
HAL Id: hal-01363393
https://hal.science/hal-01363393

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simple K-star Categorial Dependency Grammars and
their Inference

Denis Béchet, Annie Foret

To cite this version:
Denis Béchet, Annie Foret. Simple K-star Categorial Dependency Grammars and their Inference.
The 13th International Conference on Grammatical Inference (ICGI), Oct 2016, Delft, Netherlands.
�hal-01363393�

https://hal.science/hal-01363393
https://hal.archives-ouvertes.fr

Simple K-star CDG and their Inference

Simple K-star Categorial Dependency Grammars
and their Inference

Denis Béchet Denis.Bechet@univ-nantes.fr
LINA UMR CNRS 6241
Université de Nantes, France

Annie Foret Annie.Foret@irisa.fr

IRISA

Université de Rennes1, France

Editor: Rick Smetsers, Sicco Verwer and Menno van Zaanen

Abstract

We propose a novel subclass in the family of Categorial Dependency Grammars (CDG),
based on a syntactic criterion on categorial types associated to words in the lexicon and
study its learnability. This proposal relies on a linguistic principle and relates to a former
non-constructive condition on iterated dependencies. We show that the projective CDG in
this subclass are incrementally learnable in the limit from dependency structures. In con-
trast to previous proposals, our criterion is both syntactic and does not impose a (rigidity)
bound on the number of categorial types associated to a word.

Keywords: Grammatical inference, Categorial grammar, Dependency grammar, Incre-
mental learning, Iterated dependencies, Computational linguistics, Dependency Treebanks,
Context-free languages.

1. Introduction

The paper studies the problem of inference of a dependency grammar from positive examples
of dependency trees or structures it generates. Categorial Dependency Grammars (CDG,
Dekhtyar et al., 2015) the grammars considered in this paper, are a unique class of grammars
directly generating unbounded dependency structures (DS), beyond context-freeness. They
are well adapted to real NLP applications and are analysed in tractable polynomial time.1

CDG is a formal system combining the classical categorial grammars’ elimination rules with
valency pairing rules defining discontinuous dependencies. A special feature of CDG is that
the elimination rules are interpreted as local dependency constructors. Very importantly,
these rules are naturally extended to the so called “iterated dependencies”. This point
needs explanation. A dependency d is iterated in a DS D if some word in D governs
through dependency d several other words. The iterated dependencies are due to the
basic principles of dependency syntax, which concern optional repeatable dependencies (cf.
Mel’čuk, 1988): All modifiers of a noun n share n as their governor and, similarly, all
modifiers of a verb v share v as their governor. At the same time, as we explain below, the
iterated dependencies are a challenge for grammatical inference.

1. The dependency treebank CDGFr (Béchet and Lacroix, 2015), a large scale CDG of French and a general
purpose deterministic parser have been implemented (Dikovsky, 2011; Lacroix and Béchet, 2014).

1

Béchet Foret

In Béchet et al. (2004) it was shown that, in contrast with the classical categorial
grammars, the rigid CDG2 are not learnable in the limit3. This negative effect is due to
the use of iterated dependency types which express iterated dependencies. On the other
hand, it was also shown that the k-valued CDG4 with iteration-free types are learnable
from the so called “dependency nets” (an analogue of the function-argument structures
adapted to CDG) and also from strings. A constraint, called belowK-star-revealing has been
introduced in Béchet et al. (2010), enabling learnability. Intuitively, under this constraint,
the iterated dependencies and the dependencies repeatable at least K times for some fixed
K are indiscernible. However this constraint relies on non-constructive condition on iterated
dependencies. In contrast, below, we introduce a new constructive syntactic criterion on
types called simple K-star, enabling learnability. We also compare the two notions.

The paper is organized as follows. Section 2 contains all background notions and facts, in
particular, those concerning Categorial Dependency Grammars and learnability from posi-
tive examples. Section 3 introduces the new notion of simple K-star grammars. Section 4
presents the learning algorithm. Section 5 recalls the notion of K-star-revealing CDG that
are learnable with a given inference algorithm. Section 6 establishes new results on simple
K-star grammars: Their learnability and their comparison with K-star-revealing CDG.

2. Background

2.1 Categorial Dependency Grammars

The lexicon of a Categorial Dependency Grammar may be seen as an assignment to words
of first order dependency types of the form: t = [lm\ . . . \l1\g/r1/ . . . /rn]P . Intuitively,
w 7→ [α\d\β]P means that the word w has a left subordinate through dependency d (similar
for the right part [α/d/β]P). Similarly w 7→ [α\d∗\β]P means that w may have 0, 1 or
several left subordinates through dependency d. The head type g in w 7→ [α\g/β]P means
that w is governed through dependency g. The P exponent, called potential, is used for
non-projective dependencies (beyond context-free) and will remain empty in this article.

Example 1 The assignment on the left yields the structure on the right :
in 7→ [c copul/prepos−l]
the 7→ [det]
beginning 7→ [det\prepos−l]
was 7→ [c copul\S/@fs/pred]
word 7→ [det\pred]
. 7→ [@fs] Projective dependency structure.

Definition 1 (CDG dependency structures) Let W = a1 . . . an be a list of words and
{d1, . . . , dm} be a set of dependency names. A directed graph D = (W,E) whose nodes are
the words of W and whose arcs (a, d, a′) are labeled by a dependency name in {d1, . . . , dm}
is a dependency structure (DS) of W if it has a root, i.e. a node ai ∈ W such that (i) for
any node a ∈W, a 6= ai, there is a path from ai to a and (ii) there is no arc (a′, d, ai).

5 An

2. A rigid grammar associates at most one type to each word.
3. Here, the learning mechanism means Gold style identification in the limit from positive examples
4. A k-valued grammar associates at most k types to each word.
5. Evidently, every DS is connected and has a unique root.

2

Simple K-star CDG and their Inference

arc (a, d, a′) ∈ E is called dependency d from a to a′. a is called a governor of a′ and a′ is
called a subordinate of a through d. The precedence order on D is the linear order on W .

Definition 2 (CDG types) Let C be a set of dependency names.
An expression of the form d∗ where d ∈ C, is called iterated dependency type. Depen-

dency names and iterated dependency types are primitive types.
An expression of the form t = [lm\ . . . \l1\H/r1 . . . /rn] in which m,n ≥ 0, l1, . . . , lm,

r1, . . . , rn are primitive types and H is a dependency name is called a basic dependency
type. lm, . . . , l1 and r1, . . . , rn are respectively successive left and successive right argument
types of t. H is called the head type of t.

In this paper we consider only basic dependency type (i.e. with an empty potential)6.
In this context, DS are projective trees. CDG are defined using the following calculus of
dependency types.7 In these rules, types must be adjacent.

Definition 3 (Relativized calculus of dependency types)
Ll. (C, i1)([C\β], i2) ` ([β], i2) (classical elimination rule)
Il. (C, i1)([C

∗\β], i2) ` ([C∗\β], i2)
Ωl. ([C∗\β], i) ` ([β], i)

These rules are relativized with respect to the word positions in the sentence, using state
(B, i) for a type B assigned to word at position i, which allows to interpret them as rules
of construction of DS. We may suppress word positions, when the context is clear.

DS. Eliminating the argument type C in Ll constructs a (projective) dependency C.
For every proof ρ in this calculus, represented as a sequence of rule applications, we may de-
fine the DS DSx(ρ) constructed in this proof. Namely, let us consider the calculus relativized
with respect to a sentence x with the set of word occurrences W . Then DSx(ε) = (W, ∅) is
the DS constructed in the empty proof ρ = ε. Now, let (ρ,R) be a nonempty proof with
respect to x and (W,E) = DSx(ρ). Then DSx((ρ,R)) is defined as follows:

If R = Ll or R = Il, then DSx((ρ,R)) = (W,E ∪ {(ai2 , C, ai1)}).
If R = Ωl, then DSx((ρ,R)) = DSx(ρ).

Definition 4 (CDG) A (projective) categorial dependency grammar (CDG) is a system
G = (W,C, S, λ), where W is a finite set of words, C is a finite set of dependency names
containing the selected name S (an axiom), and λ, called lexicon, is a finite substitution
on W such that λ(a) is a subset of dependency types over C for each word a ∈ W . λ is
extended on sequences of words W ∗ in the usual way.8

For G = (W,C, S, λ), a DS D and a sentence x, let G[D,x] denote the relation:

D = DSx(ρ)
where ρ is a proof of (t1, 1) · · · (tn, n) ` (S, j)
for some n, j, 0 < j ≤ n and t1 · · · tn ∈ λ(x).

Then the language generated by G is the set L(G)=df {w || ∃D G[D,w]} and the DS-
language generated by G is the set ∆(G)=df {D || ∃w G[D,w]}. D(CDG) and L(CDG)
will denote the families of DS-languages and languages generated by these grammars.

6. The full calculus is presented in Dekhtyar et al. (2015).
7. We show left-oriented rules. The right-oriented rules are symmetrical.
8. λ(a1 · · · an) = {t1 · · · tn || t1 ∈ λ(a1), . . . , tn ∈ λ(an)}.

3

Béchet Foret

CDG are very expressive. Projective CDG generate all CF-languages. CDG with poten-
tials (Dekhtyar et al., 2015) can also generate non-CF languages.

2.2 Learnability and Limit Points

Let C be a class of grammars. An observation set Φ(G) is related with every G ∈ C ; this
may be L(G) or an image of the constituent or dependency structures generated by G.

Definition 5 (Inference algorithm) Below we call an enumeration of Φ(G) a training
sequence for G. An algorithm A is an inference algorithm for C if, for every G ∈ C, A
applies to any training sequence σ for G and, for every initial subsequence σ[i] = {s1, . . . , si}
of σ, it returns a hypothesized grammar A(σ[i]) ∈ C. A learns a target grammar G ∈ C if
on any training sequence σ for G A stabilizes on a grammar A(σ[T]) ≡ G.9 The grammar
lim
i→∞
A(σ[i]) = A(σ[T]) returned at the stabilization step is the limit grammar. A learns C

if it learns every G ∈ C. C is learnable if there is an inference algorithm learning C.

Learnability and unlearnability properties have been widely studied from a theoretical point
of view. In particular, in Wright (1989); Motoki et al. (1991) finite elasticity, implying
learnability, was introduced. We use here the related concept of limit points.

Definition 6 (Limit points) A class L of languages has a limit point iff there exists an
infinite sequence (Ln)n∈N of languages in L and a language L ∈ L such that: L0 (L1 . . . (
... (Ln (. . . and L =

⋃
n∈N Ln (L is a limit point of L).

Limit Points Imply non-effective Unlearnability. If the languages of the grammars
in a class C have a limit point then the class C is unlearnable.

2.3 Limit Points Construction for CDG with Iterated Types

In Béchet et al. (2004) it is shown that, in contrast with the classical categorial grammars,
the rigid (i.e. 1-valued) CDG are not learnable. This negative result is due to the use of
iterated types. We recall the limit point construction of Béchet et al. (2004).

Theorem 1 Let S, A, B be dependency names. Grammars Gn, G∞ are defined as follows:
t0 = S λn = {a 7→ [A], b 7→ [B], c 7→ [tn]} Gn = ({a, b, c}, {A,B, S}, S, λn)
tn+1 = tn/A

∗/B∗ λ∞ = {a, b 7→ [A], c 7→ [S/A∗]} G∞ = ({a, b, c}, {A,S}, S, λ∞)
The type assigned to c by Gn is [S/A∗/B∗/ · · · /A∗/B∗] where the pattern /A∗/B∗ appears

n times. These constructions yield a limit point
⋃

k≤n c(b
∗a∗)k ⊆ c{b, a}∗ and show the non-

learnability from strings for the classes of (rigid) grammars allowing iterative types (X∗).

We observe that in these constructions, the number of iterative types (X∗) is unbounded.

3. Simple K-star Grammars

We introduce a new syntactic criterion on categorial grammar types, leading to the definition
of simple K-star grammars.10

9. A stabilizes on σ on step T means that T is the minimal number t for which there is no t1 > t such that
A(σ[t1]) 6= A(σ[t]).

10. By ”simple” we mean here ”un-nested”

4

Simple K-star CDG and their Inference

Definition 7 (Simple K-star) Let K > 1 be an integer. Let t denote a categorial type
and d denote a dependency name. t is said simple left K-star on d if for any successive
occurrences l1\l2\...lp\ on the left where each li is either d or some x∗, there are: (2.1)
at most K − 1 occurrences of d and (2.2) no occurrence of d if there exists at least one
occurrence of d∗. t is said simple left K-star if it is simple left K-star on d, for all d. These
two notions are defined similarly on the right.
A type t is said simple K-star if it is simple left K-star and simple right K-star.
A CDG G is said simple K-star whenever all types in its lexicon are simple K-star.

The class of CDG that are simple K-star is noted CDGK∼∗.

Example 2 For a type t, we define the grammar G(t) by the lexicon {a 7→ [A], b 7→ [B], c 7→
t}. Then for t1=[A∗\S/A∗], t2=[A∗\B∗\A∗\S], t3=[A∗\B\A∗\S]: G(t1), G(t2), G(t3) are
simple 2-star and for t4=[A∗\A\S], t5=[A∗\B∗\A\S], t6=[A\B∗\A\S]: G(t4), G(t5), G(t6)
are not simple 2-star. In fact, for G(t4), the type assigned to c contains A∗and A in A∗\A\
on the left, for G(t5), A

∗ and A are separated by B∗ and for G(t6), there are 2 occurrences
of A (separated by B∗).

Limit point. The grammars in Theorem 1 are simple K-star (∀K>1). The class of rigid
simple 2-star CDG is thus unlearnable from strings (also for any K>1 or non rigid class).

4. Inference Algorithm

We show an algorithm strongly learning CDG from DS. This means that ∆(G) serves as the
observation set Φ(G) and the limit grammar is strongly equivalent to the target grammar.

Definition 8 (Strong equivalence) Let G1, G2 be CDG, G1 ≡s G2 iff ∆(G1) = ∆(G2).
G1, G2 are then said strongly equivalent.

Note that in contrast with the constituent structure grammars and also with classical
categorial grammars, the existence of such learning algorithm is not guaranteed because,
due to the iterated types, the straightforward arguments of subformulas’ set cardinality do
not work. On the other hand, the learning algorithm A below is incremental in the sense
that every next hypothetical CDG A(σ[i + 1]) ”extends” the preceding grammar A(σ[i])
and it is so without any rigidity constraint. Another advantage of this algorithm is that it
can be applied on many linguistic treebanks as those in the CoNLL format11, possibly with
universal dependencies12 developped cross-linguistically.

Definition 9 (Vicinity) Let D be a DS in which an occurrence of a word w has the
incoming dependency h (or the axiom S), the left dependencies lk, . . . , l1 (in this order),
the right dependencies r1, . . . , rm (in this order). Then the vicinity of w in D is the type

V (w,D) = [l1\ . . . \lk\h/rm/ . . . /r1]

Definition 10 (Algorithm) We present an inference algorithm TGE(K) (see Figure 1)
which, for every next DS in a training sequence, transforms the observed dependencies of
every word into a type with repeated dependencies by introducing iteration for each group
of at least K consecutive dependencies with the same name.

5

Béchet Foret

Algorithm TGE(K) (type-generalize-expand):
Input: σ, a training sequence of length N .
Output: CDG TGE(K)(σ).

let GH = (WH ,CH , S, λH) where WH := ∅; CH := {S}; λH := ∅;
(loop) for i = 1 to N // loop on σ

let D such that σ[i] = σ[i− 1] ·D; // the i-th DS of σ
let (X,E) = D;
(loop) for every w ∈ X // the order of the loop is not important

WH := WH ∪ {w};
let tw = V (w,D) // the vicinity of w in D
(loop) while tw = [α\l\d\ · · · \d\r\β]

with at least K consecutive occurrences of d, l 6= d (or not present) and r 6= d (or not present)
tw := [α\l\d∗\r\β]

(loop) while tw = [α/l/d/ · · · /d/r/β]
with at least K consecutive occurrences of d, l 6= d (or not present) and r 6= d (or not present)

tw := [α/l/d∗/r/β]
λH(w) := λH(w) ∪ {tw}; // lexicon expansion
end end

return GH

Figure 1: Inference algorithm TGE(K).

Example 3 We illustrate TGE(2) with the following CDG Gtarget as target grammar:

John 7→ [N] to the station 7→ [L]
ran 7→ [N\A∗\S/A∗/L/A∗], [N\A∗\S/A∗]

seemingly , slowly , alone, during half an hour , every morning 7→ [A]

Algorithm TGE(2) on (σ[i]) will add for ran:

ran 7→ [N\S] for (i = 1):

ran 7→ [N\S/A] for (i = 2):
etc...
ran 7→ [N\A\S/A∗/L/A∗] for:

The algorithm also assigns from this training sequence :
John 7→ [N] to the station 7→ [L]
seemingly , slowly , alone, during half an hour , every morning 7→ [A]

11. http://ilk.uvt.nl/conll/#dataformat

12. http://universaldependencies.org/introduction.html

6

http://ilk.uvt.nl/conll/#dataformat
http://universaldependencies.org/introduction.html

Simple K-star CDG and their Inference

5. Learning K-star Revealing Grammars

As we explain in Section 3, the unlearnability of rigid CDG is due to the use of iterated types.
In natural languages, the optional dependencies that are repeated successively several times
are exactly the iterated dependencies. We use and formalize these properties to resolve the
learnability problem ; a main definition concerns a restriction on the class of grammars that
is learned, where an argument that is used at least K times in a DS must be an iterated
argument. Such grammars are called K-star revealing grammars Béchet et al. (2010).

Definition 11 (K-star generalization) Let K > 1 be an integer and G be a CDG. For a
word w having a type assignment w 7→ t in G and for a dependency name d, we suppose that
t can be written as [l1\ · · · \la\t1\ · · · \tp\m1\ · · · \mb\h/r1/ · · · /rc] where every t1, . . . , tp is
either d or some iterated dependency type x∗ and among t1, . . . , tp there are at least K
occurrences of d or at least one occurrence of d∗.
CK(G), the K-star-generalization CDG of G, is defined by recursively adding, for every
assignment w 7→ t of G and every dependency name d as above, the types

[l1\ · · · \la\d∗\m1\ · · · \mb\h/r1/ · · · /rc] and [l1\ · · · \la\m1\ · · · \mb\h/r1/ · · · /rc]
Symmetrically, corresponding types are added if t1, . . . , tp appear in the right part of t.

Example 4 For instance, with K = 2, for the type [a\b∗\a\S/a∗], it adds [a\a\S/a∗] and
[a\b∗\a\S] but also [a∗\S/a∗] and [S/a∗]. Recursively, it also adds [a\a\S], [a∗\S] and [S].
The size of CK(G) can be exponential with respect to the size of G.

Definition 12 (K-star revealing) Let K > 1 be an integer. A CDG G is K-star reveal-
ing if CK(G) ≡s G. The class of CDG that are K-star revealing is noted CDGK→∗.

Example 5 The grammars G(t) of Example 2 are 2-star revealing for t ∈ {t1, t2, t3} but
not 2-star revealing for t ∈ {t4, t5, t6}

Theorem 13 The class CDGK→∗ of K-star revealing CDG is learned from DS by the
inference algorithm TGE(K) (see Figure 1 and Appendix A).

Theorem 13 results from Lemma 20 and Lemma 21 and further definitions. See Appendix A.

6. Simple K-star Grammars and K-star Revealing Grammars

A K-star revealing grammar G is a CDG such that CK(G) ≡s G. This definition is
not constructive because one must prove that two grammars generate the same set of
dependency structures. For instance, the following CDG G1 corresponds to the string
language xa∗: x 7→ [S/A∗] ; a 7→ [A]. The K-star generalisation of this grammar CK(G1) is:
x 7→ [S/A∗], [S] ; a 7→ [A]. G1 and CK(G1) are equivalent because a dependency structure
of G1 can be obtained from a dependency structure of CK(G1) by replacing the type [S]
assigned to x by [S/A∗]. For complex grammars the problem is more difficult and may be
even not decidable for the full class of CDG (CDG with potential).

Conversely, the notion of being a simple K-star grammar can be easily checked: each
type in the lexicon must be checked independently to the other types. Thus it is simpler to
use the class of simple K-star grammars rather than the class of K-star revealing grammars.

7

Béchet Foret

Theorem 14 A simple K-star grammar is a K-star revealing grammar.

Proof Let G be a simple K-star grammar. We have to prove that CK(G) ≡s G or equiva-
lently that ∆(CK(G)) = ∆(G). Because CK(G) has the same lexicon as G except that some
types are added to some words, ∆(G) ⊆ ∆(CK(G)). For the reverse inclusion, we have to
look at the types that are added to the lexicon of G in the K-star generalization CK(G).
Potentially, for a word w and a dependency name d, they are:

[l1\ · · · \la\d∗\m1\ · · · \mb\h/r1/ · · · /rc] and [l1\ · · · \la\m1\ · · · \mb\h/r1/ · · · /rc]
when w has an assignment w 7→ t where t = [l1\ · · · \la\t1\ · · · \tp\m1\ · · · \mb\h/r1/ · · · /rc],
every t1, . . . , tp is either d or some iterated dependency type x∗ and among t1, . . . , tp there
are at least K occurrences of d or at least one occurrence of d∗ (and symmetrically).

BecauseG is a simpleK-star grammar, the p successive occurrences t1, . . . , tp of t contain
at most K − 1 occurrences of d and contain no occurrence of d or no occurrence of d∗. It
means that t1, . . . , tp contain at least one occurrence of d∗ and no occurrence of d: Each
ti is an iterated dependency type x∗ and from them at least one is d∗. As a consequence,
a vicinity of a DS that matches one of the added types also matches t and the DS is also
generated by G. G and the grammar obtained by adding the two types are equivalent.

Moreover, the grammar with the two new types is also a simple K-star grammar. The
new types verify the condition of the types of a simple K-star grammar. Let t′1\ · · · \t′q
be q successive occurrences on the left of one of the new types. If the added d∗ type or
la and m1 aren’t in t′1\ · · · \t′q, the q occurrences verify the condition for simple K-star
grammars. Otherwise, the condition on t for simple K-star grammars holds for a segment
of successive occurrences where t1\ · · · \tp is inserted in t′1\ · · · \t′q or replaces d∗ in t′1\ · · · \t′q.
As a consequence, t′1\ · · · \t′q must also verify the condition for simple K-star grammars.
Thus, the added types don’t change the DS-language and define a simple K-star grammar.
Recursively, the completion algorithm, that starts with a simple K-star grammar G, ends
with a simple K-star grammar CK(G) that is equivalent to G: G is K-star revealing.

Corollary 15 The class CDGK∼∗ of simple K-star CDG is learned from DS by the infer-
ence algorithm TGE(K).

In fact, the class of simple K-star grammars and the class of K-star revealing grammars
are not identical. Some K-star revealing grammars are not simple K-star grammar. A
very simple reason for this fact comes from the syntactical definition of the simple K-star
grammars versus the language equivalence definition of the K-star revealing grammars. It
is easy to define a grammar where some part of the lexicon is not used. This part does
not create a problem for the definition of a K-star revealing grammar but is a problem for
the definition of a simple K-star grammar. For instance, the following grammar is a 2-star
revealing grammar (a can never be used) but is not a simple 2-star grammar (2 successive
A on the left of [A\A\S]): x 7→ [S] ; a 7→ [A\A\S].

A more interesting example is given by x 7→ [S], [A\A∗\S] ; a 7→ [A]: It is a 2-star
revealing grammar that has only useful types but is not simple 2-star. It is not simple
2-star because the type [A\A∗\S] contains the two successive types A and A∗ on the left.
The completion mechanism gives the following grammar: x 7→ [S], [A\A∗\S], [A\S], [A∗\S]
; a 7→ [A] ; this grammar is equivalent to the initial one and thus it is 2-star revealing.

8

Simple K-star CDG and their Inference

Moreover, there exist DS-languages that are generated by K-star revealing grammars
but are not generated by any simple K-star grammar.

Theorem 16 Let G2 be the 2-star revealing grammar :
x 7→ [A\B∗\A\S], [A∗\S] a 7→ [A] b 7→ [B]

There is no simple 2-star grammar that generates ∆(G2).

Useless types. For a CDG, some parts of the lexicon may be useless. It can be all
the types associated to a word (a word that doesn’t appear in the language generated by
the grammar), one or several types of a word (the word appears in the language but the
derivations cannot use these types). It can also be some iterated type of useful types when
it is impossible to define a derivation ending in this type. For instance, for the grammar
x 7→ [Z∗\S], there is only one DS, [Z∗\S] is useful but the left iterated type Z∗ is useless.

We suppose below that we have a simple 2-star grammar that generates ∆(G2) and that
has no useless part (in the previous example, a simplified grammar would be x 7→ [S]).

Proof The DS-language ∆(G2) is the set of dependency structures that have one main
head x and a set of dependent on the left that can be either one a, none, one or several b
and one a or that can be none, one or several a. For this grammar, the types associated to
a and to b are respectively [A] and [B] (a DS contains the local dependency names A and B
for dependencies ending in a and b). The types associated to x are of the form [t1\ · · · \tp\S]
where each ti is A, B, A∗ or B∗. Because the number of b is not bound in the DS-language,
there exists at least one type associated to x that contains at least one B∗. The type cannot
contain A∗ and it must have exactly two local dependency names A that must be the left
and the right ends of the left part of the type (t1 = A and tp = A). The part between t1 and
tp can only be occurrences of B or B∗. Because the grammar is simple 2-star and because
one of them is B∗, the other cannot be B. Thus the type is [A\B∗\ · · · \B∗\A\S]. But it is
not possible because A\B∗\ · · · \B∗\A contains 2 occurrences A separated by iterated types
and this sequence is forbidden in a simple 2-star grammar.

The class of simple K-star grammars defines a smaller set of DS-languages than the class of
K-star revealing grammars. This is generally not a problem because from a K-star revealing
grammar it is always possible to define a simple K-star grammar that is a generalization
of the former grammar: some local dependency names are transformed into iterated types.
For instance, G2 can be transformed into the following grammar which is a simple 2-star
grammar: x 7→ [A∗\B∗\A∗\S], [A∗\S] ; a 7→ [A] ; b 7→ [B].

7. Conclusion

In this paper, we have replaced a non-constructive criterion on CDG grammars by a syn-
tactic constructive one that is slightly more restrictive ; we have shown that the new class is
learnable from dependency structures. This work has been developped in the computational
linguistic domain. It would be interesting to reconsider these notions in a purely theoretical
way (languages and automaton) or other application domains. In the lexicalized grammar
setting, some possible variants could also be explored.

9

Béchet Foret

Appendix A. Proof Details

Definition 17 (Monotonic, faithful, expansive and incremental) Let � be a partial
order on CDG which denotes a generalization relation on the lexicons of CDG. Let A be an
inference algorithm for CDG from DS and σ be a training sequence for a CDG G.
1. A is monotonic on σ (w.r.t. �) if A(σ[i]) � A(σ[j]) for all i ≤ j.
2. A is faithful on σ if ∆(A(σ[i])) ⊆ ∆(G) for all i.
3. A is expansive on σ if σ[i] ⊆ ∆(A(σ[i])) for all i.
A is said incremental (w.r.t. �) when it satisfies properties 1, 2 and 3.13

Definition 18 (�cr (Consecutive repetitions)) 1. for all i ≥ 0, 0 ≤ j ≤ m, n ≥ 0:
[lm\ · · · \lj\c · · · \c\lj−1\ · · · l1\g/r1 · · · /rn] <cr [lm\ · · · \lj\c∗\lj−1\ · · · l1\g/r1 · · · /rn]

and for all i ≥ 0, 0 ≤ k ≤ n, m ≥ 0:
[lm\ · · · l1\g/r1 · · · /rk−1/c · · · /c/rk/ · · · /rn] <cr [lm\ · · · l1\g/r1 · · · /rk−1/c∗/rk/ · · · /rn]

where c is repeated successively i times in c\ · · · \c\ or in c/ · · · /c/ accordingly.
2. τ <cr τ

′ for sets of types τ, τ ′, if either:
(i) τ ′ = τ ∪ {t} for a type t /∈ τ or (ii) τ = τ0 ∪ {t′} and τ ′ = τ0 ∪ {t′′}

for a set of types τ0 and some types t′, t′′ such that t′ <cr t
′′.

3. λ <cr λ
′ for two type assignments λ and λ′, if λ(w′) <cr λ

′(w′) for a word w′ and
λ(w) = λ′(w) for all words w 6= w′.
4. �cr is the PO (partial order) which is the reflexive-transitive closure of the preorder <cr

Lemma 1 Let G1, G2 be CDG. If G1 �cr G2 Then ∆(G1) ⊆ ∆(G2) and L(G1) ⊆ L(G2).

Definition 19 (Repetition blocks, patterns and superposition)

1. Repetition blocks (R-blocks) : for d ∈ C,

LBd={t1\ · · · \ti || i>0, t1, . . . , ti∈{d, d∗}} and RBd={t1/ · · · /ti || i>0, t1, . . . , ti∈{d, d∗}}
Elements of LBd and of RBd are called d R-blocks or R-blocks of label d.

2. Patterns are defined as types, but in the place of C, we use G, where G is the set
of gaps G = {〈d〉 || d ∈ C}, d is called the label of gap 〈d〉. Two consecutive gaps cannot
have the same label. The head of a type cannot be replaced by gaps. Gaps cannot be iterated.

3. Superposition and indexed occurrences of R-blocks :
(i) Let π be a pattern, π(〈d1〉←β1, . . . , 〈dm〉←βm) is the expression resulting from π by the
parallel substitution of the R-blocks βi for the corresponding gaps 〈di〉.
(ii) Let E be a type or a vicinity, π is superposable on E if: E=π(〈d1〉←β1, . . . , 〈dm〉←βm)
for some 〈d1〉, . . . , 〈dm〉, β1, . . . , βm, such that all βi are R-blocks of label di.

Lemma 2 For every vicinity V there is a single pattern π superposable on V and a single
decomposition (called R-decomposition): V = π(〈d1〉←β1, . . . , 〈dm〉←βm)

Proof This comes from the fact that a vicinity contains no iterated type, a pattern cannot
have 2 consecutive gaps for the same dependency and a repetition block is not empty.

13. The notions of faithful and expansive are close to those of prudent and of consistent in Kanazawa (1998).

10

Simple K-star CDG and their Inference

Lemma 3 For D ∈ ∆(G) and a word occurrence w, let π denote the pattern superposable
on the vicinity of w in D: V (w,D). There exists a type t that is assigned to w in CK(G)
and can be used in a proof of D for w such that π is superposable on t.

Proof For D ∈ ∆(G) and w a word of D. There exists a type that is associated to w in
the lexicon of G and is used in a proof of D. Thus, there exists at least one type associated
to w in the lexicon of CK(G) that can be used for w in a proof of ∆. Let t be the minimum
length type associated to w in the lexicon of CK(G) that can be used for w in a proof of ∆.
The R-decomposition of the vicinity of w in D is V (w,D) = π(〈d1〉←β1, . . . , 〈dm〉←βm).
The vicinity of w in D must match t. If π is not superposable on t, it means that some
part of t does not correspond to V (w,D): it must be an iterative type x∗, with x ∈ C that
corresponds to no dependency in the match. Because the types assigned to w in the lexicon
of CK(G) are closed when an iterated type is removed, we could find a smaller type for w
in CK(G) that can be used in a proof of D that is not possible. Thus π is superposable on
t.

Lemma 20 The inference algorithm TGE(K) is monotonic, faithful and expansive on
every training sequence σ of a K-star revealing CDG.

Proof By definition, the algorithm TGE(K) is monotonic (the lexicon is always extended).
It is expansive because for σ[i], we add types to the grammar that are based on the vicinities
of the words of σ[i]. Thus, σ[i] ⊆ ∆(TGE(K)(σ[i])). To prove that TGE(K) is faithful for
σ[i] of ∆(G) , we show TGE(K)(σ[i]) �cr CK(G). In fact, we prove that for any type t in
the lexicon of TGE(K)(σ[i]), there exists a type tG in the lexicon of CK(G) such that t = tG
or t = t1 <cr · · · <cr tn = tG with n > 0, and t1, . . . , tn types. Let t be a type of the word w
in the lexicon of TGE(K)(σ[i]). The algorithm TGE produces t for the analysis of a DS D.
D is a positive example thus D ∈ ∆(G) = ∆(CK(G)). By Proposition 3, if π is the pattern
superposable on the vicinity V (w,D), there exists a minimum length type t′ in the lexicon
of CK(G) assigned to w which can be used in a proof of D. The two superpositions of π
for t and t′ are : t = π(〈d1〉←α1, . . . , 〈dm〉←αm) and t′ = π(〈d1〉←β1, . . . , 〈dm〉←βm). For
1 ≤ i ≤ m, αi contains either a list of at most K − 1 di or d∗i and βi can be any R-block of
label di. t′ is not more general than or not equal to t if ∃i, 1 ≤ i ≤ m, such that αi = d∗i and
βi = di · · · di (di l times and no d∗i). It means that the vicinity has exactly l dependencies
labelled by di for the position i of the pattern and we must have l ≥ K (αi = d∗i). The type
t′′ = π(〈d1〉←β1, . . . , 〈di〉←αi, . . . , 〈dm〉←βm) must be also assigned to w in CK(G), is more
general than t′ (it can be used in a proof of D) but is strictly smaller than t′ which is not
possible (t′ has the minimum type length). Thus t′ more general or equal to t.

Lemma 21 The inference algorithm TGE(K) stabilizes on every training sequence σ of a
K-star revealing CDG.

Proof Because CK(G) has a finite number of types, the number of corresponding patterns
is also finite. Thus the number of patterns that correspond to the DS in ∆(CK(G)) (and of
course in σ) is also finite. Because the R-blocks are generalized using ∗ by TGE(K) when

11

Béchet Foret

their length is greater or equal to K, the number of R-blocks used by TGE(K) is finite.
Thus the number of generated types is finite and the algorithm certainly stabilizes.

References

Denis Béchet and Ophélie Lacroix. CDGFr, un corpus en dépendances non-projectives pour
le français. In Actes de la 22e conférence sur le Traitement Automatique des Langues
Naturelles, June 2015, Caen, France, pages 522–528. Association pour le Traitement
Automatique des Langues, 2015. Short paper in French.

Denis Béchet, Alexander Dikovsky, Annie Foret, and Erwan Moreau. On learning dis-
continuous dependencies from positive data. In Paola Monachesi, editor, Proceedings of
the 9th International Conference on Formal Grammar August 2004, pages 1–16. CSLI
Publications, 2004. URL http://cslipublications.stanford.edu/FG/2004.

Denis Béchet, Alexander Ja. Dikovsky, and Annie Foret. Two models of learning iterated
dependencies. In Philippe de Groote and Mark-Jan Nederhof, editors, Formal Grammar,
15th and 16th International Conferences, FG 2010, FG 2011, Revised Selected Papers,
volume 7395 of LNCS, pages 17–32. Springer, 2010. doi: 10.1007/978-3-642-32024-8\ 2.

Michael Dekhtyar, Alexander Dikovsky, and Boris Karlov. Categorial dependency gram-
mars. Theoretical Computer Science, 579:33 – 63, 2015. ISSN 0304-3975.

Alexander Dikovsky. Categorial Dependency Grammars: from Theory to Large Scale Gram-
mars. In K. Gerdes, E. Hajicova, and L. Wanner, editors, Conference on Dependency
Linguistics 2011, pages 262–271, Barcelona, Spain, 2011.

Makoto Kanazawa. Learnable classes of categorial grammars. Studies in Logic, Language
and Information. FoLLI & CSLI, 1998.

Ophélie Lacroix and Denis Béchet. A three-step transition-based system for non-projective
dependency parsing. In Jan Hajic and Junichi Tsujii, editors, COLING 2014, 25th Inter-
national Conference on Computational Linguistics, Proceedings of the Conference: Tech-
nical Papers, August 23-29, 2014, Dublin, Ireland, pages 224–232. ACL, 2014.

Igor Mel’čuk. Dependency Syntax. SUNY Press, Albany, NY, 1988.

Tatsuya Motoki, Takeshi Shinohara, and Keith Wright. The correct definition of finite
elasticity: Corrigendum to identification of unions. In The fourth Annual Workshop on
Computational Learning Theory, page 375, San Mateo, Calif., 1991.

Keith Wright. Identification of unions of languages drawn from an identifiable class. In
Ronald L. Rivest, David Haussler, and Manfred K. Warmuth, editors, Proceedings of the
Second Annual Workshop on Computational Learning Theory, COLT 1989, Santa Cruz,
CA, USA, July 31 - August 2, 1989., pages 328–333. Morgan Kaufmann, 1989.

12

http://cslipublications.stanford.edu/FG/2004

	Introduction
	Background
	Categorial Dependency Grammars
	Learnability and Limit Points
	Limit Points Construction for CDG with Iterated Types

	Simple K-star Grammars
	Inference Algorithm
	Learning K-star Revealing Grammars
	Simple K-star Grammars and K-star Revealing Grammars
	Conclusion

