N
N

N

HAL

open science

Implementation of multidimensional databases in
column-oriented NoSQL systems
Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan

Tournier

» To cite this version:

Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan Tournier. Implementation
of multidimensional databases in column-oriented NoSQL systems. 19th East-European Conference
on Advances in Databases and Information Systems (ADBIS), Sep 2015, Poitiers, France. pp. 79-91.
hal-01363342

HAL Id: hal-01363342
https://hal.science/hal-01363342

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01363342
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAQO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makesit freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toul ouse.fr/
EprintsID : 15335

The contribution was presented at :
http://adbis2015.ensma.fr/

To citethisversion : Chevalier, Max and El Malki, Mohammed and Kopliku, Arlind
and Teste, Olivier and Tournier, Ronan Implementation of multidimensional
databases in column-oriented NoSQL systems. (2015) In: 19th East-European
Conference on Advances in Databases and Information Systems (ADBIS), 8
September 2015 - 11 September 2015 (Poitiers, France).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

I mplementation of multidimensional databasesin
column-oriented NoSQL systems

M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier
Université de Toulouse, IRIT 5505, 118 Route de Narbonne, 31062 Toulouse, France

{Firstnane. Lastnane}@rit.fr

Abstract. NoSQL (Not Only SQL) systems are becoming popular due to
known advantages such as horizontal scalability and elasticity. In this paper, we
study the implementation of multidimensional data warehouses with column-
oriented NoSQL systems. We define mapping rules that transform the concep-
tual multidimensional data model to logical column-oriented models. We con-
sider three different logical models and we use them to instantiate data ware-
houses. We focus on data loading, model-to-model conversion and OLAP cu-
boid computation.

Keywords: data warehouse design, multidimensional modelling, NoSQL data-
bases, model transformation rules, column-oriented NoSQL model.

1 Introduction

NoSQL solutions have proven some clear advantages with respect to relational data-
base management systems (RDBMS) [17]. Nowadays, research attention has turned
towards using these systems for storing “big” data and analyzing it. This work joins
substantial ongoing work on the area on the use of NoSQL solutions for data ware-
housing [4,6,18,19]. In this paper, we focus on one class of NoSQL stores: column-
oriented systems such as HBase [11] or Cassandra [13] and inspired by Bigtable [2].
Column-oriented systems are one of the most famous families of NoSQL systems.
They allow more flexibility in schema design using a vertical data organization with
column families and with no static non-mutable schema defined in advance, i.e. the
data schema can evolve. However, although, column-oriented databases are declared
schemaless (no schema needed), most use cases require some sort of data model.
When it comes to data warehouses, previous research has shown that it can be in-
stantiated with different logical models [12]. Data warehousing relies mostly on mul-
tidimensional data modelling which is a conceptuabdel that uses facts to model an
analysis subject and dimensions for analysis axes. This conceptual model must then

1 Conceptual level data models describe data in a generic way regardless the information

technologies used, while logical level models use a specific technique for implementing the
conceptual level.

be converted in aolumr-oriented logical modelMapping the multidimension
model to relational databases is quite straightfodpbut until now there is no wor
(only an initial attempt ir[4]) that considers the direct mapping from the tidirhen-
sional conceptual model to NoSQL logical mo (see Fig. 1)NoSQL models ar
more expressive than relational models i.e. we @oonly have to describe data &
relations; we also have a flexible data structerg.(nested elements). In this cxt,
more than on@pproac is candidate as a mapping tbie multidimensional mode
Moreover, evolvingrequirements in terms of analyses or data querfopeance
might demand switching from orlogical model to anotheFinally, analysis querie
can be vey time consuming and speeding their execution istesgenerally ir
precomputing these queries (called aggregatesjresg@re-computation requires als
a logical model.

Conceptual Level Multidimensional
OLAP

o

=

Logical Level
g ,’\%a
- &%ﬂ
. b 1
Relational | NoSQL &
OLAP | owap
Legend = = = New transformation

Existing transformation
Fig. 1. Transformations oconceptual multidimensional modétgo logical models

In this paper, we focus on data models for dateha@using. We compare threei-
cal columneriented models. We provica formalism for expressing each of the
models which enables usgenerate a mapping from thenceptual model. We shc
how we can instantiate data warehouses in cc-oriented stores. Our studien-
clude data loading mode-to-model conversions and the compuatiof pre
computed aggregates (also called OLAP cut grouped in an OLAP cube

Our motivation is multiple. The implementation of OLAdystems with NoSQ!
systems is a new alternati[7,16]. These systems have several advantsuch as
increasedlexibility and scalability. The increasing scidittiresearch in this directic
demands fofformalization, commc-agreement models and evaluatiafsdifferent
NoSQL systems.

We can summarize our contribution as follo

— logical notations for NoSQL systems where structwaed values are clearly a-
rated

— three colummarientedapproaches to map conceptual multidimensicledh wae-
house schemdse alogical model;

— the conversions from one model to the other atabieal leve;

— the computation of the OLAP cube using NoSQL tedtdgies.

2 State of theart

Several research works have focused on transldttey warehousing concepts into a
relational (R-OLAP) logical level [3,6] as multidensional databases are mostly
implemented using the relational technologies. Miegppules are used to convert
structures of the conceptual level (facts, dimemsiand hierarchies) into a logical
model based on relations. Moreover, many works Haeesed on implementing
logical optimization methods based on pre-compatggtegates (also called material-
ized views) [1]. However, R-OLAP implementationdfsu from scaling-up to large
data volumes (i.e. “Big Data”) and research is ently underway for new solutions
such as using NoSQL systems [17]. Our approach atmsvisiting these processes
for automatically implementing multidimensional ceptual models directly into
NoSQL models.

Other studies investigate the process of transfaynmelational databases into a
NoSQL logical model (see Fig. 1). In [14], the artbroposed an approach for trans-
forming a relational database into a column-origM®SQL database. In [18], the
author studies “denormalizing” data into schema-fdatabases. However, these
approaches never consider the conceptual modetafwiarehouses. They are limited
to the logical level, i.e. transforming a relatibneodel into a column-oriented model.
More specifically, the duality fact/dimension relas guaranteeing a number of con-
straints usually handled by the relational intggdbnstraints and these constraints
cannot be considered when using the logical levattarting point.

This study highlights that there are currently ppraaches for automatically and
directly transforming a data warehouse multidimenal conceptual model into a
NoSQL logical model. It is possible to transformlitiimensional conceptual models
into a logical relational model, and then to transf this relational model into a logi-
cal NoSQL model. However, this transformation udimg relational model as a pivot
model has not been formalized as both transformatigere studied independently of
each other. Also, this indirect approach can bested

We can also cite several recent works that are diiatedeveloping data ware-
houses in NoSQL systems whether columns-orientgddfcument-oriented [5], or
key-value oriented [19]. However, the main goatr@se papers is to propose bench-
marks. These studies have not focused on the nti@deformation process and they
only focus one NoSQL model. These models [5,9,2qlire the relational model to
be generated first before the abstraction step.

In our approach we consider the conceptual mod@&elsas logical models that
allow distributing multidimensional data verticallysing a column-oriented model.
Finally we take into account hierarchies in oumsf@rmation rules by providing
transformation rules to manage the pre-computedeggtes structured using an ag-
gregate lattice.

3 MULTIDIMENSIONAL CONCEPTUAL MODEL AND
CUBE

31 Conceptual Multidimensional Model

To ensure robust translation rules we present thiéidimensional model used at the
conceptual level [10,16].
A multidimensional schema, namelyE, is defined by k%, DF, Staff) where:

— FE={F,,..., F} is a finite set of facts,

— D®={D,,..., Dy} is a finite set of dimensions,

— Staf: F¥ -22” is a function that associates facts5fto sets of dimensions along
which it can be analyzea‘(Eis thepower sebf DF).

A dimension, denotedD;(DF (abusively noted a®), is defined by If°, A°, HP)
where:

— NP is the name of the dimension,
— AP={a?.....aP}0{id, All} is a set of dimension attributes,
— HP={HP,....DP} is a set hierarchies.

A hierarchy of the dimensionD, denotedH,JH®, is defined by K, Parant",
Weak") where:

— N is the name of the hierarchy,

called parameters of the relevant graduation scale of the hierardhif][1..v],
piOA°.

— Weak': Paranf —24°-Param™ s g function associating with each parameter
possibly one or more weak attributes.

A fact, FOFE, is defined by N, MF) where:

— NF is the name of the fact,
— M={fy(my),..., f(m,)} is a set of measures, each associated with gneggtion
functionf;.

3.2 OLAPcube

The pre-computed aggregate lattice or OLAP cube (also called sometimes the
OLAP cuboid lattice) corresponds to a set of vi@wvsuboids each being a subset of
dimensions associated to a subset of measuresedioh Technically, each view or
cuboid corresponds to an analysis query. OLAP asbare pre-computed to speed up
analysis query execution and thus facilitate anatyzlata according to dimension
combinations. Measure data is grouped accordirtgeaimensions and aggregation

[Code de champ modifié

functions are used to summarize the measure datadicg to these groups. Formal-
ly, an OLAP cuboidD is derived fronE, O = (F°,D°) such that:

— FCis a fact derived fronfr (FOFF) with a subset of measurdg®CIM".

— D°O28ter®(MODE is a subset of dimensions BF. More preciselyD® is one of |
the combinations of the dimensions associatededatiF (Star(F)).

If we generate OLAP cuboids using all dimension borations of one fact, we have
an OLAP cuboid lattice [1,3] (also called a pre-pated aggregate lattice or cube).

33 Casestudy

We use an excerpt of the star schema benchmark [&nsists in a monitoring of a
sales system. Orders are placed by customers aruhés of the orders are analyzed.
A line consists in a part (a product) bought frosuaplier and sold to a customer at a
specific date. The conceptual schema of this dasly $s presented in Fig. 2.

The fact F-"°"% js defined by I(ineOrder {SUMQuantity, SUM(Discoun},
SUMRevenug SUMTaX}) and it is analyzed according to four dimensiorach
consisting of several hierarchical levels (callethd levels or parameters):

— The Customer dimensiorDf“*°™ with parametersCustomer(along with the
weak attributdName, City, RegionandNation,

— The Part dimensiorDf®") with parameter®artkey(with weak attributeSizeand
Prod_Namg, Category Brand andType organized using two hierarchiedrand
andHCateg

— The Date dimensionD’*® with parameter®ate, Month (with a weak attribute,
MonthNamgandYear,

— The Supplier dimensionDE"?P"®) with parameterSupplier (with weak attributes
Namé, City, RegionandNation

From this schema, callégf>® we can define cuboids, for instance:

LineOrder Customer ~Date ~Supplier
B (FL Ord ’ DC t : DD t, D ” }),
—_ (F 1INeor er’ {D ust ome:’ D ate })

Dimension

T~

Name

/ HCust

CUSTOMER @]

Fact

Customer City Region Nation All
Size ~
Prod_Name <~
= T Weak Attributes
LineOrder HBrand
. ””””” Jottd
Quantity Brand TYP—e—"" All
Discount Hierarchy — i
\ Category
Revenue \
Month_Name
Measures Month Year All
HTime
Name
HSuppl
SUPPLIER g @ e O e O
Legend Supplier City Region Nation All
-~ v\\‘ A %

— FSSB={ FlineOrder) —
- DSSB:{DCusmmer, DPart, DDate, DSupplr‘er},
— StarSsB(FLineOrder)={pCustomer pPart pDate pSupplier}

rameter

Fig. 2. Graphical notations [10,16] of the multidimensiboanceptual model.

4 Modeling a data war ehouse using column-oriented stores

4.1 Column-oriented data model formalism

Column-Oriented NoSQL models provide tables witllexible schema (untyped
columns) where the number of columns may vary betweach record (called rows).
Each row has a row key and a set of column famikésy/sical storage is organized
according to these column families, hence a “valfmartitioning” of the data. A col-
umn family consists of a set of columns, each aatet with a qualifier (name) and
an atomic value. Every value can be “versionedhgisi timestamp. The flexibility of
a column-oriented NoSQL database enables manageglisence of some columns
between the different table rows. However, in tbatext of multidimensional data
storage, this rarely happens as data is usuallyhyhggructured. This implies that the
structure of a column family (i.e. the set of cohsrof the column family) will be the
same for all table rows.

The following notations are used for describing @SRQL model with respect to
the definition of conceptual models. In additiorattribute names and values that are
also present in the conceptual model, we focus tretée structure of rows.

We define a rowR’ as a combination of:

— T: the table where the row belongs
— F: the column families of the table
— K: all column names

— V: all atomic values of the column

— key the row identifier

— P: all attributes mapped as a combination of rowumm-family and column
name. A attribute patp(P is described ag=R".f:q:v wherefOF, qOK andvOV.

The example displayed in Fig. 3 uses a tree-lilggagentation and describes a row
(r;) identified by the key named Key (with a valggin a table calleSB

4.2 Column-oriented modelsfor data warehousing

In column-oriented stores, the data model is ddatexdhnot only by its attributes and
values, but also by the column families that gratipibutes (i.e. columns). In rela-
tional database models, mapping from conceptualogical structures is more
straightforward. In column-oriented stores, there several candidate approaches,
which can differ on the tables and structures uSedfar, no logical model has been
proven better than another one and no mapping antewidely accepted.

In this section, we present three logical columierttied models. The first two
models do not split data. Data contains redundascgll the data about one fact and
its related dimensions is stored in one table. fitet model MLCQ) stores data
grouped in a unique column family. In the secondled@VLC1), we use one column
family for each dimension and one dedicated forftet. The third modelMLC?2)
splits data into multiple tables therefore redudiedundancy.

— MLCQO: For each fact, all related dimensions attributes all measures are com-
bined in one table and one column family. We dal approach the “simple flat
model”.

— MLCL1 (inspired from [4]) For each fact, all attributes of one dimensionshoeed
in one column family dedicated to the dimensiorl.fAtt attributes (measures) are
stored in one column family dedicated to the fattlaites. Note that there are dif-
ferent ways to organize data in column families timisl one of them.

— MLC2: For each fact and its dimensions, we store datiedicated tables one per
dimension and one for the fact table. We keep thiabkes simple: one column
family only. The fact table will have referencesth® dimension tables. We call
this model the “shattered model”. This model hasvkm advantages such as less
storage space usage, but it can slow down queagrjgins in NoSQL can be prob-
lematic.

Table

Structure Values
fy e
key Vo
Customer C02265
Name —— — M. Smith
Customer City ——— Toulouse
Region — Midi Pyrénées
Nation ——— France
Partkey ——— P09878
Prod_Name——— Copper valve c3
Part Size ——— 10x15x10
Brand —— B3
Type — Connector
Category Plumbing
date ———— 03-31-2015
r row Date month ———— 03-2015
month_name—— March
year — 2015
Supplier ——— SP015678
Name —— CPRInt.
Supplier City Madrid
Region —— Center Spain
Nation —— Spain
Quantity 10
. Discount 0
L|neOrder< Revenue 3.5789
Tax ———— 2.352

li+1

Fig. 3. Tree-like partial representation of a column-ctéentable.

4.3 Mappings with the conceptual model

The formalism that we have defined earlier enabkeso define a mapping from the
conceptual multidimensional model to each of oueehogical models. L&b = (F°,
D) Ee a cuboid for a multidimensional modebuilt from the facF with dimensions
in D~.

Table 1 shows how we can map any measuné F° and any dimensioP of D°
into all 3 modeldMLCO, MLC1 andMLC2. LetT be a generic tabl&? a table for the
dimensionD, T" a table for a fadt andcf a generic column family.

Table 1. Transformation rules from the conceptual modehlogical models.

Conceptual: multi- Logical: Column-oriented models
dimensional model MLCO MLC1 MLC2
o b d—R™" .cfd D
DDOD™, DdUA d R'.cf.d do Richd | if d=id® then
(d is an attribute oD) F
d—FT cfd
OmOF° m— R'.cf.m m- R.ctm | moR™ cfm

The above mappings are detailed in the followinggeaphs.

Conceptual to MLCO. To instantiate this model from the conceptual nhotleee
rules are applied:

— Each cuboid (F° and its dimensionB®) is translated into a table T with only one
column familycf.

— Each measurs0FC is translated into an attribute off i.e. R".cf:m.

— For all dimensiond©0OD®, each attributelJAP of the dimensiorD is converted
into an attribute (a column) of, i.e.R".cf:d.

Conceptual to MLCL1. To instantiate this model from the conceptual nhotiee
rules are applied:

— Each cuboid (F° and their dimensiond°) is translated into a table

— The table contains one column family (denat&dl for the fact.

— The table contains one column family (denatég for every dimensio®DC.

— Each measurelF° is translated into an attribute (a columnkig i.e.R".cf:m.

— For all dimensionDDC, each attributalJA® of the dimensiorD is converted
into an attribute (a column) ef,, i.e.R.cfy:d.

Conceptual to MLC2. To instantiate this model from the conceptual nhotleee
rules are applied:

— Given a cuboid, the factF® is translated into a tablE with one column family
cf and each dimensioROD® is translated into a tablE® with one column family
cfy per table.

— Each measurendF° is translated into an attribute of the column fgnef in the
tableT", i.e.RT" .cfm.

— For all dimension®0DC, each attributelJA® of the dimensiorD is converted
into an attribute (a column) in the column famifiyof the tableT®, i.e. RT” cfd.
And if d is the root parameteidp), the attribute is also translated as an attribute
the column familycf of the tabler", i.e.RT" cfd.

5 Experiments

Our goal is firstly to validate the instantiatiohdata warehouses with our three logi-
cal approaches. Secondly we consider model comrefsom one modeMLC; to
anotherMLG;, with j2i. Thirdly we generate OLAP cuboids and we compaee t
computation effort required by each models. We tinge Star Schema Benchmark,
SSB [5], that is popular for generating data focisien support systems. We use
HBase, one of the most popular column-oriented systeaN@sQL storage system.

5.1 Protocol

Data: Data is generated using an extended version of t8Qf@nerate raw data spe-
cific to our models in normalized and denormalifednats. This is very convenient
for our experimental purposes.

The benchmark models a simple product retail exarapd corresponds to a typi-
cal decision support star-schema. It contains anetéble LineOrdef and 4 dimen-
sions ‘Customet, “Supplief, “Part” and “Dat€’ (see Fig. 2 for an excerpt). The
dimensions are composed of hierarcheeg; Date is organized according to one hier-
archy of attributes (d_date, d_month, d_year).

We use different scale factors (sf), namely sf$218, sf=100 in our experiments.
The scale factor sf=1 generates approximatelylih@s for the LineOrdef fact, for
sf=10 we have approximately ®lines and so on. For example, using the split hode
we will have (sf x 10 lines for ‘LineOrdef and a lot less for the dimensions which
is typical as facts contain a lot more informatiban dimensions.

Data loading: Data is loaded into HBase using native instruciorhese are sup-
posed to load data faster when loading from fildge current version of HBase loads
data with our logical model from CS¥iles.

Lattice computation: To compute the aggregate lattice, we use Hive pnofo
HBase to ease query writing as Hive queries are-8@L Four levels of aggregates
are computed on top of the detailed facts (seeJjigrhese aggregates are: all com-
binations of 3 dimensions, all combinations of thensions, all combinations of 1
dimension, and all data (detailed fact data). Atheaggregation level, we apply ag-
gregation functionanax, min, surandcounton all measures.

Hardware. The experiments are done on a cluster composedP@s3(4 core-i5,
8GB RAM, 2x2TB disks, 1Gb/s network), each beingaker nodeand one of them
also acting as dispatcherame nodp

5.2 Experimental results

In Table 2 we summarize data loading times by modélsmale factor. We can ob-
serve at scale factor SF1, we havéliries on each line order table for a 997 MB disk
memory usage for MLC2 (3.9GB for both MLCO and MDCAt scale factor SF10
and SF100 we have respectively’ lides and 1®lines and 9.97GB (39GB MLCO
and MLC1) and 97.7GB (390GB MLCO and MLC1) for ofklimemory usage. We
observe that memory usage is lower in the MLC2 rhotleis is explained by the
absence of redundancy in the dimensions. For aledactors, the “dimension” tables
“Customers”, “Supplier”, “Part” and “Date” have pectively 50000, 3333, 3333333
and 2556 records.

2 CSV, Comma separated values files.

Table 2. Data loading time and storage space requiredach enodel in HBase.

MLCO MLC1 MLC2
SF1 (sf=1, lz)lines) 380s/3.9GB 402s/ 3.9GB 264s/0.997GB
SF10 (sf=10 ﬂ)lines) 3458s/ 39GB 3562s/ 39GB 2765s/9.97GB
SF100 (sf=100, ﬂ]ines) 39075s/ 390GB 39716s/ 390GB 33097s/99.7GB

In Fig. 4, we show the time needed to convert ondehto another model using SF1
data. When we convert data from MLCO to MLC1 ancewersa conversion times
are comparable. To transform data from MLCO to MMz records are just split on
the several columns families and during the rev@eC1 to MLCO), we fuse rec-
ords. The conversion is more complicated when wesider MLCO and MLC2. To
convert MLCO data into MLC2 we need to split datanmultiple tables: we have to
apply 5 projections on original data and selecy atistinct keys for dimensions. Alt-
hough, we produce less data (in memory usage), proeessing time is needed than
when converting data to MLC1. Converting from ML&2MLCO is the slowest pro-
cess by far. This is due to the fact that most NoSgstems (including HBase) do not
natively support joins efficiently.

1161s 1761s

1374s MIDO fe—r—

35441s

36164s

Fig. 4. Inter-model conversion times using SF1.

In Fig. 5, we sumarize experimental results coriogrthe computation of the OLAP
cuboids at different levels of the OLAP lattice 8F1 using data from the model
MLCO. We report the time needed to compute the cubod the number of records it
contains.

We observe as expected that the number of rececteases from one level to the
lower level. The same is true for computation tidée need between 550 and 642
seconds to compute the cuboids at the first lewgh@ 3 dimensions). We need be-
tween 78 seconds and 480 seconds at the secondUayeg 2 dimensions). And we
only need between 2 and 23 seconds to computeutha@ds at the third and fourth
level (using 1 and O dimensions).

OLAP cube computation using the model MLC1 providasilar results. The
performance is significantly lower with the MLC2 d& due to joins. These
differences involve only the first layer of the ORAattice (the layer composed of
cuboids constructed using 3 dimensions), as therd#tyers can be computed from
the latter (aggregation functions used arecathmutative1l]). Table 3 summarizes
these differences in computation time. We also ntephe full results for computing
all lattice aggregates using MLCO in Fig. 5 wherws show computation paths
(e.g. the view or cuboid CD can be computed fronswboids that combine the C and
D dimensionsCustomerandDate): CSD and CPD).

Table 3. Computation time of the first layer of OLAP la#i¢3 dimension combinations).

MLC1 MLC M2 MLC MO
CSD 556s 4892s 564s
csp 64z 5487s 664s
CPD 573s 4992s 576s
SPD 54(s 4471s 561s

Dimensions used: C = Customer, S = Supplier, D te[Ra = Part (i.e. Product)

10,000,000 rows
0s, no computation time (only loading time)

Record count

<_/— Computation time (seconds)

Fig. 5. Computation time and record count for each OLAPoddi (letters are dimension
names: C=Customer, S=Supplier, D=Date, P=Part/thdu

Discussion. We observe that comparable times are requiredatt ¢lata in one model
with the conversion times (except of MLC2 to MLC®Ye also observe “reasona-
ble™ times for computing OLAP cuboids. These obsensaiare important. At one
hand, we show that we can instantiate data waresours document-oriented data
systems. On the other, we can think of cuboidsloA® cube lattice that can be com-
puted in parallel with a chosen data model.

6 Conclusion

In this paper, we studied instantiating multidimenal data warehouses using
NoSQL column-oriented systems. We proposed thrggoaphes at the column-
oriented logical model. Using a simple formalisratteeparate structures from values,
we described mappings from the conceptual leveddiileed using a multidimension-

3 “Reasonable time” for a Big Data environment rimgron commodity hardware (without an

optical fiber network between nodes, i.e. the revemded 10,000 GB/s).

al conceptual schema) to the logical level (desctibsing NoSQL column-oriented
logical schemas).

Our experimental work illustrates the instantiatmfna data warehouse with each
of our three approaches. Each model has its owkvesses and strengths. The shat-
tered model (MLC2) uses less disk space, butquite inefficient when it comes to
answering queries (most requiring joins in thiseja3he simple models MLCO and
MLC1 do not show significant performance differend@snverting from one model
to another is shown to be easy and comparablenm tib “data loading from scratch”.
One conversion is significantly very time consumargl corresponds to merging data
from multiple tables (MLC2) into one unique tablatdresting results were also ob-
tained when computing the OLAP cuboid lattice usihg column-oriented models
and they are reasonable enough for a big data fwanke

For future work, we will consider logical models afternative NoSQL architec-
tures, i.e. document-oriented models as well aptgmiented models. Moreover,
after exploring data warehouse instantiation acdifésrent NoSQL systems, we need
to generalize across all these logical models. & ra simple formalism to express
model differences and we need to compare modelinvitach paradigm and across
paradigms (e.g. document versus column). Finallyintend to study others query
languages frameworks such as PIG or PHOENIX ancheoenthem with Hive.

7 Acknowledgements

These studies are supported by the ANRT fundingeu@FRE-Capgemini part-
nership.

8 References

1. Bosworth, A., Gray, J., Layman, A., Pirahesh, Hatdcube: A relational aggregation oper-
ator generalizing group-by, cross-tab, and sullgofeech. Rep. MSR-TR-95-22, Microsoft
Research (February 1995)

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C.|adfal D.A., Burrows, M.,Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A distributedrstge system for structured data. ACM
Trans. Comput. Syst. 26(2), 4:1-4:26 (Jun 2008)

3. Chaudhuri, S., Dayal, U.: An overview of data wamesing and olap technology.SIGMOD
Record 26, pp. 65-74 (1997)

4. Chevalier, M., El Malki, M., Kopliku, A., Teste, OTournier, R., Implementing Multidi-
mensional Data Warehouses into NoSQL" Irit. Conf. on Enterprise Information Systems,
vol. DISI, to appear, 2015.

5. Chevalier, M., El Malki, M., Kopliku, A., Teste, OTournier, R., Benchmark for OLAP on
NoSQL Technologies, Comparing NoSQL Multidimensiobata Warehousing Solutions,
in 9" Int. Conf. on Research Challenges in InformatioieSce (RCIS), IEEE, to appear,
2015.

6. Colliat, G.: Olap, relational and multidimensiorgdtabase systems. SIGMODRec. 25(3),
pp. 64-69 (Sep 1996), http://doi.acm.org/10.114588%.234901

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

. Cuzzocrea, A., Bellatreche, L., Song, |.Y.: Dataet@using and olap over bigdata: Current

challenges and future research directions. In: dé&dioigs of the Sixteenth International
Workshop on Data Warehousing and OLAP. pp. 67-70.8'13, ACM, New York, NY,
USA (2013)

. Cuzzocrea, A., Song, l.Y., Davis, K.C.: Analyticeeo large-scale multidimensionaldata:

The big data revolution! In: Proceedings of the AQKth InternationalWorkshop on Data
Warehousing and OLAP. pp. 101-104. DOLAP ‘11, ACkMNYork, NY, USA (2011)

. Dehdouh, K., Boussaid, O., Bentayeb, F.: Colummaqghstar schema benchmark.In: Model

and Data Engineering, vol. 8748, pp. 281-288. $ririnternationalPublishing (2014)
Golfarelli, M., Maio, D., Rizzi, S.: The dimensidrfact model: A conceptual modelfor data
warehouses. International Journal of Cooperatiierimation Systems 7, pp. 215-247
(1998)

Harter, T., Borthakur, D., Dong, S., Aiyer, A.Sarng, L., Arpaci-Dusseau, A.C., Arpaci-
Dusseau, R.H.: Analysis of hdfs under hbase: abfame messages casestudy. In: FAST. pp.
199-212 (2014)

Kimball, R., Ross, M.The Data Warehouse Toolkit: The Definitive Guide to Dimen-
sional Modeling, 31 ed., John Wiley & Sons, Inc., 2013.

Lakshman, A., Malik, P.: Cassandra: A decentrdligguctured storage system. SIGOPS
Oper. Syst. Rev. 44(2), pp. 35-40 (Apr 2010)

Li, C., 2010. Transforming relational database inb@ase: A case study. Int. Conf. on Soft-
ware Engineering and Service Sciences (ICSESSE |IpR. 683—687.

ONeil, P., ONeil, E., Chen, X., Revilak, S.: Tharsschema benchmark and aug-mented
fact table indexing. In: Performance Evaluation &sthchmarking, vol. 5895, pp. 237-252.
Springer Berlin Heidelberg (2009)

Ravat, F., Teste, O., Tournier, R., Zuruh, G.: Algéc and graphic languages for OLAP
manipulations. IJDWM 4(1), pp. 17-46 (2008)

Stonebraker, M.: New opportunities for new sql. @mm. ACM 55(11), 10-11 (Nov 2012)
Vajk, T., Feher, P., Fekete, K., Charaf, H., 20@8normalizing data into schema-free data-
bases. # Int. Conf. on Cognitive Infocommunications (Cogiffom), IEEE, pp. 747-752.
Zhao, H., Ye, X.: A practice of tpc-ds multidimemsal implementation on nosqgl database
systems. In: Performance Characterization and Beadting, vol. 8391, pp. 93-108 (2014)

