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We here revisit Fourier analysis on the Heisenberg group H d . Whereas, according to the standard definition, the Fourier transform of an integrable function f on H d is a one parameter family of bounded operators on L 2 (R d ), we define (by taking advantage of basic properties of Hermite functions) the Fourier transform f H of f to be a uniformly continuous mapping on the set

This enables us to extend f H to the completion H d of H d , and to get an explicit asymptotic description of the Fourier transform when the 'vertical' frequency tends to 0.

We expect our approach to be relevant for adapting to the Heisenberg framework a number of classical results for the R n case that are based on Fourier analysis. As an example, we here establish an explicit extension of the Fourier transform for smooth functions on H d that are independent of the vertical variable.

Introduction

Fourier analysis on locally compact Abelian groups is by now classical matter that goes back to the first half of the 20th century (see e.g. [START_REF] Rudin | Fourier analysis on groups[END_REF] for a self-contained presentation).

Consider a locally compact Abelian group (G, +) endowed with a Haar measure µ, and denote by ( G, •) the dual group of (G, +) that is the set of characters on G endowed with the standard multiplication of functions. By definition, the Fourier transform of an integrable function f : G → C is the continuous and bounded function f : G → C (also denoted by Ff ) defined by

(0.1) ∀γ ∈ G, f (γ) = Ff (γ) def = G f (x) γ(x) dµ(x).
Being also a locally compact Abelian group, the 'frequency space' G may be endowed with a Haar measure µ. It turns out to be possible to normalize µ so that the following Fourier inversion formula holds true for, say, all function f in L 1 (G) with f in L 1 ( G):

(0.2) ∀x ∈ G, f (x) = G f (γ) γ(x) d µ(γ).
As a consequence, we get the Fourier-Plancherel identity

(0.3) G |f (x)| 2 dµ(x) = G | f (γ)| 2 d µ(γ)
for all f in L 1 (G) ∩ L 2 (G).
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Fourier transform on locally compact Abelian groups has a number of other interesting properties that we do not wish to enumerate here. Let us just recall that it changes convolution products into products of functions, namely (0.4) ∀f ∈ L 1 (G), ∀g ∈ L 1 (G), F(f ⋆ g) = Ff • Fg.

In the Euclidean case of R n the dual group may be identified to (R n ) ⋆ through the map ξ → e i ξ,• (where •, • stands for the duality bracket between (R n ) ⋆ and R n ), and the Fourier transform of an integrable function f may thus be seen as the function on (R n ) ⋆ (usually identified to R n ) given by (0.5)

F(f )(ξ) = f (ξ) def = R n e -i ξ,x f (x) dx.
Of course, we have (0.4) and, as is well known, if one endows the frequency space (R n ) ⋆ with the measure 1 (2π) n dξ then the inversion and Fourier-Plancherel formulae (0.2) and (0.3) hold true. Among the numerous additional properties of the Fourier transform on R n , let us just underline that it allows to 'diagonalize' the Laplace operator, namely for all smooth compactly supported functions, we have (0.6)

F(∆f )(ξ) = -|ξ| 2 f (ξ).
For noncommutative groups, Fourier theory gets wilder, for the dual group is too 'small' to keep the definition of the Fourier transform given in (0.1) and still have the inversion formula (0.2). Nevertheless, if the group has 'nice' properties (that we wish not to list here) then one can work out a consistent Fourier theory with properties analogous to (0.2), (0.3) and (0.4) (see e.g. [START_REF] Astengo | Fourier transform of Schwartz functions on the Heisenberg group[END_REF][START_REF] Ciatti | Uncertainty inequalities on stratified nilpotent groups[END_REF][START_REF] Corwin | Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples[END_REF][START_REF] Hulanicki | A functional calculus for Rockland operators on nilpotent Lie groups[END_REF][START_REF] Ricci | Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals[END_REF][START_REF] Stein | Harnomic Analysis[END_REF][START_REF] Taylor | Noncommutative Harmonic Analysis[END_REF][START_REF] Thangavelu | Harmonic analysis on the Heisenberg group[END_REF] and the references therein for the case of nilpotent Lie groups). In that context, the classical definition of the Fourier transform amounts to replacing characters in (0.1) with suitable families of irreducible representations that are valued in Hilbert spaces (see e.g. [START_REF] Corwin | Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples[END_REF][START_REF] Folland | Harmonic Analysis in Phase Space[END_REF] for a detailed presentation). Consequently, the Fourier transform is no longer a complex valued function but rather a family of bounded operators on suitable Hilbert spaces. It goes without saying that within this approach, the notion of 'frequency space' becomes unclear, which makes Fourier theory much more cumbersome than in the Abelian case.

In the present paper, we want to focus on the Heisenberg group which, to some extent, is the simplest noncommutative nilpotent Lie group and comes into play in various areas of mathematics, ranging from complex analysis to geometry or number theory, probability theory, quantum mechanics and partial differential equations (see e.g. [START_REF] Bahouri | Phase-space analysis and pseudodifferential calculus on the Heisenberg group[END_REF][START_REF] Faraut | Deux cours d'analyse harmonique, École d' Été d'analyse harmonique de Tunis[END_REF][START_REF] Stein | Harnomic Analysis[END_REF][START_REF] Taylor | Noncommutative Harmonic Analysis[END_REF]). As several equivalent definitions coexist in the literature, let us specify the one that we shall adopt throughout. Definition 0.1. Let σ(Y, Y ′ ) = η, y ′ -η ′ , y be the canonical symplectic form on T ⋆ R d . The Heisenberg group H d is the set T ⋆ R d × R equipped with the product law

w • w ′ def = Y + Y ′ , s + s ′ + 2σ(Y, Y ′ ) = y + y ′ , η + η ′ , s + s ′ + 2 η, y ′ -2 η ′ , y
where w = (Y, s) = (y, η, s) and w ′ = (Y ′ , s ′ ) = (y ′ , η ′ , s ′ ) are generic elements of H d .

As regards topology and measure theory on the Heisenberg group, we shall look at H d as the set R 2d+1 , after identifying (Y, s) in H d to (y, η, s) in R 2d+1 . With this viewpoint, the Haar measure on H d is just the Lebesgue measure on R 2d+1 . In particular, one can define the following convolution product for any two integrable functions f and g:

(0.7) f ⋆ g(w) def = H d f (w • v -1 )g(v) dv = H d f (v)g(v -1 • w) dv.
Even though convolution on the Heisenberg group is noncommutative, if one defines the Lebesgue spaces L p (H d ) to be just L p (R 2d+1 ), then one still gets the classical Young inequalities in that context.

As already explained above, as H d is noncommutative, in order to have a good Fourier theory, one has to resort to more elaborate irreducible representations than character. In fact, the group of characters on H d is isometric to the group of characters on T ⋆ R d . Hence, if one defines the Fourier transform according to (0.1) then the information pertaining to the vertical variable s is lost.

There are essentially two (equivalent) approaches. They are based either on the Bargmann representation or on the Schrödinger representation (see [START_REF] Corwin | Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples[END_REF]). For simplicity, let us just recall the second one which is the family of group homomorphisms w → U λ w (with λ ∈ R \ {0}) between H d and the unitary group

U (L 2 (R d )) of L 2 (R d ), defined for all w = (y, η, s) in H d and u in L 2 (R d ) by U λ w u(x) def = e -iλ(s+2 η,x-y ) u(x -2y).
The classical definition of Fourier transform of integrable functions on H d reads as follows:

Definition 0.2. The Fourier transform of an integrable function f on H d is the family

(F H (f )(λ)) λ∈R\{0} of bounded operators on L 2 (R d ) given by F H (f )(λ) def = H d f (w)U λ w dw.
In the present paper, we strive for another definition of the Fourier transform, that is as similar as possible to the one for locally compact groups given in (0.1). In particular, we want the Fourier transform to be a complex valued function defined on some explicit 'frequency space' that may be endowed with a structure of a locally compact and complete metric space, and to get formulae similar to (0.2), (0.3), (0.4) together with a diagonalization of the Laplace operator (for the Heisenberg group of course) analogous to (0.6).

There is a number of motivations for our approach. An important one is that, having an explicit frequency space will allow us to get elementary proofs of the basic results involving the Fourier transform, just by mimicking the corresponding ones of the Euclidean setting. In particular, we expect our setting to open the way to new results for partial differential equations on the Heisenberg group. Furthermore, our definition will enable us to get an explicit (and comprehensible) description of the range of the Schwartz space by the Fourier transform. As a consequence, extending the Fourier transform to the set of tempered distributions will become rather elementary (see more details in our forthcoming paper [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF]).

In the present paper, we will give two concrete applications of our approach. First, in Theorem 1.3, we will provide an explicit asymptotic description of the Fourier transform when (what plays the role of) the vertical frequency parameter tends to 0. Our second application is the extension (also explicit) of the Fourier transform to functions depending only on the horizontal variable (this is Theorem 1.4).
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Results

Before presenting the main results of the paper, let us recall how, with the standard definition of the Fourier transform in H d , Properties (0.2), (0.3) and (0.4) may be stated (the reader may refer to e.g. [START_REF] Bahouri | Phase-space analysis and pseudodifferential calculus on the Heisenberg group[END_REF][START_REF] Beals | Calculus on Heisenberg manifolds[END_REF][START_REF] Faraut | Deux cours d'analyse harmonique, École d' Été d'analyse harmonique de Tunis[END_REF][START_REF] Fischer | A pseudo-differential calculus on graded nilpotent Lie groups, Fourier analysis[END_REF][START_REF] Folland | Harmonic Analysis in Phase Space[END_REF][START_REF] Geller | Fourier analysis on the Heisenberg group I, the Schwartz space[END_REF][START_REF] Hulanicki | A functional calculus for Rockland operators on nilpotent Lie groups[END_REF][START_REF] Lavanya | Revisiting the Fourier transform on the Heisenberg group[END_REF][START_REF] Stein | Harnomic Analysis[END_REF][START_REF] Taylor | Noncommutative Harmonic Analysis[END_REF][START_REF] Thangavelu | Harmonic analysis on the Heisenberg group[END_REF] for more details).

Theorem 1.1. Let f be an integrable function. Then we have

(1.1) ∀λ ∈ R \ {0} , F H (f )(λ) L(L 2 ) ≤ f L 1 (H d )
and, for any function

u in L 2 (R d ), the map λ → F H (f )(λ)(u) is continuous from R \ {0} to L 2 (R d ).
For any function f in the Schwartz space S(H d ) (which is the classical Schwartz space on R 2d+1 ), we have the inversion formula:

(1.2) ∀w ∈ H d , f (w) = 2 d-1 π d+1 R tr U λ w -1 F H f (λ) |λ| d dλ ,
where tr(A) denotes the trace of the operator A.

Moreover, if f belongs to L 1 (H d ) ∩ L 2 (H d ) then for any λ in R \ {0}, F H (f )(λ)
is an Hilbert-Schmidt operator, and we have

(1.3) f 2 L 2 (H d ) = 2 d-1 π d+1 R F H (f )(λ) 2 HS |λ| d dλ
where • HS stands for the Hilbert-Schmidt norm.

We also have an analogue of the convolution identity (0.4). Indeed, as the map w → U λ w is a homomorphism between H d and U (L 2 (R d )), we get for any integrable functions f and g,

(1.4) F H (f ⋆ g)(λ) = F H (f )(λ) • F H (g)(λ).
Let us next recall the definition of the (sub-elliptic) Laplacian on the Heisenberg group, that will play a fundamental role in our approach. Being a real Lie group, the Heisenberg group may be equipped with a linear space of left invariant vector fields, that is vector fields commuting with any left translation τ w (w ′ ) def = w • w ′ . It is well known that this linear space has dimension 2d + 1 and is generated by the vector fields

S def = ∂ s , X j def = ∂ y j + 2η j ∂ s and Ξ j def = ∂ η j -2y j ∂ s , 1 ≤ j ≤ d.
The Laplacian associated to the vector fields (X j ) 1≤j≤d and (Ξ j ) 1≤j≤d reads

(1.5) ∆ H def = d j=1 (X 2 j + Ξ 2 j ).
As in the Euclidean case (see Identity (0.6)), Fourier transform allows to diagonalize Operator ∆ H : it is based on the following relation that holds true for all functions f and u in S(H d ) and S(R d ), respectively (see e.g. [START_REF] Huet | Décomposition spectrale et opérateurs[END_REF][START_REF] Olver | Asymptotics and special functions[END_REF]):

(1.6) F H (∆ H f )(λ) = 4F H (f )(λ) • ∆ λ osc with ∆ λ osc u(x) def = d j=1 ∂ 2 j u(x) -λ 2 |x| 2 u(x).
This prompts us to take advantage of the spectral structure of the harmonic oscillator to get an analog of Formula (0.6). To this end, we need to introduce the family of Hermite functions (H n ) n∈N d defined by

(1.7) H n def = 1 2 |n| n! 1 2 C n H 0 with C n def = d j=1 C n j j and H 0 (x) def = π -d 2 e -|x| 2 2 ,
where C j def = -∂ j + M j stands for the creation operator with respect to the j-th variable and M j is the multiplication operator defined by M j u(x)

def = x j u(x). As usual, n! def = n 1 ! • • • n d ! and |n| def = n 1 + • • • + n d .
It is well known that the family (H n ) n∈N d is an orthonormal basis of L 2 (R d ). In particular,

(1.8) ∀(n, m) ∈ N d × N d , (H n |H m ) L 2 = δ n,m ,
where δ n,m = 1 if n = m, and δ n,m = 0 if n = m.

Besides, we have

(1.9) (-∂ 2 j + M 2 j )H n = (2n j + 1)H n and thus -∆ 1 osc H n = (2|n| + d)H n .
For λ in R\{0}, we further introduce the rescaled Hermite function 

H n,λ (x) def = |λ| d 4 H n (|λ| 1 2 x). It is obvious that (H n,λ ) n∈N d is still an orthonormal basis of L 2 (R d ) and that (1.10) (-∂ 2 j + λ 2 M 2 j )H n,λ = (2n j + 1)
F H f : H d -→ C w -→ F H (f )(λ)H m,λ |H n,λ L 2 .
From now on, we shall use only that definition of the Fourier transform, which amounts to considering the 'infinite matrix' of F H f (λ) in the orthonormal basis of L 2 (R d ) given by (H n,λ ) n∈N . For further purpose, it is in fact much more convenient to rewrite F H f in terms of the mean value of f modulated by some oscillatory functions which may be seen as suitable Wigner distribution functions of the family (H n,λ ) n∈N d ,λ =0 , and will play the same role as the characters e i ξ,• in the Euclidean case. Indeed, by definition, we have

F H f ( w) = H d ×R d f (w)e -isλ e -2iλ η,x-y H m,λ (x -2y)H n,λ (x) dw dx.
Therefore, making an obvious change of variable, we discover that 

F H f ( w) = H d e isλ W( w, Y ) f (Y, s) dY ds with (1.11) W( w, Y ) def = R d e 2iλ η,
F H (∆ H f )( w) = -4|λ|(2|m| + d) f H ( w).
Let us underline the similarity with Relation (0.6) pertaining to the Fourier transform in R n .

One of the basic principles of the Fourier transform on R n is that 'regularity implies decay'. It remains true in the Heisenberg framework, as stated in the following lemma.

Lemma 1.1. For any non negative integer p, there exist an integer N p and a positive constant C p such that for any w in H d and any f in S(H d ), we have

(1.16) 1 + |λ|(|n| + |m| + d) + |n -m| p | f H (n, m, λ)| ≤ C p f Np,S ,
where • N,S denotes the classical family of semi-norms of S(R 2d+1 ), namely

f N,S def = sup |α|≤N (1 + |Y | 2 + s 2 ) N/2 ∂ α Y,s f L ∞ .
As may be easily checked by the reader, in our setting, there are very simple formulae corresponding to (1.2) and (1.3), if the set H d is endowed with the measure d w defined by:

(1.17)

H d θ( w) d w def = (n,m)∈N 2d R θ(n, m, λ)|λ| d dλ.
Then Theorem 1.1 recasts as follows:

Theorem 1.2. Let f be a function in S(H d ). Then the following inversion formula holds true:

(1.18) f (w) = 2 d-1 π d+1 H d e isλ W( w, Y ) f H ( w) d w.
Moreover, for any function

f in L 1 (H d ) ∩ L 2 (H d ), we have (1.19) f H 2 L 2 ( H d ) = π d+1 2 d-1 f 2 L 2 (H d ) .
In this new setting, the convolution identity (1.4) rewrites as follows for all integrable functions f and g:

(1.20) F H (f ⋆ g)(n, m, λ) = ( f H • g H )(n, m, λ) with ( f H • g H )(n, m, λ) def = ℓ∈N d f H (n, ℓ, λ) g H (ℓ, m, λ).
The reader is referred to the appendix for the proof.

Next, we aim at endowing the set H d with a structure of metric space. According to the decay inequality (1.16), it is natural to introduce the following distance d:

(1.21) d( w, w ′ ) def = λ(n + m) -λ ′ (n ′ + m ′ ) 1 + (n -m) -(n ′ -m ′ )| 1 + |λ -λ ′ |, where | • | 1 denotes the ℓ 1 norm on R d .
At first glance, the metric space ( H d , d) seems to be the natural frequency space within our approach. However, it fails to be complete, which may be a source of difficulties for further development. We thus propose to work with its completion, that is described in the following proposition.

Proposition 1.1. The completion of the set H d for the distance d is the set H d defined by

H d def = N 2d ×R \ {0} ∪ H d 0 with H d 0 def = R d ∓ × Z d and R d ∓ def = ((R -) d ∪ (R + ) d ).
On H d , the extended distance (still denoted by d) is given by

d((n, m, λ), (n ′ , m ′ , λ ′ )) = λ(n + m) -λ ′ (n ′ + m ′ ) 1 + (m -n) -(m ′ -n ′ )| 1 + |λ -λ ′ | if λ = 0 and λ ′ = 0, d (n, m, λ), ( ẋ, k) = d ( ẋ, k), (n, m, λ) def = |λ(n + m) -ẋ| 1 + |m -n -k| 1 + |λ| if λ = 0, d ( ẋ, k), ( ẋ′ , k ′ ) = | ẋ -ẋ′ | 1 + |k -k ′ | 1 .
Proof If λ = 0 then the Cauchy sequence λ p (n p + m p ) p∈N has to converge to some ẋ in R d . By definition of the extended distance, it is clear that (n p , m p , λ p ) p∈N converges to ( ẋ, k) in H d . Now, if ẋ = 0 then there exists some index j such that ẋj = 0. Because the sequence λ p (n j,p + m j,p ) p∈N tends to ẋj and n j,p + m j,p is positive (for large enough p), we must have sgn(λ p ) = sgn( ẋj ). Therefore, all the components of ẋ have the same sign.

Conversely, let us prove that any point of The above proposition prompts us to extend the Fourier transform of an integrable function, to the frequency set H d , that will play the same role as (R n ) ⋆ in the case of R n . With this new point of view, we expect the Fourier transform of any integrable function to be continuous on the whole H d . This is exactly what is stated in the following theorem. we have

R d + × Z d (the case of R d -× Z d being similar) is the limit in the sense of d of some sequence (n p , m p , λ p ) p∈N . As Q is dense in R,
F H f ( ẋ, k) = T ⋆ R d K d ( ẋ, k, Y )f (Y, s) dY ds with (1.22) K d ( ẋ, k, Y ) = d j=1 K( ẋj , k j , Y j ) and K( ẋ, k, y, η) def = 1 2π π -π e i 2| ẋ|
lim p→∞ f H (n p , n p + k, λ p ) = T ⋆ R d K d ( ẋ, k, Y )f (Y, s) dY ds.
Granted with the above result, one can propose a natural extension of the Fourier transform to (smooth) functions on H d independent of the vertical variable s. This will come up as a consequence of the following theorem.

Theorem 1.4. Let us define the following operator

G H on L 1 (T ⋆ R d ): G H g( ẋ, k) def = T ⋆ R d K d ( ẋ, k, Y )g(Y ) dY.
Then, for any function χ in S(R) with value 1 at 0 and compactly supported Fourier transform, and any function g in L 1 (T ⋆ R d ), we have

(1.24) lim ε→0 F H (g ⊗ χ(ε•)) = 2π(G H g)µ H d 0
in the sense of measures on H d , where µ

H d 0
is the measure (supported in H d 0 ) defined for all continuous compactly supported functions θ on H d by

(1.25) µ H d 0 , θ = H d 0 θ( ẋ, k) dµ H d 0 ( ẋ, k) def = 2 -d k∈Z d (R -) d θ( ẋ, k) d ẋ + (R + ) d θ( ẋ, k) d ẋ •
The above theorem allows to give a meaning of the Fourier transform of a smooth function that does not depend on the vertical variable. The next step would be to study whether our approach allows, as in the Euclidean case, to extend the definition of the Fourier transform to a much larger set of functions, or even to tempered distributions. This requires a fine characterization of F H (S(H d )) the range of S(H d ) by F H , which will be the purpose of a forthcoming paper [START_REF] Bahouri | Fourier transform of tempered distributions on the Heisenberg group[END_REF].

We end this section with a short description of the structure of the rest of the paper, and of the main ideas of the proofs.

Section 2 is devoted to the proof of the first part of Theorem 1.3. It relies on the fact that the function W(•, Y ) is uniformly continuous (for distance d) on bounded sets of H d , and can thus be extended to the closure H d of H d . Establishing that property requires our using an explicit asymptotic expansion of W. Proving Theorem 1.4 is the purpose of Section 3. The main two ingredients are the following ones. First, we show that if ψ is an integrable function on R with integral 1, then we have

lim ε→0 1 ε ψ λ ε d w = µ H d 0 ,
in the sense of measures on H d . That is to say, for any continuous compactly supported function θ on H d , we have

(1.26) lim ε→0 H d 1 ε ψ λ ε θ( w) d w = µ H d 0 , θ | H d 0 .
Then by a density argument, the proof of Theorem 1.4 reduces to the case when g is in

S(T ⋆ R d ).
Section 4 is devoted to computing K. This will be based on the following properties (that we shall first establish):

• K(0, k, Y ) = δ 0,k for all Y in T ⋆ R;
• The symmetry identities:

(1.27) K( ẋ, -k, -Y ) = K( ẋ, k, Y ), K(-ẋ, -k, Y ) = (-1) k K( ẋ, k, Y ) and K(-ẋ, k, Y ) = K( ẋ, k, Y ); • The identity (1.28) ∆ Y K( ẋ, k, Y ) = -4| ẋ|K( ẋ, k, Y ); • The relation (1.29) ikK( ẋ, k, Y ) = η∂ y K( ẋ, k, Y ) -y∂ η K( ẋ, k, Y ) sgn( ẋ);
• The convolution property

(1.30) K( ẋ, k, Y 1 + Y 2 ) = k ′ ∈Z K( ẋ, k -k ′ , Y 1 )K( ẋ, k ′ , Y 2 );
• And finally, the following relation for ẋ > 0 given by the study of

F H (|Y | 2 f ): (1.31) |Y | 2 K + ẋ∂ 2 ẋK + ∂ ẋK - k 2 4 ẋ K = 0.
Let us emphasize that proving first (1.26) is essential to justify rigorously (1.23).

Finally, Section 5 is devoted to the proof of an inversion formula involving Operator G H . Some basic properties of Hermite functions and of Wigner transform of Hermite functions are recalled in Appendix. There, we also prove the decay result stated in Lemma 1.1.

The uniform continuity of the Fourier transform of an L 1 function

The key to the proof of Theorem 1.3 is a refined study of the behavior of functions W(•, Y ) defined by (1.12) on the set H d . Of course, a special attention will be given to the neighborhood of H d 0 . This is the aim of the following proposition.

Proposition 2.1. Let R 0 be a positive real number, and let

B(R 0 ) def = (n, m, λ) ∈ H d , |λ|(|n + m| + d) + |n -m| ≤ R 0 × Y ∈ T ⋆ R d , |Y | ≤ R 0 • The function W(•, Y ) restricted to B(R 0 ) is uniformly continuous with respect to w, that is ∀ε > 0 , ∃α ε > 0 , ∀( w j , Y ) ∈ B(R 0 ) , d( w 1 , w 2 ) < α ε =⇒ W( w 1 , Y ) -W( w 2 , Y ) < ε.
Furthermore, for any ( ẋ, k) in H d 0 , we have lim

w→( ẋ,k) W( w, Y ) = K d ( ẋ, k, Y )
where the function K d is defined on

H d 0 × T ⋆ R d by (2.1) K d ( ẋ, k, Y ) def = (ℓ 1 ,ℓ 2 )∈N d ×N d (iη) ℓ 1 ℓ 1 ! y ℓ 2 ℓ 2 ! F ℓ 1 ,ℓ 2 (k) (sgn ẋ) ℓ 1 | ẋ| ℓ 1 +ℓ 2 2 with F ℓ 1 ,ℓ 2 (k) def = ℓ ′ 1 ≤ℓ 1 ,ℓ ′ 2 ≤ℓ 2 k+ℓ 1 -2ℓ ′ 1 =ℓ 2 -2ℓ ′ 2 (-1) ℓ 2 -ℓ ′ 2 ℓ 1 ℓ ′ 1 ℓ 2 ℓ ′ 2 .
Above, sgn ẋ designates the (common) sign of all components of ẋ, and

| ẋ| def = (| ẋ1 |, • • • , | ẋd |).
Proof. Let us first perform the change of variable z ′ = -y + z in (1.12) so as to get

(2.2) W( w, Y ) = e 2iλ η,y W( w, Y ) with W( w, Y ) def = R d e 2iλ η,z ′ H n,λ (2y + z ′ )H m,λ (z ′ ) dz ′ .
Obviously, the uniform continuity of W reduces to that of W. Moreover, as the integral defining W is a product of d integrals on R (of modulus bounded by 1), it is enough to study the one dimensional case.

Let us start with the case where both w 1 = (n 1 , m 1 , λ) and w 2 = (n 2 , m 2 , λ) are relatively far away from H 1 0 . As we need only to consider the situation where w 1 and w 2 are close to one another, one may assume that (n 1 , m 1 ) = (n 2 , m 2 ) = (n, m). Then we can write that (2.3)

W( w 1 , Y ) -W( w 2 , Y ) = R e 2iλ 1 ηz -e 2iλ 2 ηz H n,λ 1 (2y + z)H m,λ 1 (z) dz + R e 2iλ 2 ηz H n,λ 1 (2y + z) -H n,λ 2 (2y + z) H m,λ 1 (z) dz + R e 2iλ 2 ηz H n,λ 2 (2y + z) H m,λ 1 (z) -H m,λ 2 (z) dz.
Clearly, we have

(2.4) R e 2iλ 1 ηz -e 2iλ 2 ηz H n,λ 1 (2y + z)H m,λ 1 (z) dz ≤ 2|λ 1 | -1 2 R 0 |λ 2 -λ 1 | M H m L 2 .
Next, let us study the continuity of the map λ -→ H n,λ in the case d = 1. One may write

H n,λ 1 (x) -H n,λ 2 (x) = |λ 1 | 1 4 -|λ 2 | 1 4 H n (|λ 1 | 1 2 x) + |λ 2 | 1 4 H n (|λ 1 | 1 2 x) -H n (|λ 2 | 1 2 x) = |λ 1 | 1 4 -|λ 2 | 1 4 H n (|λ 1 | 1 2 x) + |λ 2 | 1 4 (|λ 1 | 1 2 -|λ 2 | 1 2 ) x 1 0 H ′ n (|λ 2 | 1 2 + t(|λ 1 | 1 2 -|λ 2 | 1 2 ))x dt. If |λ 1 | 1 2 -|λ 2 | 1 2 ≤ 1 2 |λ 2 | 1 2 , then the changes of variable x ′ = |λ 1 | 1 2 x and x ′ = (|λ 2 | 1 2 +t(|λ 1 | 1 2 - |λ 2 | 1 2
))x, respectively, together with the fact that the Hermite functions have L 2 norms equal to 1 ensure that (2.5)

H n,λ 1 -H n,λ 2 L 2 ≤ |λ 1 | 1 4 -|λ 2 | 1 4 |λ 1 | 1 4 + 4 |λ 1 | 1 2 -|λ 2 | 1 2 |λ 2 | 1 2 M H ′ n L 2 .
Using (A.4), we get that

M H ′ n = 1 2 n(n -1)H n-2 -H n -(n + 1)(n + 2)H n+2 .
As the family of Hermite functions is an orthonormal basis of L 2 , one can write that

4 M H ′ n 2 L 2 = n(n -1) + 1 + (n + 1)(n + 2) = 2n 2 + 2n + 3. Combining with (2.3) and (2.5), we conclude that if |λ 1 | -|λ 2 || ≤ 1 2 |λ 2 | 1 2 |λ 1 | 1 2 + |λ 2 | 1 2 and (|λ 1 | + |λ 2 |)|n + m| + |λ 1 | + |λ 2 | + |Y | ≤ R 0 then (2.6) W( w 1 , Y ) -W( w 2 , Y ) ≤ C(R 0 )|λ 1 -λ 2 | 1 |λ 1 | + 1 λ 2 1 •
That estimate fails if the above condition on |λ 1 | -|λ 2 | is not satisfied. To overcome that difficulty, we need the following lemma.

Lemma 2.1. The series

ℓ 1 ,ℓ 2 (sgn λ) ℓ 1 |λ| ℓ 1 +ℓ 2 2 (2iη) ℓ 1 (2y) ℓ 2 ℓ 1 !ℓ 2 ! M ℓ 1 H m |∂ ℓ 2 H n L 2 (R d )
converges normally towards W on B(R 0 ).

Proof. Again, as Hermite functions in dimension d are tensor products of one-dimensional Hermite functions, it is enough to prove the above lemma in dimension 1. Now, using the expansion of the exponential function and Lebesgue theorem, we get that for any fixed ( w, Y )

in H 1 × T ⋆ R, W( w, Y ) = ∞ ℓ 1 =0 1 ℓ 1 ! (2iλη) ℓ 1 R H n,λ (2y + z)z ℓ 1 H m,λ (z) dz = ∞ ℓ 1 =0 (sgn λ) ℓ 1 (2iη) ℓ 1 ℓ 1 ! |λ| ℓ 1 2 R H n,λ (2y + z)(M ℓ 1 H m ) λ (z) dz. (2.7)
Let us prove that the series converges for the supremum norm on B(R 0 ). Clearly, (A.4) implies that for all integers ℓ ≥ 1 and m in N,

( √ 2M ) ℓ H m L 2 (R) ≤ √ m ( √ 2M ) ℓ-1 H m-1 L 2 (R) + √ m + 1 ( √ 2M ) ℓ-1 H m+1 L 2 (R) ,
which, by an obvious induction yields for all (ℓ 1 , m) in N 2 ,

(2.8) M ℓ 1 H m L 2 (R) ≤ (2m + 2ℓ 1 ) ℓ 1 2 .
Hence the generic term of the series of (2.7) can be bounded by:

W ℓ 1 ( w) def = (2 √ 2R 0 ) ℓ 1 ℓ 1 ! |λ| ℓ 1 2 (m + ℓ 1 ) ℓ 1 2 .
Let us observe that, because |λ|m and |λ| are less than R 0 , we have

W ℓ 1 +1 ( w) W ℓ 1 ( w) = 2 √ 2R 0 ℓ 1 + 1 |λ|(m + ℓ 1 + 1) 1 + 1 m + ℓ 1 ℓ 1 2 ≤ 2 √ 2e R 0 ℓ 1 + 1 R 0 1 + ℓ 1 + 1 .
This implies that the series converges with respect to the supremum norm on B(R 0 ). Next, for fixed ℓ 1 , we want to expand

|λ| ℓ 1 2 R H n,λ (2y + z)(M ℓ 1 H m ) λ (z) dz
as a series with respect to the variable y. To this end, we just have to expand the real analytic Hermite functions as follows:

H n,λ (z + 2y) = ∞ ℓ 2 =0 (2y) ℓ 2 ℓ 2 ! |λ| ℓ 2 2 (H (ℓ 2 ) n ) λ (z).
Then we have to study (for fixed ℓ 1 ) the convergence of the series with general term,

W ℓ 1 ,ℓ 2 ( w, Y ) def = (2y) ℓ 2 ℓ 2 ! |λ| ℓ 2 2 H (ℓ 2 ) n |M ℓ 1 H m L 2 .
Using again (A.4), we see that

H (ℓ 2 ) n L 2 (R) ≤ (2n + 2ℓ 2 ) ℓ 2 2 .
Hence, arguing as above, we get for any ( w, Y ) in B(R 0 ),

W ℓ 1 ,ℓ 2 ( w, Y ) ≤ 2 ℓ 1 2 (m+ℓ 1 ) ℓ 1 2 W ℓ 2 ( w, Y ) with W ℓ 2 ( w, Y ) def = (2 √ 2R 0 ) ℓ 2 ℓ 2 ! |λ| ℓ 2 2 (n+ℓ 2 ) ℓ 2 2 ,
and it is now easy to complete the proof of the lemma.

Reverting to the proof of the continuity of W in the neighborhood of H d 0 , the problem now consists in investigating the behavior of the function

H ℓ 1 ,ℓ 2 : H 1 -→ R w = (n, m, λ) -→ |λ| ℓ 1 +ℓ 2 2 M ℓ 1 H m |H (ℓ 2 ) n L 2 (R)
when λ tends to 0 and λ(n

+ m) → ẋ for fixed k def = m -n.
From Relations (A.3), we infer that

H ℓ 1 ,ℓ 2 ( w) = 2 -(ℓ 1 +ℓ 2 ) |λ| ℓ 1 +ℓ 2 2 (A + C) ℓ 1 H m |(A -C) ℓ 2 H n L 2 (R) .
The explicit computation of (A ± C) ℓ is doable but tedious and fortunately turns out to be useless when λ tends to 0. Indeed, we have the following lemma:

Lemma 2.2. A constant C ℓ (R 0 ) (depending only on R 0 and ℓ) exists such that, for any (n, λ) with λ > 0 and λn ≤ R 0 , we have (with the convention that H p = 0 if p < 0):

λ ℓ 2 A ± C 2 ℓ H n - λn 2 ℓ 2 ℓ ℓ ′ =0 (±1) ℓ-ℓ ′ ℓ ℓ ′ H n+ℓ-2ℓ ′ L 2 (R) ≤ C ℓ (R 0 )λ 1 2 .
Proof. Let V n,ℓ be the vector space generated by (H n+ℓ ′ ) -ℓ≤ℓ ′ ≤ℓ , equipped with the

L 2 (R)- norm. Let R n,ℓ def = λ ℓ 2 (A ± C) ℓ H n -(2λn) ℓ 2 ℓ ℓ ′ =0 (±1) ℓ-ℓ ′ ℓ ℓ ′ H n+ℓ-2ℓ ′ . Formulae (A.2) guarantee that R n,ℓ is in V n,ℓ .
Let us now prove by induction on ℓ that (2.9)

R n,ℓ V n,ℓ ≤ C ℓ (R 0 )λ 1 2 .
In the case when ℓ equals 1, by definition of A and C, we have

λ 1 2 (A ± C)H n = λ 1 2 √ 2nH n-1 ± √ 2n + 2H n+1 = √ 2λn(H n-1 ± H n+1 ) ± 2 √ λ √ 2n + 2 + √ 2n H n+1
and (2.9) is thus obvious.

Let us now observe that, for any ℓ ′ in {-ℓ, • • • , ℓ}, we have

λ 1 2 AH n+ℓ ′ L 2 (R) = 2λ(n + ℓ ′ ) H n+ℓ ′ -1 L 2 (R) and λ 1 2 CH n+ℓ ′ L 2 (R) = 2λ(n + ℓ ′ + 1) H n+ℓ ′ +1 L 2 (R) . This gives that for all λ(n + 1) ≤ R 0 , (2.10) λ 1 2 (A ± C) L(V n,ℓ ;V n,ℓ+1 ) ≤ C ℓ (R 0 ).
Let us assume that (2.9) holds for some ℓ. Inequality (2.10) implies that (2.11)

λ 1 2 (A ± C)R n,ℓ V n,ℓ+1 ≤ λ 1 2 C ℓ (R 0 ).
Then, for any ℓ ′ in {0, • • • , ℓ}, we have

λ 1 2 (A ± C)H n+ℓ-2ℓ ′ = λ 1 2 √ 2n + 2ℓ -4ℓ ′ H n+ℓ-2ℓ ′ -1 ± √ 2n + 2ℓ -4ℓ ′ + 2 H n+ℓ-2ℓ ′ +1 = √ 2λn H n+ℓ+1-2(ℓ ′ +1) ± H n+ℓ+1-2ℓ ′ + 2λ 1 2 (ℓ -2ℓ ′ ) √ 2n + 2ℓ -4ℓ ′ + √ 2n H n+ℓ-2ℓ ′ -1 ± 2λ 1 2 (ℓ -2ℓ ′ + 1) √ 2n + 2ℓ -4ℓ ′ + 2 + √ 2n H n+ℓ-2ℓ ′ +1 • We deduce that for any ℓ ′ in {0, • • • , ℓ}, λ 1 2 (A ± C)H n+ℓ-2ℓ ′ - √ 2λn H n+ℓ+1-2(ℓ ′ +1) ± H n+ℓ+1-2ℓ ′ V n,ℓ+1 ≤ C ℓ+1 (R 0 )λ 1 2 .
Using (2.11) gives

λ ℓ+1 2 (A ± C) ℓ+1 H n -(2λn) ℓ+1 2 Σ n,ℓ L 2 (R) ≤ C ℓ+1 (R 0 )λ 1 2 with Σ n,ℓ def = ℓ ℓ ′ =0 (±1) ℓ-ℓ ′ ℓ ℓ ′ H n+ℓ+1-2(ℓ ′ +1) ± H n+ℓ+1-2ℓ ′ . Now, Pascal's rule ensures that Σ n,ℓ = ℓ+1 ℓ ′ =1 (±1) ℓ+1-ℓ ′ ℓ ℓ ′ -1 H n+ℓ+1-2ℓ ′ + ℓ ℓ ′ =0 (±1) ℓ+1-ℓ ′ ℓ ℓ ′ H n+ℓ+1-2ℓ ′ = ℓ+1 ℓ ′ =0 (±1) ℓ+1-ℓ ′ ℓ + 1 ℓ ′ H n+ℓ+1-2ℓ ′ .
The lemma is proved.

From this lemma, we can deduce the following corollary.

Corollary 2.1. For any (ℓ 1 , ℓ 2 ) in N 2 and R 0 > 0, there exists a constant

C ℓ 1 ,ℓ 2 (R 0 ) such that for all (n, n + k, λ) in H 1 with |λn| + |k| + |λ| ≤ R 0 , we have H ℓ 1 ,ℓ 2 ( w) -F ℓ 1 ,ℓ 2 (k) |λ|n 2 ℓ 1 +ℓ 2 2 ≤ C ℓ 1 ,ℓ 2 (R 0 )|λ| 1 2 with F ℓ 1 ,ℓ 2 (k) def = ℓ ′ 1 ≤ℓ 1 ,ℓ ′ 2 ≤ℓ 2 k+ℓ 1 -2ℓ ′ 1 =ℓ 2 -2ℓ ′ 2 (-1) ℓ 2 -ℓ ′ 2 ℓ 1 ℓ ′ 1 ℓ 2 ℓ ′ 2 • Proof. Lemma 2.2 implies that H ℓ 1 ,ℓ 2 ( w) - |λ|n 2 ℓ 2 2 |λ|(n + k) 2 ℓ 1 2 ℓ ′ 1 ≤ℓ 1 ℓ ′ 2 ≤ℓ 2 (-1) ℓ 2 -ℓ ′ 2 ℓ 1 ℓ ′ 1 ℓ 2 ℓ ′ 2 H n+k+ℓ 1 -2ℓ ′ 1 |H n+ℓ 2 -2ℓ ′ 2 L 2 ≤ C ℓ 1 ,ℓ 2 (R 0 )|λ| 1 2 .
Now, let us notice that

(|λ|(n + k)) ℓ 1 2 -(|λ|n) ℓ 1 2 = |λ|k |λ|n + |λ|(n + k) ℓ 1 -1 ℓ ′ 1 =0 |λ|n ℓ ′ 1 |λ|(n + k) ℓ 1 -1-ℓ ′ 1 .
Hence it is clear that for fixed k in Z such that |k| ≤ R 0 , we have, for |λ| ≤ R 0 and |nλ| ≤ R 0 , (|λ|n)

ℓ 2 2 (|λ|(n + k)) ℓ 1 2 -|λn| ℓ 1 +ℓ 2 2 ≤ C ℓ 1 ,ℓ 2 (R 0 )|λ| 1 2 .
Thanks to (1.8), we conclude the proof.

Conclusion of the proof of Proposition 2.1

Consider a positive real number ε. Recall that

W( w, Y ) = ℓ 1 ,ℓ 2 (sgn λ) ℓ 1 (2iη) ℓ 1 (2y) ℓ 2 ℓ 1 !ℓ 2 ! H ℓ 1 ,ℓ 2 ( w).
Clearly, it suffices to prove the uniform continuity of W for all subset of H d corresponding to some fixed value k of m -n. Now, considering w 1 = (n 1 , n 1 + k, λ 1 ) and w 2 = (n 2 , n 2 + k, λ 2 ), Lemma 2.1 implies that for all ε > 0, there exist two integers L 1,ε and L 2,ε such that (2.12)

W( w 1 , Y ) -W( w 2 , Y ) ≤ ε 4 + ℓ 1 ≤L 1,ε ℓ 2 ≤L 2,ε (2|η|) ℓ 1 (2|y|) ℓ 2 ℓ 1 !ℓ 2 ! × (sgn λ 1 ) ℓ 1 H ℓ 1 ,ℓ 2 (n 1 , n 1 + k, λ 1 ) -(sgn λ 2 ) ℓ 1 H ℓ 1 ,ℓ 2 (n 2 , n 2 + k, λ 2 ) .
Let C ε (R 0 ) be the supremum for ℓ 1 ≤ L 1,ε and ℓ 2 ≤ L 2,ε of all constants C ℓ 1 ,ℓ 2 (R 0 ) which appear in Corollary 2.1. Then we have (2.13)

|λ 1 |+|λ 2 | ≤ A(ε, R 0 ) =⇒ W( w 1 , Y ) -W( w 2 , Y ) ≤ ε 2 + ℓ 1 ≤L 1,ε ℓ 2 ≤L 2,ε (2 R 0 ) ℓ 1 +ℓ 2 ℓ 1 !ℓ 2 ! |F ℓ 1 ,ℓ 2 (k)| × (sgn λ 1 ) ℓ 1 λ 1 n 1 2 ℓ 1 +ℓ 2 2 -(sgn λ 2 ) ℓ 1 λ 2 n 2 2 ℓ 1 +ℓ 2 2 with A(ε, R 0 ) def = e -8R 0 ε 2 32C 2 ε (R 0 ) • If ℓ 1 + ℓ 2 = 0 then the last term of the above inequality is 0. If ℓ 1 + ℓ 2 is positive, as |F ℓ 1 ,ℓ 2 (k)|
is less than 2 ℓ 1 +ℓ 2 , we have, using (2.13),

(2.14)

|λ 1 | + |λ 2 | ≤ A(ε, R 0 ) and |λ 1 n 1 | + |λ 2 n 2 | ≤ 1 16 ε 2 e -8R 0 =⇒ W( w 1 , Y ) -W( w 2 , Y ) ≤ ε.
In the case when

|λ 1 n 1 | + |λ 2 n 2 | is greater than 1 16 ε 2 e -8R 0 then if λ 1 n 1 -λ 2 n 2 ≤ 1 32 ε 2 e -8R 0
then λ 1 and λ 2 have the same sign. The sum in the right-hand side term is finite, and it is clear that each term converges uniformly to 0 if λ 2 n 2 tends to λ 1 n 1 . Thus a positive real number η ε exists such that (2.15)

|λ 1 | + |λ 2 | ≤ A(ε, R 0 ) and |λ 1 n 1 -λ 2 n 2 | ≤ η ε =⇒ W( w 1 , Y ) -W( w 2 , Y ) ≤ ε.
Finally, we have to consider the case where

|λ 1 | + |λ 2 | ≥ A(ε, R 0 ). With no loss of generality, one can assume that λ 2 ≥ 1 2 A(ε, R 0 ). Thus, if |λ 1 -λ 2 | is less than 1 4 A(ε, R 0 ) we have λ 1 ≥ 1 4
A(ε, R 0 ) and we can apply Inequality (2.6) which gives (supposing that A(ε, R 0 ) ≤ 1):

W( w 1 , Y ) -W( w 2 , Y ) ≤ 2C(R 0 ) 1 4 A(ε, R 0 ) -2 |λ 1 -λ 2 |.
Together with (2.14), this gives, if (n j , m j , λ j ) are in B(R 0 ),

|λ 1 -λ 2 | ≤ εA 2 (ε, R 0 ) 32C(R 0 ) and |λ 1 n 1 -λ 2 n 2 | < η ε =⇒ W( w 1 , Y ) -W( w 2 , Y ) < ε.
The proposition is proved.

End of the proof of the first part of Theorem 1.3. Because of the integrability of f , Proposition 2.1 implies that f H is uniformly continuous on H d , and can thus be extended to a uniformly continuous function on the complete metric space H d .

Let us finally establish that f H ( w) → 0 when w goes to infinity. In the case where f is in S(H d ), this in an obvious consequence of Lemma 1.1. The general case of an integrable function on H d follows by density as, obviously, Formula (1.11) implies that the map

f → f H is continuous from L 1 (H d ) to L ∞ ( H d ).
We are now ready to establish Formula ( 

f H ( ẋ, k) = lim p→∞ f H ( w p ) = H d K d ( ẋ, k, Y )f (Y, s) dY ds .
Now, Lemma 2.1 gives

K d ( ẋ, k, Y ) = ℓ 1 ,ℓ 2 (2iη) ℓ 1 ℓ 1 ! (2y) ℓ 2 ℓ 2 ! lim p→∞ H ℓ 1 ,ℓ 2 ( w p )(sgn λ p ) ℓ 1 with H ℓ 1 ,ℓ 2 ( w) def = |λ| |ℓ 1 +ℓ 2 | 2 M ℓ 1 H m |∂ ℓ 2 H n L 2 (R d ) . If d = 1 then Corollary 2.1 implies that lim p→∞ H ℓ 1 ,ℓ 2 ( w p ) = F ℓ 1 ,ℓ 2 (k) | ẋ| 4 ℓ 1 +ℓ 2 2
and, because sgn(λ p ) = sgn ẋ for large enough p, this guarantees (1.22) and Formula (2.1). Once again, as in general dimension d ≥ 1 the term H ℓ 1 ,ℓ 2 may be written as the product of d terms involving only one-dimensional Hermite functions, the above formula still holds true (with the notation convention given in Proposition 2.1 of course).

This concludes the proof of the first part of Theorem 1.3 and of Identity (1.22).

Remark 2.1. Computing K d will be carried out later on, in Section 4. For the time being, let us just underline that the expression of F ℓ 1 ,ℓ 2 (k) which appears in (2.1) ensures that F 0,0 (k) = δ 0,k . We thus have

(2.16) K d ( ẋ, k, 0) = K d (0, k, Y ) = F 0,0 (k) = δ 0,k .
Let us also notice that, denoting by 0 the point (0, 0) of H d 0 , we recover the following property:

(2.17)

f H ( 0) = H d f (w) dw.

The case of functions that do not depend on the vertical variable

The purpose of this section is to prove Theorem 1.4. As already pointed out in the introduction, a key issue is to study the limit (in the sense of weak convergence of measures) of functions which concentrate near the set H d 0 . This is the aim of the following lemma. Lemma 3.1. Let χ : R → R be integrable, compactly supported and with integral 1. Then for any continuous function θ from H d to C satisfying

(3.1) sup (n,m,λ)∈ H d 1 + |λ|(|n + m| + d) + |n -m| 2d+1 |θ(n, m, λ)| < ∞, we have lim ε→0 H d ε -1 χ(ε -1 λ)θ(n, m, λ) d w = µ H d 0 , θ
where the measure in the right-hand side has been defined in (1.25).

Proof. Let us first prove the result if the function θ is supported in the closure of

B K def = (n, m, λ) ∈ H d : |λ|(2|n| + d) ≤ K and |m -n| ≤ K
for some positive K. Then we have

I ε def = H d ε -1 χ(ε -1 λ)θ(n, m, λ) d w = |k|≤K I - ε (k) + I + ε (k) with I ± ε (k) def = R ± ε -1 χ(ε -1 λ) n∈N d θ(n, n + k, λ) |λ| d dλ.
Above, we agreed that θ(n, n+k, λ) = 0 whenever at least one component of n+k is negative.

Then the idea is to use Riemann type sums. More concretely, for all n in N d and λ in R \ {0}, let us define the family of cubes

Q n,λ def = 2λn + 2λ[0, 1[ d . It is obvious that (3.2) Vol(Q n,λ ) = (2|λ|) d and n∈N d 1 Q n,λ = 1 on (R sgn λ ) d .
From the volume property and the definition of I + ε (k), we readily get

I + ε (k) = 2 -d R (R + ) d n∈N d ε -1 χ(ε -1 λ)θ(n, n + k, λ)1 Q n,λ ( ẋ) d ẋ dλ.
Let us write that

2 d I + ε (k) = R (R + ) d n∈N d ε -1 χ(ε -1 λ)θ( ẋ, k)1 Q n,λ ( ẋ) d ẋ dλ + R (R + ) d ε -1 χ(ε -1 λ) n∈N d θ(n, n + k, λ) -θ( ẋ, k) 1 Q n,λ ( ẋ) d ẋ dλ .
Using the second property of (3.2), the fact that χ is of integral 1, and that the summation may be restricted to those indices n in N d such that |λn| ≤ K (because θ is supported in B K ), we end up with

2 d I + ε (k)- (R + ) d θ( ẋ, k) d ẋ = R (R + ) d ε -1 χ(ε -1 λ) |nλ|≤K θ(n, n+k, λ)-θ( ẋ, k) 1 Q n,λ ( ẋ) d ẋ dλ.
As θ is uniformly continuous on H d (being compactly supported), we have

∀η > 0 , ∃ε > 0, |2λn -ẋ| + |λ| < ε =⇒ θ(n, n + k, λ) -θ( ẋ, k) < η.
One can thus conclude that for any η > 0, if ε is small enough then we have

2 d I + ε (k) - (R + ) d θ( ẋ, k) d ẋ ≤ η R ε -1 χ(ε -1 λ) |nλ|≤K (R + ) d 1 Q n,λ ( ẋ) d ẋ dλ.
Using once again that the measure of Q n,λ is (2|λ|) d and noting that the set of indices n in N d for which |nλ| ≤ K is bounded by C d K d |λ| -d for some constant C d depending only on d, we conclude that for small enough ε, we have

(3.3) I + ε (k) -2 -d (R + ) d θ( ẋ, k) d ẋ ≤ C d ηK d .
Of course, handling I - ε (k) is strictly similar. Because the set of k in Z d with |k| ≤ K is finite (and independent of ε), this proves the lemma in the case where θ is compactly supported.

To handle the general case, one may fix some cut-off function ψ : R + → R + with value 1 on [0, 1] and supported in [0, 2], and, for all K > 0, decompose θ into

θ = θ K + θ K with θ K ( w) def = ψ(K -1 (|λ|(2|n| + d) + |m -n|))θ( w).
The first part of the proof applies to θ K and for all positive real number η, one may thus find some ε K,η so that (3.4)

H d ε -1 χ(ε -1 λ)θ K ( w) d w -µ H d 0 , θ K ≤ η for ε < ε K,η .
To bound the term corresponding to θ K , we shall use the fact that Condition (3.1) ensures that there exists some constant C so that

(3.5) ∀( ẋ, k) ∈ H d 0 , |θ( ẋ, k)| ≤ C(1 + | ẋ| + |k|) -2d-1 . Now, we have, denoting R d ∓ def = (R -) d ∪ (R + ) d , H d 0 |θ K ( ẋ, k)| dµ H d 0 ( ẋ, k) ≤ 2 -d |k|≥K R d ∓ |θ( ẋ, k)| d ẋ + k∈Z d | ẋ|≥K |θ( ẋ, k)| d ẋ •
In light of (3.5) and making an obvious change of variables, we get

|k|≥K R d ∓ |θ( ẋ, k)| d ẋ ≤ C |k|≥K R d + (1 + | ẋ| + |k|) -2d-1 d ẋ ≤ C |k|≥K (1 + |k|) -d-1 R d + (1 + | ẏ|) -2d-1 d ẏ ≤ CK -1 .
Likewise,

k∈Z d | ẋ|≥K |θ( ẋ, k)| d ẋ ≤ C k∈Z d | ẋ|≥K (1 + | ẋ| + |k|) -2d-1 d ẋ ≤ C k∈Z d 1 (1 + |k|) d+1 | ẏ|>K/(1+|k|) d ẏ (1 + | ẏ|) 2d+1 ≤ C k∈Z d 1 (1 + |k|) d+1 1 (1 + K/(1 + |k|)) d+1 ≤ CK -1 .
Therefore, if we take K large enough then one may ensure that (3.6) µ

H d 0 , θ K ≤ η.
Finally,

H d ε -1 χ(ε -1 λ)θ K ( w) d w ≤ J 1 K (ε) + J 2 K (ε) with J 1 K (ε) def = ε -1 R |k|≥K n∈N d χ(ε -1 λ)|θ( w)| |λ| d dλ and J 2 K (ε) def = ε -1 R k∈Z d |nλ|≥K χ(ε -1 λ)|θ( w)| |λ| d dλ.
Because θ satisfies (3.1), we have

J 1 K (ε) ≤ C |k|≥K n∈N d R ε -1 χ(ε -1 λ)(1 + |k| + |λn|) -2d-1 |λ| d dλ.
Clearly, because the sum below has O(|k|/|λ|) d terms, we may write

R ε -1 χ(ε -1 λ) |nλ|≤|k| (1 + |k| + |λn|) -2d-1 |λ| d dλ (1 + |k|) -d-1
and, similarly, because

|nλ|≥|k| |λ| d (1 + |k| + |λn|) -2d-1 |nλ|≥|k| |λ| d (1 + |λn|) -2d-1 (1 + |k|) -d-1 , we get R ε -1 χ(ε -1 λ) |nλ|≥|k| (1 + |k| + |λn|) -2d-1 |λ| d dλ (1 + |k|) -d-1 . Therefore J 1 K (ε) K -1 . Proving that J 2 K (ε) K -1
relies on similar arguments. Putting together with (3.4) and (3.6), it is now easy to conclude the proof of the lemma.

Proof of Theorem 1.4. Let χ in S(R) have a compactly supported Fourier transform, and value 1 at 0 (hence the integral of χ is 2π). Let θ : H d → C be continuous and compactly supported, and set

I ε (g, θ) def = F H (g ⊗ χ(ε•)), θ
. By definition of the Fourier transform of L 1 functions, one may write:

I ε (g, θ) = H d × H d e -isλ χ(εs)W( w, Y )g(Y )θ( w) dY ds d w = H d 1 ε χ λ ε G( w)θ( w) d w with G( w) def = T ⋆ R d W( w, Y )g(Y ) dY.
As the function g is integrable on T ⋆ R d , Proposition 2.1 implies that the (numerical) product Gθ is a continuous compactly supported function on H d . Lemma 3.1 applied to this function Gθ implies that

lim ε→0 I ε (g, θ) = 2π H d 0 G H g( ẋ, k)θ( ẋ, k)dµ H d 0 ( ẋ, k).
This means that the measure F H (g ⊗ χ(ε•))d w converges weakly to 2π(G H g)dµ

H d 0
which is exactly Theorem 1.4.

Computing the kernel K

We have already seen in Remark 2.1 that K d (0, k, Y ) = δ 0,k for all Y in T ⋆ R d , so let us now prove the symmetry identities pointed out in the introduction. The first relation in (1.27) stems from the observation that for all (n, m, λ) in H d and Y in T ⋆ R d , we have

W(m, n, λ, -Y ) = W(n, m, λ, Y ).
Therefore, for any ( ẋ, k) in H d 0 passing to the limit (n, m, λ) → ( ẋ, k) yields (4.1)

K d ( ẋ, -k, -Y ) = K d ( ẋ, k, Y ).
In order to establish the second symmetry relation for K d , it suffices to notice that

(4.2) ∀(n, m, λ, Y ) ∈ H d × T ⋆ R d , W(n, m, λ, Y ) = (-1) |n+m| W(m, n, -λ, Y ).
and to pass to the limit (n, m, λ) → ( ẋ, k).

The last relation in (1.27) just follows from passing to the limit (n, m, λ) → ( ẋ, k) in

(4.3) W(n, m, -λ, Y ) = W(n, m, λ, Y ).
Identity (1.28) is a consequence of Relation (1.14). Indeed, observe that for any smooth function f :

T ⋆ R d → C, we have e -isλ ∆ H e isλ f (Y ) = ∆ Y f (Y ) + 4iλ d j=1 T j f (Y ) -4λ 2 |Y | 2 f (Y ) with T j def = η j ∂ y j -y j ∂ η j . Taking f (Y ) = W( w, Y ), using (1.14) and having (n, m, λ) tend to ( ẋ, k) yields (4.4) 
∆ Y K d ( ẋ, k, Y ) = -4| ẋ|K d ( ẋ, k, Y ).
Relation (1.29) is a consequence of (A.10) which implies in particular that |λ|(n j -m j )W( w, Y ) = iλT j W( w, Y ).

Passing to the limit when (n, m, λ) tends to ( ẋ, k) ensures (4.5)

ik j K d ( ẋ, k, Y ) = sgn( ẋ)T j K d ( ẋ, k, Y )
which is exactly (1.29). Proving Identity (1.30) is bit more involved. To achieve it, let us fix some function α of S(R) and two functions g 1 and g 2 of S(T ⋆ R d ). By definition of convolution and Fourier transform, we have

F H (g 1 ⊗ α) ⋆ (g 2 ⊗ α) ( w) = H d ×H d e -isλ W( w, Y )g 1 (Y -Y ′ )α s -s ′ -2σ(Y ′ , Y ) g 2 (Y ′ )α(s ′ ) dw dw ′ .
Integrating first with respect to s and next with respect to s ′ yields

F H (g 1 ⊗ α) ⋆ (g 2 ⊗ α) ( w) = α 2 (λ) (T ⋆ R d ) 2 e 2iλσ(Y,Y ′ ) W( w, Y )g 1 (Y -Y ′ )g 2 (Y ′ ) dY dY ′ .
From the fact that σ is symplectic, we infer that

(4.6) F H (g 1 ⊗ α) ⋆ (g 2 ⊗ α) ( w) = α 2 (λ) (T ⋆ R d ) 2 e 2iλσ(Y 1 ,Y 2 ) W( w, Y 1 + Y 2 )g 1 (Y 1 )g 2 (Y 2 ) dY 1 dY 2 .
Of course, because both g 1 ⊗ α and g 2 ⊗ α are in S(H d ), we are guaranteed, thanks to the convolution formula (1.20), that

F H (g 1 ⊗α)⋆(g 2 ⊗α) (n, n+k, λ) = G 12 with G 12 def = F H (g 1 ⊗α)•F H (g 2 ⊗α) (n, n+k, λ).
Now, we have, setting k ′ = n + k -ℓ in the second line,

G 12 = ℓ∈N d F H (g 1 ⊗ α)(n, ℓ, λ)F H (g 2 ⊗ α)(ℓ, n + k, λ) = α 2 (λ) (T ⋆ R d ) 2 k ′ ≤n+k W(n, n + k -k ′ , λ, Y 1 )W(n + k -k ′ , n + k, λ, Y 2 ) × g 1 (Y 1 )g 2 (Y 2 ) dY 1 dY 2 .
Hence, reverting to Relation (4.6) and keeping in mind that the above computations hold true for any functions α, g 1 and g 2 in the Schwartz class, one may conclude that

e -2iλσ(Y 1 ,Y 2 ) W(n, n + k, λ, Y 1 + Y 2 ) = k ′ ∈Z d W(n, n + k -k ′ , λ, Y 1 )W(n + k -k ′ , n + k, λ, Y 2 ).
Taking advantage of the decay of W with respect to the variable k, (for Y 1 and Y 2 in a given compact subset of T ⋆ R d by virtue of (A.10)), we can pass to the limit for 2λn tending to ẋ and λ tending to 0. This gives

(4.7) K d ( ẋ, k, Y 1 + Y 2 ) = k ′ ∈Z d K d ( ẋ, k -k ′ , Y 1 ) K d ( ẋ, k ′ , Y 2 )
which is the generalization of Formula (1.30) in any dimension.

In order to fully benefit from Relations (1.28), (1.29) and (1.30) so as to eventually compute K, it is wise to introduce the following function K on R × T ×T ⋆ R, where T denotes the onedimensional torus:

(4.8) K( ẋ, z, Y ) def = k∈Z K( ẋ, k, Y )e ikz .
From Relation (A.10) (after having (n, m, λ) tend to ( ẋ, k)), we infer that if ( ẋ, Y ) lies in any given bounded set B, then

(4.9) ∀N ∈ N , sup ( ẋ,k,Y )∈B (1 + |k|) N |K( ẋ, k, Y )| < ∞.
Thus the series (4.8) defines a function K on R × T ×T ⋆ R.

Furthermore, from (1.30) we infer immediately that (4.10)

K( ẋ, z, Y 1 + Y 2 ) = K( ẋ, z, Y 1 ) K( ẋ, z, Y 2 ),
and, in light of (4.1), we discover that for any ( ẋ, z, Y ) in R × T ×T ⋆ R,

(4.11) K( ẋ, z, -Y ) = K( ẋ, z, Y ).
Combined with (2.16) and (4.10) this implies that for any couple ( ẋ, z) in R × T, the function

Y → K( ẋ, z, Y ) is a character of R 2 . Identifying T ⋆ R with R 2 , we thus conclude that there exists a function Φ = (Φ y , Φ η ) from R × T to R 2 such that K( ẋ, z, Y ) = e iY •Φ( ẋ,z) = e i(yΦy ( ẋ,z)+ηΦη( ẋ,z)) .
Taking advantage of (4.4) which implies that K is a smooth function of Y and arguing as above, we find out that for any multi-index α = (α 1 , α 2 ) in N 2 and any ( ẋ, k, Y ) in some bounded set B, we have

∀N ∈ N , sup ( ẋ,k,Y )∈B (1 + |k|) N |∂ α ẋ,Y K( ẋ, k, Y )| < ∞.
Therefore invoking Relation (1.29), we deduce that for any positive ẋ

∂ z K( ẋ, z, Y ) = η∂ y K( ẋ, z, Y ) -y∂ η K( ẋ, z, Y ) which entails that ∂ z Φ( ẋ, z) = RΦ( ẋ, z) where R denotes the rotation of angle π/2. Hence Φ( ẋ, z) = R(z) Φ( ẋ)
where R(z) denotes the rotation of angle z. Now, Relation (4.4) ensures that | Φ( ẋ)| = 2| ẋ| 1 2 , and thus there exists a function φ from R to the unit circle of R 2 so that for positive ẋ (4.12)

K( ẋ, z, Y ) = e 2i| ẋ| 1 2 Y •(R(z)φ( ẋ)) .
Let us finally establish Identity (1.31). It relies on the study of the action of the Fourier transform on the weight function M 2 defined by Lemma 3.1 implies that if χ : R → R is integrable, supported in [-1, 1] and with integral 1, then

(M 2 f )(Y, s) def = |Y | 2 f (Y, s).
B(g, ψ) = lim ε→0 B ε (g, ψ) with B ε (g, ψ) def = T ⋆ R g(Y ) R (n,m)∈N 2 |Y | 2 W(n, m, λ, Y )Θ ψ (n, m, λ) 1 ε χ λ ε |λ| dλ dY.
The following lemma gives a formula for |Y | 2 W( w, Y ). (n j + 1)(m j + 1) θ( w + j ) + √ n j m j θ( w - j )

where w ± j def = (n ± δ j , m ± δ j , λ).

Proof. From the definition of W and integrations by parts, we get Using Leibniz formula, the chain rule and 4|y| 2 = |y + z| 2 + |y -z| 2 + 2(y + z) • (y -z), we get

|Y | 2 W( w, Y ) = R d |y| 2 - 1 4λ 2 ∆ z e 2iλ η,
I( w, y, z) = - 1 4λ 2 (∆ z -λ 2 |y + z| 2 )H n (|λ| 1 2 (y + z)) H m (|λ| 1 2 (-y + z)) - 1 4λ 2 (∆ z -λ 2 |y -z| 2 )H m (|λ| 1 2 (-y + z)) H n (|λ| 1 2 (y + z)) - 1 2|λ| d j=1 (∂ j H n )(|λ| 1 2 (y + z))(∂ j H m )(|λ| 1 2 (-y + z)) - 1 2 (z + y) • (z -y)H n (|λ| 1 2 (y + z))H m (|λ| 1 2 (-y + z)).
Using (1.10), we end up with

I( w, y, z) = 1 2|λ| (|n + m| + d)H n (|λ| 1 2 (y + z))H m (|λ| 1 2 (-y + z)) - 1 2|λ| d j=1 (∂ j H n )(|λ| 1 2 (y + z))(∂ j H m )(|λ| 1 2 (-y + z)) + (M j H n )(|λ| 1 2 (y + z))(M j H m )(|λ| 1 2 (-y + z)) •
Then, taking advantage of (A.4), we get Identity (4.13).

Let us resume to the proof of Identity (1.31). Using the above lemma for d = 1 and performing obvious changes of variable in the sum give

B ε (g, ψ) = - T ⋆ R g(Y ) R (n,m)∈N 2 ( ∆W(•, Y ))(n, m, λ)Θ ψ (n, m, λ) 1 ε χ λ ε |λ| dλ dY = - T ⋆ R g(Y ) R (n,m)∈N 2 W(n, m, λ, Y )( ∆Θ ψ )(n, m, λ) 1 ε χ λ ε |λ| dλ dY .
The key to proving the convergence of B ε for ε → 0 is the asymptotic description of the operator ∆ when λ tends to 0, given in the following lemma: Lemma 4.2. Let ψ be a smooth function compactly supported in [r 0 , ∞[× Z for some positive real number r 0 . Then

∆Θ ψ (n, m, λ) 1 ∼ Θ Lψ (n, m, λ) with (Lψ)( ẋ, k) def = ẋψ ′′ ( ẋ, k) + ψ ′ ( ẋ, k) - k 2 4 ẋ ψ( ẋ, k)
where the notation Θ 1 p ∼ Θ 2 means that for any positive integer N , there is a constant C N,p such that for all (n, m, λ) in

N 2 ×]0, ∞[ satisfying λ(n + m) ≥ r 0 2 and λ ≤ λ 0 /(1 + |n -m|),
with a sufficiently small positive real number λ 0 depending only on r 0 , we have

Θ 1 (n, m, λ) -Θ 2 (n, m, λ) ≤ C N,p λ p 1 + |λ|(|n + m| + 1) + |m -n| -N .
Proof. By definition of the operator ∆, and for λ > 0, we have, denoting

k def = m -n and y def = λ(n + m), -2λ 2 ∆Θ ψ ( w) = (y+λ)ψ(y+λ, k) -λ (n + 1)(m + 1) ψ(y+3λ, k) -λ √ nm ψ(y -λ, k).
Using that

λ 2 nm = λ 2 4 (n + m) 2 - λ 2 4 (m -n) 2 = y 2 4 - λ 2 4 k 2 ,
we get that

λ (n + 1)(m + 1) = y 2 1 + 4λ y + 4 -k 2 y 2 λ 2 3 ∼ y 2 + λ - k 2 4y λ 2 and λ √ nm 3 ∼ y 2 - k 2 4y λ 2 .
Writing the Taylor expansion for ψ gives (omitting the dependency with respect to k for notational simplicity), (y + λ)ψ(y + λ)

3 ∼ yψ(y) + ψ(y) + yψ ′ (y))λ + ψ ′ (y) + y 2 ψ ′′ (y) λ 2 , -λ (n + 1)(m + 1) ψ(y + 3λ) 3 ∼ - y 2 ψ(y) -ψ(y) + 3 2 yψ ′ (y) λ - 9 4 yψ ′′ (y) + 3ψ ′ (y) - k 2 4y ψ(y) λ 2 and -λ √ nm ψ(y -λ) 3 ∼ - y 2 ψ(y) + 1 2 yψ ′ (y)λ - y 4 ψ ′′ (y) - k 2 4y ψ(y) λ 2 .
By summation of these three identities, we get

-2λ 2 ∆Θ ψ ( w) 3 ∼ -2yψ ′′ (y) + 2ψ ′ (y) - k 2 2y ψ(y) λ 2 ,
whence the lemma.

From the above lemma, it is easy to complete the proof of Identity (1.31). Indeed, we get

B ε (g, ψ) = - T ⋆ R g(Y ) R (n,m)∈N 2 W(n, m, λ, Y )Lψ |λ|(n + m), m -n 1 ε χ λ ε |λ| dλ dY +R ε (g, ψ),
where the remainder R ε is such that for all N ∈ N there exists C N so that

R ε (g, ψ) ≤ C N g L 1 (T ⋆ R d ) (n,m)∈N 2 R |λ| 1 + |λ|(|n + m| + 1) + |m -n| -N 1 ε | χ| λ ε |λ|dλ .
Taking N large enough, we find out that

(n,m)∈N 2 R |λ| 1 + |λ|(|n + m| + 1) + |m -n| -N 1 ε | χ| λ ε |λ| dλ ≤ C N R |λ| ε | χ| λ ε dλ ≤ C N ε.
Then Lemma 3.1 ensures

B(g, ψ) = - T ⋆ R× H 1 0 K( ẋ, k, Y )g(Y ) ẋψ ′′ ( ẋ, k) + ψ ′ ( ẋ, k) - k 2 4 ẋ ψ( ẋ, k) dY dµ H 1 0 ( ẋ, k).
Integration by parts yields

B(g, ψ) = T ⋆ R× H 1 0 g(Y ) k 2 4 ẋ K( ẋ, k, Y ) -∂ ẋK( ẋ, k, Y ) -ẋ∂ 2 ẋK( ẋ, k, Y ) ψ( ẋ, k) dY dµ H 1 0 ( ẋ, k).
Using the fact that the above equality holds true for all g in S(T ⋆ R) and for functions ψ smooth and compactly supported in [r 0 , ∞[×Z for some r 0 > 0, and combining with a density argument, one can conclude to Identity (1.31) for all positive ẋ and k in Z.

In order to complete the proof of (1.23), let us translate (1.31) in terms of K. We have

1 4 ẋ ∂ 2 z K + ∂ ẋ( ẋ∂ ẋ K) + |Y | 2 K = 0.
Now, plugging the ansatz (4.12) into the above relation yields for any positive ẋ, any k in Z and any Y in T ⋆ R,

|Y | 2 = Y • (R ′ (z)φ( ẋ)) 2 + Y • (R(z)φ( ẋ)) + 2 ẋY • (R(z)φ ′ ( ẋ)) 2 -4i √ ẋY • (R(z)φ ′ ( ẋ)) -2i ẋ3/2 Y • (R(z)φ ′′ ( ẋ)).
Taking the imaginary part implies that φ satisfies ẋφ ′′ ( ẋ) + 2φ ′ ( ẋ) = 0 for ẋ > 0.

Now, as φ is valued in the unit circle, this implies that φ is a constant. Therefore there exists some number z 0 in (-π, π] so that for any positive ẋ, any z in R and any Y in T ⋆ R, we have Inverse Fourier theorem for periodic functions implies that

K( ẋ, z, Y ) = e 2i| ẋ|
K( ẋ, k, Y ) = 1 2π π -π e 2i| ẋ| 1 
2 (y cos(z+z 0 )+η sin(z+z 0 )) e -ikz dz.

In order to compute the value of z 0 , one may take advantage of the symmetry relations in (1.27) that imply To determine the value of ε, one may use the fact that for all positive ẋ and η in R, the above formula implies that

k∈Z K( ẋ, k, (0, η)) = K( ẋ, 0, (0, η)) = e -2iε √ ẋ η = cos(2 √ ẋ η) -iε sin(2 √ ẋ η).
Now, from the expansion of K given in (2.1), we infer that for all η ∈ R and ẋ > 0,

K( ẋ, 0, (0, η)) = ℓ 1 ∈N |k|≤ℓ 1 i ℓ 1 ℓ 1 ! F ℓ 1 ,0 (k)η ℓ 1 ẋ ℓ 1 2 .
Note that the imaginary part of the term corresponding to ℓ 1 is positive (indeed F 1,0 (k) is positive), which implies that ε = -1. This completes the proof of Identity (1.23) in the case where ẋ is non negative. The negative case just follows from (1.27). Thus the whole Theorem 1.3 is proved.

Some properties of operator G H

We end this paper with a short presentation of basics properties of the transformation G H , that highlight some analogy (but also some difference) with the classical Fourier transform on T ⋆ R d . The main result of this section reads as follows.

Theorem 5.1. The operator G H maps continuously L 1 (T ⋆ R d ) to the space C 0 ( H d 0 ) of continuous functions on H d 0 going to 0 at infinity and, for any couple (f, g) of functions in L 1 (T ⋆ R d ), we have the convolution identity:

(5.1) G H (f ⋆ g)( ẋ, k) = k ′ ∈Z d G H f ( ẋ, k -k ′ ) G H ( ẋ, k ′ ) for all ( ẋ, k) ∈ H d 0 .
Moreover, for any g in S(T ⋆ R d ), we have the following inversion formula:

g(Y ) = 2 π d H d 0 K d ( ẋ, k, Y )G H g( ẋ, k) dµ H d 0 ( ẋ, k).
Finally, the following Fourier-Plancherel identity holds true:

∀g ∈ S(T ⋆ R d ) , g 2 L 2 (T ⋆ R d ) = 2 π d G H g 2 L 2 ( H d 0 )
.

Proof. The first property stems from the fact that, because

|K d | ≤ 1, we have G H g L ∞ ( H d 0 ) ≤ g L 1 (T ⋆ R d ) .
Furthermore, as the kernel K d is continuous with respect to ( ẋ, k), we get from the explicit expression of G H that the range of L 1 (T ⋆ R d ) by G H is included in the set of continuous functions on H d 0 . Proving that (G H g)( ẋ, k) tends to 0 when ( ẋ, k) goes to infinity is based on the regularity and decay properties of the kernel K d . More specifically, Identity (1.28) implies that

∀p ∈ N , 4 p | ẋ| p K d ( ẋ, k, Y ) = (-∆ Y ) p K d ( ẋ, k, Y ), while Relation (1.29) gives for all multi-index α in N d , (ik sgn ẋ) α K d ( ẋ, k, Y ) = (T α K d )( ẋ, k, Y ) with T α def = d j=1 (η j ∂ y j -y j ∂ η j ) α j .
Hence, if g ∈ S(T ⋆ R d ) then performing suitable integration by parts in the integral defining G H g yields

4 p | ẋ| p (G H g)( ẋ, k) = G H ((-∆ Y ) p g)( ẋ, k) and (-ik sgn ẋ) α (G H g)( ẋ, k) = (G H T α g)( ẋ, k).
This implies that, for any positive integer p, a constant C p and an integer N p exist such that

(1 + | ẋ| + |k|) p |G H (g)( ẋ, k)| ≤ C p g Np,S(T ⋆ R d ) . (5.2)
This proves that (G H g)( ẋ, k) tends to 0 when ( ẋ, k) goes to infinity for any g in S(T

⋆ R d ). Now, because L 1 (T ⋆ R d ) is dense in S(T ⋆ R d ) and G H is continuous from L 1 (T ⋆ R d ) to the set C b ( H d 0 ) of bounded continuous functions on H d 0 , one can conclude that the range of L 1 (T ⋆ R d ) by G H is included in C 0 ( H d 0 ).
In order to establish (5.1), it suffices to see that, by virtue of the definition of G H , of Identity (4.7) and of Fubini theorem (here the decay inequality (4.9) comes into play), one may write that for any couple (f, g) of integrable functions on T ⋆ R d , we have

G H (f ⋆ g)( ẋ, k) = (T ⋆ R d ) 2 K d ( ẋ, k, Y ) f (Y -Y ′ ) g(Y ′ ) dY dY ′ = k ′ ∈Z d (T ⋆ R d ) 2 K d ( ẋ, k ′ , Y ′ )g(Y ′ ) K d ( ẋ, k -k ′ , Y -Y ′ )f (Y -Y ′ ) dY dY ′ .
Then performing an obvious change of variable, and using again Fubini theorem and the definition of G H gives (5.1).

In order to prove the inversion Fourier formula for G H , let us consider g in S(T ⋆ R d ) and χ in S(R) with value 1 near 0. For any sequence (ε p ) p∈N of positive real numbers which tends to 0, we have according to the inverse Fourier formula (1. From the definition of ∆ H in (1.5), we gather that for any integer p and positive real number ε, there exist some function f p ε on H d , and constant C p (depending only on p) so that Of course, as in the classical Fourier theory, having an inversion formula implies a Fourier-Plancherel type relation. Indeed we have for any function g in S(T ⋆ R d ), using Fubini theorem,

T ⋆ R d g(Y )g(Y ) dY = 2 π d T ⋆ R d H d 0 K d ( ẋ, k, Y ) G H g( ẋ, k) dµ H d 0 ( ẋ, k) g(Y ) dY = 2 π d H d 0 G H g( ẋ, k) T ⋆ R d K d ( ẋ, k, Y )g(Y ) dY dµ H d 0 ( ẋ, k) = 2 π d H d 0 G H g( ẋ, k) G H g( ẋ, k) dµ H d 0 ( ẋ, k).
The whole Theorem 5.1 is proved.

Appendix A. Useful tools and results

Let us first recall standard properties of Hermite functions that have been used repeatedly in the paper, when establishing identities pertaining to the function W.

In addition to the creation operator C j def = -∂ j + M j already defined in the introduction, it is convenient to introduce the following annihilation operator: (A.1)

A j def = ∂ j + M j .

It is very classical (see e.g. [START_REF] Huet | Décomposition spectrale et opérateurs[END_REF][START_REF] Olver | Asymptotics and special functions[END_REF]) that (A.2) A j H n = 2n j H n-δ j and C j H n = 2n j + 2 H n+δ j , As Relations (A.1) imply that (A.3) 2M j = C j + A j and 2∂ j = A j -C j , we discover that (A.4)

M j H n = 1 2
2n j H n-δ j + 2n j + 2 H n+δ j and

∂ j H n = 1 2 2n j H n-δ j -2n j + 2 H n+δ j .
Note also that Let us next prove Relation (1.13) and Lemma 1.1. To this end, we write that by definition of X j and of W, we have

X j e isλ W( w, Y ) = R d
X j e isλ+2iλ η,z H n,λ (y + z)H m,λ (-y + z) dz = R d e isλ+2iλ η,z 2iλη j + ∂ y j H n,λ (y + z)H m,λ (-y + z) dz.

As 2iλη j e 2iλ η,z = ∂ z j (e 2iλ η,z ), an integration by parts implies that (A.7)

X j e isλ W( w, Y ) = R d e isλ+2iλ η,z ∂ y j -∂ z j H n,λ (y + z)H m,λ (-y + z) dz.

The action of Ξ j is simply described by

Ξ j e isλ W( w, Y ) = R d
Ξ j e isλ+2iλ η,z H n,λ (y + z)H m,λ (-y + z) dz = R d e isλ+2iλ η,z 2iλ(z j -y j )H n,λ (y + z)H m,λ (-y + z) dz.

Together with (A.7), this gives (X 2 j + Ξ 2 j ) e isλ W( w, Y ) = 4

R d e isλ+2iλ η,z H n,λ (y + z) (-∂ 2 j + λ 2 M 2 j H m,λ )(-y + z) dz.

Putting together with (1.10), we get Formula (1.13) and thus (1.14). Now, if f belongs to the Schwartz space, then combining (1.14) with integrations by parts yields (1.15). Indeed, we have To complete the proof of Lemma 1.1, it suffices to exhibit suitable decay properties with respect to k. To this end, we introduce the right-invariant vector fields X j and Ξ j defined by (A.9)

X j def = ∂ y j -2η j ∂ s and Ξ j def = ∂ η j + 2y j ∂ s with j ∈ {1, • • • , d} .

Then arguing as above, we readily get 4|λ|(2n j + 1)e isλ W( w, Y ) = -e isλ (∂ 2 y j + ∂ 2 η j )W( w, Y ) + 4iλe isλ (η j ∂ y j -y j ∂ η j )W( w, Y ) -4e isλ λ 2 (y 2 j + η 2 j )W( w, Y ). As -X 2 j + X 2 j -Ξ 2 j + Ξ 2 j = 8∂ s T j , we get by difference with (1.13), (A. [START_REF] Geller | Fourier analysis on the Heisenberg group I, the Schwartz space[END_REF] |λ|(n j -m j )e isλ W( w, Y ) = ∂ s T j e isλ W ( w, Y ) = iλe isλ T j W( w, Y ).

=Remark 1 . 1 .

 11 there exist two families of sequences of positive integers (a j,p ) p∈N and (b j,p ) p∈N such that ∀j ∈ {1, • • • , d} , ẋj = lim p→∞ ẋj,p with ẋj,p def = a j,p b j,p and lim p→∞ b j,p = +∞. Let us write that ẋp = 2λ p n p with λ p n p + k. As (λ p ) p∈N tends to 0, we have that lim p→∞ d (n p , n p + k, λ p ), ( ẋ, k) converges to 0. It is not difficult to check that the closed bounded subsets of H d (for the distance d) are compact. The details are left to the reader.

1 2 (

 2 y sin z+η sgn( ẋ) cos z)+kz dz. (1.23) In other words, for any sequence (n p , λ p ) p∈N of N d ×(R \ {0}) such that lim p→∞ λ p = 0 and lim p→∞ λ p n p = ẋ 2 ,

For any functions g|Y | 2 K 1 0

 21 in S(T ⋆ R) and ψ : R + × Z → R, smooth and compactly supported in [r 0 , ∞[× Z for some positive real number r 0 , let us define Θ ψ ( w) def = ψ |λ|(n + m + 1), m -n and B(g, ψ) ( ẋ, k, Y )g(Y )ψ( ẋ, k) dY dµ H ( ẋ, k).

Lemma 4 . 1 .

 41 For all w in H d and Y in T ⋆ R d , we have |Y | 2 W( w, Y ) = -∆W(•, Y )( w) with(4.13) ∆θ( w)

d e 2iλ η,z |λ| d 2 I= |y| 2 - 1 4λ 2 ∆ z H n (|λ| 1 2 1 2

 2211 z H n,λ (y + z)H m,λ (-y + z) dz = R ( w, y, z) dz with I( w, y, z) def (y + z))H m (|λ| (-y + z)) .

1 2 (

 2 y cos(z+z 0 )+η sin(z+z 0 )) .

(4. 14 )π e ikz e 2i| ẋ| 1 2 1 2e -ikz e -2i| ẋ| 1 2

 14111 K( ẋ, -k, y, -η) = (-1) k K( ẋ, k, y, η). Now, the above formula for K and an obvious change of variable give2πK( ẋ, -k, y, -η) = π -(y cos(z+z 0 )-η sin(z+z 0 )) dz = π -πe ik(π-z) e 2i| ẋ| (y cos(π-z+z 0 )-η sin(π-z+z 0 )) dz (y cos(z-z 0 )+η sin(z-z 0 )) dz.Hence (4.14) is fulfilled for all positive ẋ, k in Z and (y, η) in T ⋆ R if and only if ∀z ∈ (-π, π) , cos(z + z 0 ) = -cos(z -z 0 ) and sin(z+ z 0 ) = -sin(z -z 0 ) which is equivalent to z 0 ≡ π 2 [π]. Hence there exists ε ∈ {-1, 1} so that K( ẋ, z, Y ) = e 2iε √ ẋ(y sin z-η cos z) .

  [START_REF] Taylor | Noncommutative Harmonic Analysis[END_REF],g(Y )χ(ε p s) = 2 d-1 π d+1 H d e isλ W( w, Y )F H (g ⊗ χ(ε p •))( w) d w = 2 d-1 π d+1 H d e isλ W( w, Y ) T ⋆ R d W( w, Y ′ )g(Y ′ )dY ′ 1

( 5 . 3 )KK

 53 (-∆ H ) p χ(εs)g(Y ) = χ(εs)(-∆ Y ) p g(Y ) + εf p ε (Y, s) with f p ε (•, s) L 1 (T ⋆ R d ) ≤ C p .Therefore, having ε tend to 0, we deduce that|λ| p (2|m| + d) p T ⋆ R d W( w, Y )g(Y ) dY ≤ C p T ⋆ R d (-∆ Y ) p g(Y ) dY .Along the same lines, taking advantage of the right-invariant vector fields defined in (A.9), we get for any integer p|λ| p (2|n| + d) p T ⋆ R d W( w, Y )g(Y )dY ≤ C p T ⋆ R d (-∆ Y ) p g(Y ) dY .Identity (A.10) together with integrations by parts implies that for any multi-index α-i sgn λ |α| d j=1 (n j -m j ) α j T ⋆ R d W( w, Y )g(Y ) dY = T ⋆ R d W( w, Y )T α g(Y ) dY .We deduce that the functionw -→ W( w, Y ) T ⋆ R d W( w, Y ′ )g(Y ′ ) dY ′satisfies the hypothesis of Lemma 3.1. Thus combining with Proposition 2d ( ẋ, k, Y )T ⋆ R d K d ( ẋ, k, Y ′ )g(Y ′ )dY ′ dµ H d ( ẋ, k, Y ) G H g( ẋ, k) dµ H d 0 ( ẋ, k),which completes the proof of the inversion formula.

(A. 5 )M 2 jC

 52 C j A j + Id = -∂ 2 j + and [C j , A j ] = -2 Id, j A j + d Id .Finally, we have(A.6) [-∂ 2 j + M 2 j , C j ] = 2C j .

-

  4|λ|(2|m| + d) f H (n, m, λ) = -4|λ|(2|m| + d) H d e -isλ W( w, Y )f (Y, s) ds = H d ∆ H e -isλ W( w, Y ) f (Y, s) ds = (F H ∆ H f )(n, m, λ).This gives, after iteration(A.8) 4 p |λ| p (2|m| + d) p f H (n, m, λ) ≤ ∆ p H f L 1 (H d ), which is one part of the decay inequality(1.16).

  |λ|H n,λ and thus -∆ λ osc H n,λ = (2|n| + d)|λ|H n,λ .We are now ready to give 'our' definition of the Fourier transform on H d .

	Definition 1.1. Let H of H	d def = N d × N d ×R \ {0}. We denote by w = (n, m, λ) a generic point

d 

. For f in L 1 (H d ), we define the map F H f (also denoted by f H ) to be

  . Consider a Cauchy sequence (n p , m p , λ p ) p∈N in ( H d , d). If p and p ′ are large enough, then |(m p -n p ) -(m p ′ -n p

′ )| is less than 1, and thus m p -n p has to be a constant, that we denote by k. Next, we see that (λ p ) p∈N is a Cauchy sequence of real numbers, and thus converges to some λ in R. If λ = 0 then our definition of d implies that the sequence (n p ) p∈N is constant after a certain index, and thus converges to some n in N d . Therefore we have (n p , m p , λ p ) → (n, n + k, λ).

  Theorem 1.3. The Fourier transform f H of any integrable function on H d may be extended continuously to the whole set H

d . Still denoting by f H (or F H f ) that extension, the linear map F H : f → f H is continuous from the space L 1 (H d ) to the space C 0 ( H d ) of continuous functions on H d tending to 0 at infinity. Moreover, we have for all ( ẋ, k) in H d 0 ,

  1.22) for any integrable function f on H d . So let us fix some ( ẋ, k) in H d 0 , and consider a sequence ( w p ) p∈N = (n p , n p + k, λ p ) p∈N such that lim

	According to Proposition 2.1, if we set
	K d ( ẋ, k, Y )

p→∞ w p = ( ẋ, k) in the sense of d. def = lim p→∞ W( w p , Y ) then the definition of f H on H d and the Lebesgue dominated convergence theorem imply that

After an obvious iteration this gives (A.11) d j=1 (n j -m j ) α j W( w, Y ) = (i sgn(λ)) |α| T α W( w, Y ), whence, mimicking the proof of (A.8), (A.12) |n -

This completes the proof of Lemma 1.1.

Let us finally prove the convolution identity (1.20). It is just based on the fact that for all (n, m, λ) in H d and any integrable function f on H d , we have

Indeed 

Therefore, from Inequality (1.1) and Definition 1.1, we readily infer that

f H (n, ℓ, λ) g H (ℓ, m, λ).

Then, remembering Relation (1.4) completes the proof of (1.20).