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Abstract. NoSQL (Not Only SQL) systems are becoming popular due to 
known advantages such as horizontal scalability and elasticity. In this paper, we 
study the implementation of multidimensional data warehouses with column-
oriented NoSQL systems. We define mapping rules that transform the concep-
tual multidimensional data model to logical column-oriented models. We con-
sider three different logical models and we use them to instantiate data ware-
houses. We focus on data loading, model-to-model conversion and OLAP cu-
boid computation. 

Keywords: data warehouse design, multidimensional modelling, NoSQL data-
bases, model transformation rules, column-oriented NoSQL model.  

1 Introduction 

NoSQL solutions have proven some clear advantages with respect to relational data-
base management systems (RDBMS) [17]. Nowadays, research attention has turned 
towards using these systems for storing “big” data and analyzing it. This work joins 
substantial ongoing work on the area on the use of NoSQL solutions for data ware-
housing [4,6,18,19]. In this paper, we focus on one class of NoSQL stores: column-
oriented systems such as HBase [11] or Cassandra [13] and inspired by Bigtable [2]. 

Column-oriented systems are one of the most famous families of NoSQL systems. 
They allow more flexibility in schema design using a vertical data organization with 
column families and with no static non-mutable schema defined in advance, i.e. the 
data schema can evolve. However, although, column-oriented databases are declared 
schemaless (no schema needed), most use cases require some sort of data model.  

When it comes to data warehouses, previous research has shown that it can be in-
stantiated with different logical models [12]. Data warehousing relies mostly on mul-
tidimensional data modelling which is a conceptual1 model that uses facts to model an 
analysis subject and dimensions for analysis axes. This conceptual model must then 

                                                           
1  Conceptual level data models describe data in a generic way regardless the information 

technologies used, while logical level models use a specific technique for implementing the 
conceptual level. 
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─ the computation of the OLAP cube using NoSQL technologies. 

2 State of the art 

Several research works have focused on translating data warehousing concepts into a 
relational (R-OLAP) logical level [3,6] as multidimensional databases are mostly 
implemented using the relational technologies. Mapping rules are used to convert 
structures of the conceptual level (facts, dimensions and hierarchies) into a logical 
model based on relations. Moreover, many works have focused on implementing 
logical optimization methods based on pre-computed aggregates (also called material-
ized views) [1]. However, R-OLAP implementations suffer from scaling-up to large 
data volumes (i.e. “Big Data”) and research is currently underway for new solutions 
such as using NoSQL systems [17]. Our approach aims at revisiting these processes 
for automatically implementing multidimensional conceptual models directly into 
NoSQL models. 

Other studies investigate the process of transforming relational databases into a 
NoSQL logical model (see Fig. 1). In [14], the author proposed an approach for trans-
forming a relational database into a column-oriented NoSQL database. In [18], the 
author studies “denormalizing” data into schema-free databases.  However, these 
approaches never consider the conceptual model of data warehouses. They are limited 
to the logical level, i.e. transforming a relational model into a column-oriented model. 
More specifically, the duality fact/dimension requires guaranteeing a number of con-
straints usually handled by the relational integrity constraints and these constraints 
cannot be considered when using the logical level as starting point.  

This study highlights that there are currently no approaches for automatically and 
directly transforming a data warehouse multidimensional conceptual model into a 
NoSQL logical model. It is possible to transform multidimensional conceptual models 
into a logical relational model, and then to transform this relational model into a logi-
cal NoSQL model. However, this transformation using the relational model as a pivot 
model has not been formalized as both transformations were studied independently of 
each other. Also, this indirect approach can be tedious. 

We can also cite several recent works that are aimed at developing data ware-
houses in NoSQL systems whether columns-oriented [9], document-oriented [5], or 
key-value oriented [19]. However, the main goal of these papers is to propose bench-
marks. These studies have not focused on the model transformation process and they 
only focus one NoSQL model. These models [5,9,19] require the relational model to 
be generated first before the abstraction step. 

In our approach we consider the conceptual model as well as logical models that 
allow distributing multidimensional data vertically using a column-oriented model. 
Finally we take into account hierarchies in our transformation rules by providing 
transformation rules to manage the pre-computed aggregates structured using an ag-
gregate lattice. 



3 MULTIDIMENSIONAL CONCEPTUAL MODEL AND 
CUBE 

3.1 Conceptual Multidimensional Model 

To ensure robust translation rules we present the multidimensional model used at the 
conceptual level [10,16]. 

A multidimensional schema, namely E, is defined by (FE, DE, StarE) where: 

─ FE={ F1,…, Fn} is a finite set of facts, 
─ DE={ D1,…, Dm} is a finite set of dimensions, 
─ StarE: FE →2�

�
 is a function that associates facts of FE to sets of dimensions along 

which it can be analyzed (2�
�
is the power set of DE). 

A dimension, denoted Di∈DE (abusively noted as D), is defined by (ND, AD, HD) 
where: 

─ ND is the name of the dimension, 
─ AD={��

�,…,��
�} ∪{ idD, AllD} is a set of dimension attributes, 

─ HD={��
�,…,�	

�} is a set hierarchies. 

A hierarchy of the dimension D, denoted Hi∈HD, is defined by (NHi, ParamHi, 
WeakHi) where: 

─ NHi is the name of the hierarchy, 
─ ParamH=<idD, 
�

��,…, 
	�
�� , AllD> is an ordered set of vi+2 attributes which are 

called parameters of the relevant graduation scale of the hierarchy, ∀k∈[1..vi], 



��∈AD. 

─ WeakHi: ParamHi →2�
���������  is a function associating with each parameter 

possibly one or more weak attributes. 

A fact, F∈FE, is defined by (NF, MF) where: 

─ NF is the name of the fact, 
─ MF={ f1(m1),…, fv(mv)} is a set of measures, each associated with an aggregation 

function fi. 

3.2 OLAP cube 

The pre-computed aggregate lattice or OLAP cube (also called sometimes the 
OLAP cuboid lattice) corresponds to a set of views or cuboids each being a subset of 
dimensions associated to a subset of measures of one fact. Technically, each view or 
cuboid corresponds to an analysis query. OLAP cuboids are pre-computed to speed up 
analysis query execution and thus facilitate analyzing data according to dimension 
combinations. Measure data is grouped according to the dimensions and aggregation 

Code de champ modifié



functions are used to summarize the measure data according to these groups. Formal-
ly, an OLAP cuboid O is derived from E, O = (FO,DO) such that: 

─ FO is a fact derived from F (F∈FE) with a subset of measures, MO⊆MF. 
─ DO⊆2�����(�)⊆DE is a subset of dimensions of DE. More precisely, DO is one of 

the combinations of the dimensions associated to the fact F (StarE(F)). 

If we generate OLAP cuboids using all dimension combinations of one fact, we have 
an OLAP cuboid lattice [1,3] (also called a pre-computed aggregate lattice or cube). 

3.3 Case study  

We use an excerpt of the star schema benchmark [5]. It consists in a monitoring of a 
sales system. Orders are placed by customers and the lines of the orders are analyzed. 
A line consists in a part (a product) bought from a supplier and sold to a customer at a 
specific date. The conceptual schema of this case study is presented in Fig. 2. 

The fact FLineOrder is defined by (LineOrder, {SUM(Quantity), SUM(Discount), 
SUM(Revenue), SUM(Tax)}) and it is analyzed according to four dimensions, each 
consisting of several hierarchical levels (called detail levels or parameters):  

─ The Customer dimension (DCustomer) with parameters Customer (along with the 
weak attribute Name), City, Region and Nation, 

─ The Part dimension (DPart) with parameters Partkey (with weak attributes Size and 
Prod_Name), Category, Brand and Type; organized using two hierarchies HBrand 
and HCateg, 

─ The Date dimension (DDate) with parameters Date, Month (with a weak attribute, 
MonthName) and Year, 

─ The Supplier dimension (DSupplier) with parameters Supplier (with weak attributes 
Name), City, Region and Nation. 

From this schema, called ESSB, we can define cuboids, for instance: 

─ (FLineOrder, {DCustomer, DDate, DSupplier }), 
─ (FLineOrder, {DCustomer, DDate }). 



 

Fig. 2. Graphical notations [10,16] of the multidimensional conceptual model. 

4 Modeling a data warehouse using column-oriented stores 

4.1 Column-oriented data model formalism 

Column-Oriented NoSQL models provide tables with a flexible schema (untyped 
columns) where the number of columns may vary between each record (called rows). 
Each row has a row key and a set of column families. Physical storage is organized 
according to these column families, hence a “vertical partitioning” of the data. A col-
umn family consists of a set of columns, each associated with a qualifier (name) and 
an atomic value. Every value can be “versioned” using a timestamp. The flexibility of 
a column-oriented NoSQL database enables managing the absence of some columns 
between the different table rows. However, in the context of multidimensional data 
storage, this rarely happens as data is usually highly structured. This implies that the 
structure of a column family (i.e. the set of columns of the column family) will be the 
same for all table rows. 

The following notations are used for describing a NoSQL model with respect to 
the definition of conceptual models. In addition to attribute names and values that are 
also present in the conceptual model, we focus here on the structure of rows.  

We define a row RT as a combination of:  

─ T: the table where the row belongs  
─ F: the column families of the table 
─ K: all column names 

DATE

CUSTOMER

PART

Customer City

LineOrder

Quantity

Discount

Revenue

Tax

Date

Partkey

Category

Prod_Name

Month Year

Month_Name

HCust

HBrand

Dimension

Hierarchy

Fact

Measures

Parameter

Weak Attributes

HTime

All

Brand

All

Legend

– FSSB={FLineOrder}

– DSSB={DCustomer, DPart, DDate, DSupplier}, 

– StarSSB(FLineOrder)={DCustomer, DPart, DDate, DSupplier}

HTIME

SUPPLIER
Supplier City Region

Name

All

HSuppl

Name

Region Nation

AllType

Size

HCateg

Nation



─ V: all atomic values of the column  
─ key: the row identifier 
─ P: all attributes mapped as a combination of row, column-family and column 

name. A attribute path p∈P is described as p=RT.f:q:v where f∈F, q∈K and v∈V. 

The example displayed in Fig. 3 uses a tree-like representation and describes a row 
(r i) identified by the key named Key (with a value v0) in a table called SSB. 

4.2 Column-oriented models for data warehousing  

In column-oriented stores, the data model is determined not only by its attributes and 
values, but also by the column families that group attributes (i.e. columns). In rela-
tional database models, mapping from conceptual to logical structures is more 
straightforward. In column-oriented stores, there are several candidate approaches, 
which can differ on the tables and structures used. So far, no logical model has been 
proven better than another one and no mapping rules are widely accepted. 

In this section, we present three logical column-oriented models. The first two 
models do not split data. Data contains redundancy as all the data about one fact and 
its related dimensions is stored in one table. The first model (MLC0) stores data 
grouped in a unique column family. In the second model (MLC1), we use one column 
family for each dimension and one dedicated for the fact. The third model (MLC2) 
splits data into multiple tables therefore reducing redundancy. 

─ MLC0: For each fact, all related dimensions attributes and all measures are com-
bined in one table and one column family. We call this approach the “simple flat 
model”. 

─ MLC1 (inspired from [4]): For each fact, all attributes of one dimension are stored 
in one column family dedicated to the dimension. All fact attributes (measures) are 
stored in one column family dedicated to the fact attributes. Note that there are dif-
ferent ways to organize data in column families and this one of them. 

─ MLC2: For each fact and its dimensions, we store data in dedicated tables one per 
dimension and one for the fact table. We keep these tables simple: one column 
family only. The fact table will have references to the dimension tables. We call 
this model the “shattered model”. This model has known advantages such as less 
storage space usage, but it can slow down querying as joins in NoSQL can be prob-
lematic. 



 

Fig. 3. Tree-like partial representation of a column-oriented table. 

4.3 Mappings with the conceptual model 

The formalism that we have defined earlier enables us to define a mapping from the 
conceptual multidimensional model to each of our three logical models. Let O = (FO, 
DO) be a cuboid for a multidimensional model E built from the fact F with dimensions 
in DE.  

Table 1 shows how we can map any measure m of FO and any dimension D of DO 
into all 3 models MLC0, MLC1 and MLC2. Let T be a generic table, TD a table for the 
dimension D, TF a table for a fact F and cf a generic column family. 

Table 1. Transformation rules from the conceptual model to the logical models. 

Conceptual: multi-
dimensional model 

Logical: Column-oriented models 
MLC0 MLC1 MLC2 

∀D∈DO, ∀d∈AD 
(d is an attribute of D) 

d→ RT.cf:d d→ RT.cfD:d 
d→��

�
.cf.d ∧  

if d=idD then  
d→��

�
.cf.d 

∀m∈FO m→ RT.cf.m m→ RT.cfF:m m→��
�
.cf.m 

The above mappings are detailed in the following paragraphs. 

row

key

Customer

v0

Part

Date

LineOrder

Customer C02265
Name M. Smith
City Toulouse
Region Midi Pyrénées
Nation France

Partkey P09878
Prod_Name Copper valve c3

date 03-31-2015
month 03-2015
month_name March
year 2015

Quantity 10

Structure Values

Table

Size 10x15x10

Supplier

Supplier SP015678

Discount 0
Revenue 3.5789

Brand B3
Type Connector
Category Plumbing

Name CPR Int.
City Madrid
Region Center Spain
Nation Spain

Tax 2.352

ri

ri+1

ri-1

…

… …

…



Conceptual to MLC0. To instantiate this model from the conceptual model, three 
rules are applied: 

─ Each cuboid O (FO and its dimensions DO) is translated into a table T with only one 
column family cf.  

─ Each measure m∈FO is translated into an attribute of cf, i.e. RT.cf:m. 
─ For all dimensions D∈DO, each attribute d∈AD of the dimension D is converted 

into an attribute (a column) of cf, i.e. RT.cf:d. 

Conceptual to MLC1. To instantiate this model from the conceptual model, five 
rules are applied: 

─ Each cuboid O (FO and their dimensions DO) is translated into a table T. 
─ The table contains one column family (denoted cfF) for the fact F. 
─ The table contains one column family (denoted cfD) for every dimension D∈DO. 
─ Each measure m∈FO is translated into an attribute (a column) in cfF, i.e. RT.cfF:m. 
─ For all dimensions D∈DO, each attribute d∈AD of the dimension D is converted 

into an attribute (a column) of cfD, i.e.RT.cfD:d. 

Conceptual to MLC2. To instantiate this model from the conceptual model, three 
rules are applied: 

─ Given a cuboid O, the fact FO is translated into a table TF with one column family 
cf and each dimension D∈DO is translated into a table TD with one column family 
cfD per table.  

─ Each measure m∈FO is translated into an attribute of the column family cf in the 
table TF, i.e. ��

�
.cf:m. 

─ For all dimensions D∈DO, each attribute d∈AD of the dimension D is converted 
into an attribute (a column) in the column family cf of the table TD, i.e. ��

�
.cf:d. 

And if d is the root parameter (idD), the attribute is also translated as an attribute in 
the column family cf of the table TF, i.e. ��

�
.cf:d. 

5 Experiments 

Our goal is firstly to validate the instantiation of data warehouses with our three logi-
cal approaches. Secondly we consider model conversion from one model MLCi to 
another MLCj, with j≠i. Thirdly we generate OLAP cuboids and we compare the 
computation effort required by each models. We use the Star Schema Benchmark, 
SSB [5], that is popular for generating data for decision support systems. We use 
HBase, one of the most popular column-oriented system, as NosQL storage system. 



5.1 Protocol 

Data: Data is generated using an extended version of SSB to generate raw data spe-
cific to our models in normalized and denormalized formats. This is very convenient 
for our experimental purposes. 

The benchmark models a simple product retail example and corresponds to a typi-
cal decision support star-schema. It contains one fact table “LineOrder” and 4 dimen-
sions “Customer”, “ Supplier”, “ Part” and “Date” (see Fig. 2 for an excerpt). The 
dimensions are composed of hierarchies; e.g. Date is organized according to one hier-
archy of attributes (d_date, d_month, d_year). 

We use different scale factors (sf), namely sf=1, sf=10, sf=100 in our experiments. 
The scale factor sf=1 generates approximately 107 lines for the “LineOrder” fact, for 
sf=10 we have approximately 108 lines and so on. For example, using the split model 
we will have (sf x 107) lines for “LineOrder” and a lot less for the dimensions which 
is typical as facts contain a lot more information than dimensions. 

Data loading: Data is loaded into HBase using native instructions. These are sup-
posed to load data faster when loading from files. The current version of HBase loads 
data with our logical model from CSV2 files. 

Lattice computation: To compute the aggregate lattice, we use Hive on top of 
HBase to ease query writing as Hive queries are SQL-like. Four levels of aggregates 
are computed on top of the detailed facts (see Fig. 5). These aggregates are: all com-
binations of 3 dimensions, all combinations of 2 dimensions, all combinations of 1 
dimension, and all data (detailed fact data). At each aggregation level, we apply ag-
gregation functions: max, min, sum and count on all measures.  

Hardware. The experiments are done on a cluster composed of 3 PCs (4 core-i5, 
8GB RAM, 2x2TB disks, 1Gb/s network), each being a worker node and one of them 
also acting as dispatcher (name node). 

5.2 Experimental results  

In Table 2 we summarize data loading times by model and scale factor. We can ob-
serve at scale factor SF1, we have 107 lines on each line order table for a 997 MB disk 
memory usage for MLC2 (3.9GB for both MLC0 and MLC1). At scale factor SF10 
and SF100 we have respectively 108 lines and 109 lines and 9.97GB (39GB MLC0 
and MLC1) and 97.7GB (390GB MLC0 and MLC1) for of disk memory usage. We 
observe that memory usage is lower in the MLC2 model. This is explained by the 
absence of redundancy in the dimensions. For all scale factors, the “dimension” tables 
“Customers”, “Supplier”, “Part” and “Date” have respectively 50000, 3333, 3333333 
and 2556 records. 
 

                                                           
2  CSV, Comma separated values files. 



Table 2. Data loading time and storage space required for each model in HBase. 

 MLC0 MLC1 MLC2 

SF1 (sf=1, 107 lines) 380s / 3.9GB 402s / 3.9GB 264s / 0.997GB 

SF10 (sf=10 108 lines) 3458s / 39GB 3562s / 39GB 2765s / 9.97GB 

SF100 (sf=100, 109 lines) 39075s / 390GB 39716s / 390GB 33097s / 99.7GB 

In Fig. 4, we show the time needed to convert one model to another model using SF1 
data. When we convert data from MLC0 to MLC1 and vice-versa conversion times 
are comparable. To transform data from MLC0 to MLC1 we records are just split on 
the several columns families and during the reverse (MLC1 to MLC0), we fuse rec-
ords. The conversion is more complicated when we consider MLC0 and MLC2. To 
convert MLC0 data into MLC2 we need to split data in multiple tables: we have to 
apply 5 projections on original data and select only distinct keys for dimensions. Alt-
hough, we produce less data (in memory usage), more processing time is needed than 
when converting data to MLC1. Converting from MLC2 to MLC0 is the slowest pro-
cess by far. This is due to the fact that most NoSQL systems (including HBase) do not 
natively support joins efficiently. 

 

Fig. 4. Inter-model conversion times using SF1. 

In Fig. 5, we sumarize experimental results concerning the computation of the OLAP 
cuboids at different levels of the OLAP lattice for SF1 using data from the model 
MLC0. We report the time needed to compute the cuboid and the number of records it 
contains. 

We observe as expected that the number of records decreases from one level to the 
lower level. The same is true for computation time. We need between 550 and 642 
seconds to compute the cuboids at the first level (using 3 dimensions). We need be-
tween 78 seconds and 480 seconds at the second layer (using 2 dimensions). And we 
only need between 2 and 23 seconds to compute the cuboids at the third and fourth 
level (using 1 and 0 dimensions).  

OLAP cube computation using the model MLC1 provides similar results. The 
performance is significantly lower with the MLC2 model due to joins. These 
differences involve only the first layer of the OLAP lattice (the layer composed of 
cuboids constructed using 3 dimensions), as the other layers can be computed from 
the latter (aggregation functions used are all commutative [1]). Table 3 summarizes 
these differences in computation time. We also report the full results for computing 
all lattice aggregates using MLC0 in Fig. 5 where arrows show computation paths 
(e.g. the view or cuboid CD can be computed from all cuboids that combine the C and 
D dimensions (Customer and Date): CSD and CPD). 



Table 3. Computation time of the first layer of OLAP lattice (3 dimension combinations). 

 MLC1 MLC M2 MLC M0 
CSD 556s 4892s 564s 
CSP 642s 5487s 664s 
CPD 573s 4992s 576s 
SPD 540s 4471s 561s 
Dimensions used: C = Customer, S = Supplier, D = Date, P = Part (i.e. Product) 

 

Fig. 5. Computation time and record count for each OLAP cuboid (letters are dimension 
names: C=Customer, S=Supplier, D=Date, P=Part/Product). 

Discussion. We observe that comparable times are required to load data in one model 
with the conversion times (except of MLC2 to MLC0). We also observe “reasona-
ble3” times for computing OLAP cuboids. These observations are important. At one 
hand, we show that we can instantiate data warehouses in document-oriented data 
systems. On the other, we can think of cuboids of OLAP cube lattice that can be com-
puted in parallel with a chosen data model. 

6 Conclusion 

In this paper, we studied instantiating multidimensional data warehouses using 
NoSQL column-oriented systems. We proposed three approaches at the column-
oriented logical model. Using a simple formalism that separate structures from values, 
we described mappings from the conceptual level (described using a multidimension-

                                                           
3  “Reasonable time” for a Big Data environment running on commodity hardware (without an 

optical fiber network between nodes, i.e. the recommended 10,000 GB/s). 

Record count

Computation time (seconds)

CSPD

CS

CSD CPD SPDCSP

SP PDCD SDCP

C S DP

All

9,392,109 rows

642s

4,470,422 rows

556s
9,790,169 rows

573s

9,390,777 rows

540s

317,415 rows

386s

21,250 rows

62s

937,478 rows

481s

21,250 rows

62s

937,475 rows

417s

85 rows

9s

3,750 rows

23s

250 rows

17s

1 row

3s

250 rows

17s

62,500 rows

78s

10,000,000 rows

0s, no computation time (only loading time)



al conceptual schema) to the logical level (described using NoSQL column-oriented 
logical schemas). 

Our experimental work illustrates the instantiation of a data warehouse with each 
of our three approaches. Each model has its own weaknesses and strengths. The shat-
tered model (MLC2) uses less disk space, but it is quite inefficient when it comes to 
answering queries (most requiring joins in this case). The simple models MLC0 and 
MLC1 do not show significant performance differences. Converting from one model 
to another is shown to be easy and comparable in time to “data loading from scratch”. 
One conversion is significantly very time consuming and corresponds to merging data 
from multiple tables (MLC2) into one unique table. Interesting results were also ob-
tained when computing the OLAP cuboid lattice using the column-oriented models 
and they are reasonable enough for a big data framework. 

For future work, we will consider logical models in alternative NoSQL architec-
tures, i.e. document-oriented models as well as graph-oriented models. Moreover, 
after exploring data warehouse instantiation across different NoSQL systems, we need 
to generalize across all these logical models. We need a simple formalism to express 
model differences and we need to compare models within each paradigm and across 
paradigms (e.g. document versus column). Finally we intend to study others query 
languages frameworks such as PIG or PHOENIX and compare them with Hive. 
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