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A brief history of pairings

Pairings are a relatively new tool in cryptography. Recent progress on the attack algorithms have changed the security estimations. We make a list of pairing families and explain their advantages but also their weaknesses.

Introduction

Pairings are a mathematical tool which has been known to cryptographers for a long time and which switched sides during its history. If in the early 90's it was on the attacker's side, it is now used to create secure cryptologic protocols.

Let E be an elliptic curve defined over a finite field F q , r an integer number, P a point of order r and µ an rth root of unity in the algebraic closure F q . The Weil pairing (restricted to the subgroup generated by P ) is the map The Weil pairing owes its name to André Weil who gave an equivalent definition in 1940 [Wei40]. More precisely, Weil defined the map e W (S, T ) = g(X + S) g(X) ,

where g is a function so that div(g) = rT -rO E and X ∈ E\E[r 2 ] . This map is bilinear and non-degenerate (see Proposition III.8.1 in [Sil07]) and, since there is a unique map with these two properties (up to a multiplicative constant), we conclude that Equations ( 2) and ( 1) are alternative definitions of the same object. In 1985 Miller [Mil04] invented an algorithm based on this equivalent definition to compute e in polynomial time with respect to the bit sizes of q and r. Frey and Rück [FR94] created an alternative manner to compute Weil pairings using results of Tate and Lichtenbaum. From attacker's point of view, pairings are a tool to reduce hard problems to easier ones. Given a cyclic group G of known order, a generator P of G and an other point [a]P for a ∈ {0, 1, . . . , #G -1}, the discrete logarithm problem (DLP) consists in finding a. In 1992 Menezes,Okamoto and Vanstone [MOV93] showed that the Weil pairing associated to an elliptic curve over F q , an integer r, a point P of order r and an rth root of unity in F q allows to reduce the DLP on E to the DLP in the multiplicative group of F q (µ), the smallest subfield of F q which contains µ. The embedding degree of E with respect to r is the degree of F q (µ).

From a constructive point of view, pairings are a tool to combine two encrypted secrets into a common encrypted secret, without decrypting them at any time. In 2001 Joux [Jou00] proposed a three-party Diffie-Hellman key exchange which requires only one round of communications. If Alice, Bob and Carol want to agree on a common key they need to agree on an elliptic curve and on a point P of order r. Then they proceed in two steps 1. each participant generates a random integer, raises P to that power and broadcasts the result:

-Alice generates a and computes The three party Diffie-Hellman protocol can be broken by solving the DLP in the subgroup of E generated by P or by solving the DLP in the multiplicative group of F q k . This is true for other applications of pairings but we stick to this example for simplicity.

Known attacks against pairings

Attacks on the curve side

Pollard rho In the three-party Diffie-Hellman protocol an attacker can compute the discrete logarithm of [a]P and obtain the secret information a. The state-ofthe-art algorithm to solve DLP in elliptic curves over prime fields is Pollard's rho [Pol78] which has a cost of O( √ r) operations. Hence, for a given security level one has to set log 2 r = 2s and therefore log 2 #E(F q ) ≥ 2s. Due to Hasse's theorem, q and #E(F q ) have the same bit size up to an error of 3 bits, so we have log 2 q ≥ log 2 r = 2s.

Faults on the twist curve Biehl,Meyer and Müller [BMM00] explained that, since some implementations of the scalar multiplication use only the x coordinate of the points on the elliptic curve E : y 2 = x 3 + ax + b, by error injection one can transfer the DLP from E to its twisted curve E : y 2 = x 3 + ax + b, where is a non-square of F q . As a counter-measure we require that the elliptic curves used in cryptography are twist-safe, i.e. that both #E(F q ) and 2(q + 1) -#E(F q ) have large prime factors.

Faults in Miller's algorithm Page and Vercauteren [PV06] studied the fault attacks which concern precisely the evaluation of the pairings and are independent on the protocol in which this primitive is used.

Attacks on the finite field side

In the three-party Diffie-Hellman protocol an attacker, who has access to the public information [a]P , can compute µ a = e([a]P, P ) using solely public information. By solving the DLP in the group generated by µ one can obtain the secret information a. Hence a safe pairing requires that the DLP in the multiplicative group of F q k is hard.

The best algorithms to solve DLP in finite fields inherited the main traits from Index Calculus [Adl79] and have a complexity inferior to any exponential function. A suitable notation to express their complexity is

L Q (α, c) = exp((c + o(1))(log Q) α (log log Q) 1-α ),
where Q is the cardinality of the target finite field and α and c are two constants such that 0 < α < 1. When the constant c is not important we simply write L Q (α). By extension we use a similar notation when α is a function.

The state-of-the-art algorithms depend on the size of the characteristic p with respect to Q = p n (we switch notations from q k to p n to show that p is not necessarily prime). When p = L Q (l p , c p ) we have the following complexities:

-L Q ( 1 3 , 3 64 9 ) when the field has large characteristic, i.e. if l p > 2 3 , [JLSV06]; -L Q ( 1 3 , c) with c ∈ [ 3 48 9 , 3 96 
9 ] in the boundary case, i.e. if l p = 2 3 ; the constant c = 3 48 9 is obtained when c p = 12

1 3 , [SS16]; -L Q ( 1 3 , 3 48 9 )
when the field has medium characteristic, i.e. if 1 3 < l p < 2 3 , and n has a factor of size 12

-1 3 ( log Q log log Q ) 1 3 ; and L Q ( 1 3 , 3 96 9 )
if n has no factor of the suitable size (e.g. if n is prime), [BGGM15b]; is obtained when c p = 3 -1 3 [Jou13]; one has a better complexity in the case of Kummer extensions; -L Q (l p + o(1)) when the field has small characteristic, i.e. l p < 1 3 ; the best complexity corresponds to exp(O(1)(log log

Q) 2 ) = L Q (o(1)) when p = (log Q) O(1) , [BGJT14].
When the characteristic is non-small, i.e. l p ≥ 1/3, the best complexities are all obtained with the same algorithm, presented below.

Number field sieve (NFS)

The main steps of NFS [JL03] are similar to those of Index calculus and the key ingredient is smoothness: an integer is B-smooth if all its prime factors are less than B.

Polynomial selection One selects two polynomials f and g with integer coefficients which, when seen as elements of F p [x], have a common factor ϕ which has degree n and is irreducible. The performance of the algorithm depends strongly on the degrees of the two polynomials as well as on their norms, i.e. larges coefficient in absolute value.

Relation collection Given two polynomials

f = deg f i=0 f i x i and g = deg g i=0 g i x i
we collect all the pairs (a, b) of integers (or equivalently linear polynomials

a -bx ∈ Z[x]) such that max(|a|, |b|) ≤ E for a parameter E, gcd(a, b) = 1 and the two norms N f (a, b) = deg f i=0 f i a i b deg f -i and N g (a, b) = deg g i=0 g i a i b deg g-i are B-smooth.
This stage is usually done using a technique called sieve.

Linear algebra For each pair (a, b) yielded by the sieve one can write a linear equation whose unknowns are in bijection with set of prime ideals of degree one in the number fields of f and g of norm less than B. The square matrix has less than B unknowns and less than log 2 p n non-zero entry per row so that one can use sparse-matrix algorithms like Wiedemann [Wie86].

Individual logarithm

The unknowns obtained after the linear algebra stage, called virtual logarithms, allow to compute any discrete logarithm. This stage takes a negligible amount of time compared to the other stages.

When p has a special form, e.g. a low Hamming weight, a variant of NFS has a better asymptotic complexity.

The special number field sieve (SNFS) Given an integer d, an integer p is d-SNFS if there exists a polynomial P ∈ Z[x] and an integer u so that P ≤ 50 (or other absolute constant) and p = P (u). Semaev [Sem02] proved that the DLP is easier in prime finite fields F p when p is d-SNFS with d = ( 92 ) 1 3 ( log p log log p ) 1 3 . One doesn't have to change anything in the NFS algorithm except for the choice of polynomials: f = P (x) and g = x -u. In practice d is the value of deg f in the record computations using NFS and goes from 5 for fields of about 500 bits to 8 for fields of about 1200 bits. Experiments conducted with SNFS in the case of discrete logarithm [HT11] as well as of factorization [KBL14] confirm the efficiency of the algorithm for d-SNFS numbers with d ≥ 3.

The LogJam attack

A simple remark about the algorithms of the Index Calculus family is that they have two types of input data: a group G and a generator g of G which are used in the costly stages of the algorithm, relation collection and linear algebra, and an element h of G which isn't used before the individual logarithm stage. An attacker can therefore perform the expensive computations which depend on G and g once for all and use then to compute many secrete keys by solving many instances of individual logarithm with respect to that group. Adrian et al. [ABD + 15] conducted real life attacks in this manner. They estimated that 82% of the scanned servers use the same group and therefore can be attacked with one stone. One can easily imagine a situation where this is unacceptable: 80 bits of security are enough to protect bits of one minute for a pay-TV channel whereas it might be unacceptable for the whole program.

Consequences. Whenever the security of a cryptosystem is measured using Index Calculus attacks, as NFS, one is vulnerable to the LogJam attack. In this case one might either use a stronger level of security or generate on-the-fly the group used in the cryptosystem. For example in the case of pairings one should be able to generate on-the-fly pairing-friendly curves. However in the case of hardware implementation of cryptosystems, where parameters have to be hard-coded, the only option is to use larger key sizes.

Recent progress of the NFS attack

The first estimations of security of pairings have been done at a time when NFS could only be used for prime fields, and one had to make the hypothesis that the DLP in the general case is as hard as in prime fields [Len01]. Since then the NFS was adapted to the case F p n of non-small characteristic and in some cases the complexity is smaller than in the prime case, as we present below.

New methods of polynomial selection

The first manner to go from F p to F p n is to create new methods of polynomial selection whose result is a pair (f, g) ∈ Z[x] not necessarily irreducible which have a common irreducible factor ϕ in

F p [x].
For any pair (p, ϕ) formed of a prime p and a monic polynomial with integer coefficients ϕ which is irreducible in F p [x] and any parameter D ≥ deg ϕ one defines the lattice

L(p, ϕ, D) = {(a 0 , . . . , a D ) ∈ Z D+1 | D i=0 a i x i ∈ pZ[x] + ϕZ[x])}.
A naive method of polynomial selection would be to pick a random monic irreducible ϕ ∈ F p GJL In [JL03] Joux and Lercier proposed a method of polynomial for F p which was generalized [Mat06],[BGGM15b] to F p n with n > 1 (generalized Joux Lercier). One takes f to be a polynomial of degree D + 1 with f = 1 which has an irreducible factor ϕ ∈ F p [x] of degree n, and then one makes g from the shortest vector of L(p, ϕ, D). The advantage in this case is that f has coefficients of size O(1) instead of c 1 (p n ) 1 D+1 for the small cost of increasing the degree of f from D to D + 1.

JLSV 1 Also in [JLSV06] Joux, Lercier, Smart and Vercauteren proposed to take f equal to a polynomial of degree n which is irreducible in F p [x] with f ≤ 1 and to set g = f + p. An additional improvement, which doesn't change the asymptotic complexity, consists in selecting polynomials such that deg f = deg g and f = g . We can obtain this if we apply the JLSV 2 method with D = 2n, when

f ≈ g ≈ c 1 (p n ) 1 2n = c 1 √ p.
However, one can obtain polynomials of the same characteristics by reducing a lattice of dimension 2 instead of 2n. Indeed one takes two polynomials f 0 , f 1 ∈ Z[x] of degree n respectively ≤ n -1 so that, for all integers a, f 0 + af 1 has degree n. Next one LLL-reduces the lattice generated by M (a, p) = 0 p 1 a and obtains a vector (u, v) of norm ≤ 2 1 4

√ p. Finally one

sets f = f 0 + af 1 and set g = vf 0 + uf 1 , which is a multiple of f in F p [x].
Conjugation method This method, presented in [BGGM15b], is similar to JLSV 1 . First we select f 0 and f 1 so that, for all integer a, f 0 + af 1 has degree n.

Next we select m as small as possible so that x 2 -m has a root a ∈ Z modulo p and f 0 + af 1 is irreducible in F p [x]. We finish as in JLSV 1 by reducing M (a, p) and setting g = vf 0 + uf 1 . At this point one would like to set

f = f 0 + √ mf 1 but this polynomial belongs to Z[ √ m][x] instead of Z[x].
We overcome this difficulty by setting

f = (f 0 + √ mf 1 )(f 0 - √ mf 1 ) = f 2 0 -mf 2 1 which has integer coefficients and is a multiple of g in F p [x].
Methods for composite n Sarkar and Singh [SS16] proposed a method which improves the asymptotic complexity of NFS when p = L Q (2/3, c p ) with c p ∈ [1.12, 1.45] [3. 15, 20.91]. The authors made a precise estimation of efficiency in the case of finite fields of cryptographic sizes n = 4 and n = 6.

Practical efficiency of the new methods The new methods have been tested in practice and one concluded that the DLP in non-prime finite fields can be easier than in the prime case. In Table 1 we compare the cases n = 2 and n = 3 using the Conjugation method (Conj) to the prime case (n = 1). For this we converted the computation time into GIPS years (1GIPS year = the number of instructions done in one year by a CPU core of 1GHz) and made the convention that 1 GPU hour = 10 CPU hours. 

The tower number field sieve

A second method to go from F p to F p n with n > 1 has been proposed by Schirokauer [Sch00] and revised in [BGK15]. One selects h ∈ Z[x] of degree n which is irreducible in F p [x] and call ι a root of h in its number field. Then one selects f and g in Z[x] which have a common root in F p using one of the methods for F p and calls α f (resp. α g ) a root of f (resp. g) in its number field and set

K f = Q(ι, α f ) (resp. K g = Q(ι, α g )) and compute θ f (resp. θ g ) a primitive element of K f (resp. K g ).
One sets the parameters E, B and d at the same value as when computing discrete logarithms in a prime field of same bit size as F p n . The factor base is formed of the prime ideals of K f and K g whose norm is less than B and whose inertia degree over Q(ι) is one, together with all the prime ideals dividing the leading coefficients of f and g. The algorithm continues as follows. Then solve the linear system to obtain the virtual logarithms of the factor base. 3. Compute the desired discrete logarithm in a similar manner to the classical case.

The practical efficiency of the TNFS has not been tested. Indeed, the relation collection consists of sieving on pairs (a, b) ∈ Z[t] of degree less than n which is equivalent to sieving on pairs of 2n-tuples of integers. Several teams [Zaj10],[HAKT15],[GGV16] made experiments in the case of 3-tuples and concluded that this does not represent a major practical obstacle. This might be a starting point for future experiments in the case of 4-tuples so that TNFS in F p 2 can be tested.

The extended tower number field sieve

The extended number field sieve (exTNFS), presented in [KB16], consists in combining the two ideas of the previous sections: new methods of polynomial selection and tower number fields. One writes n = ηκ with η, κ ∈ Z but not necessarily different from 1 and n and selects polynomials:

1. f and g as in Section 3.1 with κ instead of n; 2. h as in Section 3.2 with η instead of n.

When η = 1 we obtain the variant of NFS in Section 3.1, when η = n we obtain TNFS (Section 3.2), but when n is composite and η is a proper factor of n we obtain a new algorithm. When gcd(η, κ) = 1 one has to use a special method of polynomial selection which is due to Jeong and Kim [JK16]. The advantage of exTNFS is that, in a similar manner in which in TNFS one has the same size of norms as in classical NFS, in exTNFS one has the same size of the norms when attacking F p ηκ as when attacking F P κ for a prime P of the same bit size as p η .

The case of general primes In order to analyze the efficiency of exTNFS we estimate the bit size of the norms product. Using Lemma 1 in [KB16] we find that, when the Conjugation method is used to select f and g, the two upper bound on the norms bit size is:

norms bit size(exTNFS-Conj) ≤ 3κ log 2 E + 1 2κ log 2 Q + o(1). ( 3 
)
where o( 1) is a negligible term when log 2 Q goes to infinity. The o(1) term is indeed negligible in cryptographic examples, e.g. Example 1 in [KB16]. Hence exTNFS has the same efficiency as NFS with the difference that now we can tune the parameter κ and make it equal to any factor of n.

The right hand member of Equation (3) has its minimum when κ ≈ log 2 Q 6 log 2 E . Although the bit size of the parameter E depends on the size of the norms it doesn't vary of more than a factor 2 among variants of NFS when one attacks the same size of finite fields. In [KDL + 16] one has log 2 Q = 768 and log 2 E ≈ 43 so that the optimal value of κ ≈ 1.72. We conclude that if one selects f and g using the Conjugation method then for target fields of approximatively 1000 bits with n ≤ 24 composite the best options are κ = 2 if n is even and κ = 3 if n is odd. This would allow to obtain similar practical results as in Table 1.

The case of primes of special form The exTNFS variant for SNFS numbers, abbreviated SexTNFS, consists in writing n = ηκ for two integers κ and η not necessarily different from 1 and n, in selecting h as in Section 3.2 with η instead of n and in selecting f and g using the Joux-Pierrot method [JP13], that we describe below, with κ instead of n.

One selects a monic polynomial S ∈ Z[x] of degree n such that f = P (S(x)) is irreducible in F p [x] and then sets g = S(x) -u. The method is correct due to the following equation:

f (x) -p = P (S(x)) -P (u) ≡ 0 mod (S(x) -u) in F p [x].
Once again we evaluate the practical efficiency using the estimation of the bit size of the norms product, which from [KB16, Section 5.2] is:

norms bit size(SexTNFS) ≤ (d + 1)κ log 2 E + 1 κd log 2 Q + o(1),
where o(1) is negligible when Q goes to infinity. The advantage of SexTNFS is that we have the possibility to set κ equal to any divisors of n.

Pairings families and their security

In the light of the recent progress, a perfect pairing family needs to contain a large number of curves for each security level that can be rapidly generated. Each curve of a perfect family has an embedding degree k which can be set as desired to any prime of desired size. The characteristic p is large and is not d-SNFS with d ≥ 3. Finally for efficiency reasons the parameter r has the same bit size as q.

Freeman, Scott and Teske [FST10] made a taxonomy of known pairing-friendly families of elliptic curves. Given a bit size and an embedding degree k, most of them are constructed in two steps: i) one selects a prime power q of prescribed bit size and an integer t so that any elliptic curve over F q of trace t has embedding degree k and its cardinality has a large prime factor r; ii) one uses the CM method [Mor91],[AM93], which, given a prime power q and an integer t, allows to construct elliptic curves over F q of trace t.

The CM method has complexity O(D 1+ ) where D is the unique integer so that (4q -t 2 )/D is a perfect square. This imposes that we fix D in advance: it will be either small or will have common factors with q. By definition #E(F q ) = q + 1 -t so we ask the existence of a prime r so that q + 1 -t ≡ 0 mod r. Finally, the property that k is the embedding degree of the curve is equivalent to Φ k (q) ≡ 0 (mod r). We summarize the conditions on the output of the first step as follows:

CM-1. Φ k (t -1) ≡ 0 (mod r) CM-2. q + 1 -t ≡ 0 (mod r) CM-3. ∃y, 4q = Dy 2 + t 2

Supersingular curves

When k = 2 there is a value of D for which the system is easy to solve. Indeed we set t = 0 so that we have Φ 2 (t -1) = 0 and therefore the first equation is satisfied independently on r. In Equation CM-3. we take D = q and y = 2 so that there is no condition on q. Finally Equation CM-2. states that q + 1 has a prime factor r which is easy to fulfill by enumerating primes q. Bröker [Brö06] presented the CM method in the case D = q, which is fast although D is large.

A natural question is whether this method can be extended to other values of k. The answer is given by the following classical result.

Proposition 1. If p ≥ 5 is a prime then any supersingular elliptic curve over F p has embedding degree k = 2.

Proof. By the definition of supersingular curves we have gcd(t, p) = 1 so p divides t and therefore t = 0 or |t| ≥ p. By Hasse's theorem |t| ≤ 2 √ p which is less than p and therefore t = 0. Then q ≡ t -1 ≡ -1 (mod r) and q 2 ≡ 1 (mod r) which shows that k = ord r (q) = 2.

Drawback Due to the quasi-polynomial algorithm the cases p = 2 and p = 3 are forbidden. When p ≥ 5 the embedding degree k = 2 is fixed to a value which is far from the optimal value in Table ?? and has made the object of recent computation records which were faster than the prime case.

Pinch-Cocks [CP01]

One starts by replacing Equation CM-2. with CM-2 . Dy 2 + (t -2) 2 ≡ 0 (mod r) so that we obtain an equivalent system. Then we select r so that r ≡ 1 mod k and (

-D r ) = 1. Then Equation CM-2'. is factorized into ( √ -Dy + (t -2))( √ -Dy -(t -2)) ≡ 0 (mod r).
The choice of r allows to set t equal to a root of the polynomial Φ

k (X -1) ∈ F r [X].
The same choice allows to solve this Equation CM-2'. for y: y = (t -2)/ √ -D (mod r). Finally q is set to (Dy 2 + t 2 )/4. Heuristically this is integer in a constant proportion of the cases and has the same probability to be prime as a random integer of the same size, i.e. one succeeds on average after O(log q) trials.

Drawback. With high probability the integer y has the same bit size as r so that log 2 q ≈ 2 log 2 r which affects the efficiency of pairings.

Dupont-Enge-Morain [DEM05]

Once again we start by replacing Equation CM-2. by Equation CM-2 . Then we see Equations CM-1 and CM-2 as a system which has to be solved with y, t ∈ F r :

Φ k (t -1) = 0 Dy 2 + (t -2) 2 = 0.
We solve the system (for a given D and bit size b of q) as follows:

1: R(y)

← Res t (Φ k (t -2), Dy 2 + (t -2) 2 ); 2: for y ≤ 2 b 2ϕ(k) do 3:
r ← the largest prime factor of R(y)

4: t = 2 + -Dy 2 (if it exists) 5:
q ← q = (Dy 2 + t 2 )/4 6:

q ← q + 1 + t (cardinality of the twisted curve to be tested) 7:

if q and q are integer primes and log 2 r ≥ b/2 then return y 8:

end if 9: end for For example we ran the algorithm for the bit size b = 256, embedding degree k = 16 and the parameter D = 3. The output list was: y ∈ {39193, 61815}.

Drawback. The total number of curves which can be constructed for cryptographic sizes is very small if we restrict to twist-safe curves so that this family is vulnerable to the LogJam attack.

Sparse families (e.g. MNT [MNT01])

The following construction is possible for all integers k so that ϕ(k) = 2, i.e. k = 3, 4 and 6, but for simplicity we present only the case k = 3. We set r = Φ k (t -1) so that Equation CM-1 is satisfied. Next we set q = r + t -1, which satisfies CM-2.. The method was generalized by Freeman when ϕ(k) but cannot be generalized further.

Proposition 2. If ϕ(k) > 4 then the system CM-1, 2, 3 has a finite set of solutions.

Proof. When we set r = Φ k (t -1) Equation CM-3. becomes

y 2 = f (t) where f (t) = 1 D (4q -t 2 ) = 1 D (4(Φ k (t -1) + t -1) -t 2 ).
By the Riemann-Hurwitz formula the genus of the curve is deg f -1 2 = ϕ(k)-1 2 ≥ 2. By Faltings' theorem the equation has a finitely many solutions in Q.

The integer solutions obtained when setting t equal to a linear polynomial in an additional variable are a subset of the rational solutions, so we have a finite number in total.

Drawback The embedding degree k has a very small set of possibilities all of which are divisible by 2 or 3. Next we take t to be a polynomial t(x) so that Φ k (t(x)) ≡ 0 mod r(x). Since Equation CM-2 factors we can set y(x) = t(x) • t(x) √ -D where 1 √ -D is a polynomial z(x) in Q(x] so that Dz 2 + 1 ≡ 0 mod r(x). Finally set q(x) = 1 4 (Dy(x) 2 + t(x) 2 ). The advantage of this method is that pairing-friendly curves can be generated on the fly by evaluating r and q at integer values x.

Drawback The primes constructed by this method are 2ϕ(k)-SNFS and therefore the NFS attacks have a smaller asymptotic complexity.

Menezes-Köblitz [KM05]

Not all the pairing constructions are obtained using the CM method. Menezes and Köblitz proposed a family which is not affected by the recent progress: p is not d-SNFS with d ≥ 3 so that the SNFS attack has no consequences and k = 1 so that the security on the finite field side is the same as that of DSA.

Drawback The embedding degree k cannot be tuned as in Table ??.

Conclusion

We have identified a list of properties that a perfect pairing family should have and, by a thorough examination, concluded that in the present state of the art there is no perfect pairing family. In particular there is no clear champion because the Barreto-Naehrig family, long believed to be perfect for 128 bits of security, has a characteristic of a special form and is target to the SNFS attack.

Pairings are subject to two contradictory trends. On the one hand they require more time before being standardized because no perfect family has been proposed. On the other hand, time is running against pairings as they are subject to the NFS attack and therefore belong to the sub-exponential cryptography as RSA and DSA whereas there exist alternative primitives which are based on lattices and belong to the exponential cryptography.

e

  : Z/rZP × Z/rZP → µ Z/rZ ∀(a, b) ∈ (Z/rZ) 2 ([a]P, [b]P ) → µ ab . (1) Two properties of the Weil pairing are direct: bilinearity: for all a, a , b, b we have e([a + a ]P, [b]P ) = e([a]P, [b]P ) • e([a ]P, [b]P ) e([a]P, [b + b ]P ) = e([a]P, [b]P ) • e([a]P, [b ]P ) non-degeneracy: for all a = 0 there exists b so that e([a]P, [b]P ) = 1, and similarly with the roles of a and b exchanged.

  [a]P and broadcasts it, -Bob generates b and computes [b]P and broadcasts it, -Carol generates c and computes [c]P and broadcasts it; 2. each participant computes the Weil pairing of the received points and raises it to its own secret number: -Alice computes e([b]P, [c]P ) a , -Bob computes e([c]P, [a]P ) b , -Carol computes e([a]P, [b]P ) c . Due to Equation (1) all participants have computed µ abc . This protocol has inspired alternative solutions which are based on lattices and therefore belong to the exponential cryptography [GGH13].

  [x] of degree n and to make f and g from the shortest two vectors b 1 and b 2 in an LLL-reduced basis of L(p, ϕ, D). By the Lenstra-Lenstra-Lovasz theorem [LLL82] we know that b 1 2 ≤ c 1 Vol(L) 1 dim L where c 1 = 2 dim L 4 . Heuristically we expect b 1 and b 2 to have no non-zero coordinates (random vectors) so that deg f = deg g = D and b 1 ≈ b 2 ≈ Vol(L) 1 dim L . JLSV 2 In [JLSV06] Joux, Lercier, Smart and Vercauteren take ϕ of degree n < D such that ϕ 2 = 1 + c 1 Vol(L) 1 dim L . Then one can make f from the coordinates of the shortest vector of L(p, ϕ, D) and set g = ϕ. By the Lenstra-Lenstra-Lovasz theorem f ≤ c 1 Vol(L) 1 dim L < g so the two polynomials are distinct. The advantage is that deg g = n which is smaller than D whereas deg f , f and g are the same as in the naive method.

1.

  Enumerate all pairs a, b ∈ Z[t] of degree n -1 with a , b ≤ E 1 n and collect those such that Res t (F (a, b), h(t)) and Res t (G(a, b), h(t)) are B-smooth. 2. Consider each element a(ι) + α f b(ι) (resp. a(ι) + α g b(ι)) and compute the corresponding linear equations, as in the case of the classical version of NFS.

4. 5

 5 Complete families (e.g BN [BN05]) Once again we replace Equation CM-2 by CM-2 . Then we set r equal to a polynomial r(x) whose number field contains Q( √ -D, ζ k ) for a kth root of unity ζ k . This translates into 1. Φ k is totally split modulo r(x); 2. x 2 + D is totally split modulo r(x).

Table 1 :

 1 Time of discrete logarithms computations in Fpn measured in GIPS years.

	bit size of p n 160 dd (≈ 532 bits) 180 dd (≈ 600 bits)
	n=1	55.5 [Kle07]	260 [BGI + 14]
	n=2 (Conj)	0.5 [BGGM14]	1 [BGGM15b]
	n=3 (Conj)	34 [BGGM15a]	46 [GGM16]