precisely if

ℓ i ∈ [ε 1/d 1 n 1/d , n 1/d ] for i = 1, . . . , d. If indeed ℓ is such that ℓ i ∈ [ε 1/d 1 n 1/d , n 1/d ]
then we are essentially done: a comparison argument in the hypercube with the good boundary allows to conclude. More precisely, we use the following result. We note here that in this section we omit the index n on a in order to lighten up the notation. Proposition 4.1. Let C 1 a positive constant. Let t, L, l, ε 1 , ε 2 and E ′ n be as in Section 3.2. Assume that bounds [START_REF] Penrose | Thermodynamic limit for classical systems with Coulomb interactions in a constant external field[END_REF] and [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] (a) min

hold for E ′ n in K ′ L (a) ⊂ K L (a) with dist(∂K ′ L (a), ∂K L (a)) ∈ [l, 2l[. Then (69) W η (E ′ n , K ′ L (a)) |K ′ L (a)| - 1 |K L (a)| ˆKL
A m ′ V (x) Wdx ≤ (1 + g(η))(1 + C 1 )o L,n→∞ (1) + o η→0 (1). Next, if ℓ i is smaller than ε 1/d
1 n 1/d for some i, we bootstrap the argument: we first obtain by the above argument a control of the energy and the number of points on a hypercube of size ε

1/d 1 n 1/d containing K ℓ (a)
, and then we re-apply the reasoning starting from that hypercube. This allows to go down to a smaller scale, and we iterate the procedure until we reach the desired value of ℓ. This iteration will not cumulate error, its only main restriction is that the final square will have to be at a certain distance away from ∂Σ ′ , because of the repeated mean value arguments.

More precisely, we proceed as follows for the proof of ( 9) of Theorem 1. Let K ℓ (a) as in the statement of Theorem 1. We set ( 70)

C 1 = max m∈[m,m] min Am W + C s,d,m g(η) + 1 and (71) l ℓ := ℓ b if k = 0 ε 1/4
2 ℓ if k = 1 with b < 1 and ε 2 chosen as in Section 3.2. Without loss of generality we may assume dist(K ℓ (a), ∂Σ ′ ) ≥ 3l ℓ . In this case dist(K ℓ (a), ∂Σ ′ ) ≥ max(d n , 3l ℓ ) where

d n := n q/d if k = 0 ε 0 n 1/d if k = 1 .
The proof for the case where d n ≤ dist(K ℓ (a), ∂Σ ′ ) < 3l ℓ would start by subdividing the cube K ℓ (a) into cubes of the smallest size L min permitted by the choices of Section 3.2, namely L min ∼ 1 for k = 0

and

L min ∼ ε - 2(d-γ)+1 2(1-γ) 2
for k = 1. The smaller cubes have 3l L min ≤ d n respectively if n is large enough in case k = 0 and if ε 2 is small enough (which by Section 3.2 means that ℓ, n must be large enough depending on ( 8)) in case k = 1. Therefore the result for dist(K L min (a), ∂Σ ′ ) ≥ 3l L min holds for all cubes in the subdivision, and summing the bounds [START_REF] Bétermin | Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere[END_REF] for all these cubes we obtain [START_REF] Bétermin | Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere[END_REF] for K ℓ (a) too.

We split the proof of Theorem 1 into two cases.

Case 1: ℓ + 3l ℓ ≥ ε 1/d 1 n 1/d .
Let us then define the scale L (1) = ℓ + 3l ℓ . Since we assumed that dist(K ℓ (a), ∂Σ ′ ) ≥ 3l ℓ , we have K ℓ+3l ℓ (a) ⊂ Σ ′ , and so there exists a center a (1) such that

K ℓ+3l ℓ (a) ⊂ K L (1) (a (1) ) ⊂ Σ ′ .
Then we apply Proposition 3.1 with K T replaced by Σ ′ itself, C 1 given by ( 70) and L = L (1) . Moreover t, C 2 , ε 1 and l are chosen as in Section 3.2. This gives the existence of a square K ′ L (1) (a (1) ) ⊂ K L (1) (a (1) ) such that dist(∂K ′ L (1) (a (1) ), ∂K L (1) (a (1) )) ∈ [l, 2l[ and ( 48) and ( 49) are satisfied. Note that for ℓ large enough K ℓ (a) ⊂ K ′ L (1) (a (1) ) ⊂ K L (1) (a (1) ) ⊂ Σ ′ . Then by applying Proposition 4.1, we deduce

(72) W η (E ′ n , K ′ L (1) (a (1) )) |K ′ L (1) | - 1 |K L (1) | ˆKL (1) (a (1) ) min A m ′ V (x)
Wdx ≤ (1+g(η))(1+C 1 )o ℓ,n→∞ (1)+o η→0 [START_REF] Aizenman | Structure of Gibbs states of one dimensional Coulomb systems[END_REF].

By using charges separation and the fact that K ℓ (a) ⊂ K ′ L (1) (a (1) ), we obtain the upper bound (a) min

W η (E ′ n , K ℓ (a)) |K ℓ | ≤ 1 |K L (1) | ˆKL (1) (a (1) ) min A m ′ V (x) Wdx + g(η) 2 o ℓ,n→∞ (1) + o η→0 (1) = 1 |K ℓ | ˆKℓ
A m ′ V (x) Wdx + g(η) 2 o ℓ,n→∞ (1) + o η→0 (1).
To obtain the lower bound, we may apply once again Proposition 3.1 at the scale ℓ to obtain a square K ′ ℓ (a) ⊂ K ℓ (a) with a good boundary and such that

W η (E ′ n , K ℓ (a)) |K ℓ | ≥ W η (E ′ n , K ′ ℓ (a)) |K ′ ℓ | -g(η)o ℓ→∞ (1).
Hence the application of Proposition 4.1 to the square K ′ ℓ (a) leads to the desired result.

Case 2: ℓ + 3l ℓ < ε 1/d 1 n 1/d . Let L (1) = ε 1 d 1 n 1 d . Since we have dist(K ℓ (a), ∂Σ ′ ) ≥ d n , we have K ℓ+dn (a) ⊂ Σ ′ ,
and so there exists a center a (1) such that

K ℓ+dn (a) ⊂ K L (1) (a (1) ) ⊂ Σ ′ .
Then we apply Proposition 3.1 with K T replaced by Σ ′ itself, C 1 given by ( 70) and L = L (1) . Moreover t, C 2 , ε

and l (1) are chosen as in Section 3.2. This gives the existence of a square K ′ L (1) (a (1) ) ⊂ K L (1) (a (1) ) such that dist(∂K ′ L (1) (a (1) ), ∂K L (1) (a (1) )) ∈ [l (1) , 2l (1) [ and ( 48) and ( 49) are satisfied. Note that for ℓ large enough there holds ) ) ⊂ Σ ′ . Then by applying Proposition 4.1, we have (72) as before. Next, if ℓ is large enough, the hypotheses of Proposition 3.1 are satisfied in K ′ L (1) (which plays the role of K T in Proposition 3.1), and with the same constant C 1 . This a consequence of (72) for ℓ, n and 1/η large enough. We can thus reapply Proposition 3.1 in K ′ L (1) and with new subscale L (2) = max(ℓ + 3l ℓ , (ε (1) , we conclude as in the Case 1. If ℓ + 3l ℓ < (ε (1) , we iterate the above procedure. In the end, we obtain a sequence of L (j) with L (j) = max(ℓ + 3l ℓ , (ε (j-1) 1

K ℓ+dn-2l (1) (a) ⊂ K ′ L (1) (a (1) ) ⊂ K L (1) (a ( 1 
(1) 1 ) 1/d L (1) ). If ℓ + 3l ℓ ≥ (ε (1) 1 ) 1/d L
(1) 1 ) 1/d L
) 1/d L (j-1) ) and such that

K ℓ+dn-2 j j=1 l (j) (a) ⊂ K ′ L ( j) (a ( j) ) ⊂ K L ( j) (a ( j) ) ⊂ . . . ⊂ K ′ L (1) (a (1) ) ⊂ K L (1) (a (1) ) ⊂ Σ ′ .
As a consequence of Lemma 4.2, we have that, for all Ω ∈ Σ ′ , (75)

W η (E ′ n , Ω) |Ω| = min E∈A m ′ V , E• ν=E ′ n • ν W η (E, Ω) |Ω| + o η→0 (1) 
.

We now use parameters as in Section 3.2 Next, we remark that the vector field E ′ n satisfies the hypotheses of Proposition 3.3. Hence, there exists K L (a) ⊂ K ′ L (a) ⊂ K L (a) such that by [START_REF] Serfaty | Coulomb gases and Ginzburg-Landau vortices[END_REF] or ( 65)

W η (E ′ n , K ′ L (a)) |K ′ L (a)| ≤ σ 0 (K L (a); m ′ V ) + (1 + g(η)) o L→∞ (1) + o η→0 (1), (76) with σ 0 (K; m ′ V ) = min E∈A m ′ V , E• ν=0 Wη(E,K) |K|
. To prove the claim (76) we apply Proposition 3.3, which allows to construct a vector field Ẽ and a subset Λ ⊂ K L (a) such that

                   -div(|y| γ Ẽ) = c d,s   p∈ Λ δ p -m ′ V (x)δ R d   in K L (a) × R k Ẽ • ν = 0 on ∂K L (a) × R k Ẽ • ν = E ′ n • ν on ∂K ′ L (a) × [-t, t] k Ẽ = E ′ n , Λ = Λ in (K L (a) \ K ′ L (a)) × [-t, t] k . and 1 L d ˆ(K ′ L \K L )×R k |y| γ | Ẽη | 2 ≤ Cerr sc (η, t, L, l, ε 1 , C 1 , C 2 ).
Due to the choices of parameters like in Section 3.2, the quantity err sc is bounded by

(1 + g(η))(1 + C 1 )o L,n→∞ (1) 
. The bound (76) then follows using the bound on the separation of charges and a packing argument to bound the number of charges in

K ′ L \ K L by C|K ′ L \ K L | ≤ CtL d-1 . Hence, by defining Ẽ = arg min E∈A m ′ V , E• ν=0 Wη(E,K L ) |K L |
on K L (a) and by using Lemma 4.2, we obtain

W η (E ′ n , K ′ L (a)) |K ′ L (a)| ≤ W η ( Ẽ, K ′ L (a)) |K ′ L (a)|
.

By the same reasoning, there exists K ′ L (a) ⊂ KL (a), a subset Λ ⊂ KL (a) and a vector field Ẽ′

n such that                    -div(|y| γ Ẽ′ n ) = c d,s   p∈ Λ δ p -m ′ V (x)δ R d   in KL (a) × R k Ẽ′ n • ν = 0 on ∂ KL (a) × R k Ẽ′ n • ν = E ′ n • ν on ∂K ′ L (a) × [-t, t] k Ẽ′ n = E ′ n , Λ = Λ in K ′ L (a) × [-t, t] k and W η (E ′ n , K ′ L (a)) |K ′ L (a)| ≥ W η ( Ẽ′ n , KL (a)) | KL (a)| -err sc (η, t, L, l, ε 1 , C 1 , C 2 (E ′ n , t, L)) (77) = W η ( Ẽ′ n , KL (a)) | KL (a)| -(1 + g(η)) (1 + C 1 )o L,n→∞ (1). (78) 
The last step required in order to conclude the proof, is to find an upper bound for σ 0 (K L (a); m ′ V ) and a lower bound for

Wη( Ẽ′ n , KL (a)) | KL (a)|
. This is done in the two next subsections.

Upper bound. To obtain an upper bound for σ

0 (K; m ′ V ) = min E∈A m ′ V , E• ν=0 Wη(E,K) |K|
, we proceed as in [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF]. In particular we have the following proposition.

Proposition 4.3. Let a ∈ R d and R > 0 such that K R (a) ⊂ Σ ′ . Let α ∈]0, 1]
and ρ be a non-negative C 0,α (K R (a)) function for which there exists ρ, ρ > 0 such that ρ ≤ ρ(x) ≤ ρ. Let K R (a) be such that ´KR (a) ρ(x) dx ∈ N. Then there exists a constant C > 0 depending only on d, s such that for each fixed β ∈]0, 1 + α[ we have

σ 0 (K R (a); ρ) ≤ 1 |K R | ˆKR (a) min A ρ(x) W dx + C(g(η) + 1)o R→∞ (1) + o η→0 (1) + CR 2β ρ 2 C 0,α (K R (a)) + CR β ρ C 0,α (K R (a)) [c d,s ρg(η) + 1 + (g(η) + 1)o R→∞ (1) + o η→0 (1)] 1/2 . ( 79 
)
Remark 4.4. Note that the rate of convergence of the above bounds o R→∞ (1) as R → ∞ depends on m V , β. As β → 0 this rate degenerates, as can be seen in the proof. In the present formulation, choosing β > α provides no advantage, however it may be possible by refining the proof to obtain more precise estimates of o R→∞ (1) valid only for such large values of β.

Proof. The proof of this proposition is similar to [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF]Prop. 4.1] except that we have to be more careful with error terms which blow up as η → 0.

Step 1. We define a smaller scale r = R λ with λ ∈]0, 1[ for now, and with λ to be fixed at the end of the proof, and we construct a collection K of rectangles which partition K R (a), whose sidelengths are between r -O 1 r and r + O 1 r , and such that for all K ∈ K we have ´K ρ(x) dx ∈ N. This is possible for example via the partitioning lemma [49, Lem. 6.3].

Step 2. We denote by x K the center of each K and ρ K = ffl K ρ(x) dx and we consider E a minimizer of W. Since as in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Sec. 7] and [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF][START_REF]2D Coulomb Gases and the Renormalized Energy[END_REF] we may obtain E by screening minimizing configurations on larger and larger cubes, we may assume due to Proposition 2.3 that charges contributing to E are well-separated and have multiplicity one. Moreover, if k = 1, we note that, by the periodicity of E, we must have lim

t→+∞ lim R→+∞ 1 R d ˆKR ×(R (-t,t)) |y| γ |E| 2 = 0.
Hence, using [49, Prop. 6.1], we obtain in each K a vector field

E K satisfying            -div(|y| γ E K ) = c s,d p∈Λ K δ p -ρ K δ R d in K × R k E K • ν = 0 on ∂K × R k E K = 0 outside K × R k for some discrete subset Λ K ⊂ K, and (80) 
W η (E K , K) |K| ≤ min Aρ K W + C(g(η) + 1)o(1) r→+∞ + o η→0 (1),
where the o(1) terms depend on the approximation of min W in [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF] as described above.

Then, we have to rectify the weight ρ K . For K ∈ K, we let h K solve

-div(|y| γ ∇h K ) = c s,d (ρ K -ρ(x))δ R d in K × [-r, r] k ∂ ν h K = 0 on the rest of ∂(K × [-r, r] k ) and we put h K = 0 in K × (R k [-1, 1] k ).
As a consequence of elliptic estimates as in the proof of [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF]Lem. 6.4], we have

ˆK |∇h K | 2 ≤ Cr 2 ρ -ρ K 2 L ∞ (K) |K| ≤ Cr 2α+2 ρ 2 C 0,α (K) |K| for k = 0; (81) ˆK×R k |y| γ |∇h K | 2 ≤ Cr 1-γ ρ -ρ K 2 L ∞ (K) |K| ≤ Cr 2α+1-γ ρ 2 C 0,α (K) |K| for k = 1. (82)
We then define Ẽ to be E K + ∇h K in each K ∈ K. Pasting these together defines a Ẽ over the whole K R (a), satisfying

     -div(|y| γ Ẽ) = c s,d p∈Λ δ p -ρ(x)δ R d in K R (a) × R k Ẽ • ν = 0 on ∂K R (a) × R k
for some discrete set Λ. Next we have to evaluate W η ( Ẽ, K R (a)). In each K ∈ K, we apply the Cauchy-Schwartz inequality to the squared L 2 γ -norm of Ẽ, followed by (80) and estimating the ∇h Kterm via the weaker bound (81) in both cases k = 0, 1, rather than using the more precise (82) for k = 1. This gives:

W η ( Ẽ, K) ≤ W η (E K , K) + ˆK×R k |y| γ |∇h K | 2 + 2 ˆK×R k |y| γ |E K | 2 1/2 ˆK×R k |y| γ |∇h K | 2 1/2 ≤ |K| min Aρ K W + C|K|(g(η) + 1)o r→∞ (1) + |K|o η→0 (1) + C|K|r 2α+2 ρ 2 C 0,α (K) + C|K|r α+1 ρ C 0,α (K) W η (E K , K) |K| + c d,s ρ K g(η) 1/2 ≤ |K| min Aρ K W + C|K|(g(η) + 1)o r→∞ (1) + |K|o η→0 (1) + C|K|r 2α+2 ρ 2 C 0,α (K) + C|K|r α+1 ρ C 0,α (K) [1 + (g(η) + 1)o r→∞ (1) + o η→0 (1) + c d,s ρ K g(η)] 1/2
We now sum over all hypercubes K as above and we use the subadditivity of A → W η (E, A) in order to add the contributions of the above left-hand sides to bound W η ( Ẽ, K R (a)). On the right hand side all terms except the first give contribution of |K R | multiplied by the error terms. For the first term, we proceed using the scaling min Aρ W = ρ 1+s/d min A 1 W for power kernels and min Aρ W = ρ min A 1 W -c 0,d d ρ log ρ for logarithmic ones. Using this together with the fact that ρ ∈ C 0,α (K R (a)), we conclude that (83) ˆK min

A ρ(x)
Wdx -|K| min

Aρ K W ≤ C|K|r α ρ C 0,α (K) M s,d (ρ), where (84) 
M s,d (ρ) = ρs/d min A 1 W, for power-law kernels, min A 1 Wlog ρ -1, for logarithmic kernels.

We may then absorb this term into the r 1+α -terms above and after summing all contributions, using the above bounds, and dividing both sides by |K R |, we obtain:

W η ( Ẽ, K R (a)) |K R | ≤ 1 |K R | ˆKR (a) min A ρ(x) W dx + C(g(η) + 1)o R→∞ (1) + o η→0 (1) + Cr 2α+2 ρ 2 C 0,α (K R (a)) + Cr α+1 ρ C 0,α (K R (a)) (1 + (g(η) + 1)o R→∞ (1) + o η→0 (1) + c d,s ρg(η)) 1/2
This gives precisely (79) if we choose 0 < λ ≤ β 1 + α .

To conclude, we remark that projecting E onto gradients decreases the energy. The result follows. 

W η ( Ẽ′ n , KL (a)) | KL (a)| ≥ 1 | KL | ˆK L (a) min A m ′ V (x) W dx -o L,n→∞ (1) (1 + g(η)) -(1 + o L,n→∞ (1)) o η→0 (1) -CL 2β m ′ V 2 C 0,α ( KL (a)) -CL β m ′ V C 0,α ( KL (a)) (C + c d,s mg(η)) 1/2 . ( 85 
)
Proof. Recall that thanks to the minimality of (x 1 , . . . , x n ), the charges are well-separated at a distance r 0 which depends only on d, s and m.

The proof of the lower bound uses a partitioning argument like the one employed to prove [51, Thm. 1.11], however we remove the bootstrap part of the argument. Let L the sidelength of KL (a).

First let us apply Lemma 3.4 to partition KL (a) into smaller hypercubes K i (a i ) of sidelengths

∼ r = L β 1+α and such that ´Ki (a i ) m ′ V ∈ N. It follows that W η ( Ẽ′ n , KL (a)) = i W η ( Ẽ′ n , K i (a i )).
The goal is to bound from below this sum. We may assume that

(86) W η ( Ẽ′ n , K i (a i )) ≤ min A m W|K i | := C m |K i |,
for otherwise, we have a lower bound W η ( Ẽ′ n , K i (a i )) ≥ C m |K i | which will suffice. Let K r (b) be one of the above squares K i (a i ). As a consequence of the separation of charges of Ẽ′ 

                   -div(|y| γ Ē′ n ) = c d,s   p∈ Λ δ p -m ′ V (x)δ R d   in Kr (b) × R k Ē′ n • ν = 0 on ∂ Kr (b) × R k Ē′ n • ν = Ẽ′ n • ν on ∂K ′ r (b) × [-t, t] k Ē′ n = Ẽ′ n , Λ = Λ in K ′ r (b) × [-t, t] k and W η ( Ẽ′ n , K ′ r (b)) ≥ W η ( Ē′ n , Kr (b)) -Cr d err sc (η, r, t, l, 1, C 1 , C 2 ). ( 88 
)
With parameter choices like in Section 3.2 with r, t, l, 1 in the place of L, t, l, ε 1 and with C 1 equal to the constant C m + g(η)C s,d,m from (87), we obtain that the err sc error above is controlled as (1 + g(η))o r,n→∞ [START_REF] Aizenman | Structure of Gibbs states of one dimensional Coulomb systems[END_REF]. By using the separation of charges as in Remark 3.2 we find that

W η ( Ẽ′ n , K ′ r (b)) ≤ W η ( Ẽ′ n , K r (b)) + Cg(η)r d-1 l = W η ( Ẽ′ n , K r (b)) + |K r |g(η)o r,n→∞ (1) 
.

After absorbing the above error and summing over all K i (a i ), we obtain Now we correct the background measure of Ē′ n on each cube K i (a i ). To do this we proceed as in the proof of Proposition 4.3. We put m = ffl Kr(b) m ′ V (x) dx and we define h to be the solution of 

W η ( Ẽ′ n , KL (a)) ≥ i min(C m , W η ( Ē′ n , Ki (a i ))) -(1 + g(η))(1 + C 1 )o r,n→∞ (1) 
       -div(|y| γ ∇h) = c s,d (m ′ V (x) -m)δ R d in Kr (b) × [-r, r] k ∂ ν h = 0 on ∂ Kr (b) × [-r, r] k ∂ ν h =
min A m W η ≤ W η (E) = 2 d W η ( Ē, Kr (b)) 2 d | Kr | = W η ( Ē, Kr (b)) | Kr | .
Similarly to the process of obtaining (83), with the notations M s,d (m ′ V ) like in (84), we have

ˆKr(b) m ′ V (x) 1+s/d dx -| Kr | m1+s/d ≤ C| Kr |r α m ′ V C 0,α (Kr(b)) M s,d (m ′ V )
and thus we absorb this into the above r 1+α -term and we obtain

W η ( Ē, Kr (b)) ≥ ˆKr(b) min A m ′ V (x) W dx -| Kr | (1 + g(η)) (1 + C 1 )o r,n→∞ (1) -| Kr |o η→0 (1) -C| Kr |r 2+2α m ′ V 2 C 0,α (Kr) -C| Kr |r 1+α m ′ V C 0,α ( Kr) (C + c d,s mg(η)) 1/2 .
Hence, summing over all cubes and using our choice of C m in (86), using the fact that KL (a) has larger measure than the union of the K i (a i ) as well as the direct bounds on | Kr |/|K r | and on the integral of m ′ V over the difference of these cubes, we are led to

W η ( Ẽ′ n , KL (a)) ≥ ˆK L (a) min A m ′ V (x) W dx -O(l/r)| KL | -| KL | (1 + g(η)) o r,n→∞ (1) 
-(1 + O(l/r))| KL |o η→0 (1) -C| KL |r 2+2α m ′ V 2 C 0,α ( KL (a)) -C| KL |r 1+α m ′ V C 0,α ( KL (a)) (C + c d,s mg(η)) 1/2 . ( 91 
)
Note that under the choice of parameters according to Section 3.2 we have O(l/r) = o r,n→∞ [START_REF] Aizenman | Structure of Gibbs states of one dimensional Coulomb systems[END_REF]. This proves (85) and thus concludes the proof. 4.1.3. End of proof of Proposition 4.1. We recall that due to (76) and (77), under the choice of parameters as in Section 3.2, we have The final result after including the extra errors from (79), (85) and using ( 68) is that on the cube

W η ( Ẽ′ n , KL (a)) | KL (a)| -err ≤ W η (E ′ n , K ′ L (a)) |K ′ L (a)| ≤ σ 0 (K L (a); m ′ V ) + err + o η→0 (1), for err := (1 + g(η)) (1 + C 1 )o L,n→∞ (1) 
K ′ L (a) which has sidelenghts ∼ L i ∈ [ε 1/d 1 T i , T i ] we have 1 | KL (a)| ˆK L (a) min A m ′ V (x) Wdx -err 1 ≤ W η (E ′ n , K ′ L (a)) |K ′ L (a)| ≤ 1 |K L (a)| ˆKL (a) min A m ′ V (x) Wdx + err 2 ,
where

err 1 := (1 + g(η)) (1 + C 1 )o L,n→∞ (1) + o η→0 (1) + o n→∞ (1) (1 + g(η) + o L→∞ (1)) 1/2 err 2 := (1 + g(η)) (1 + C 1 )o L,n→∞ (1) + (1 + o L,n→∞ (1)) o η→0 (1) + o n→∞ (1) (1 + g(η)) 1/2 .
Using the facts that m ′ V is Hölder continuous and that in Proposition 3.3 we obtained KL , K L are t-close to K L , we further find up to requiring L to be larger, (92) 1 |K L (a)| ˆKL (a) min

A m ′ V (x) Wdx -err 1 ≤ W η (E ′ n , K ′ L (a)) |K ′ L (a)| ≤ 1 |K L (a)| ˆKL (a) min A m ′ V (x)
Wdx + err 2 .

5. Proof of Theorem 2 [START_REF] Sandier | Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement[END_REF], [START_REF] Jerrard | Lower Bounds for Generalized Ginzburg-Landau Functionals[END_REF]. It seems to be a difficult open question whether a precise analogue of the ball construction can be done in dimensions d > 2 for the not conformal energy considered here, and in particular in cases where a suited notion of degree like in [START_REF] Jerrard | Lower Bounds for Generalized Ginzburg-Landau Functionals[END_REF] is missing. We recall that here, compared to [START_REF] Petrache | Next Order Asymptotics and Renormalized Energy for Riesz Interactions[END_REF], we are in the situation of multiplicities equal to one for p ∈ Λ, as considered also in [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF] and [START_REF] Sandier | Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement[END_REF]. This condition is a consequence of minimality as proved in [49, Thm. 5] (Proposition 2.3 here).

Proposition 5.1. Let Λ, E be as in [START_REF] Girvin | Introduction to the fractional quantum Hall effect[END_REF]. Consider a compactly supported cutoff function

χ A ∈ C 1 (R d+k , [0, 1]) with A := sptχ A . Let 0 < α < η < 1 and assume that W η (χ A , E) < ∞.
For a set S ⊂ R d write S r := {x : dist(x, S) ≤ r}. Then we may write

(93) W α (χ A , E) -W η (χ A , E) = I + II + III,
where for constants c, C depending only on s, d there holds

(94) c min x m(x) # (Λ ∩ A η ) ≤ I min(η d-s , η d | log η|) ≤ C max x m(x) # (Λ ∩ A η ) .
If for a set S ⊂ R d we denote X r (S) := {(p, q) : p = q, p, q ∈ Λ ∩ S, |p -q| < r} then

(95) 0 ≤ II ≤ c s,d (g(α) -g(η))#X 2η (A η ).
Finally, for a constant C depending only on d, s,

(96) |III| ≤ C# Λ ∩ (spt(∇χ A )) η η d g 2 (α) ∇ x χ A (0, x) L 1 (R d ) + ˆRd+k |y| γ |∇χ A ||E α | . Proof. Define f α,η (X) := f α (X) -f η (X), X ∈ R d+k . From the definition (27) of f η we find that (97) f α,η (X) =    g(η) -g(α) for |X| ≤ α, g(η) -g(X) for α ≤ |X| ≤ η, 0 for |X| ≥ η,
and as a consequence of the equation ( 29) that f η satisfies

(98) -div(|y| γ ∇f α,η ) = c d,s δ (η) 0 -δ (α) 0
.

By the definition ( 36) of E η we find

E η = E α + p∈Λ ∇f α,η (X -p).
Thus we may write, using the definition (39) of W η ,

W α (χ A , E) -W η (χ A , E) = ˆRd+k |y| γ χ A   |E α | 2 -E α + p∈Λ ∇f α,η (X -p) 2   -c d,s ˆRd+k χ A p∈Λ g(α)δ (α) p -g(η)δ (η) p . (99) 
The first term on the right in (99) can be expanded to give, after using an integration by parts and (98), [START_REF] Jerrard | Lower Bounds for Generalized Ginzburg-Landau Functionals[END_REF], the following sum:

(100) -c d,s p,q∈Λ ˆRd+k χ A f α,η (X -p) δ (η) q -δ (α) q + p,q∈Λ ˆRd+k |y| γ f α,η (X -p)∇χ A • ∇f α,η (X -q) -2c d,s p∈Λ ˆRd+k f α,η (X -p)   q∈Λ δ (α) q -mδ R d   χ A + 2 p∈Λ ˆRd+k f α,η (X -p)|y| γ ∇χ A • E α .
We define the following terms which summed together give (100):

I :=2c d,s p∈Λ ˆRd f α,η (x -p)m(x)χ A , (101) 
II := -c d,s p =q∈Λ ˆRd+k χ A f α,η (X -p) δ (η) q + δ (α) q , (102) 
III ′ := -c d,s p∈Λ ˆRd+k χ A (g(η) -g(α))δ (α) p , (103) 
III ′′ := p,q∈Λ ˆRd+k |y| γ f α,η (X -p)∇χ A • ∇f α,η (X -q) + 2 p∈Λ ˆRd+k f α,η (X -p)|y| γ ∇χ A • E α , (104) 
where in the expression III ′ we used the properties of f α,η (Xp) which equals g(η)g(α) on the support of δ Regarding the term II we note that again, each of the terms (105)

ˆRd+k f α,η (X -p) δ (η) q + δ (α) q χ A
corresponding to a choice p, q ∈ Λ vanishes in case (p, q) / ∈ X 2η (A η ) due to the support properties of f α,η (Xp) and δ (η) q , and it has values in the interval [g(η)g(α), 0] due to (97) and to the fact that δ (η) q , δ (α) q are probability measures. This gives the bounds in (95). The term III ′ summed to the second line in (99) give the contribution

-c d,s p∈Λ ˆRd+k χ A g(η) δ (α) p -δ (η) p = c d,s g(η) p∈Λ 1 |∂B η (p)| ˆ∂Bη(p) χ A - 1 |∂B α (p)| ˆ∂Bα(p) χ A
which can be bounded via the first term in (96). The term III ′′ is also similarly bounded by (96). We now define III as the sum of III ′ , III ′′ and of the second line of (99), and we then find the bound (96), concluding the proof.

From the Proposition 5.1, by approximating the characteristic function 1 A×R k of a measurable set by C 1 -functions χ A which appropriately avoid the set Λ, we find the following result: Corollary 4.

• If A ⊂ R d is a bounded Borel set such that dist(∂A, Λ) ≥ ǫ > 0 and we chose η, α < ǫ then we may find a decomposition W α (A, E) -W η (A, E) = I + II satisfying (94), (95).

• If in the setting of Proposition 5.1 we further assume that |p -q| ≥ 2η for all pairs of points p = q ∈ Λ ∩ A then we find W α (A, E) -W η (A, E) = I satisfying (94).

5.2.

Construction of crenel boundaries. The main idea of the proof of Theorem 2 is that if we perturb the boundary of K ℓ (a) such that it avoids the charges then the sharp bounds of Proposition 5.1 allow to take the η → 0 limit in Theorem 1 without uncontrolled error terms. For the perturbation of ∂K ℓ (a) we will need the following tool: (2) There exists a constant C depending only on the dimension such that if

Proposition 5.2 (crenel boundaries). Let m V , m ′ V , Σ, Σ ′ , E ′ n be
(107) r 1 < Cr d 0 L -d+1
then there exists a universal constant C and a cube K ′ ℓ (a) with dist(∂K ′ ℓ (a), ∂K ℓ (a)) < 1 and such that moreover Proof. Part 1. This follows Step 1 of the proof of [START_REF] Rougerie | Higher-Dimensional Coulomb Gases and Renormalized Energy Functionals[END_REF]Prop. 5.6]. Consider the set P points p such that K r 0 /2 (p) ∩ ∂K ℓ = ∅. Then all cubes K r 0 /2 (p), p ∈ P are disjoint and included in the set K ℓ+1 (a) \ K ℓ-1 (a). Then define Γ := K ℓ ∪ p∈P K r 0 /2 (p). The fact that Γ is a bi-lipschitz and close to the identity deformation of K ℓ is a straightforward but tedious argument that we leave to the reader.

Part 2. We prove that if (107) holds for a small enough C depending on d only, then Γ can be chosen to be a hyperrectangle. Note first that due to the separation condition, if r 0 < 1 then the r 0 /2-balls with centers in P are disjoint and contained in K ℓ+1 \ K ℓ-1 , therefore by a straightforward volume comparison the number of charges in P satisfies Moreover, if M s,d is the shorthand used in the bound (84), we obtain (112) ˆKℓ+1 (an)\Γn min

A m ′ V (x) Wdx ≤ M s,d (m V )|K ℓ+1 (a n ) \ Γ n | ≤ CM s,d ℓ d-1 .
Using the bounds (111), the fact that K ℓ-1 (A n ) ⊂ Γ n ⊂ K ℓ+1 (a n ), the definition of W η (and in particular the fact that the two terms defining W η (E ′ n , A) as in [START_REF] Kohyama | Defect scars on flexible surfaces with crystalline order[END_REF] are additive and monotone under inclusion with respect to A) and Remark 3.2, we obtain

(113) W η (E ′ n , K ℓ+1 \ Γ n ) |Γ n | ≤ (1 + g(η))(1 + C 1 )o ℓ,n→∞ (1) 
+ o η→0 [START_REF] Aizenman | Structure of Gibbs states of one dimensional Coulomb systems[END_REF].

By summing up (110), ( 111), ( 112) and (113), we find that for all 0 < α < η < r 0 /2 there holds (114)

W α (E ′ n , Γ n ) |Γ n | - 1 |Γ n | ˆΓn min A m ′ V (x)
Wdx ≤ (1 + g(η))(1 + C 1 )o ℓ,n→∞ (1) + o η→0 [START_REF] Aizenman | Structure of Gibbs states of one dimensional Coulomb systems[END_REF].

Therefore for all ǫ > 0 we may fix η < r 0 /2 such that the rightmost term above is ≤ ǫ and then let α → 0 obtaining that the limit in ( 10) is ≤ ǫ. As ǫ > 0 is arbitrary this concludes the proof of (10).

Discrepancy bounds

In this section we show how to deduce the result of Theorem 3 from the one of Theorem 1. We consider a scale ℓ ≤ 1 4 ℓ to be more precisely fixed later, and we find that due to Theorem 1 there holds

W η (E ′ n , K ℓ (b)) ≤ ˆKℓ (b) min A m ′ V (x)
Wdx + |K ℓ |o η→0,n,ℓ→∞ [START_REF] Aizenman | Structure of Gibbs states of one dimensional Coulomb systems[END_REF].

Due to the charge separation condition and to Remark 3.2 and to the bounds on m ′ V , we find, using the scaling of c → min Ac W (see (84)) that , such that the cubes K 2ℓ (b) belonging to a given F j are disjoint. Then for each j ∈ J d and each K ∈ F j , from (115) by a mean value theorem there exist ℓ 1 ∈ [ℓ, 2ℓ] (note that ℓ 1 , unlike ℓ, depends on the center b, but we omit this dependence to make notations lighter) such that (116)

ˆ∂K ℓ 1 (b)×R k |E ′ n | 2 ≤ C C1 ℓ d-1 .
Then from (116) we obtain by Cauchy-Schwartz inequality (117)

ˆ∂K ℓ 1 (b) E ′ n • ν ≤ |∂K ℓ 1 (b)| 1/2 ˆ∂K ℓ 1 (b) |E ′ n | 2 1/2 ≤ C C1 ℓ d-1 .
As a consequence of the properties of our cover, we also obtain that the cubes K ℓ 1 (b) cover ∂K ℓ-2ℓ (a). In particular,

∂R ℓ,ℓ := ∂   K ℓ-2ℓ (a) ∪ j∈J d K ℓ ∈F j K ℓ 1   ⊂ ∂   j∈J d K ℓ ∈F j K ℓ 1   .
It then follows that, using (117) and the fact that the cubes K ℓ 1 corresponding to a single F j are disjoint, (118)

ˆ∂R ℓ,ℓ E ′ n • ν ≤ j∈J d K ℓ ∈F j ˆ∂K ℓ 1 E ′ n • ν ≤ |J d | max j∈J d |F j |C C1 ℓ d-1 .
As the K ℓ cover ∂K ℓ-2ℓ (a), also for the larger cubes K ℓ 1 the sets ∂K ℓ-2ℓ (a) ∩ K ℓ 1 corresponding to the union of all the F j 's cover ∂K ℓ-2ℓ (a). We also have that, as the centers of such K 2ℓ belong to ∂K ℓ-2ℓ (a), there holds H d-1 (∂K ℓ-2ℓ (a) ∩ K 2ℓ ) ≤ C d ℓ d-1 . Therefore, as the K 2ℓ (b) corresponding to each single family F j are disjoint, by summing the above inequalities over each fixed F j separately, we find the lower bound below, while the upper bound is straightforward: max

j∈J d |F j |C d ℓ d-1 ≤ H d-1 (∂K ℓ-2ℓ (a)) ≤ C(ℓ -2ℓ) d-1 .
Using this and (118), by integrating the equation [START_REF] Caglioti | A special class of stationary flows for twodimensional Euler equations: a statistical mechanics description[END_REF] satisfied by E ′ n over R ℓ,ℓ and using Stokes' theorem, we find that (for a new constant C depending on the above C d and using the previous choice ℓ < 1 4 ℓ as above)

(119) ν ′ n (R ℓ,ℓ ) - ˆRℓ,ℓ µ ′ V = ˆ∂R ℓ,ℓ E ′ n • ν ≤ C C1 |J d |(ℓ -2ℓ) d-1 ≤ C C1 (ℓ -2ℓ) d-1 ≤ 2 1-d C1 ℓ d-1 .
To reach the desired bound, as (119), [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF] involve additive quantities, by triangle inequality we just need to estimate |ν ′ n -´µ′ V | over K ℓ (a) \ R ℓ,ℓ . To this aim we separately bound from above ν ′ n (K ℓ (a) \ R ℓ,ℓ ) and ´Kℓ (a)\R ℓ,ℓ µ ′ V by using Remark 3. Here C1 depends only on the bounds in (9) at scale ℓ, thus ℓ can be chosen so that the energy error in (9) at scale ℓ is uniformly bounded on all ℓ-cubes. As the right hand side of (120) does not have any further dependece on ℓ, we find [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF].

  ) =log |x| in dimension d = 1, or (4) g(x) =log |x| in dimension d = 2.

  2 and t ∈ [0, T ]. Let l ∈]0, L/3]. There exists a rectangle K ′ L (a) ⊂ K L (a) such that dist(∂K ′ L (a), ∂K L (a)) ∈ [l, 2l[ and a universal constant C such that the following hold:

  where ⌊a⌋ := max(Z∩] -∞, a]), and partition [0, ℓ d ] into a certain number a of segments S α of ρ-mass b and one extra segment S 0 of ρ-mass belonging to [b, 2b]. Let lα be the lengths of these segments .

4. 1 . 2 .

 12 Lower Bound. The goal of this section is to find a lower bound for Wη( Ẽ′ n , KL (a)) | KL (a)| . Proposition 4.5. Let Ẽ′ n be as above and let α∈]0, 1] such that m ′ V ∈ C 0,α (K R (a)) with m ′ V (x) ≤ m and let β ∈]0, 1 + α[. Then there exists a constant C > 0 depending only on d, s such that there holds

n

  and of (86), by Remark 3.2 it follows that(87) ˆKr(b)×R k |y| γ |E ′ n,η | 2 ≤ (C m + g(η)C d,s,m )|K r | ,at least for L, r large enough. Therefore the hypotheses of Proposition 3.1 are satisfied in K r (b) and we may apply it at scale r and find a good boundary cube K ′ r (b) which is at distance l from ∂K r (b). By applying Proposition 3.3 to the obtained good boundary we show that there exist Kr (b) ⊃ K ′ r (b), a subset Λ ⊂ KL (b) and a vector field Ē′ n such that

  | KL (a)|. (89)

  0 on the rest of ∂( Kr (b) × [-r, r] k ) and we put h = 0 in Kr (b) ×(R k [-r, r] k ). Then define Ē to be Ē′ n + ∇h in Kr (b). Hence W η ( Ē, Kr (b)) | Kr | ≤ W η ( Ē′ n , Kr (b)) | Kr | + Cr 2+2α m ′ V 2 C 0,α ( Kr(b)) + Cr 1+α m ′ V C 0,α ( Kr(b)) (C + c d,s mg(η)) 1/2 . (90) Next, we use the fact that W η ( Ē, Kr (b)) | Kr | ≥ min A m W + o η→0(1). Indeed, define Kr (b) to be the hypercube obtained by taking all the iterative reflections in the d directions across faces of Kr (b) (the sidelengths of Kr (b) are thus 2 twice the sidelengths of Kr (b)). Since we have zero Neumann boundary condition, we can extend Ē on Kr (b) × R k by reflection across the boundary of Kt (b). Then we periodize Ē to have a vector-field E defined on R d × R k . Since all the vector fields and measures are periodic,

  . Next we use Proposition 4.3 in which we choose ρ = m ′ V , K R (a) = K L (a) and β ∈]0, 1[, and Proposition 4.5.

  and is zero on the support of δ (η) p . The term I is bounded as in (94) by noticing that only the points p ∈ Λ ∩ A η are such that sptf α,η ∩ A = ∅ and that f α,η L 1 ≤ C d,s min(η d-s , η d | log η|).

  as in Theorem 2 and K ℓ (a) ⊂ Σ ′ . Let moreover r 0 be the minimum point separation of the charges corresponding to E ′ n , bounded in Proposition 2.3. Then the following hold.(1) There exists a set Γ which can be expressed as the image of a bi-Lipschitz deformation f :K ℓ (a) → Γ such that fid L ∞ ≤ 1,and for which (106) min p∈Λ∩Γ dist(p, ∂Γ) ≥ r 0 8 .

  ∂K ′ ℓ ) ≥ r 1 .

5 . 3 .

 53 |K ℓ+1 \ K ℓ-1 | |B r 0 /2 | ≤ Cr -d 0 ℓ d-1 ,where C (109) is a packing constant which depends only on the dimension. Let nowT r 1 := {τ ∈ [-1, 1] : ∃p ∈ Λ, ∂K ℓ+τ ∩ B r 1 (p) = ∅} ,Then T r 1 can be covered by at most |P | intervals of size 2r 1 and thus due to the bound (109), we find that |T r 1 | ≤ C (109) r 1 r -d 0 ℓ d-1 . Now fix C (107) depending on the packing constant C (109) only, such that for r 1 satisfying (107) we haveC (109) r 1 r -d 0 L d-1 < 1. Therefore [-1, 1] \ T r 1 = ∅, furnishing the desired cube K ′ ℓ (a). Proof of Theorem 2 given Theorem 1. For each K ℓ (a n ) as in Theorem 2 we consider a modification Γ n as obtained by applying Proposition 5.2 (the case of cubes K ′ ℓ (a n ) is completely analogous). Then firstly, we obtain via Proposition 5.1 and Corollary 4 that for all 0 < α < η < r 0 /2, where r 0 is the separation constant of Proposition 2.3, there holds(110) W η (E ′ n , Γ n ) -W α (E ′ n , Γ n ) ≤ C m min(η d-s , η d | log η|)|Γ n |,Second, recall that by the result[START_REF] Zabrodin | Large-N expansion for the 2D Dyson gas[END_REF] together with the generalization of such bounds, which is done as in Section 4, we have that for the choices σ = ±1 there holds(111) W η (E ′ n , K ℓ+σ (a n )) |K ℓ+σ (a n )| -1 |K ℓ+σ | ˆKℓ+σ(an) minA m ′ V (x)Wdx ≤ (1 + g(η))(1 + C 1 )o ℓ,n→∞ (1) + o η→0 (1).

  Wdx + C d,m (1 + g(η))|K ℓ | ≤ C1 |K ℓ (b)|,where C1 depends only on m, m, s, d. By Besicovitch's covering theorem, we find a cover of ∂K ℓ-2ℓ (a) by the union of J d families F j of cubes K ℓ (b), b ∈ ∂K ℓ-2ℓ

  2 and the bounds on m V , together with the fact that |K ℓ (a) \ R ℓ,ℓ | ≤ Cℓℓ d-1 . Therefore we obtain (120) ν ′ n (K ℓ (a)) -ˆKℓ (a) µ ′ V ≤ C( C1 + (1 + g(η))ℓ)ℓ d-1 .

  5.1. Tools for estimates on crenel boundaries. By refining the proofs of [49, Lem. 2.3, Prop. 2.4], we obtain an estimate generalizing the discrepancy bound of [51, Prop. 3.1], which relied on the ball construction

with the convention s = 0 in the case[START_REF] Ameur | Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates[END_REF] 
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where j is the smallest integer such that ℓ > j j=2 (ε (j-1) 1

) 1/d (ε 1 n) 1/d = L ( j) . Now, we have to ensure that K ℓ (a) is a subset K ′ L ( j) (a ( j) ). This is true if d n -2 j j=1 l (j) > 0. We proceed as follows.

• Case k = 0. In this case, by Section 3.2, it follows that L (j) = (L (j-1) ) 1/δ = (n 1/d ) δ -j and l (j) = (L (j) ) b . Bounding each time L (j) by n 1/(δd) we have that j j=1 l (j) ≤ jn b/(δd) . Moreover, j is finite. Indeed, j is defined as the smallest integer such that ℓ > j j=2 (ε

Hence, to have

for all ε 2 > 0 provided that ℓ and n are large enough. Therefore if

4.1. Comparison argument on hypercubes with good boundary. This subsection is devoted to the proof of Proposition 4.1. We start with the following lemma.

)dx ′ be respectively the equilibrium measure and its blow-up at scale n 1/d as above and let E ′ n = ∇h ′ n be a sequence of blown-up vector fields corresponding to these minimizers as in [START_REF] Caglioti | A special class of stationary flows for twodimensional Euler equations: a statistical mechanics description[END_REF]. Let Σ ′ be the support of µ ′ V . Then for all Ω ⊂ Σ ′ , we have

with all the points p ′ i in Σ ′ . The proof of the lemma has some similarity to [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF]Sec. 5.2]. [START_REF] Caglioti | A special class of stationary flows for twodimensional Euler equations: a statistical mechanics description[END_REF]. Since all points are in Σ by Proposition 2.3, in view of Proposition 2.2, by minimality of (

with all the points p ′ i in Σ ′ . Note that we may extend E as in the statement (provided ´Ω µ ′ V is such that such an E exists) by E ′ n outside Ω in order to obtain a competitor Ē as above. Moreover as a consequence the energy contributions to (74) of Ē, E ′ n outside Ω coincide. This proves our result.