
HAL Id: hal-01363371
https://hal.science/hal-01363371

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint compressive sampling and deconvolution in
ultrasound medical imaging

Zhouye Chen, Adrian Basarab, Denis Kouamé

To cite this version:
Zhouye Chen, Adrian Basarab, Denis Kouamé. Joint compressive sampling and deconvolution in
ultrasound medical imaging. IEEE International Ultrasonics Symposium (IUS 2015), Oct 2015, Taipei,
Taiwan. pp. 1-4. �hal-01363371�

https://hal.science/hal-01363371
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 15330 

The contribution was presented at :  
http://ewh.ieee.org/conf/ius/ius_2015/ 

 

To cite this version : Chen, Zhouye and Basarab, Adrian and Kouamé, Denis Joint 
compressive sampling and deconvolution in ultrasound medical imaging. (2015) In: 
IEEE International Ultrasonics Symposium (IUS 2015), 21 October 2015 - 24 
October 2015 (Taipei, Taiwan, Province Of China). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Joint Compressive Sampling and Deconvolution in

Ultrasound Medical Imaging

Zhouye Chen, Adrian Basarab, Denis Kouamé

University of Toulouse, IRIT UMR CNRS 5505, Toulouse, France

Email: zhouye.chen, adrian.basarab, denis.kouame@irit.fr

Abstract—The interest of compressive sampling and image
deconvolution has been extensively explored in the ultrasound
imaging literature. The first seeks to reduce the volume of
acquired data and/or to accelerate the frame rate. The second
aims at improving the ultrasound image quality in terms of
spatial resolution, contrast and signal to noise ratio. In this paper,
we propose a novel approach combining these two frameworks,
resulting into a compressive deconvolution technique aiming at
obtaining high quality reconstructions from a reduced number
of measurements. The resulting inverse problem is solved by
minimizing an objective function taking into account the data
attachment term and two appropriate prior information terms
adapted to ultrasound imaging.

Index Terms—Compressive sampling, deconvolution, compres-
sive deconvolution, image enhancement.

I. INTRODUCTION

This papers introduces a reconstruction technique aiming at

recovering enhanced ultrasound (US) images from compressed

random measurements.

In the past few years, several research groups evaluated the

application of compressive sampling (CS) theory [1, 2] in US

imaging. The main motivation of these studies is to decrease

the amount of acquired data or to increase the frame rate in

2D or 3D US imaging [3–6] or in Doppler applications [7, 8].

It has been thus shown that the RF data may be recovered

using nonlinear optimization techniques from a few random

linear measurements based on its sparse representation in basis

such as wavelets, waveatoms, 2D Fourier transform or learning

dictionaries [9]. However, the quality of the CS recovered

RF images is at most equivalent to the one of standard

fully-sampled data. Nevertheless, it is well known that the

quality of US images is limited by several physical phenomena

related to the acquisition setup. In this context, deconvolution-

based post-processing methods have been shown to provide

interesting contrast and spatial resolution enhancement in US

imaging [10–13]. Based on the first order Born approximation,

these deconvolution techniques assume that the RF images

are the result of a convolution between the tissue reflectivity

function and the imaging system point spread function (PSF).

In this work, we propose a novel framework in US imaging,

aiming to combine CS and deconvolution problems. Named

compressive deconvolution [14], our approach has a double

objective of jointly decreasing the amount of data and recon-

structing better contrasted and resolved images than the usual

RF data.

Fig. 1: Example of CS measurements in US imaging. From

left to right: the initial US image, the sampling matrix and the

random measurement.

The remainder of this papers is organized as follows. After

a brief summary of the application of CS and deconvolution in

US imaging, we present our method of compressive deconvo-

lution in Section III. Next, simulation results are provided and

show the interest of our approach in US imaging. Conclusions

are finally reported in Section V.

II. BASICS ON COMPRESSIVE SAMPLING AND

DECONVOLUTION IN US IMAGING

A. Compressive sampling

Let us denote by r ∈ R
N a vector obtained after lexico-

graphical ordering of an US RF image. The idea behind CS is

to recover this RF image from M linear random measurements

(with M << N ) denoted by y ∈ R
M :

y = Φr + n (1)

where n ∈ R
M is a zero-mean additive white Gaussian

noise and Φ ∈ R
M×N is the measurement matrix. Several

choices of Φ ∈ R
M×N may be found in the US literature, such

as Gaussian or Bernoulli random vectors. We denote hereafter

by R the compressive ratio of the measurements, that is,

R = M/N . Recovering r from y is guaranteed by the theory

of CS, provided that: (i) r is compressible in a known basis Ψ,

i.e. the vector a ∈ R
N such as r = Ψa is sparse, and (ii) Φ

and Ψ are incoherent [15]. The classical reconstruction process

consists in solving the following minimization problem in

order to recover the sparse representation a of the RF image:

min
a∈RN

‖a‖ 1 +
1

2µ
‖y − ΦΨa‖ 2

2
(2)

Fig. 1 shows a toy example of CS applied to US imaging,

corresponding to a random sampling scheme obtained by

projecting the initial image on Bernoulli random vectors [3].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 2: Example of 2D convolutive model in US imaging. From

left to right: the tissue reflectivity function, the 2D ultrasound

PSF and the ultrasound image.

B. Deconvolution

Similar to most imaging systems, ultrasound scanners are

only able to produce images with a limited spatial resolution

and contrast. This degradation, caused by several physical phe-

nomena mainly related to US wave propagation, is classically

formulated as a convolutive model between a ”clean” image

termed tissue reflectivity function (TRF) and the system point

spread function (PSF):

r = Hx+ n (3)

where r,x,n ∈ R
N are respectively the RF image, the

TRF and a zero-mean additive white Gaussian noise in lex-

icographical order. H ∈ R
N×N is a block circulant with

circulant blocks matrix associated with the 2D PSF. Without

loss of generality, in this paper, the PSF is considered spatially

invariant or block spatially invariant, as in most of the existing

literature on US deconvolution. Recovering the TRF from the

RF image is well-known to be an ill-posed problem. Thus, to

solve (3), one needs to consider a regularization term in the

optimization process. In US imaging, the regularization results

from statistical assumptions on the TRF, such as Gaussian,

generalized Gaussian or Laplacian distributions [10, 11, 13].

In this paper, without loss of generality, we consider the

Laplacian prior. In this case, the deconvolution turns into the

following optimization problem:

min
x∈RN

α ‖x‖ 1 + ‖r −Hx‖ 2

2
(4)

Fig. 2 shows a toy example highlighting the contrast and

resolution difference between the TRF, obtained by randomly

generating the scatterers [16], and the US image resulting from

the convolution between the TRF and an US 2D PSF.

III. PROPOSED METHOD

Our method, denoted by compressive deconvolution, aims

at recovering the TRF directly from the compressed random

measurements. The direct model considered regroups the two

linear models in (1) and (3). The TRF is thus related to the

CS random measurement as follows:

y = ΦHx+ n (5)

Intuitively, a straightforward way to solve the compressive

deconvolution problem, illustrated in Fig. 3, is to proceed

Fig. 3: Diagram highlighting the difference between an in-

tuitive sequential approach and the proposed compressive

deconvolution framework.

in two sequential steps: (i) recover the RF image from the

compressed measurements following (2), (ii) reconstruct the

TRF from the previously estimated RF data following (4).

Instead, we propose to jointly estimate both the RF image

and the TRF by solving the most challenging inverse problem

given hereafter:

min
x∈RN

‖ Ψ−1Hx ‖1 +α ‖x‖
1
+

1

2µ
‖ y − ΦHx ‖ 2

2
(6)

The objective function above is the sum of three terms. The

last one is the data fidelity term and evaluates the ℓ2-norm

of the residual between the compressed measurements y and

the linear model in (5), where the noise was considered as

additive Gaussian. The first term is imposing the sparsity of

the reconstructed RF data Hx in the transformed domain. Its

role is similar to the regularization term considered in (2). The

purpose of the second term of the proposed objective function

(6) is to regularize the estimated TRF through a statistical

Laplacian prior.

We have recently proposed an optimization scheme able to

solve a more general problem than (6), where the ℓ1-norm of x

was replaced by a more general ℓp-norm with p between 1 and

2 [17]. Based on the alternating direction method of multipliers

(ADMM) [18], the solution of (6) is obtained through an

iterative process updating at each iteration the estimates of

the TRF, of the RF image and of the Lagrange multiplier.

IV. SIMULATION RESULTS

A. Synthetic data

The synthetic RF image is simulated following the proce-

dure proposed in [16]. Starting from a cartoon image (mask),

the tissue reflectivity function (TRF) which is a scatterer

map containing Laplacian-distributed pixels weighted by the

amplitudes of the mask was generated. The RF image was

obtained by convolving the TRF with a 2D PSF previously

simulated with Field II [19]. The resulting TRF and RF

images, both visualized in the B-mode (computed through

envelope detection and log-compression), are shown in Fig.

4 (a) and (d). Furthermore, the RF image is projected on a

structured random matrix in order to generate the CS data.

This operation results into a reduction of the available data

corresponding to the compressive ratios between 20% and

80% in our simulations. The final measurements have been

corrupted by an additional white zero-mean Gaussian noise

corresponding to a SNR of 40 dB.



Fig. 4: TRF reconstruction. (a) Original TRF; (b-c) TRF

estimates using the sequential method with compressive ratios

of 60% and 20%; (d) Original RF image; (e-f) Reconstruction

results using the proposed method with compressive ratios of

60% and 20%.

B. Quality metrics

We remind that our compressive deconvolution method

allows to jointly recover the RF image and reconstruct the

TRF. Both estimations are evaluated using the peak signal

to noise ratio (PSNR) and the structural similarity (SSIM)

[20] between the reconstructed images and their corresponding

ground truth. We refer hereafter to PSNR and SSIM when

dealing with the TRF and to BPSNR (blurred PSNR) and

BSSIM (blurred SSIM) for the RF images.

C. Compressive deconvolution results

In this section, we compare the results with the proposed

method to the ones obtained using the sequential approach

schematically shown in Fig. 3. With the sequential method,

YALL1 [21] and Forward-Backward Spliting methods [22]

have been adopted to solve the optimization problems asso-

ciated with the CS and the deconvolution steps respectively,

that is, the eq.(2) and eq.(4). The reconstructed TRFs for

compressive ratios R of 20% and 60% are shown in Fig. 4. One

may visually evaluate the superiority of the proposed method

compared to the sequential approach. The same trend may be

observed in Fig. 5 that shows the original RF image and the

ones recovered using YALL1 and our approach.

The quantitative results reported in Table I confirm the

visual impression and prove the interest of our compressive

deconvolution. As expected, the reconstruction is more robust

when the compressive ratio R is high, given that in this case

more measurements are available. Compared to the sequential

approach, the proposed method allows an improvement of at

least 2 dB in PSNR and of around 20% in SSIM.

V. CONCLUSION

This paper introduces a novel framework of compressive

deconvolution adapted to ultrasound imaging. In addition to

standard compressive sampling reconstruction, our approach

Fig. 5: RF image reconstruction for a compressive ratio of

20%. From left to right: the original RF image, the CS

reconstruction using YALL1, the RF image recovered using

the proposed method.

TABLE I: Reconstruction quality assessment. The PSNR and

BPSNR are expressed in dB. R = M/N represents the

compressive ratio.
methods R 0.2 0.4 0.6 0.8 1

Sequential
PSNR 22.46 23.54 25.18 25.22 25.43
SSIM 31.27 39.60 59.86 61.36 61.76

BPSNR 23.64 29.24 34.35 41.50 59.72
BSSIM 46.91 64.19 84.92 96.40 99.93

Proposed
PSNR 24.60 27.01 28.34 29.14 29.81
SSIM 51.65 69.07 77.44 81.58 84.23

BPSNR 43.01 49.21 53.28 56.59 60.87
BSSIM 96.61 99.29 99.73 99.88 99.95

takes into account the intrinsic degradation of US images mod-

eled by the influence of the PSF. The linear model combines

the random linear measurement matrix specific to CS and a

2D convolution operator specific to US imaging. Then, it is

inverted taking into account statistical prior information on the

images to be recovered.

Simulation results show: (i) the interest of our method to

recover enhanced US images from compressed measurements

and (ii) its superiority compared to an intuitive approach

soving sequentially the CS reconstruction and the image

deconvolution.
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trasound compressive deconvolution with lp-norm prior

(regular paper),” in European Signal and Image Process-

ing Conference (EUSIPCO), Nice, France, 31/08/2015-

04/09/2015, 2015.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and

J. Eckstein, “Distributed optimization and statistical

learning via the alternating direction method of

multipliers,” Found. Trends Mach. Learn., vol. 3,

no. 1, pp. 1–122, Jan. 2011. [Online]. Available:

http://dx.doi.org/10.1561/2200000016

[19] J. A. Jensen, “A model for the propagation and scattering

of ultrasound in tissue,” Acoustical Society of America.

Journal, vol. 89, no. 1, pp. 182–190, 1991.

[20] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,

“Image quality assessment: from error visibility to struc-

tural similarity,” Image Processing, IEEE Transactions

on, vol. 13, no. 4, pp. 600–612, 2004.

[21] J. Yang and Y. Zhang, “Alternating direction algorithms

for l1-problems in compressive sensing,” SIAM journal

on scientific computing, vol. 33, no. 1, pp. 250–278,

2011.

[22] P. L. Combettes and V. R. Wajs, “Signal recovery by

proximal forward-backward splitting,” Multiscale Mod-

eling & Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.


