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Abstract

This article presents basic concepts and recent research directions about the stability of sampled-data systems with aperiodic
sampling. We focus mainly on the stability problem for systems with arbitrary time-varying sampling intervals which has been
addressed in several areas of research in Control Theory. Systems with aperiodic sampling can be seen as time-delay systems,
hybrid systems, Input/Output interconnections, discrete-time systems with time-varying parameters, etc. The goal of the
article is to provide a structural overview of the progress made on the stability analysis problem. Without being exhaustive,
which would be neither possible nor useful, we try to bring together results from diverse communities and present them in
a unified manner. For each of the existing approaches, the basic concepts, fundamental results, converse stability theorems
(when available), and relations with the other approaches are discussed in detail. Results concerning extensions of Lyapunov
and frequency domain methods for systems with aperiodic sampling are recalled, as they allow to derive constructive stability
conditions. Furthermore, numerical criteria are presented while indicating the sources of conservatism, the problems that
remain open and the possible directions of improvement. At last, some emerging research directions, such as the design of
stabilizing sampling sequences, are briefly discussed.

Key words: networked/embedded control systems, sampled-data control, aperiodic sampling, stability analysis, time-delay
systems, hybrid systems, convex embeddings, Integral Quadratic Constraints.

ubiquitous presence of embedded controllers in relevant
application domains and the growing demand in indus-

1 Introduction

The last decade has witnessed an enormous interest
in the study of networked and embedded control sys-
tems [276,116,107,38]. This interest is mainly due to the
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try on systematic methods to model, analyse and design
systems where sensor and control data are transmitted
over a digital communication channel. The study of sys-
tems with aperiodic sampling emerged as a modelling
abstraction which allows to understand the behaviour
of Networked Control Systems (NCS) with sampling
jitters, packet drop-outs or fluctuations due to the
inter-action between control algorithms and real-time
scheduling protocols [276,7,11]. With the emergence
of event-based and self-triggered control techniques
[13,10,259,103], the study of aperiodic sampled-data



systems constitutes nowadays a very popular research
topic in control. In this survey, we focus on questions
arising in the control of systems with arbitrary time-
varying sampling intervals. Important practical ques-
tions such as the choice of the sampling frequency, the
evaluation of necessary computational and energetic
resources or the robust control synthesis are mainly re-
lated to stability issues. These issues often lead to the
problem of estimating the Maximum Sampling Interval
(MSI) for which the stability of a closed-loop sampled-
data system is ensured.

The study of aperiodic sampled-data systems has been
addressed in several areas of research in Control The-
ory. Systems with aperiodic sampling can be seen as par-
ticular time-delay systems. Sampled-and-hold in control
and sensor signals can be modelled using hybrid systems
with impulsive dynamics. Aperiodic sampled-data sys-
tems have also been studied in the discrete-time domain.
In particular, Linear Time Invariant (LTI) sampled-data
systems with aperiodic sampling have been analysed us-
ing discrete-time Linear Parameter Varying (LPV) mod-
els. The effect of sampling can be modelled using op-
erators and the stability problem can be addressed in
the framework of Input/Output interconnections as typ-
ically done in modern Robust Control. While significant
advances on this subject have been presented in the lit-
erature, problems related to both the fundamentals of
such systems and the derivation of constructive methods
for stability analysis remain open, even for the case of
linear system. The objective of the article is to present
in a unified and structured manner a collection of signif-
icant results on this topic.

The core of the article is dedicated to the analysis of sys-
tems with arbitrary varying sampling intervals. We will
only consider the deterministic aspects of the problem.
The case when sampling intervals are random variables
given by a probability distribution will not be discussed
here. After presenting some generalities and motivations
concerning sampled-data systems with aperiodic sam-
pling (in Section 2), some basic qualitative results are
recalled in Section 3. Section 4 presents the main stabil-
ity analysis approaches. At last, in Section 5, we briefly
discuss some emerging research problems, such as the
design of stabilizing sampling sequences. We indicate the
main challenges, the relations with the arbitrary sam-
pling problem and some perspectives on which the cur-
rent approaches and tools for aperiodic sampled-data
systems may be useful in the future.

Notations: Throughout the paper, R} denotes the set
{N € R, XA > 0}, ||z|| represents any norm of the vector x
and [|z||,,, p € N, the p norm of a vector . For a matrix
M, M7 denotes the transpose of M and M*, its conju-
gate transpose. For square symmetric matrices M, N,
M = N (resp. M > N) means that M — N is a positive
(resp. definite positive) matrix. , in a symmetric matrix

u(t) = ug y(t)

PLANT

TRIGGER

Fig. 1. Classical sampled-data system configuration

represents elements that may be induced by symmetry.
[M][,, p € N denotes the induced p-norm of a matrix
M. 5 (M) denotes the maximum singular value of M.
C%(X,Y), for two metric spaces X and Y, is the set of
continuous functions from X to Y. L}(a,b), p € N de-

notes the space of functions ¢ : (a,b) — R™ with norm
1

lélle, = [Jf llo(s)]|” ds} g ,and £%.[0, 00) is the space of

functions ¢ : [0,00) — R™ which are square integrable
on finite intervals.

2 Generalities
2.1 System configuration

In this paper we study the properties of sampled-data
systems consisting of a plant, a digital controller, and
appropriate interface elements. A general configuration
of such a sampled-data system is illustrated by the
block diagram of Figure 1. In this configuration, y(t) is
a continuous-time signal representing the plant output
(the plant variables that can be measured). This signal
is represented as a function of time ¢, y : R, — RP.

The digital controller is usually implemented as an al-
gorithm on an embedded computer. It operates with a
sampled version of the plant output signal, {yx }ken, ob-
tained upon the request of a sampling trigger signal at
discrete sampling instants t;, and using an analog-to-
digital converter (the sampler block, S, in Figure 1). This
trigger may represent a simple clock, as in the classical
periodic sampling paradigm, or a more complex schedul-
ing protocol which may take into account the sensor sig-
nal, a memory of its last sampled values, etc. The sam-
pling instants are described by a monotone increasing
sequence of positive real numbers o = {tx }xen where

to =0, tgr1 —tr > 0, lim ¢ = oo. (1)
k—o0

The difference between two consecutive sampling times
hi = tg4+1 — ti is called the kth sampling interval. As-
suming that the effect of quantizers may be neglected,
the sampled version of the plant output is the sequence

{yk }ren where yp = y(tr).

In a sampled-data control loop, the digital controller
produces a sequence of control values {uy } ren using the



sampled version of the plant output signal {yx }ren. This
sequence is converted into a continuous-time signal u(t),
where u : R; — R™ (corresponding to the plant input)
via a digital-to-analog interface. We consider that the
digital-to-analog interface is a zero-order hold (the hold
block, H, in Figure 1). Furthermore, we assume that
there is no delay between the sampling instant ¢; and
the moment the control u;, (obtained based on the k"
plant output sample, yy) is effectively implemented at
the plant input. Then the input signal u(¢) is a piecewise
constant signal u(t) = u(ty) = uk, Vt € [tg, th+1).

In this survey, we will consider that the plant is modelled
by a finite dimensional ordinary differential equation of
the form

{x'F(t,z,u), @)

Yy = H(t,.’L‘,U),

where x € R” represents the plant state-variable. Here
F: Ry xR*"xR™ — R™ with F(¢,0,0) = 0,Vt > 0, and
H: Ry xR" x R™ — RP. It is assumed that for each
constant control and each initial condition (to,zq) €
R4 x R™ the function F' describing the plant model
(2) is such that a unique solution exists for an interval
[to, to + €) with € large enough with respect to the max-
imum sampling interval. The discrete-time controller is
considered to be described by an ordinary difference
equation of the form

{:czH — FS (k, 2%, uk), 5

ur = H§ (kaxzayk) )

where z§ € R" is the controller state. Here, Fij : N x
R" x RP — R} and Hj : N x R" x RP — R™. We
will use the denomination sampled-data system for the
interconnection between the continuous-time plant (2)
with the discrete-time controller (3) via the relations

Y = y(tk), u(t) = uk,Vt S [tk,thrl), Vk € N, (4)

under a sequence of sampling instants o = {tx }ren sat-
isfying (1).

The different concepts and results will be mostly illus-
trated on Linear Time Invariant (LTI) models

& = Az + Bu, (5)
under a static linear state feedback,
up = Ky, k€N, (6)

with xp, = x(t). However, when possible, we will present
extensions to more general nonlinear systems.

2.2 C(lassical design methods

There are various approaches for the design of a sampled-
data controller (3) (see the classical textbooks [16,39]
and the tutorial papers [183,182,192,142]).

Emulation. The simplest approach consists in designing
first a continuous-time controller using classical meth-
ods [136,123,140,229]. Next, a discrete-time controller of
the form (3) is obtained by integrating the controller so-
lutions over the interval [tg, tx+1).This approach is usu-
ally called emulation. Generally, it is difficult to compute
in a formal manner the exact discrete-time model and
approximations must be used [183,142]. In the LTT case
(5) with state feedback (6), the emulation simply means
that the gain K is set such that the matrix A + BK
is Hurwitz and that the plant is driven by the control
u(t) = Kx(ty),Vt € [tk,tg+1), k € N. While the intu-
ition seems to indicate that for sufficiently small sam-
pling intervals the obtained sampled-data control gives
an approximation of the continuous-time control prob-
lem, no guarantee can be given when the sampling in-
terval increases, even for constant sampling intervals. In
order to compensate for the effect of controller discreti-
sation, re-design methods may be used [95,189].

Discrete-time design. In this framework, a discrete-time
model of the plant (2) is derived by integration. The ob-
tained model represents the evolution of the plant state
x(t)) = zp at sampling times!. Then, a discrete-time
controller (3) is designed using the obtained discrete-
time model. In the simplest LTI case (5), (6), the evolu-
tion of the state between two consecutive sampling in-
stants £, and tx4; is given by

.T(t) = A(t — tk)x(tk), Vt € [tk,tk-i-l]a keN, (7)

with a matrix function A defined on R as
0
A(0) = Aq(0) + Ba(0) K = e’ + / e’ dsBK. (8)
0

Evaluating the closed-loop system’s evolution at ¢t =
ti+1 and using the notation hy = tx+1 — t; leads to the
linear difference equation

Tpy1 = A(hk)ack, Vk e N (9)

representing the closed-loop system at sampling in-
stants. When the sampling interval is constant,

! Note that generally approximations of the system model
must be used since the discretized plant model is difficult to
compute formally [181,261]. Even for the case of LTI systems
with constant sampling intervals, the numerical computa-
tion of the matrix exponential (or its integral) is subject to
approximations [179].



hiy =T, Yk € N, a large variety of discrete-time control
design methodologies is available in the literature (see
[16,39] and the references within). It is well known for
this case that system (9) is asymptotically stable if and
only if the matrix A(T) is Schur. In other words, to de-
sign a stabilizing control law (6), the matrix K must be
set such as all the eigenvalues of A(T) lay in the open
unit disk.

For nonlinear systems with constant sampling intervals,
an overview of control design methodologies and related
issues can be found in [183,182,192,142]. Note that the
discrete-time models such as (9) do not take into con-
sideration the inter-sampling behaviour of the system.
Relations between the performances of the discrete-time
model and the performances of the sampled-data loop,
can be deduced using the methodology proposed in [196].

Sampled-data design. Infinite dimensional discrete-time
models which take into account the inter-sampling sys-
tem behaviour using signal lifting [19,20,251,257,269]
have been proposed in the literature for the case of linear
systems. Specific design methodologies, which are able
to take in consideration continuous-time system perfor-
mances, inter-sample ripples and robustness specifica-
tions, can be found in the textbook [39] for the case of
linear time invariant systems with periodic sampling.

2.8 Complex phenomena in aperiodic sampling

While in the last fifty years an intensive research has
been dedicated to the analysis and design of sampled-
data systems under periodic sampling, the study of sys-
tems with time-varying sampling intervals is quite un-
derdeveloped compared to the periodic conterpart. The
following examples illustrate the rich complexity of phe-
nomena that may occur under aperiodic sampling.

Example 1 [274] Consider an LTI sampled-data system
of the form (5),(6) where

13
21

1
0.6

A= B =

)

], K=-t6]. (10

For this example, system’s (9) transition matriz A(T)
is a Schur matriz for any constant sampling interval in
TeT ={T1,Ts}, withTy = 0.18, and T>» = 0.54. Then,
in the case of periodic sampling, the sampled-data sys-
tem is stable for constant sampling intervals taking val-
ues in T. An illustration of the system’s evolution for
constant sampling intervals Ty, Ts, is given in Figure 2.
Clearly, when the sampling interval hy, is arbitrarily vary-
ing in T, the Schur property of A(T'), YT € T, repre-
sents a necessary condition for stability of the sampled-
data system (1),(5),(6). However, it is not a sufficient
one. For example, the sampled-data system with a se-
quence of periodically time-varying sampling intervals

Constant sampling Ty = 0.18

0
o/ O [

u(t)

0 2 4 6 8 10

t
Constant sampling Ty = 0.54

Fig. 2. Stability of the system in Example 1 with periodic
sampling intervals.

Fig. 3. Instability of the system in Example 1 with a periodic
sampling sequence 71 — 15 — 17 ---.

{hi}ren = {T1,T,T1,T5, ...} is unstable, as it can be
seen in Figure 8. This is due to the fact that the Schur
property of matrices is not preserved under matrix prod-
uct (i.e. the product of two Schur matrices is not neces-
sarily Schur). Indeed, the discrete-time system represen-
tation over the two sampling instants can be written as

Tkyo = A(TQ)A(Tl)wk, Vk € QN,

and the transition matriz A(To)A(T1) over two sampling
intervals T1 and T, is not Schur. This example shows
the importance of taking into consideration the evolution
of the sampling interval hy when analysing the stability
of sampled-data systems since variations of the sampling
interval hy, may induce instability.

Example 2 [96] Consider now an LTI system with

0 1
-20.1

A= B=

)

ﬂ K=[1o] (1

Assume that the sampling interval hy, is restricted to the
set T = {T1,To} with Ty = 2.126 and Ty = 3.950. The
system is unstable for both constant sampling intervals
Ty and Ty since for these values system’s (9) transition
matric A(T), T € T is not a Schur matriz. However,
the product of transition matrices A(T1)A(T2) has the
Schur property. Therefore, the sampled-data system is
stable under a periodic evolution of the sampling inter-
val {hg}tren = {Th,T2,T1,Th,...}. An example of sys-
tem evolution with this particular sampling sequence s



provided in Figure 4. In this example the sampling hy,
can act on the sampled-data system as a second control
parameter which ensures the system’s stability while the
possible constant sampling configurations are not able to
guarantee this property.

Fig. 4. Periodic sampling sequence with a stable behaviour.

2.4 Problem set-ups

The core of the survey is dedicated to the robust analysis
of sampled-data systems with sampling sequences of the
form (1) where the sampling interval hy = tg41 — t
takes arbitrary values in some set 7 = [h, h] C R,. This
first problem set-up may correspond, for example, to
the sampling triggering mechanism from Figure 1 with a
clock submitted to jitter [268], or with some scheduling
protocol which is too complex to be modelled explicitly
[276,107]. Basically, for the case of LTI models (5) with
linear state feedback (6) under a sampling sequence (1)
we will address the robust stability of the closed-loop
system (12) given below

x(t) = Ax(t) + BKxz(ty), Vt € [tg,trt1), Yk €N,
tk+1 = ti + hg, Vk €N,

to =0, .T(to) =x9 € R"
(12)
as if hy is a time-varying ”perturbation” taking values
in a bounded set T.

In Section 5 we briefly indicate some basic ideas concern-
ing a recently emerging research topic where the sam-
pling interval hj plays the role of a control parameter
that may be changed according to the plant state or out-
put. This problem set-up corresponds to the design of a
scheduling mechanism. For the case of system (12), hg
is considered as an additional input which, by an appro-
priate open/closed-loop choice, can ensure the system
stability.

3 Qualitative properties of sampled-data sys-
tems

In this section we recall some aspects concerning the
qualitative behaviour of sampled-data systems with
time-varying sampling intervals. First, we discuss the
existence of a sufficiently small sampling interval that

preserves asymptotic stability when discretizing a
continuous-time stabilizing controller. Next, we present
qualitative stability results which can be deduced for
nonlinear sampled-data systems using linearization.

3.1 Small sampling interval approzimations

The choice of sampling intervals is a critical issue in the
emulation approach. Intuitively, choosing a sufficiently
large sampling frequency should preserve the stability
under a sampled-data implementation. This conjecture
has been confirmed in [254,105,106] for systems with pe-
riodic sampling. For the case of aperiodic sampling, var-
ious classes of systems have been treated in the litera-
ture [118,34,210]. The case of LTI systems (5) with linear
state feedback (6) has been addressed long ago in [118].

Theorem 1 [118] Consider that system & = (A+ BK)x
is exponentially stable. Then there exists a scalar h > 0
such that the closed-loop system (12) is Ezponentially
Stable for any sequence o = {ti}ren of the form (1)
satisfying hy = tpe1 — tx < h, Vk € N.

The proof is based on the existence of a quadratic Lya-
punov function for the continuous-time closed-loop sys-
tem & = (A + BK)z. An extension to a more general
class of (input affine) nonlinear systems is given below.

Theorem 2 [118] Let x = 0 be a globally exponentially
stable equilibrium point of system & = f(x) + g(x)u with
u = K(x), where f : R —» R", g : R® — R"*™,
K :R" - R" and let V : R" = R4 be a radially
unbounded C' function such that V(0) = 0, V(z) > 0
for all z # 0. Assume that the following conditions are
satisfied:

the functions f(.) and K(.) are globally Lipschitz;
there exists G > 0 such that ||g(z)|| < G forallz € R™;
e there exist c1,co > 0 such that for any x € R”

ov

oo (@) + (@)K (@) < —ex 2],

W <y el
ox || — 2 ’

e given a closed set B1 and a bounded open set By with
By C By C R”" there exists a scalar s(By, B2) > 0
such that, if the initial condition n(0) € By, then the
trajectory n(t) of n = f(n) satisfies n(t) € Ba, for all
t S S(Bl, Bg)

Then there exists a scalar h > 0 such thatx = 0 is a
Globally Exponentially Stable Equilibrium point of the
system

w(t) = f (x(t) + g (x() K (x(tr)),  (13)

t € [tk,tkt1),k € N, for any sequence of sampling
instants o = {ty}ren of the form (1) satisfying hy =
tk+1 —tx < h, Vk € N.



In [118] it was further shown that if the continuous-time
control system & = f(x) + g(z)K(x) is asymptotically
stable (instead of exponentially stable), then only prac-
tical stability is guaranteed for the sampled-data system
(13). A more general case, dealing with the emulation of
dynamical controllers based on Euler discretization was
provided in [34,118]. An alternative to Theorem 2 can
be found in [210] and concerns the same issue but the
drift f(z) is not required to satisfy any Lipschitz prop-
erty. However, the continuous-time control loop should
ensure the exponential decay of a quadratic Lyapunov
function along its solutions. Furthermore, the result only
states the practical stability of the sampled-data control
loop. Another extension to a more general class of Net-
worked Control Systems can be found in [194]. There it
is shown that if a continuous-time controller is designed
such that it yields input-to-state stability with respect
to external disturbances, then the same controller will
achieve a semi-global practical input-to-state stability
property when implemented in a sampled-data control
loop via an exact emulation. Qualitative results for the
existence of both a sufficiently small sampling interval
and a stabilizing sampled-data controller can be found
in [133].

3.2 Linear approximations

The study of sampled-data systems with linear models
and controllers is often easier to address than the nonlin-
ear case. For some classes of nonlinear sampled-data sys-
tems, local stability can be deduced from the properties
of a linearized model around the equilibrium [115,119].

Consider the following nonlinear system

{i'F(zﬂu)v (14)
y = H(x),
the discrete-time controller

U = H§ (zzayk)

and the interconnection y, = y(t;), u(t) = ug, Vt €
[tkytr+1), Yk € N, for sampling sequences o = {t; }ren
as defined in (1). The closed-loop system can be repre-
sented by the set of equations

{ (t) = f(x(t), zr,2f), t € [th, tpt1) (16)
Ty = 9(@r,23), k€N,

where f (z, zy, 2°) = F (x, HS (2, H(zk))) , g (zx, z5,) =
FS(x$,H(zg)) and zp = z(t ) For f( v, ) and
g(v,w) let A = %’O,AO = g— ,B = 21{]07

— 99 — 9
CiawO’Diavo

linear model is associated

. To system (16) the following

{ B(t) = Ax(t) + Aoxy + Bat, t € [th, trsr1), an

zg = Cxf + Dxy, k€N,

Integrating the system over a sampling interval and let-

ting z{ = [w{ gng] leads to the following linear time-

varying discrete-time system

Zk4+1 = Q(hk)zk, Vk € N, (18)
with
eAhe 4 fhk eA5ds Ay fhk eAsdsB
Q(hk) = 0 0 (19)
D C

The following theorem establishes conditions for the sta-
bility of the nonlinear system (16) under arbitrary vari-
ations of the sampling interval.

Theorem 3 [119] Assume that, for every possible se-
quence 0 = {tx }ren defined in (1), one has hy, = tg41 —
ty < h, and for any k € N, ||Q(hy)|, < ¢ < 1, where
h and q are constant scalars. Then the equilibrium point

[acT xCT} = 0 of system (16) is Exponentially Stable.

The nature of the result is in the spirit of the Lyapunov’s
first method [136], as it permits to guarantee the stability
of the equilibrium of the nonlinear system, by studying
the stability of its linearization at the origin. In the same
way, it remains qualitative and it does not provide any
estimate of the domain of attraction. However, the result
does not require the sampling intervals to be small.

The following theorem uses the linear model (18) in or-
der to provide conditions for the stability of the nonlin-
ear sampled-data system (16) with a fixed sequence of
sampling instants.

Theorem 4 [119] Leto = {t) }ren be a sequence defined

in (1) with suppen{ti+1 — tx} = h < 0o, where h is a
given constant. Assume that either

(i) limsupy._, o« [Q(Px)ll, <1, or

(#) limsup;,_, . {max |eig(Qx)|} < 1 and every subse-
quence of {Q(hg)}ken converges to a Schur matriz and
the solutions Py, of QT (hi)PyQ(hy) — P, = —I satisfy
lim supy o [ Pisr — Pl < 1, or

(iii) Q(hg) converges to a Schur matriz.



Then the equilibrium point [mT ch} = 0 of system (16)

with the sampling sequence o is Exponentially Stable.

Note that, in the conditions of Theorem 4, the matrix
Q(hg) is not required to be Schur for all the values of
k € N. One may find particular sequences of sampling
instants o = {1 }ren satisfying the conditions i) or iii) in
Theorem 4 for which the eigenvalues of Q(hy,) are outside
the unit disk for some values of k. The result is interest-
ing when the sampling interval iy, can be considered as a
control parameter, for scheduling the sampling instants
in an appropriate manner. The theorem may be used to
determine scheduling mechanisms with sampling inter-
vals larger than in a periodic sampling configuration.

4 Stability analysis under arbitrary time-
varying sampling

The previous results are qualitative and prove some nice
properties of sampled-data systems. However, they do
not provide any method for estimating the set of sam-
pling intervals for which the stability properties are still
guaranteed. In the following, we review some results
which provide such an estimation for sampled-data sys-
tems with sampling intervals that are arbitrary varying.
More formally, over the section, we present results that
address the following problem:

e Problem A (Arbitrary sampling problem): Con-
sider the sampled-data system (1),(2),(3),(4) and a
bounded subset 7 C Ry. Determine if the sampled-
data system is stable (in some sense) for any arbitrary
time-varying sampling interval hy = {11 — tx with
values in 7.

Often the set T is considered of the form 7 = (0, A
where & is some positive scalar. The largest value of h for
which the stability of the closed loop system is ensured
is called Maximum Sampling Interval (MSI).

Several perspectives for addressing Problem A exist.
First, we present results that are based on a time-delay
modelling of the sampled-data system (1),(2),(3),(4).
Next, we show how the problem can be addressed from
the point of view of hybrid systems. We continue with
approaches that use the explicit system integration in-
between successive sampling instants, such as the ones
classically used in the discrete-time framework. Last, re-
sults addressing Problem A from the robust control the-
ory point of view are presented.

4.1 Time-delay approach

To the best of our knowledge, this technique was initi-
ated in [172,15], and further developed in [66,254,158]

o
\
AN

Fig. 5. Sampling seen as a piecewise-continuous time-delay.

and in several other works. For the case of an LTI system
with sampled-data state feedback (12), we may re-write

u(t) = Ka(ty) = Ka(t — 7(t)),

(20)
T(t):tftk, Vit € [tkHthrl);
where the delay 7 is piecewise-linear, satisfying 7(t) =
1 for t # tg, and 7(¢x) = 0. This delay indicates the
time that has passed since the last sampling instant.
An illustration of a typical delay evolution is given in
Figure 5. The LTI system with sampled-data (12) is then
re-modeled as an LTT system with a time-varying delay

i(t) = Az(t) + BKz(t — 7(t)), ¥t > 0. (21)

This permits to adapt the tools for the analysis of
systems with fast varying delays [76,97,225,198]. This
model is equivalent to the original sampled-data system
when considering that the sampling induced delay has
a known derivative 7(¢t) = 1, for all ¢t € [tx, txy1), k € N.

4.1.1 Theoretical foundation

For system (21) it is natural to consider, as a state vari-
able, the functional z:(0) = x(t + 6), V8 € [—h,0],
and, as state space, the set C° ([,E 0] ,R") of contin-
uous functions mapping the interval [—E, 0] into R™
[68,197,199]. The most popular generalization of the di-
rect Lyapunov method for time-delay system has been
proposed by Krasovskii [139]. It uses the existence of
functionals V (t,x+) depending on the state vector a;. In
the sampled-data case [72,67,150] functionals V (¢, x, &)
depending both on z; and & (see [137], p.337) are useful.

Denote by W[—h, 0] the Banach space of absolutely con-
tinuous functions ¢ : [—h,0] — R™ with ¢ € L5 (—h,0)
(the space of square integrable functions) with the norm

1
2

O 2
folbw = max oo+ | [ ot a



Theorem 5 (Lyapunov-Krasovskii Theorem)
[187] Consider f : Ry x C°[—h,0] — R™ continuous in
both arguments and locally Lipschitz in the second argu-
ment. Assume that f(t,0) = 0 for all t € Ry and that f
maps Rx (bounded sets in C°[—h,0]) into bounded sets
of R™. Suppose that o, v,w : Ry — Ry are continuous
nondecreasing functions, a(s), 8(s) and v(s) are posi-
tive for s > 0, lims_,o a(s) = 00 and «(0) = 5(0) = 0.
The trivial solution of

is Globally Uniformly Asymptotically Stable if there
exists a continuous functional V. : R x W[-h,0] x

L5 (—h,0) — Ry, which is positive-definite, i.e.

al[lg(0)]1) < V(t.¢,6) < B(lIg]lw),

forall € W[—h,0],t € Ry, and such that its derivative
along the system’s solutions is non-positive

Vit e, i) < =[x (0)]])- (22)

The functional V satisfying the conditions of Theorem
5 is called a Lyapunov-Krasovskii Functional (LKF). In
the general case of sampled-data nonlinear systems, the
underlying delay system & = f (¢, z;) used in Theorem 5
from [137] is described by a function f which is piecewise
continuous with respect to t. However, the proof of the
result in [137] can be adapted to cover this case. For
the case of sampled-data systems, in [72] the Lyapunov-
Krasovskii Theorem was extended to linear systems with
a discontinuous sawtooth delay by use of the Barbalat
lemma [21]. Another extension to linear sampled-data
systems has been provided in [67], where the LKF is
allowed to have discontinuities at sampling times.

4.1.2  Tools and basic steps

The derivation of stability conditions using LKF's usually
involves quite elaborate developments. To give an idea of
the procedure involved in this approach and to provide
a glimpse of its technical flavour, we present first the
derivation of LMI stability conditions for the case of
LTI systems (12) with the associated time delay model
(21). Based on elementary considerations, we expose the
main difficulties and the most relevant tools. The basic
steps for deriving constructive stability conditions are
illustrated as follows.

Step 1. Propose a candidate Lyapunov-Krasovskii func-
tional V. The LKF that is necessary and sufficient for the
stability of LTT systems with delay has a rather complex
form, even for the case of constant delays [138,71]. In

order to provide constructive stability conditions, sim-
plified forms are used, such as

0 st
Vian i) = oT(0)Pa(t) + T / / 7 (5) Ri (s)dsdd
~h Jt+6
(23)
with P, R > 0, which was considered in [75].

Step 2. Compute the derivative of V. For the functional
(23) this leads to

V(we, @) = 227 (t)Px(t) + h2T (t)Ri(t)
~h /t i (s)Ri:(s)ds. (24)

—h

The difficulty now comes from the last integral term,
J(@,h) = — [/ @7 (s)Ri(s)ds, which is an impedi-
ment to the analysis of the sign of (24). Such terms are
common in the derivative of LKF's and they need to be
taken into account in an appropriated manner.

Step 3. Quver-approzimate the integral terms. This pro-
cedure is applied in order to replace the integral terms
by more simple expressions. Unavoidably, using such
over-approximations introduces some conservatism in
the analysis. A relevant tool is Jensen’s inequality, which
is recalled here.

Lemma 6 (Jensen’s inequality) [96] Given R > 0,
0 > 0, and a differentiable function x : [t — 0,t] — R™,
the following inequality holds:

J(&4,0) = — /t—9 #(s)Ri(s)ds <

5 (t) — (e~ )" R(x(t) — (t — ). (25)

For the case presented in (24), splitting the integral in
two terms and applying Jensen’s inequality leads to

%V(mt, i) < 20T () Pa(t) + W27 () Rit)
—CTR(r(1) ¢(t) (26)
x(t) —xz (t —7(t))
where ((t) = , and
© z(t—7() —x(t—h)
Ry = |70
T 0 h—}}—(t)R

is a matrix depending on the delay value. At this step,
sufficient conditions of stability are provided by the neg-
ativity of the right-hand side of the inequality (26). How-
ever, the obtained conditions need to be checked for all



the values of 7(t) € (0, h], due to the dependence on 7(t)
of the matrix R(.).

Step 4. Owver-approzximate the delay dependent terms.
The last step consists in over-approximating the ele-
ments that depend on 7(t) by simpler expressions which
are constant or depend only on the upper bound h. For
example, in [72], stability conditions are obtained by

noting that % > 1and E_LT“) > 0, which implies that
— RO

R(7(t)) = (27)
00

holds for all delay 7 in the interval [0, A]. Of course, this
over-approximation still introduces some conservatism
in the analysis. However, for the case of LTI systems
(12), over-approximating the terms in (26) leads to

d . x(t) z(1)
—V T, Tt S v P,R
dt ( ) Lc (t—7(t)) ( ) z(t — T(ﬁ))‘|
with

W(P.R) - PA+ /;TP P(BK)

(BK)TP 0
. T I

+h _— R[A BK}* l_ R[I—I}, (28)

from which LMI stability conditions can be derived
[75,72] simply by checking the negative definiteness of
U(P, R).

Theorem 7 (adapted from [15,72]) Assume that there
exists P > 0 and R >~ 0, such that the following linear
matric inequality (P, R) < 0 holds with V(P, R) as
defined in (28). Then, the sampled-data system (12) is
Asymptotically Stable for all sampling sequences o =
{tk}ren with hy = tiyp1 —te < h.

Theorem 7 is a simplified reformulation of the result in
[72], where a more general case of polytopic systems is
considered using a descriptor model [75,74].

4.1.8  Directions of improvement

The main sources of conservatism in this approach are
due to the choice of the LKF (Step 1) and the over-
approximation of its derivative (Steps 3 and 4).

Step 1. The conservatism related to Step I can

be reduced by adding new integral components
to the LKF. For example the triple integral term

V(ay) = %2 EB feo ft:/\ T (s)Ri(s)dsd\df introduced
by [246] for systems with fast varying delay might also
be useful in the sampled-data case. For other forms of
LKF see also [68,211,240,9,236]. We point in particu-
lar to the results in [67,154,187,232], which have been
specifically developed for the analysis of sampled-data
systems. There, the proposed LKFs allow for taking
into account the particular sawtooth evolution of the
sampling induced delay (7(t) = 1, Vt € [tg,tg+1)) while
in the classical fast varying delay approach the delay
derivative is assumed to be unknown and arbitrary vary-
ing. For example, it has been shown in [67] that the stan-

dard time-independent term f?,—l ftt+0 T (s)Ri(s)dsdf
used in [72] can be advantageously replaced by the term
(tht1 — 1) fttk iT(s)Ri(s)ds, which provides derivative-
dependent stability conditions. It leads to an LKF of
the form [67]:

V(t,z(t),:i"t)t =
=T (t)Px(t) + (hy — T(t))/

t—7(t)

@7 (s)Ri(s)ds  (29)

which improves (23), as the information 7 = 1 can be
explicitly taken into account when evaluating its deriva-
tive in Step 2. See also [230] for an alternative LMI for-
mulation.

Step 3. Concerning the conservatism related to the over-
approximation of integral terms (Step 3), the accuracy
of Jensen’s inequality has been addressed in [94,26,233].
Alternatively to the use of Jensen’s inequality, the in-
tegral terms may also be over-approximated using ex-
tensions of Wirtinger’s inequality [154,233,234,98]. Fur-
ther refinements were developed in [145], where the au-
thors considered a discretized version of this inequality,
in [273], where additional free-weighted matrices are in-
troduced or in [214] using auxiliary functions. Other im-
provements have been presented in [234,235] based on
Bessel’s inequality and Legendre polynomials. Finally,
following the description given in Step 1, the application
of the Wirtinger-based inequality to the case of triple
integral-type of LKFs was considered in [212].

Step 4. The reduction of the conservatism induced by
the over-approximations of delay dependent terms (Step
4) has been considered by several authors over the last
few years [100,213,239]. To the best of our knowledge,
for the moment, the most accurate over-approximation
of delay dependent terms is provided in [213]. This re-
sult encompasses several of the existing approximation
techniques proposed in the literature [72,100] and allows
for an LMI formulation.

4.1.4 A more recent result

Clearly, considering more complex LKFs and more ad-
vanced over-approximation techniques increases the



complexity of the proposed LMI stability criteria (in
terms of readability). In the sequel, we present the
simple stability conditions from [67], which take into
account some of the presented conservatism reduction
techniques and provide a fair compromise between ac-
curacy and complexity.

Theorem 8 [67] Let there exist P = 0, R = 0, P> and
Ps such that the LMI

o, P—P{ +(A+BK)"Ps

_ <0, 30
* —P; — P +hR (30)

®, P—P{ +(A+BK)"P; —hPfA
* —p; — Pf —hPfA| <0,
—~hR

31)

* *

with ®; = PJ(A+ BK) + (A + BK)T Py, are feasible.
Then system (12) is Exponentially Stable for all sampling
sequences 0 = {t tren with hy = tg41 — ty < h.

The result takes into account information about the saw-
tooth shape of the delay, which is the specificity of the
time-delay model (21) when representing exactly the
sampled-data system (12). It can ensure the stability
for time-varying delays 7(¢) which are longer than any
constant delay that preserves stability, provided that
7(t) = 1.

The research on LKFs for sampled-data systems is still
a wide-open domain. Currently, an important effort
is dedicated to finding better LKFs and better over-
approximations of the derivatives. Note that providing
improvements (in terms of conservatism reduction) at
one step usually requires changes at all the others steps.
For this reason, the derivation of constructive stability
conditions may be quite an elaborate analytical process
and it is not always very intuitive. However, a notable
advantage of this methodology is the fact that for lin-
ear systems the approach can be easily extended to
control design [72,248,150] and to the case of systems
with parameter uncertainties [67,232,208,88,216], de-
lays [249,164,87,165,231,48] and schedulling protocols
[152,153,151]. See also [113,112] for the use of LKF's in
the case of systems with switching control and [70,69]
for the control of semilinear 1-D heat equations.

4.1.5 An extension to nonlinear systems

Concerning nonlinear systems, [163] has extended the
ideas in [72] for the case of control affine non-autonomous
systems. Consider the nonlinear system:

a(t) = f(tx(t) + g(t, z(t))u(t),

with the state z(t) € R™ and the input u(t) € R™, and
with functions f, g that are locally Lipschitz with respect

(32)

10

to x and piecewise continuous in t. Assume that a C!
controller u(t) = K (¢, z) is designed in order to make the
system (32) Globally Uniformly Asymptotically Stable.
Moreover, assume that there exist a C! positive definite
and radially unbounded function V', and a continuous
positive definite function W such that:

ov ov
[ ) + S (1 2) + gt ) K (1 2))| > W),
ot Ox
(33)
for all t > tg and € R™. Also, consider K(¢,0) = 0
for all ¢t € R. Hence, V is a strict Lyapunov function for
& = f(t,x) + g(t,x)K(t,z), and one can fix class Koo
functions a; and «as such that oy (||z|l2) < V(t,z) <
as(||z||2), for all ¢ > to and = € R™. Define the function

0K 0K

S+ (f(t ) gt 2) K (ta) ). (34)

Theorem 9 (adapted from [163]) Suppose that there ex-
ist constants c1, ca, c3 and ¢4 such that:

2

<ei,
2

2

< ¢,

H@K
2

%(t’ 'T)g(ta x)

(gt

lo(t,2)]15 < esW (x),

Ot )t K (1) < ea(V(t )+ 1),

ox 5

hold for allt >ty and x € R™. Consider the system (32)
in closed-loop with: u(t) = K(tx,z(tr)), t € [tk,tk+1),
o = {ty}ren as defined in (1) and hy, = tj41—ty € [h, h],
Vk € N. Then, the closed-loop system is Globally Uni-

formly Asymptotically Stable if h < (4cy + 802C3)_1/2 .

The stability is proven by means of a Lyapunov func-
tional of the form

0 t
Ut z0) :V(t,x(t))+i/_/ 10 (s, )2 dsdb,
hJ_nJito

where U(t, z;) = %—IE (t,25(0)) + %—IZ( (t,z(0)) (0) and
e > 0. This functional is reminiscent of the form (29)
used in [72] to study LTI systems. However, differently
from the LTT case, it is far more complex to determine
how conservative the result is.

4.1.6  Further reading

Aside from the Lyapunov-Krasovskii method, the sta-
bility of sampled-data systems can also be analysed
using the method proposed by Razumikhin [224]. Con-
nections between Razumikhin’s method and the ISS
nonlinear small gain theorem [243] have been estab-
lished in [253]. This relation has been used in [254] in
order to show the preservation of ISS properties under
sufficiently fast sampling for nonlinear systems with



an emulated sampled-data controller. Razumikhin’s
method has been used in [61] for the case of LTI
sampled-data systems. In [132], the Razumikhin method
is explored for nonlinear sampled-data systems on the
basis of vector Lyapunov-Razumikhin functions. For
more general extensions to the control design problem
see [134], concerning the case of nonlinear feed-forward
systems and [135], for nonlinear sampled-data system
with input delays. At last, we would like to mention
the Input/Output approach for the analysis of time-
delay systems [78,96,130], which makes use of classical
robust control tools [278,168]. The application of the
Input/Output approach for the case of sampled-data
systems has been discussed in [174,154]. The approach
was further developed by [81,204,203,207,206,40] with-
out passing through the time-delay system model. It
will be presented in more detail in Section 4.4.

4.2 Hybrid system approach

Due to the existence of both continuous and discrete dy-
namics, it is quite natural to model sampled-data sys-
tems as hybrid dynamical systems [91,92,99]. The first
mentions to sampled-data systems as hybrid dynamical
systems date back to the middle of the '80s [184]. Later
on, in the ’90s, the use of hybrid models has been de-
veloped for linear sampled-data systems with uniform
and multi-rate sampling as an interesting approach for
the Ho and Hs control problems [126,247,256]. The ap-
proach has also been developed for nonlinear sampled-
data systems in [115,270]. For systems with aperiodic
sampling, impulsive models had been used starting with
[256,56,170]. Recently, more general hybrid models have
been proposed in the context of Networked Controlled
Systems by [193,195]. A solid theoretic foundation has
been established for hybrid systems in the framework
proposed by [91,92] and it proves to be very useful in the
analysis of sampled-data systems.

In this section we will present some basic hybrid mod-
els encountered in the analysis of sampled-data systems.
The extensions of the Lyapunov stability theory for hy-
brid systems will be introduced together with construc-
tive numerical and analytic stability analysis criteria.

4.2.1 Impulsive models for sampled-data systems

Consider the case of LTI sampled-data systems with lin-
ear state feedback, as in system (12). Let & denote a
piecewise constant signal representing the most recent
state measurement of the plant available at the con-
troller, &(t) = z(t), for all t € [tg,tx+1),k € N. Using
the augmented system state x(t) = [z7(¢), 27(¢)]T €
R™ with n, = 2n, the dynamics of the LTI sampled-
data system (12) can be written under the form

{ X(t) = Fx(t),
x(tk) =

Ix(ty),

t#te, k€N,

35
keN, (35)

11

with

A BK

X() =lmx(o), F= |

o1t

10
S

Similar models can be determined by considering an aug-
mented state vector x including the most recent con-
trol value implemented at the plant 4(t) = u(t), the
sampling error e(t) = x(t) — Z(t), the actuation error
eu(t) = u(t) — a(t), etc. Models of the form (35),(36)
fit into the framework of impulsive dynamical systems
[173,99,143,17] (sometimes also called discontinuous dy-
namical systems or simply jump systems). More general
nonlinear sampled-data systems lead to impulsive sys-
tems of the form [187,193]

x(t) = Fr(t, x(1)),
X(te) = J(tr, x (1),

t#tg, keN,
keN,

(37a)
(37b)

where the augmented state may also include the con-
troller state and some of its sampled components (state,
output, etc.). Generally, for an impulsive system, (37a)
is called the system’s flow dynamics while (37b) is the
Jump dynamics.

4.2.2  Lyapunov methods for impulsive systems

The stability of equilibria for the impulsive systems of
the form (37) can be ensured by the existence of candi-
date Lyapunov functions that depend both on the sys-
tem state and on time, and evolve in a discontinuous
manner at impulse instants [17,99,187].

Theorem 10 [187] Consider system (37) and denote
T(t) =t — tg, Vt € [tk,trt+1). Assume that F), and Jy
are locally Lipschitz functions from Ry x R™ to R"x
such that Fi(t,0) = 0,Ji(t,0) = 0, for all t > 0. Let
there exist positive scalars ¢y, c2, c3, b and a Lyapunov
function V : R™ x R — R, such that

alxl® < Vi) < el (38)

for all x € R™, 7 € [0, h]. Suppose that for any impulse
sequence o = {tp}ren such that h < tgy1 — tp < h,
k € N, the corresponding solution x () to (37) satisfies:

dVv (x(1),7(t))

7 < —e3V (x(t),7(t)),

Vt # ty,, Yk € N,

and V (x(tr),0) < 1imt_>t;V(x(t),T(t)), Vk € N.
Then, the equilibrium point x = 0 of system (37) is
Globally Uniformly Exponentially Stable over the class
of sampling impulse instants, i.e. there exist c,A > 0
such that for any sequence o = {ti}ren that satisfies
h<tpy1 —tp <h keN,

IX@)I] < ellx(to)|e A=), vt > to.



The previous stability theorem requires in (38) the can-
didate Lyapunov function to be positive at all times. For
the case of system (37) with globally Lipschitz Fy, k € N,
the condition can be relaxed by requiring the Lyapunov
function to be positive only at impulse times [187], i.e.
cilx(t)l” <V (x(tk), 0) < eallx(tx)]|”, Yk € N, instead
of (38).

In the case of impulsive systems (35), with linear flow
and jump dynamics, candidate Lyapunov functions of
the form V(x, 1) = xT P(7)x, with P : [0, h] — R™x>"x
a differentiable matrix function, have been used
[257,247,27,187]. Sufficient stability conditions can be
obtained from Theorem 10 in terms of existence of a
differentiable matrix function P : [0,h] — R™X"x
1l < P(7) < co1, satisfying the parametric set of LMIs

FTP(6,) + P(01)F 4 c3P(6,) + aa—]:(ol) <0,
Y 6, €10,h), (39a)
JTP(0)J — P(#y) <0, V65 € [h, R, (39b)

with positive scalars ¢y, co, c3. This formulation is remi-
niscent of the Riccati equation approach used for robust
sampled-data control in [256,247]. Alternatively, stabil-
ity can also be checked by analysing the behaviour at
impulse times [270,169,111,31,30,27]. The following re-
sult for impulsive systems with linear flow and jump dy-
namics is stated from [111].

Theorem 11 [111] Consider system (35) with tr+1 —
tr € [h, h], for all k € N.The equilibrium point x = 0 of
system (35) is Globally Uniformly Exponentially Stable
if and only if there exists a positive definite function Vy :
R™ — Ry strictly convex,

Va(x) = X" Ppx;

homogeneous (of the second order), P R™ —
R™ X7, Pryg = Pl = Play = 0,Vx #0, a €R, a #0,
V(0) =0, such that

Va(x(tr)) > Va(x(tr41)),
for all x(tx) #0, k € N.

The result has been obtained using a linear differ-
ence inclusion x(tx41) € F (x(tx)) with F(x) =
{JeF‘)x, 0 € [h,h]} representing the exact system in-
tegration between two impulse instants together with
converse Lyapunov theorems for linear difference inclu-
sions [178,114]. More general results, concerning the im-
pulsive systems with nonlinear dynamics, can be found
in [270,169]. Particularizing the result of Theorem 11
to the case of quadratic Lyapunov candidate functions
Va(x) = xT Ly, sufficient stability conditions are ob-
tained by checking the existence of a positive definite

12

matrix L > 0 such that

(Je") L (JeF’) =L <0, V6O € [hA],  (40)
which is also a parametric LMI, similar to (39). Less
conservative conditions can be obtained using compos-
ite quadratic Lyapunov functions of the form Vy(yx) =
maxX;e(1,... M} xT P;x, where P;,i =1,..., M, form a fi-
nite set of symmetric positive definite matrices [111].

A relation between the existence of a continuous-time
Lyapunov function, V(x,7) = xT P(7)x, and the exis-
tence of a quadratic Lyapunov function, Vy (x(tx)) =
T (tr)Lx(tx), decreasing at impulse times, is provided
in the following theorem.

Theorem 12 [27] The following statements are equiva-
lent:

(a) There exists L = 0 such that

("0) L (™) —L=<0,V0¢€ hA.  (41)

(b) There exists a differentiable matriz function P :
[0,h] — Rmx>Xnx P(1) = PT(7), P(0) = 0 and a posi-
tive scalar € such that

P _
FTP(6,) + P(6,)F + ‘2—7(91) =<0, V6 €[0,h],
(42a)

JTP(0)J — P(0s) + €l <0, Y 0y € [h, ). (42b)

Moreover, when one of the above holds, the equilibrium
x = 0 of the impulsive system (35) is Asymptotically

Stable for any of the possible impulse sequences {tk }ken
satisfying tg+1 — ti € [h, h] for all k € N.

Condition (b) in the previous theorem is a sufficient con-
dition for the existence of a candidate Lyapunov func-

tion V (x,7) = xT P(7)x such that
Wgo, V¢ £ ty, Yk € N, (43)
and
V (x(tx),0) < lim V (x(¢),7(¢)), VkeN, (44)

tat;

which is slightly different from the conditions (39) ob-
tained based on Theorem 10. For the case described in
Theorem 12, (b), V(x, 7) may be constant between im-
pulse instants provided that it decays at impulse times.
According to the previous theorem, the existence of such
a candidate Lyapunov function is equivalent to the exis-
tence of a quadratic Lyapunov function Vy(x) = xT Lx



which is strictly decreasing at impulse times. Note that
from Theorem 11, the latter is only a sufficient condi-
tion for stability. The main point is that the existence
of a function of the form V (x,7) = xT P(7)x satisfying
(43),(44) is not a necessary condition for the stability
of the impulsive system (35). Other forms of Lyapunov
functions need to be considered to improve the existing
conditions.

4.2.3  Numerically tractable stability criteria

In practice, the difficulty of checking the existence of
candidate Lyapunov functions using LMI formulations
such as (39) or (41) comes from the fact that the set
of LMIs are parametrized by elements in [0, k] or [h, h],
which leads to an infinite number of LMIs. As follows
we will discuss the derivation of a finite number of LMIs
from (39). Numerical tools [111,31,30] for the resolution
of LMIs similar to (41), involving uncertain matrix ex-
ponential terms, are discussed in Section 4.3 in the con-
text of the discrete-time approach.

Concerning the parametric set of LMIs (39), a finite
number of LMI conditions can be derived by consider-
ing particular forms for the matrix function P(r). For
example, consider a matrix P(7) linear with respect to 7

P(r)

-
:P1+(P27P1)ﬁ, (45)

for some positive definite matrices Py, Ps, as in [120,4].
There, such a Lyapunov matrix has been used for
sampled-data systems with multi-rate sampling and
switched linear systems. For a candidate Lyapunov func-
tion V (x,7) = xT P(7)x, with P(7) as defined in (45), a
finite set of LMIs that are sufficient for stability can be
obtained from (39) using simple convexity arguments:

P,—-P

FTP 4+ P F+c3P + = < 0, (46a)
P,— P

FTPy+ PyF + 3Py + —=—— <0, (46b)

JE'PJ < Py, (46¢)

JIPJ < Py + (P — Py) h/h. (464)

For the particular case of LTI sampled-data systems rep-
resented by g§5 ), Lyapunov functions of the form
Vix,7) = )X are proposed in the literature by
summing Varlous terms such as:

Vilx,7)=2" Py, (47)
Valx,7) =(x—2)" Q(z — 1) (h—7), (48)
Vs(x,7)=(z — &)  R(z—&)e 7, (49)
Va(x,7) = e*ATXT (eFT(Ef'r)SeF (R T)) X, (50)
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00

are symmetric positive definite matrices. Using such
particular forms of Lyapunov functions, LMI sta-
bility conditions have been derived in the literature
[120,187,195,205,92,65]. We point in particular to the
term (51) used in [187] which provided a significant
improvement in what concerns the conservatism re-
duction. This term is inspired by Lyapunov-Krasovskii
functionals from the input-delay approach, like the one
in [72]. Note that the term (51) can also be written as

j;t (s +h—t)iT(s )Uac( )ds. It has been motivated

by the term [’+ ft+9 (s)Ui(s)dsdf used in the time-

delay approach (see [72]). Vice versa, the hybrid system
approach has also inspired the use of discontinuous
Lyapunov functionals in the time-delay approach (see
for example the functional (29)). Note that the term

(hy— j; @ (s)R#(s)ds in the functional (29) can be
re-written as (hk - T)XT(fET(FeFS)TR(FeFS)dS)X,
with

where U := , A > 0and Py, Q, R, S, U

RO
00

and R > 0. Then, for the impulsive system (35), (36),
the functional (29) can be interpreted as a Lyapunov
function of the form V(x, 7, hi) = xT P(7, hg)x. Simi-
larly to the time delay approach, the LMI formulations
can be adapted to cope with uncertainties in the system
matrices.

Last, note that alternatively to the LMI formulation,
numerical stability criteria based on polynomial matrix
functions P(7) and Sum-of-Squares programming [222]
have been proposed in [27].

4.2.4  More general hybrid models

A large variety of hybrid dynamical systems, includ-
ing sampled-data and impulsive models, can be re-
formulated in the unifying theoretical framework pro-
posed by Goebel, Sanfelice and Teel [91,92]. Several
fundamental properties have been investigated in this
framework, providing a solid theory for hybrid dynami-
cal systems. The main advantage of this generic hybrid
formulation [91,92] is that the associated theoretic prop-
erties can be directly transferred to sampled-data sys-
tems with aperiodic sampling. The general formulation
proposed in [91,92] considers models of the form

z = F.(z),
2t =J.(2),

z € C,
ze D,

(52a)
(52b)
with state z € R™=. The system state evolves according

to an ordinary differential equation (52a) when the state
is in some subset C of R™= and according to a first order



recurrence equation (52b) when the state is in the subset
D of R™=. 2T denotes the next value of state given as a
function of the current state z via the map J,(-). C is
called the flow set and D is called the jump set. Here, we
assume that F, and J, are continuous functions from C
to R™= and D to R"=, respectively. C' and D are assumed
to be closed sets in R™=.

Note that in the impulsive system formulation of
sampled-data systems, the system jumps are time-
triggered. However, the dynamics of the triggering
mechanism is in some sense hidden. In the framework
proposed by [35,46,195,91,92], the mechanism triggering
the system jumps is modelled explicitly by augmenting
the system state with the clock variable 7(t) = ¢ — ¢y,
YVt € [tg,trk+1), Yk € N. Consider the LTI sampled-
data systems (12) with the notations Z(t) = x(tx),
T(t) =t —ty for all t € [tg,tg+1), k € N. The system
can be represented by the following hybrid model

& = Az + BKzZ

T = 7 €[0,h],

T=1 (53)
xt =2z

it =u T € [h,h)

™+ =0

Then, system (12) with hy € [h,h] (or equivalently
(35),(36)) can be re-modelled in the form (52) with

2T = 2T 37T 7 :[XT T:|7

C:{zeR"Z:TG[O,E]}a

D={z€eR"™ :7 € [hh]},

Ax + BKz% T
F.(z) = 0 cJa(2) = |2 (54)
1 0

Solutions ¢ of the general hybrid system (52) are
parametrized by both the continuous time ¢ and the
discrete time k: ¢(¢, k) represents the state of the hybrid
system after ¢ time units and k jumps. Such solutions
are defined on a hybrid time domain, which for the case
of sampled-data systems is given as the union of the
intervals [tx, tr+1] X {k}. A solution ¢(-,-) is a function
defined on a hybrid time domain such that ¢(-, k) is
continuous on [tg,tk+1], continuously differentiable on
(tk,tr+1) for each k in the domain, and such that

if Qﬁ(ﬁ, k) eC, te (tk,tk-i-l), k e N, and

¢(tk+1; k + 1) = Jz (¢(tk+la k)) )
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if ¢(tx+1,k) € D, k € N. For sampled-data systems
as (53) such solutions may be roughly interpreted as a
generalization of the state lifting approach proposed in
[269] for systems with periodic sampling.

A particularity of the model (53) in the context of sta-
bility analysis is the fact that although the matrix K is
designed such that = (and consequently &) converges to
zero, the clock variable 7 does not converge. For each
sampling interval [tg,tx+1), the timer 7 visits succes-
sively the points of the interval [0, k] up to hy = tx41 —
tr. The main consequence is that the hybrid system
(53) does not have an asymptotically stable equilibrium
point. For such systems the stability of the compact set
A = {0} x {0} x [0, h] is usually investigated instead.
Studying this property allows to conclude on the con-
vergence of . One of the main results allowing to state
the asymptotic stability of a set for hybrid systems is
given below. This results is expressed in terms of the
pre-asymptotic stability of a set A (see [91] for a detailed
definition). The prefix ”-pre” is used since the complete-
ness of all system solutions? is not required. Only com-
plete solutions need to converge to A. The concept of
pre-asymptotic stability used in the following theorem
is equivalent to standard asymptotic stability of the set
A when all system solutions are complete, which is the
case for sampled-data systems.

Theorem 13 [91] Consider the hybrid system (52) and
the compact set A C R™ such that J, (AN D) C A. If
there exists a candidate Lyapunov function® V such that

%_ZFZ(Z) <0 forallze C\A, (55a)
V (J.(2)) = V(z) <0 forallz€ D\ A, (55b)

then the set A is pre-asymptotically stable.

Various relaxations of the above result are provided in
Chapter 3 in [92]. A converse Lyapunov theorem is given
below.

Theorem 14 [91] For the hybrid system (52), if the
compact set A is globally pre-asymptotically stable, then
there exist a C*° function V : R" — R and a1,a9 €
Koo such that a; (|z]4) < V(2) < ag (|z|a), Vz € R"=,
where | - | 4 denotes the distance from the set A, and

g—‘Z/FZ(z) < -V(z), VzeC, (56a)
V (J.(2)) <V(2)/2, Vz € D. (56b)

2 A solution ¢(t, k) is called complete if dom ¢ is unbounded.
3 V is continuous and non-negative on (C'U D)\ A C domV,
it is continuously differentiable on an open set satisfying
C \ A C d.OIfl'l‘/7 and hmz—)A,zEdomVﬁ(CUD) V(Z) = 0. Fur-
thermore, for global pre-asymptotic stability, the sublevel
sets of V/(.) are required to be compact.



Note that with respect to the case of sampled-data sys-
tems such as (53) (or equivalently (35), (36)) where so-
lutions are complete, the previous theorem shows that
asymptotic stability implies the existence of a C*>° Lya-

punov function of the form V' (z) = V(x, 7), to be related
with the sufficient conditions for stability in Theorem 10.

4.2.5 An estimation of the MSI for nonlinear systems

For nonlinear sampled-data systems the stability prop-
erties have been studied in the more general context of
Networked Control Systems with scheduling protocols
[193,35]. This approach has been particularized to the
sampled-data case in [195]. Consider the plant:

(i

where z is the plant state, u is the control input, y is the
measured output. Suppose that asymptotic stability is
guaranteed by the continuous-time output feedback:

¢ =
u =
where z¢ is the controller state. Under an exact sampled-
data implementation of the controller and a perfect
knowledge of the sampling sequence o = {tj}ren, the

sampled-data implementation of the closed-loop system
can be written in the following impulsive form:

(57)

Fe(2°y),

58
He (z¢,y), %)

& = F(x, ), t € [te, tht1),
y = H(x), te Ry,
¢ Fe(z°,9), t€ [tk tht1)s
’L.L = H¢(x°), te Ry, (59)
y =0, t € [te, tht1),
u =0, t € [ty trtr),
g(te) = y(ty),
aty) = u(ty),

where 4 represents the control being implemented at the
plant and ¢ the most recent plant output measurements
that are available at the controller. In order to express
the system in the general framework of [92], consider the
augmented state vector n(t) € R™ and the sampling-
induced error e(t) € R™:
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The dynamics in (59) with hx € [k, h] can be modelled
by the following hybrid system:

= f(n.e)

é = g(n,e) 7 € [0,h],

.

’ (60)
nt=n

€+ =0 Te[ﬁaoo)a

T+ =0

with n € R™, e € R", 7 € R;. The functions f and
g are obtained by direct calculations from the sampled-
data system (59) (see [195]):

| F(z, Ho(2%) +e*)
flme)= Fe(z¢, H(z) +€Y) ,
dne) = | on D E
R H ) + )

It should be noted that 1 = f(n,0) is the closed loop
system without the sampled-data implementation. The
following theorem provides a quantitative method to es-
timate the MSI, using model (60).

Theorem 15 [195] Assume that f and g in (60) are con-

tinuous. Suppose there exist Ay, Ao > 0, a locally Lips-
chitz function W : R™ — R, | a locally Lipschitz, posi-
tive definite, radially unbounded functionV : R™ — R,
a continuous function © : R™ — Ry, real numbers
L>0,v >0, functions ayy, aw € Koo and a continu-
ous, positive definite function o such that, for alle € R™e:

ay ([lell) <W(e) <aw([el)),
and for almost all ||n|| < A, and |le|| < A,:

O gln.e) < LW(e) + ©(),

%f(n,e) < —olllnl) — (W (e)) — ©%(n) ++*W(e).

Finally, consider that 0 < h < h < T (v, L), with

ﬁarctcm(r), ~v> L,
T(’%L) = %7 v=1L,
+arctanh(r), v < L,

andr =4/ |Z—Z - 1‘. Then, for all sampling intervals less

than h the set A = {(n,e,7) :n =0,e = 0,7 € [0,h]} is
Uniformly Asymptotically Stable for system (60).



Theorem 15 provides an explicit formulation of the MSI
for nonlinear sampled-data systems. It is applicable for
both constant and variable sampling intervals. For a
constructive application to the case of bilinear systems
see [205]. A numerical formulation using Sum-of-Squares
[222] has also been provided in [22].

4.2.6  Further reading

In the impulsive system framework, control design condi-
tions have been proposed in [27]. For observer design con-
ditions we point to the works in [5,49,3,186,220,59]. Some
extensions of the hybrid systems approach for sampled-
data systems with delay can be found in [73,188] and [22].
When constructing a hybrid model for linear sampled-
data system, it is also possible to consider as state vari-
able a decreasing counter 0(t) = hy, — 7(t) with = —1.
Aside from the methodology presented here, the sta-
bility of impulsive systems can also be analysed using
discrete-time approaches [111] based on convex embed-
ding methods and looped Lyapunov functionals [31,30].
These methods are presented for the particular case of
sampled-data systems in Section 4.3.

4.8  Discrete-time approach and convex-embeddings

In this sub-section we present several approaches which
use either the system integration over the sampling in-
terval or convex embeddings of the transition matrix be-
tween sampling times in order to derive stability condi-
tions. We will start with extensions of the discrete-time
approach for the case of linear systems with aperiodic
sampling; next a technique based on Delta operators will
be given, followed by a continuous-time approach and a
discrete-time approach based on functionals, similar to
the ones used in the time-delay approach. At last, an ex-
tension of the discrete-time approach to nonlinear sys-
tems with aperiodic sampling will be presented.

4.3.1 Theoretical results for LTI systems using the

discrete-time approach

Let us consider the LT system with sampled linear static
state feedback (12) where hy, = tj41 —t); takes values in
the set T = [h, h|. Recall the notations zj = z(ty),

0

A(9) = e + / e*dsBK, (61)

0

for § € R. One can verify that the closed-loop system
(12) satisfies

Th+1 = A(hk)l'k (62)
with hy, € T = [h, h]. Model (62) belongs to the class of

discrete-time Linear Parameter Varying (LPV) systems
[227,127,178]. Tt captures the behaviour of system (12)
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at sampling times, without consideration of the inter-
sample behavior. However, in [81], the following propo-
sition has shown that for LTI sampled-data system, the
asymptotic stability in continuous-time and in discrete-
time are equivalent.

Proposition 16 [81] Consider the sampled-data system
(12) with hi, = tg41 — ti € [h, h]. For a given x(ty), the
following conditions are equivalent:

(1) Jimy o0 (1)
(2) limy o0 x(tx)

0.

Various methods are available for studying the sta-
bility of discrete-time LPV systems. Stability criteria
have been proposed by analysing the joint spectral
radius [24,1] or by checking the existence of quasi-
quadratic [178,121], parameter dependent [45], path-
dependent [144], non-monotonic [167,141,2] and com-
posite quadratic [121] Lyapunov functions.

The following theorem from [114] addresses specifically
the case of model (62).

Theorem 17 [11]] Consider the continuous-time sys-
tem (12) and the discrete-time model (62) with T =

[k, h]. The following statements are equivalent:

1) The equilibrium point x = 0 of (62) is Globally Uni-
formly Exponentially Stable.

2) There exist a P = 0 and N > 0 such that

N T N
<H A(@g) P <H A(@g) —-P <0, (63)

for any N-length sequence {030, with values in T, i.e.
the function V(z) = 2T Pz satisfies V(zpin) < V(xk)
forallz, #0,k € N.

3) There exists a positive definite function V : R* —
R* strictly convex, homogeneous (of the second order),
V(z) = ,TTP[I].T, with 7)[.] R — R**™ P[I] = P[j;] =
Plaz), VT # 0,a € R, a # 0 such that :

V(z) — maxV (A(0)x) > 0, YV # 0.

0T (64)

Condition 2) in Theorem 17 corresponds to the existence
of a mon-monotonic Lyapunov function V(z) = x* Pz,
[167,141,2] which is decreasing every N samples. If the
system is stable, then necessarily there exists a finite N
and a matrix P such that (63) holds. However, checking
the existence of a matrix P satisfying (63) for a given
N represents a set of LMIs which are sufficient only for
stability. Condition 3) corresponds to the existence of



a quasi-quadratic Lyapunov function [178,121] V(z) =
xT’P[z]x. Theorem 17 shows the equivalence between
quasi-quadratic Lyapunov functions and non-monotonic
Lyapunov functions and provides necessary and suffi-
cient conditions for the exponential stability of system
(62). A simple stability criterion which is sufficient for
stability can be obtained using classical quadratic Lya-
punov functions, which are decreasing at each sample.

Theorem 18 [275] The origin of system (62) is Glob-
ally Uniformly Exponentially Stable for all sampling se-
quences o = {ty reny with hy, = tgy1 —tg € [h, ], k €N,
if there exists P > 0 such that

AT(O)PA(®) — P <0, Y0 € T = [h,h].  (65)

The LMI (65) is a particular case of condition 2) in The-
orem 17 with N = 1. In a similar way, it is also a particu-
lar case of condition 3) with P, = P, for all z € R™. The
condition ensures that the candidate Lyapunov function
V(z) = 27 Px satisfies the relation

AV (k) =V (zgs1) — V(zk) <0, Vag # 0. (66)
Finally, let us note that, similarly to conditions (39) or
(41) used for the hybrid system approach, the stability
conditions (63) and (65) represent sets of LMIs that are
parametrized by 6 € T = [h, h]. They are not computa-
tionally tractable problems by themselves. Approximate
solutions, based on evaluation of the condition for a finite
set of values of 6 have been presented in [275,228,241].
A finite set of sufficient tractable numerical conditions
can be obtained using normed-bounded and/or poly-
topic convex embeddings of the transition matrix A(6).

4.83.2  Tractable criteria

In what follows, we try to give an idea about the manner
to solve parametric LMIs involving matrix exponentials
such as the one in (65). First, we present briefly the ap-
proach proposed by Fujioka in [79]. Consider a nominal
sampling interval Ty € [h, h]. For a scalar 4, the transi-
tion matrix A(-) satisfies the relation

A(To + 6) = A(To) + A(0)¥(To), (67)
where A(3) := [? eAsds, U(Ty) = AA(Ty) + BK. Using
classical properties of the matrix exponential [155], the
induced Euclidean norm of A(4) can be over-bounded

)
1AW, < / (A5 s, (68)

A+AT

where p(A) is the maximum eigenvalue of . System
(62) can be expressed as a nominal discrete-time LTI
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system with a norm-bounded uncertainty

Tpt1 = A(To)xk + A((Sk)\l/(To)wk (69)
where 6, = hy, — Tp, for which classical H, criteria [86]
can be used. A simplified version of the main result in
[79] is given as follows.

Theorem 19 [79] Let Ty > 0 be given. If there exist
X > 0 and v > 0 satisfying

M(TO,X,'Y) =
T
w(Ty) 0] |0 1] [w(T) 0 0 71

then (65) is satisfied with P = Xt for all 6 €
T(TOa’y) = [ﬁ(TOaV)ah(TOa’Y)} n (0,00), with

TO - 7715 Zf:u‘(iA) = 07

WTo,v) = ¢ —o0, if u(—=A) < —7, (71)
To — bg(ltj(_—:)(im), otherwise,
TO +’y_1a Zf,U/(A) = 07

h(To,v) =} oo, if u(A) < =, (72)

log (147~ "u(A))

A , otherwise.

To +

Condition (70) is sufficient for the asymptotic stability of
system (62) under time-varying sampling intervals hy, €
[, h] with h and h given in (71) and (72), respectively.
Other norm-bounded approximations of the transition
matrix A(-) exist in the literature [18,245,129,85,277].
For example, stability conditions have been provided us-
ing the Schur decomposition in [245] while [277] uses
the Jordan normal form. In [85] the transition matrix
A(Tp + 0) is decomposed as

A(Ty + 6) = A(To) + 6L(Tp) + Ax(5)AL(Tp)

with L(Ty) = eAT0(A + BK), Ay (6) := f06 fop eAsdsdp,
and stability conditions are provided by computing the
induced Euclidean norm of Ay(d). See also [129] where
stability conditions have been derived using Integral
Quadratic Constraints (IQC), by studying the positive
realness of A(d). More general Lyapunov functions have
been used in [84].

Alternatively to the use of norm bounded approxima-
tions, tractable numerical conditions can also be ob-
tained using polytopic embeddings of the transition ma-
trix A(-) in system (62). The set

Wy, = {A0), 0 € [, A}



is embedded in a larger convex polytope with a finite
number of vertices A;, i € Z:={1,--- , N, },

N, N,
W = {Z%’Aﬂai >0,1€7, Zai = 1}a (73)
i=1 i=1

in such a way that W[h 7] C W. Using a polytopic em-
bedding, system (62) can be expressed as a

N,
Thtl = Z a; (hi) Nz,

i=1

(74)

where Zivz“’l ai(hg) = 1, ai(hg) > 0,4 € Z. This is a
classical discrete-time system with polytopic uncertainty

T
[45]. Here a(hy) = {Oq(hk) as(hg) ... an, (hk)} rep-
resent the barycentric coordinates of A(hy) in the poly-
tope W. The properties of the over-approximating poly-
topic set W make it possible to derive a finite number of
sufficient stability conditions from (65), by writing sim-
ple LMIs over the polytope vertices:

P=0, ATPA; — P <0,VicT. (75)
The same procedure can also be applied for the condi-
tion (63) - see [114] for details. However, for the case
of conditions (63), the numerical complexity is increas-
ing in an exponential manner with respect to the chosen
parameter N. One of the advantages of the polytopic
embedding is the fact that it allows the use of parame-
ter dependent Lyapunov functions [45,108,43] V (z, a) =
2T P(a)z, P(a) = "N, a;P;, which lead to refined sta-
bility conditions under a reasonable numerical complex-
ity:

3P, =P -0, ATPjA;—P; <0,Y (i,5) € IxZ. (76)

With respect to Theorem 17, the set of conditions (76)
represents also a sufficient criterion for the existence
of a quasi-quadratic Lyapunov function [111], V(z) =
xT’P[z]ac = maxX;c{1,..,N,} 2T Pz

The main difficulty in constructing the polytope W is the
exponential dependence of the transition matrix A(9) =

eA? 1 fo‘g eA%dsBK in the parameter  over the the inter-
val [h, h]. Several approaches exist for the computation
of a convex polytope embedding an uncertain matrix ex-
ponential. See for example [201,200,42,43,157] for tech-
niques based on the real Jordan form, [90] for a construc-
tion that uses the Cayley-Hamilton theorem and [41] for
an approach studying interval matrices. One may remark
that the transition matrix A(-) can be re-expressed as

A(0) = I+ A(6) (A+ BK) (77)
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which involves only one uncertain matrix term A(f) =

fo‘g e%ds. Then the stability problem can be addressed
by constructing a polytopic approximation of A(6) for
0 € [h,h]. To give an idea about the manner such a
convex polytope can be constructed, let us consider a
simple case where the matrix A has n real eigenvalues
Ai #0,i € {1,...,n} with multiplicity equal to one, i.e.

M0 0 ... 0
10 a0 0

A=T" T (78)
0 ...... 0 An

for some invertible matrix 7' € R™*™. Then the uncer-
tain matrix A(6) takes the form:

pi() 0 0 ... 0
0 p200) O ... 0O

AG)y=T""| . . T (19
0 ... ... 0 pulB)

1

i
ing p™" and p7® the minimum and maximum values
of p;(0) over [h, h], the uncertain matrix A(6) is embed-
ded in a convex polytope with N, = 2" vertices

where p;(0) = &+ (eM’ —1),i = 1,...,n. By comput-

A(0) € conv{D1, Ds,...,Dn,}
= conv {7 diag(px,...,pn)T : pi € {p}™™", """},
i=1,...,n}.

Using (77), the polytopic set (73) can be constructed
with A; = I+ D;(A+ BK),i € Z. A similar embedding
procedure can be applied in the general case (when the
eigenvalues of A have multiplicity different than one or
when they are complex) - see [43].

As the numerical complexity of the obtained LMI con-
ditions depends significantly on the number of vertices
N, of the polytopic approximation, one of the challenges
is to provide accurate convex polytopes while reducing
the number of vertices. For the Jordan decomposition
procedure, the number of vertices N, increases expo-
nentially with the order of the system. A method for
reducing the number of vertices has been provided in
[201,157,156]. However, the method provides a larger
polytopic embedding and may result in a conservative
stability condition. Methods that are independent of the
order of the systems have been proposed by combining
polytopic embeddings with norm bounded approxima-
tions [108,109,53,52]. We present briefly an adaptation
of the approach based on Taylor series approximation in
[108,109], originally used for sampled-data systems with



input delay. Note that the transition matrix A(hy) with
hy € [h, h] can be rewritten as

A(hg) = A(h) + A(pr) ¥ (h)

where pp = hx — h € [0,h — B], A(p) = [ e**ds and
W (h) = AA(h) + BK. Using a Taylor series approxima-
tion of the matrix exponential, A(p) can be expressed as

A(p) = Tu(p) + Rum(p)

where Ths(p) = M, Ali!lpl is the M*" order Taylor
series approximation and Rj(p) is the remainder. The
procedure proposed in [108,109] allows to embed Tas(p)
in a convex polytope with N, = M + 1 vertices

Ta(p) € conv{U;,i=1,....M +1},V pe[0,h— b,
where Uy = 0, Uy = P=RATL L =1, M.
Furthermore, an upper bound on the induced Eu-
clidean norm of Rps(p) can be computed using the
method proposed in [149]. To obtain an embedding with

| Ras(p)|ly < vg for all p € [0,h — h] the approximation
order M must be chosen such that

|All, (R — h)
n e v =7 1
M1z O

and

[AM]l, (b = o)
(M +1)!

M +2
M2 A, (D)

< Yr.

For this approach the number of vertices is linear in the
order M of the Taylor approximation. Stability crite-
ria are obtained in a direct manner by combining LMI
methods for polytopic systems with the ones for systems
with norm-bounded uncertainty.

Note that for both norm-bounded and polytopic em-
beddings approaches, the accuracy of the approximation
may be significantly increased by dividing [k, ] into sev-
eral subintervals and applying the embedding procedure
locally [79,200,111,52]. For example, in the case of the
norm-bounded embedding used in Theorem 19, the idea
is to consider a grid of r "nominal” sampling intervals
{Th < Ty < --- < T,} and to verify the existence of a
symmetric positive definite matrix X and of r parame-
ters v;,7 = 1,...,r, such that M(T;, X,~;) < 0 for all
i =1,...,r. When this condition is satisfied, system (62)
is stable for any time-varying sampling interval hj €
Ui, T (T3, i) where T(T;,7:) = [b(Ty, ), h(T3,7:)] are
defined using (71), (72). Furthermore, it has been shown
in [79] that using this approach one can approximate
the condition (65) as accurately as desired, in the sense
that if the condition (65) holds for § € [h, h], then nec-
essarily there exists a matrix X = P~!, a sufficiently
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tight grid of parameters 7,2 = 1,...,r and positive
scalarsy;,i = 1,...,r, such that M(T;, X, ;) < 0 for all
i=1,...,r, and [h, h] C U_; T (T}, ~i). Such an asymp-
totic exactness property has also been discussed for other
embedding approaches [52,200,241]. The main issue is
that, using convex embeddings, the conservatism with
respect to the quadratic stability condition (65) can be
reduced to any degree at the cost of increased computa-
tional complexity. However, the analysis of the asymp-
totic exactness property does not take into account all
numerical implementation aspects. Most of the meth-
ods are based on the computation of the matrix expo-
nential for nominal sampling intervals, on the use of the
eigenvalues/eigenvectors of the state matrix A or of its
characteristic polynomial, etc. Computing any of these
elements introduces approximations [179] which might
influence the numerical implementation of the embed-
ding. The effect of these approximations on the accuracy
of the stability analysis needs to be further analysed.

4.8.8  Analysis based on Delta-operators

One of the drawbacks of the discrete-time analysis as the
one proposed in (65) is the fact that the matrix A(6) is
close to identity when 6 is small. For small values of the
lower bound of the sampling interval h, the inequality
may be difficult to handle numerically. To avoid this nu-
merical drawback, a condition which encompasses (65)
has been proposed in [200].

Theorem 20 System (12) is Exzponentially Stable for
any arbitrary sampling sequence with tg41 — t € [h, h]
if there exists X = 0 such that

QO)X + X7 (0) + 07 (0)X0(0) < 0, (80)

for all 0 € [h, h] where

a) = 5

(A(O) — 1) = é/oe e®ds (A+ BK). (81)

This condition is obtained from an extension of the

Delta-operator approach [171]. System (12) with
hy € [h, h] satisfies the relation
Opx = Q(hk)w(ﬁk), VkeN, (82)

where dpx = %}:Z(t"), Vk € N, and Q(:) as de-
fined in (81). Note that when h tends to zero, the ma-
trix Q(h) converges to A + BK. The model (82) pro-
vides a smooth transition from the continuous-time con-
trol loop ¢ = (A + BK )z (obtained when the sampling
interval tends to zero) and the discrete-time represen-
tation (62). Condition (80) implies that the candidate



Lyapunov function V (x) = 27 X ~lz satisfies

(83)

for all zy, # 0, hy, € [h, h], kK € N. When 6 tends to zero,
(80) converges to the classical stability conditions for the
continuous-time control loop:

(A+BK)X + X(A+ BK)" <o0. (84)
Similarly to the discrete-time analysis in condition (65),
the parametric conditions (80) can be replaced by a finite
number of LMIs using a convex embedding of the matrix
Q(0). See [200], where a polytopic embedding procedure
based on the Jordan normal form and the mean value
theorem has been proposed. See also [29] for an approach
using more general Lyapunov functions.

4.3.4  Continuous-time analysis using embeddings

In practice it is important to provide an estimate of the
system’s performance in between sampling instants. A
continuous-time approach based on convexification ar-
guments has been proposed in [114,61] for LTI systems.
The approach takes into account the relation
x(t) = At — ti)x(tr), Yt € [tk,thy1), K €N, (85)
still referring to the definition of the transition matrix
At —t) = T+ [77" e**ds(A + BK) of system (12).
The classical condition V (2(t)) < —AV (x(t)) ensuring
the exponential decay of a candidate Lyapunov function

V(x) = 2T Px for some positive A can be expressed as
the following parametric LMI

A(9) ! AP+ PA+ AP PBK| |A(9) ~0
I KTBTP 0 I ’

forall @ € [0, h]. A finite number of LMIs can be obtained
similarly to the discrete-time case, by embedding the
matrix A(6) in a convex polytope

W = conv{A, Ay, Ay}, (86)
that is A(0) € W, V 6 € [0, h]. Sufficient stability condi-
tions [114] are given by the existence of a matrix P >~ 0
and of matrices G1, Gy € R™"*" solution to

ATP4+ PA+ AP+ G1+ GT PBK — G1A; + GY
KT'BTP —ATGT + G, —GoA; — ATGE

forall4 = 1,..., N,. For a less conservative approach

using the Lyapunov-Razumikhin method, see [61]. A ro-
bust analysis faced to perturbations has been proposed
in [63].
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4.3.5 Looped functionals

While convex embeddings allow for approximating the
stability conditions (65) as accurately as desired, includ-
ing parametric uncertainties in the analysis is quite dif-
ficult. Recently, a discrete-time approach based on the
so-called looped-functionals has been considered in [232]
to deal with this issue. The key idea is to apply the func-
tional framework, as in the time-delay approach, while
preserving the accuracy of discrete-time stability con-
ditions. The approach relies on an unusual formulation
of sampled-data systems inspired from the lifting mod-
elling [269]. For all k € N, consider a lifted state function

Xk (+) satisfying

{ Yir1(0) = xu(hi), VEEN, hy € [, ] &7)

]a
%Xk(T) = Axx(7) + BKx%(0), V7 € [0, hg].

The function xx(7), 7 € [0, hi] represents the trajectory
of the sampled-data system over the interval [t, ti11].
Define the set K = Uhe[h,ﬁ] C% ([0, n],R™) so to rep-
resent such a class of functions. The following theorem
establishes a relation between a discrete-time stability
analysis (as in (66)) and an analysis using functionals
(as in the time-delay approach).

Theorem 21 [232] Consider system (12) and the lifted
model (87). Let V : R™ — R be a differentiable function
for which there exist positive scalars p1 < po such that
Jor all x € R, py ||z]|* < V(z) < pollz||*. The two
following statements are equivalent.

(i) The increment of the candidate Lyapunov function
V(+) is strictly negative at sampling instants, i.e.

AV (k) = V(xx(hr)) = V(xx(0)) <0,

for allk € N and hy, € [h, h];

(ii) There exists a continuous and differentiable func-
tional V : [0,h] x K — R which satisfies for all h €
[h, h], 2 € C°([0,h],R") C K

V(h, z(-)) = V(0, 2(-)), (88)

and such that, for all (k,hg,7) € N x [h, h] X [0, hg],

W(r, xk) = %[V(Xk(T)) + V(7 xx)] <O0.

(89)
Moreover, if one of these two statements is satisfied, then
the null solution of system (12) is Asymptotically Stable

for any sampling sequence with tx1 — ti € [h, h].

The main difference compared with the Lyapunov-
Krasovkii approach used in the time-delay framework
remains in the design of the functional. The positive



definiteness condition of the LKF is exchanged with a
looping-condition, a two-point algebraic equality (88)
that the functional should verify; see e.g. [232,30—
32,237]. There are two main methods for building loop
functionals. The first manner follows the construction
of discontinuous Lyapunov-functionals, as for instance
(48), (50) or the ones provided in [67,187,230,154]. The
previous theorem first states that if a term of the func-
tional meets the looping condition (88), then the posi-
tive definiteness of this term can be relaxed. The second
method enters into the framework of polynomials func-
tions [31,30,32,237] and of sum of squares tools [222].
For example, in [237], a polynomial looped-functional
was introduced and it has the following form

T

V(r, = Xk(T)] M(t,h le(T)l
() L(k(o) (7 xx(0)

where M is a polynomial matrix function from [0, h] x
[, h] to the set of 2n x 2n symmetric matrices. The
looping condition (88) is ensured by adding the following
constraints on M:

Vh € [k, h], H M(0,h) m =0, and M (h,h) = 0.

This method can easily deal with polytopic uncertainties
in the system matrices.

4.8.6 A discrete-time approach for nonlinear systems

Results on discrete-time approaches for the control of
nonlinear systems with time-varying sampling intervals
are quite rare. We present as follows an adaptation of the
result from [258] which extends earlier stability criteria
from [191,196,190]. Consider the nonlinear system

@(t) = F (x(t), u(t))

with F(z,u) globally Lipschitz, i.e. there exists 85 > 0
such that

(90)

[F(2a,ua) = F(zp,up)ll < Bf (12a — oll + lua — usll)

for all x,,zy € R™ and ug, up € R™. The control takes
the form u(t) = uy, for all t € [ty, tr+1) and the sampling
interval is bounded hy = tgy1—t; € T = [h, h],¥ k € N.
The exact discrete-time model of the system over the
sampling interval is given by

tr+hi
Tr1 = Fy, (Tr, ug) == oy, —|—/ F (2(s),ur)ds

ti
(91)
where 3, = z(t). Note however that (91) is not known
in general since it is rare to obtain an analytic solution

21

to a nonlinear initial value problem. In practical prob-
lems, approximations are usually used [244,191]. A sim-
ple example is given by the Euler model of (90):

Tp+1 =Tk + i F (ack,uk) .

Other approximations can be found in standard books
[244] and tutorials [182,183]. The approach in [258] con-
siders an approximate model

Tht1 = F;Ll* (ack, uk) (92)

obtained for some nominal sampling interval h* € [h, h].
Model (92) is assumed to be one-step consistent
[244] with the exact discrete-time plant, i.e. there ex-
ists p € Koo such that ||Fo (x,u) — Ff. (z,u) | <
h*p(h*) (||| + |lul), for all € R™, u € R™. It is con-
sidered that the approximate model (92) has been used
to design a controller

up = Kpx (T) (93)
parametrized by the nominal sampling interval h*, and
that the closed-loop system (92),(93) is asymptotically
stable. More formally, it is assumed that there exists
a candidate Lyapunov function for the approximate
closed-loop system (92),(93), i.e. a function Vj-(x) and
a; > 0,4 = 1,2,3 such that the involved conditions
holds for some r > 1: oy ||z|" < Vi (z) < az|z]|” and

Vi (B (7, Ky (1)) — Vi (2)
h

< —agllz]|” 0 (94)

for all x € R™. Furthermore, the control law Kp«(-) is
considered to be linearly bounded, i.e. there exists £, >
0 such that ||Kp«(2)|| < Bullz|| for all x € R™. The
following theorem provides generic results for the robust
stability of the exact closed-loop system

rp1 = Fy, (ar, Kp-(21)) (95)
using the fact that the control law up = Kp+ (k) is a
stabilizer for the approximate model (92).

Theorem 22 [258] Consider system (95) with hy €
[, h] for all k € N. Consider the following notation

Ba = (2 Bu+ (1 + max(1,8,))("" ~ 1))
+h"p(h") (1 + Bu). (96)

Assume that the Lyapunov candidate function Vi (x) is

locally Lipschitz and there exists B, > 0 such that

sup ||z]| < Boll=]",

2€Vy+ (x)



for all x € R™, where OVy«(x) denotes the generalized
differential of Clarke. If there exists 8 € (0,1) such that

BoBa!
h*

(A*p(h") (1 + Bu) + pu(h*, M) ) < (1= B)ag
(97)

is satisfied where
pn(h*, Mp) = Pl ((1 + Bu) (eﬁth - 1) )

with My = max,, ., 7 |h — h*|, then there exist ¢, A > 0

such that ||zx]| < c|lzolle 2. In other words, system
(95) is Globally Ezponentially Stable, Uniformly for all
hi € [h,h] and all k € N.

The above theorem is a natural extension of the result in
[190,191] for sampled-data systems with constant sam-
pling intervals. The main condition (97) involves two
terms. The first term (3,87 1p(h*)(1 + B,) reflects the
effect of approximatively discretizing the nominal sys-
tem using a nominal sampling interval h*; the second

r—1
one, %— pn(h*, My,) reflects the effect of uncertainty
in the sampling interval.

4.8.7  Further reading

Control design methodologies based on convex em-
beddings have been presented in [108,43,109,83,185].
See also [226] for an LPV design of controllers that
are adapted in real time to the value of the sampling
interval and [110] for the case of systems with delay
scheduled controllers. Extensions of the discrete-time
approach for networked control systems with schedul-
ing protocols can be found in [53,146,52,147,36]. For
model predictive control of networked control systems
see also [201,89,157]. Lie algebraic criteria for the anal-
ysis of systems with time varying sampling have been
proposed in [58]. A mixed continuous-discrete approach
has also been proposed in [148]. The relation between
clock dependent and looped Lyapunov functionals has
been investigated in [28].

4.4 Input/Output stability approach

In this subsection we present several methods that
study sampled-data systems from a robust control point
of view. The main idea of the Input/Output stability
approach is to consider the sampling error as a per-
turbation with respect to a nominal continuous-time
control-loop. Classical robust control tools are used
in order to assess the stability of the sampled-data
systems [272,278,168,217]. Some of the presented meth-
ods are reminiscent from the Input/Output stability
approach used for the analysis of time delay systems
[122,124,197,96,130,77,131], and have been further de-
veloped independently of the time delay approach.
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Ash

Fig. 6. Equivalent representation of the sampled-data sys-
tem, from a robust control theory point of view.

4.4.1 Basic idea

Note that the LTT sampled-data system (12) can be re-
expressed in the form [174]

i(t) = (A+ BK )x(t) + BK (x(ty) — z(t)), (98

#(t) = (A4 BK)x(t) + BE (z(t) —2(1)),  (98)
=Ay =B i=e(t)
where A.; corresponds to the state matrix of the nominal
continuous-time control loop while e(t) represents the
error induced by sampling. An essential fact in this ap-
proach is that the sampling induced error e(t) = z(tx) —

z(t) can be equivalently re-expressed as

t
7/ z(@)d@, Vit € [tk;thrl)'

ti

e(t) = (99)

Considering y(t) = #(t) as an auxiliary output for sys-
tem (98), the sampled-data system (12) can be repre-
sented equivalently by the feedback interconnection of
the operator Agp, @ L£5,[0,00) — L5,[0,00), Agp, 1y — €,
defined by:

o0 = B = [ v, E s ti),

" (100)
with the system
&(t) = Agx(t) + Bee(t), x(0) = xo € R™,
{y(t) = Cua(t) + Dael(t) = i(2), (101)

where C.; = Ay = A+ BK and D, = B.; = BK. Note
that the nominal system (101) is LTI. It represents the
dynamics of the continuous-time system with an additive
input perturbation e. The operator Ay, captures both
the effects of sampling and its variations. An alternative
model can also be derived by considering the actuation
error e,(t) = K(z(tg) — x(t)) (see [81]). The stability
of the sampled-data system (12) can then be studied by
analysing the interconnection (100),(101).

4.4.2  Small gain conditions

To provide constructive stability conditions, the Small
Gain Theorem [272,278,122,96] constitutes a simple and



powerful tool in the robust control framework. Let G :
L2[0,00) — L5[0,00) be the linear operator described
by the transfer function

G(s) = s(sI — Ay) !By (102)

associated to system (101). The operator G cap-
tures the behaviour of (101) for null initial condi-
tions. Considering the free response of system (101),
f@) = Agelettzy, ¥V t > 0, the interconnection
(100),(101) can be re-expressed as

{y Getf (103)

€= Ashy

(see Figure 6). A direct consequence of the Small Gain
Theorem is the fact that if

[Gll2,2]

Ash||2,2 <1, (104)

then the interconnection (103) is Ly stable, i.e. there
exist a positive scalar C' such that

| (@1 + 1@y as < c [ 157 as 105)
0 0

for any t > 0. Here ||G||2,2, || Asn||2,2 denote the induced
Lo norms of G and Agp,, respectively . Inequality (104)
is known as the small gain condition. Due to the linearity
of G, its induced L5 norm can be readily computed [278]
using the Hoo norm of its transfer function:

IGll2.2 = 1Glloe = sup 7 (G(jw) )
weR

Furthermore, for the case of LTI sampled-data systems,
Lo stability of the interconnection (103) implies asymp-
totic stability 5 of the sampled-data control loop (12):

Theorem 23 [81] Suppose that A.; is Hurwitz. System
(12) s Uniformly Asymptotically Stable if the feedback
interconnection (103) is Lo stable.

Therefore, providing tractable stability conditions for
system (12) leads to providing an estimate for the in-
duced L5 norm of the operator Ag,. An upper bound
of this norm has been computed in [130] using a more
general uncertain delay operator:

t

Ba y(®) = elt) = Ban)(®)i= - |

t—7(t)

y(0)do,
(106)

4 Civen an operator G : £5[0, 00) — L£5[0, 00), its induced
I1Gullzy

lullzqy ~
5 For relations with exponential stability see also [68].

L2 norm is defined as ||Gl|2,2 := sup,, .o

where 7(t) € [0, h]. The operator A, is a particular case
of Ay with 7(t) =t —tg, V¢t >0,k € N.

Lemma 24 [130] The Ly-induced norm of the operator
Ag in (106) is bounded by h.

Using this property, and the fact that the operator Ay
satisfies MAg = AgM for all M € R"*"™, Mirkin [174]
provided the following Lo stability conditions

JM ER™™, M =0 such that | MG(s)M =] < %

(107)
which is a consequence of the Scaled Small Gain The-
orem [242]. Interestingly, it is also shown that (107) is
related to the condition in [72] which is obtained using
the input-delay approach and the Lyapunov-Krasovskii
functional (23). The same LMI can be used to check
both conditions. Mirkin then showed that the bound on
the L9 induced norm can be enhanced by exploiting the
properties of Agp.

Lemma 25 [174]The Lo-induced norm of the operator
Agp is bounded by 69 = %E, and thus

+oo too
/ ||(Ashy)(9)|\2d9§/ Sally(0)]1%d6,  (108)
0 0

for ally € L£5[0,00).

This bound on the induced L5 norm of Ay is actually
exact and it is attained when there exists an index £ € N
such that tx41 — tx = h. This leads to the following
sufficient Lo stability condition, improving (107):

IM € R™™ M+ 0 such that | MG(s)M || < %
(109)
Note that the upper bound on induced L5 norm of Agp
can also be related to the Wirtinger’s inequalities [154]
used in the time delay approach. In practice, condition
(109) is readily verifiable via standard LMI for the esti-
mation of the Ho, norm of LTT systems [174,242,96]

XAa+ALX 2hXBK ALY
* -Y 2rK"B'Y| <0 (110)
* * -Y

to be solved for X, Y > 0 (obtained with Y = M?).

Recently, an extension of the Input-Output stability ap-
proach has been proposed [40] for nonlinear systems

{z = J@)+g(a)u, ”

y = H(z),



with a sampled-data output feedback

u(t) = K (y(tg)) ,Vt € [tr, trr1)- (112)

Here f(0) = 0 and all the functions are supposed to
be continuously differentiable. The closed-loop system
(111), (112) can be re-expressed as

i(t)=(f(z)+g(x)K (H(x)))
:=feor(x)
—g(x)(K (y(t)) — K (y(tx))),

1=y (t)

(113)

where fq(x) represents the dynamics of a nominal
closed-loop system and e,, the error of sampling at con-
troller level. This model can be related with (60) used
in the impulsive approach by [193]. The sampling error
satisfies

eu(t) = (114)

t
/ 2(0)d0,Vt € [tk, tpt1),

ty

where z(t) = dK (y(t)) /dt. Stability conditions can be
derived based on Input-to-State stability and small gain
analysis.

Theorem 26 [/0] Consider system (111) under the con-

trol law (112). Assume that tx11 — t € [0, h]. Suppose
that the following auxiliary system

{:‘c(t) = fa(2(t)) — g (z(t)) eu(t) (115)

2(t) = KGO

with input e, and output z has the following Input-to-
State and Input-to-Output Stability properties

()]l < max{Bx (|z(ro)ll,t = 70) , Yo ([leufry,ql) }:(116)
I2@)] < max{B (l=(ro)ll,t = 70) ;¥ (lewfro,gll) },  (117)

Vi > 19 > 0, where |lefr, 4 = SUDte (g, 1] llex (O, B, Bz
are class ICL functions and v, 7, are class K functions.
If v(s) < s/h for all s > 0, then the equilibrium point
x = 0 of the closed-loop system (111), (112) is Globally
Asymptotically Stable for any initial condition in R™.

4.4.8  Integral Quadratic Constraints and extensions

For the case of LTI sampled-data systems (12), the prop-
erties of the operator Agp, in (100) can be further ex-
ploited in the framework of Integral Quadratic Con-
straints (IQC) [168]. Less conservative stability condi-
tions can be obtained. While very general definitions
of IQCs are available in the literature [168], we restrict
ourselves here to IQCs defined by symmetric matrices
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II with real elements, that have been used for stability
analysis of systems with aperiodic sampling. Roughly
speaking, the bounded operator Ay, in (100), with in-
put y and output e, is said to satisfy the IQC defined by
the symmetric matrix IT if

/ > 1y(0)
o |e(d)
forally € L3[0,00) and e = Agpy. We present as follows
a simplified version of the classical IQC Theorem [168]

that can be used in order to derive stability conditions
for the interconnection (103).

T
y(0)
e(6)

I (118)

]dm

Theorem 27 [168] Consider the interconnection (103)
describing the LTI sampled-data system (12) and the
bounded operator Agp, in (100). Suppose that Ay = A+
BK is Hurwitz and assume that there exists a matriz

IT;; IIo
117, Tlpo

(119)

with 1111, II10, IIso € Rnxn’ 111, = 0, IIsg <0, such that
the operator Agy satisfies the IQC defined by I1; there
ezists € > 0 such that

lé(w)] H[GW] <l YweR  (120)
I I

Then the interconnection (103) is Lo stable.

Using Theorem 23, the conditions of Theorem 27 also
imply uniform asymptotic stability of the sampled-data
system (12). Condition (120) can be converted into a
frequency independent finite dimensional LMI using the
Kalman-Yakubovich-Popov Lemma [223]:

T
Ccl Dcl

0 I

o Ccl Dcl

0 I

AT P+ PA., PBy
BLP 0

to be solved for P = 0.

As an example, a simple IQC can be obtained directly
from Lemma 25. Note that inequality (108) implies that
Agp, satisfies the IQC defined by

H:[( O)QIOI].

For this IQC, condition (120) yields to the standard
small gain criteria

2[%

(122)

(ﬁ) G*(jw)é(jw) <1, VweR, (123)

™



which corresponds to a simple condition on the H,, norm
of G: || G(

Moo < 2%'
Fujioka [81] showed that the operator Ay, also satisfies
the following passivity-like property.

Lemma 28 [81] The operator Ay, defined in (100) sat-
isfies

/M yT(0)(Asny)(8)do <0, (124)
0

for ally € L£5[0,00).

It is important to note that if Agy, satisfies several IQC
defined by matrices Ily,Ils,...,II., then a sufficient
condition for stability that takes into account all the
properties is given by the existence of positive scalars
a1, Qa, ..., such that condition (120) holds with
II = a1l + aslls +. . ., o, I1,.. The properties of Ay, in
Lemma 25 and Lemma 28 can be generalized [81] using
scaling matrices 0 <Y € R*"™"™ 0 < X € R™"™ " and
grouped into the following IQC:

T

/ > |y(0)

o |e(d)
which holds for all y € £5]0,00) and e = Agpy with

dg = 2h . Using the integral property (125) and Theo-
rem 23 Fupoka [81] has proposed the following stability
cond1t1on

22X -y
Y -X

y(0)
e(0)

] do >0 (125)

Theorem 29 [81] The system (12) is Globally Uni-
formly Asymptotically Stable for any sampling sequence
with tp+1 — te < h if there exist 0 < P € R"*",
0< X eR™™ 0=<Y € R"™" satisfying

ALP+PA, PBCI}

BLP 0
Cu D, 32X -Y| |Cu D.
Lo 0 L <o (126)
0o I -y -X| |0 I

Taking into account more properties of the operator Ay,
may lead to less conservative results. Nevertheless, since
the analysis is of a frequency domain nature, the IQC ap-
proach is only applicable to LTI systems. However, one
may note that input delays, several performance specifi-
cations and classical nonlinearities (sector bounded, sat-
urations, etc.) can be characterized by elementary op-
erators and IQCs [168]. A more complex system can be
described by an interconnection of an LTI system and
a single block diagonal operator representing the differ-
ent perturbing elements. Once the IQCs for the differ-
ent perturbing elements are available, stability of more
complex systems is then a rather straightforward matter
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of defining a single aggregate IQC. This point enhances
the applicability of the IQC approach.

In the nonlinear case, an extension [206,207,203] of the
1QC approach is possible using methods inspired by the
Dissipativity Theory [267,262]. Consider the following
nonlinear affine system:

i(t) = f(x(t))+g(z(t)) K ((tr)),Vt € [tr,trt1), k €N

(127)
The functions f : R™ — R™ with f(0) = 0,and g : R® —
R™ "™ are considered to be sufficiently smooth and the
controller K : R — R™ is a continuously differentiable
function. Considering fu(z) = f(x) 4+ g(z)K(x), w(t) =

K (z(tx)) — K (2(t)) and an auxiliary output y = %_lm(x"
system (127) can be represented by
&= fa(z)+g(x)w
y = % (fu () +9(z)w) (128)
w = Ashy-

Here we consider that Ay, : £52[0,00) — L5]0,00),
with Agp, defined similarly to (100). The main idea in
[206,207,203] is to re-interpret the properties of the op-
erator Ay, in terms of "supply” functions S (y, w) such
that

/tS(y(G),w(H))dH SONVEE [t tier).  (129)

ty

The following result provides an extension of Theorem 29
to the nonlinear affine case.

Theorem 30 [206] Consider the sampled-data system
(127), and the equivalent representation (128), with Agp
as giwen in (100). Consider the quadratic form

T
Y
w
with 8 = 2h, 0 < X € R™ ™ and 0 X Y € R™*™,
Consider a neighbourhood D C R™ of the equilibrium
point x = 0, and suppose that there exist a differentiable

positive definite function V : D — R*, a scalar o > 0,
and class K functions 51 and B2, such that

—82X Y
Y X

Y

w

S(y, w) = , (130)

Aulllzl) < V(z) < Ba(llz]), Vx €D, (131)
and the following inequality is satisfied:
ov —af
e (fcl(ac) + gcl(x)w) + aV(x) < S(y, w)e , (132)

forany6 € {0,h}, x € D,w € R™. Then, the equilibrium
x = 0 of system (127) is Locally Uniformly Asymptoti-
cally Stable for any sampling sequence withty1—t, < h.



For particular classes of systems, such as LPV, bilinear
or more general polynomial sampled-data systems, the
conditions of Theorem 30 can be re-written as tractable
numerical criteria (LMIs or Sum-Of-Squares decompo-
sition) [206,207,203,202]. These conditions can be en-
hanced by giving more insight into the mathematical
model of the sampling operator Agy,. This would lead
to new characterizations of supply functions used in
the dissipativity-based approach. However, finding new
properties for the operator Ay, or a better way to rewrite
the sampled-data system as an interconnected system
has been proven to be difficult, and research is still in
progress.

4.4.4  Further reading

Some of the elements presented in Section 4.3 concern-
ing the use of norm-bounded approximations of the ma-
trix exponential [79] can also be interpreted in the In-
put/Output approach as the application of the Small
Gain Theorem to a discrete-time model. Other IQCs
can be found in [80,82]. An approach based on IQCs
for the discrete-time model has been proposed recently
in [129]. For more general nonlinear networked systems,
approaches considering sampling as a perturbations can
be found in [263,193]. The boundedness properties of the
sampling operator Agp, from Lemma 25 from [174] can
be related with the Wirtinger’s inequalities used in the
time delay approach [154,233,234]. Motivated by the ap-
proach presented in [67] in the input delay framework,
the sampling effect has been recently described by a new
operator in [128].

5 Sampling as a control parameter - an emerg-
ing area

In this section we briefly present the main research di-
rections and some problems concerning the case when
the sampling interval hy, (or equivalently the sequence of
sampling 0 = {t; }ren) is considered to be a control pa-
rameter that can be modified in order to ensure desired
properties in terms of stability and resource utilization.
From the real-time control point of view, this formula-
tion corresponds to designing a scheduling mechanism
that triggers the sampler [12,259]. The problem has at-
tracted sporadically the attention of the control system’s
community since the early ages of sampled-data control
[125,55]. With the spring of event- and self-triggered con-
trol techniques [10,13,259] it has become a very popular
topic [103,177].

Let us consider the nonlinear system (2) and the con-
troller (3) with a given sampling sequence o = {tx } ken-
Clearly, the asymptotic stability of system holds when
the sampling sequence o satisfies hy, = tr+1 — ¢ € (0, h]
for all £ € N, where h represents the MSI for which
the system is asymptotically stable under arbitrary sam-
pling. A basic problem in designing a sampling sequence
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o = {tr }rken is to ensure the stability of the system while
optimizing some Performance Index associated to the
frequency of sampling. Most of the time, sampling se-
quences are compared in simulation based on the mean
sampling interval. Given o, one possible choice of Per-
formance Index to be maximized could be

N-1

Z(thrl = t).

k=0

|
J (o) = liminf N

N —oc0

(133)

Note that the limit inferior of the sequence is needed
since, given a nonlinear system (2),(3), it is not obvious
that over an infinite time horizon the mean value interval
converges. Generally, the goal is to find sequences that
ensure stability and have the mean sampling interval
larger then the maximum sampling interval admissible
in the periodic and arbitrary varying case. Using the
Performance Index (133), the following basic problem
can be formulated:

e Problem B (Optimal sampling sequence): Consider
the nonlinear system (2) and the controller (3). Design
a sampling sequence ¢ maximizing the Performance
Index J (o) in (133) while ensuring the stability of the
closed-loop system (1),(2),(3),(4).

Of course, the problem makes sense only for systems
where the control action is necessary. It is not meaning-
ful for open-loop stable systems, where the sampling in-
terval can be made arbitrarily large. Various alternative
formalizations of Problem B can be imagined by consid-
ering other performance indexes or Cost Functions (e.g.
Je(0) = Yo, e”tr17t)) to be maximized or mini-
mized (see for instance [117,160] for a finite horizon for-
mulation). A stochastic formulation of the problem can
be found in [44,180]. It is possible to formulate more
complex problems in which one needs to find simultane-
ously the sampling sequence and system input, as in the
minimum attention control formulation [33,54,162], or
to optimise not only the sampling cost but also a more
classical performance index (LQR, LQG, L2-gain, etc.)
[14,104,8,93].

While the research in the case of arbitrary sampling has
reached an advanced phase of development, Problem B
is largely open. Due to the complexity of Problem B,
simplified versions are under study. For example, sta-
bility of sampled-data systems over periodic sequences
of sampling has been investigated in [125,146,232]. The
optimization of sampling sequences over a finite horizon
has been considered since the early works in [117,160].
For both practical and theoretical reasons, the design
of state-dependent (closed-loop) sampling sequences, in
which the sampling is triggered according to the system
state, represents a topic of interest. Basic ideas appeared
in the ’60s in the context of adaptive sampling [55,47]
and the topic is currently under study in the framework
of event-/self-triggered control [10,13,259,12,103,177].



5.1 FEvent-Triggered (ET) Control

The basic idea of event-triggered control schemes
[10,13,14,103,177] is to continuously monitor the system
state and to trigger the sampling only when neces-
sary, according to the desired performance of the sys-
tem. A sampling event is generated when the system’s
state crosses some frontier in the state-space. Let us
re-consider the hybrid model of an LTI sampled-data
system

it = Az + BK&

=0 (z,i,T)EC,

r=1 (134)
zt =2

It ==z (x, Z, T)GD,

Tt =0

where 2 represents the sampled version of the state and
7 the clock measuring the time since the last sampling
instant. In the classical time-triggered sampling context
(53), the sets C' and D implicitly indicating the sam-
pling moments are defined only according to the clock
variable 7: when uniform sampling with period T is con-
sidered, C' is defined by 7 € [0,T] and D by 7 = T. In
event-triggered control the idea is to define the sampling
triggering sets according to the state variable x and 2.
For example, it may be of interest to trigger only when
the error x — & becomes too large with respect to the
system state, i.e. when ||a(t) — z(t;)]| > v||z(t)|] where
~ > 0is a design parameter (see [250]). For this example
the sets C' and D are:

C={(a,#,7) €R" xR" x R: |l — &]| < vz}
D={(v,#,7) € R" x B" x R : [}z — & > ]2}

Various other types of triggering conditions have been
proposed in the literature: send-on-delta (Lesbegue
sampling, absolute triggering) [14,209,37], send-on-
energy [175], send-on-area [176], Lyapunov sampling
[260,238,63,221], etc.

Note that in event-triggering control, the sampling se-
quence o = {tg }ren is implicitly defined as:

tpr1 = min{t : t > ty, (z,2,7) € D}. (135)
The value h* for which ¢4 1 —tp > h* for all k € N
and all initial conditions is called the minimum inter-
event time. In the general case the implicit definition
of the sampling sequence does not guarantee anything
about the "well posedness” of the closed-loop system
in terms of existence of solutions, or concerning the ex-
istence of a minimum interval between two consecu-
tive events. In particular cases of event-triggered con-
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trol Zeno phenomena may occur, i.e. the minimum inter-
event time h* is zero® [162,51,25]. This represents an
important drawback since the system is converging to
a continuous-time control implementation instead of a
sampled-data one. To avoid it, various systematic de-
sign methodologies for event-triggered control with sta-
bility guarantees and no Zeno behavior have been pro-
posed: see [250,266,264,159] based on the Input/Output
stability approach, [51,238,65,221] using hybrid models,
[271,215,63] based on the time-delay approach. Note that
Zeno phenomena can be easily avoided by including re-
strictions on the clock variable when defining the jump
set D. For example, one may add next to the constraints
on x and Z, a constraint that guarantees that sampling
occurs only if 7 is greater than some minimum desired
inter-execution time [65,63,221]. Additionally, the trig-
gering condition may be verified on a discrete sequence
of time, as in the Periodic Event-Trigger (PET) control
[101,218,102], or in [57], where the event-triggered con-
trol problem is formulated directly in discrete-time.

5.2 Self-Triggered (ST) Control

The term self-triggered control was initially proposed by
[259] in the context of real time systems. The recent ar-
ticles [264,6] have attracted the attention of the control
system community. Note that basic ideas related to self-
triggered control appeared in the ’60s (see [55,117,47]
and the references therein). We point also to the pio-
neering work in [118] where elements concerning the use
of Lyapunov arguments for the design of self-triggering
control laws can be found.

In self-triggering, at each sampling time it is computed
both the sampled-data control value (to be sent to the
actuators) and the next sampling instant. The main idea
is to use the value of the state at sampling times and
knowledge about the system dynamics in order to pre-
dict the next time instant a control update is needed. A
self-triggering control scheme is described by a sampling
function h : R™ — RT \ {0} which, at each sampling
time tx, k € N, indicates the value of the current sam-
pling interval according to the system state. The sam-
pling sequence o = {tj }ren is formulated explicitly as
tke1 =t +h (ack) , (136)
where z;, = x(t;). Very often, the synthesis of a self-
triggered control scheme is based on a pre-existing event-
triggered control mechanism. In this context, it is aimed
at designing the sampling function by pre-computing, at
each sampling instant, an estimation of the next time
a sampling event has to be generated. For the example
of the LTT system (12) with the event-triggered control
condition ||z(t) — x(tx)|| > ~||z(t)||, one may want to

6 the system requires infinitely fast sampling



design the sampling function:

h(zy) = sup {0 > 0 : [[(A(s) — Dyl < v[|A(s)z]l,
Vs <0}, (137)

where A() = e4? + foe e4*dsBK. An important issue
is the complexity of the algorithms used for the online
implementation of the sampling function h(z). Even for
the simple case (137), the algorithms may be quite com-
plex since they involve solving hyperbolic inequalities. In
practice, simple approximations of such sampling func-
tion must be used.

Self-triggered control mechanisms with stability guaran-
tees have been proposed in [264,265,6,64,23] using the
Input/Output stability approach, in [166,161,255] using
discrete-time Lyapunov functions, in [61,63] using con-
vex embeddings, in [219] using a hybrid formulation and
in [62] using a time-delay system approach.

5.3 Relations with the arbitrary sampling problem

A basic problem in both event- and self-triggered con-
trol is to design the trigger (or the sampling map h(zy))
so as to enlarge the minimum inter-event time h* while
guaranteeing the stability of the system. Providing a
quantitative estimation of the minimum inter-event
time h* guarantees the existence of a sub-optimal solu-
tion to Problem B with a performance index J > h*.
Recently, connections between the arbitrary sampling
problem (Problem A) and Problem B have been made
in [60,61,63,221,252,50]. It has been shown that, for
some Lyapunov-based triggering conditions, the mini-
mum inter-event time h* corresponds to the Maximum
Sampling Interval i admissible in the arbitrary sam-
pling configuration. This issue is interesting since trig-
gering control schemes could be constructed by upper-
bounding the derivatives of Lyapunov functions, as the
ones used for solving Problem A. See, for instance, the
results in [63,62] where triggering mechanisms are op-
timized off-line using LMI criteria so as to enlarge the
minimum inter-event time. However, the potential of
the approaches used for the arbitrary sampling problem
is far from being fully exploited. The tools presented
in Section 4 may be useful for various aspects in Prob-
lem B: deriving new event-/self-triggering mechanisms,
providing less conservative estimations of the minimum
inter-event time h*, etc.

6 Conclusion

This article has presented basic concepts and recent re-
search directions in sampled-data systems: time-delay,
hybrid, discrete-time and input-output models; Lya-
punov and frequency domain methods for the stability
of systems with arbitrary sampling intervals; converse
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Lyapunov theorems and constructive numerical crite-
ria. It is to be emphasized that this overview is far from
being exhaustive. The research topic of systems with
time-varying sampling is still wide open and continu-
ously growing. In particular, the control of sampling is
presently receiving a lot of attention, as it was shown
in Section 5. It is worth noticing that the subject lies
at the intersection of four important axes in Control
Theory (time-delay, hybrid, LPV and input-output
approaches) and we hope this will have a stimulating
impact in the control community. Methods and tools
are being transferred from one approach to another and
the perspectives of cross-fertilisation and generalization
are numerous.
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