
HAL Id: hal-01363342
https://hal.science/hal-01363342

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of multidimensional databases in
column-oriented NoSQL systems

Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan
Tournier

To cite this version:
Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan Tournier. Implementation
of multidimensional databases in column-oriented NoSQL systems. 19th East-European Conference
on Advances in Databases and Information Systems (ADBIS), Sep 2015, Poitiers, France. pp. 79-91.
�hal-01363342�

https://hal.science/hal-01363342
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15335

The contribution was presented at :
http://adbis2015.ensma.fr/

To cite this version : Chevalier, Max and El Malki, Mohammed and Kopliku, Arlind
and Teste, Olivier and Tournier, Ronan Implementation of multidimensional
databases in column-oriented NoSQL systems. (2015) In: 19th East-European
Conference on Advances in Databases and Information Systems (ADBIS), 8
September 2015 - 11 September 2015 (Poitiers, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Implementation of multidimensional databases in
column-oriented NoSQL systems

M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier

Université de Toulouse, IRIT 5505, 118 Route de Narbonne, 31062 Toulouse, France

{Firstname.Lastname}@irit.fr

Abstract. NoSQL (Not Only SQL) systems are becoming popular due to
known advantages such as horizontal scalability and elasticity. In this paper, we
study the implementation of multidimensional data warehouses with column-
oriented NoSQL systems. We define mapping rules that transform the concep-
tual multidimensional data model to logical column-oriented models. We con-
sider three different logical models and we use them to instantiate data ware-
houses. We focus on data loading, model-to-model conversion and OLAP cu-
boid computation.

Keywords: data warehouse design, multidimensional modelling, NoSQL data-
bases, model transformation rules, column-oriented NoSQL model.

1 Introduction

NoSQL solutions have proven some clear advantages with respect to relational data-
base management systems (RDBMS) [17]. Nowadays, research attention has turned
towards using these systems for storing “big” data and analyzing it. This work joins
substantial ongoing work on the area on the use of NoSQL solutions for data ware-
housing [4,6,18,19]. In this paper, we focus on one class of NoSQL stores: column-
oriented systems such as HBase [11] or Cassandra [13] and inspired by Bigtable [2].

Column-oriented systems are one of the most famous families of NoSQL systems.
They allow more flexibility in schema design using a vertical data organization with
column families and with no static non-mutable schema defined in advance, i.e. the
data schema can evolve. However, although, column-oriented databases are declared
schemaless (no schema needed), most use cases require some sort of data model.

When it comes to data warehouses, previous research has shown that it can be in-
stantiated with different logical models [12]. Data warehousing relies mostly on mul-
tidimensional data modelling which is a conceptual1 model that uses facts to model an
analysis subject and dimensions for analysis axes. This conceptual model must then

1 Conceptual level data models describe data in a generic way regardless the information

technologies used, while logical level models use a specific technique for implementing the
conceptual level.

be converted in a column
model to relational databases is quite straightforward,
(only an initial attempt in
sional conceptual model to NoSQL logical models
more expressive than relational models i.e. we do not only have to describe data and
relations; we also have a flexible data structure (e.g. nested elements). In this conte
more than one approach
Moreover, evolving requirements in terms of analyses or data query performance
might demand switching from one
can be very time consuming and speeding their execution consists generally in
precomputing these queries (called aggregates) and this pre
a logical model.

Fig. 1. Transformations of

In this paper, we focus on data models for data warehousing. We compare three log
cal column-oriented models. We provide
models which enables us to
how we can instantiate data warehouses in column
clude data loading, model
computed aggregates (also called OLAP cuboids

Our motivation is multiple. The implementation of OLAP systems with NoSQL
systems is a new alternative
increased flexibility and scalability. The increasing scientific research in this direction
demands for formalization, common
NoSQL systems.

We can summarize our contribution as follows:

─ logical notations for NoSQL systems where structures and values are clearly sep
rated

─ three column-oriented
house schemas to a

─ the conversions from one model to the other at the logical level

column-oriented logical model. Mapping the multidimensional
model to relational databases is quite straightforward, but until now there is no work
only an initial attempt in [4]) that considers the direct mapping from the multidime

sional conceptual model to NoSQL logical models (see Fig. 1). NoSQL models are
more expressive than relational models i.e. we do not only have to describe data and
relations; we also have a flexible data structure (e.g. nested elements). In this conte

approach is candidate as a mapping of the multidimensional model.
requirements in terms of analyses or data query performance

might demand switching from one logical model to another. Finally, analysis queries
ry time consuming and speeding their execution consists generally in

precomputing these queries (called aggregates) and this pre-computation requires also

Transformations of conceptual multidimensional models into logical models.

In this paper, we focus on data models for data warehousing. We compare three log
oriented models. We provide a formalism for expressing each of these

models which enables us to generate a mapping from the conceptual model. We show
how we can instantiate data warehouses in column-oriented stores. Our studies i

, model-to-model conversions and the computation of pre
computed aggregates (also called OLAP cuboids grouped in an OLAP cube).

motivation is multiple. The implementation of OLAP systems with NoSQL
systems is a new alternative [7,16]. These systems have several advantages

flexibility and scalability. The increasing scientific research in this direction
formalization, common-agreement models and evaluations of different

We can summarize our contribution as follows:

logical notations for NoSQL systems where structures and values are clearly sep

oriented approaches to map conceptual multidimensional data war
to a logical model;

the conversions from one model to the other at the logical level;

. Mapping the multidimensional
but until now there is no work

[4]) that considers the direct mapping from the multidimen-
. NoSQL models are

more expressive than relational models i.e. we do not only have to describe data and
relations; we also have a flexible data structure (e.g. nested elements). In this context,

the multidimensional model.
requirements in terms of analyses or data query performance

Finally, analysis queries
ry time consuming and speeding their execution consists generally in

computation requires also

into logical models.

In this paper, we focus on data models for data warehousing. We compare three logi-
formalism for expressing each of these

conceptual model. We show
oriented stores. Our studies in-

on of pre-
).

motivation is multiple. The implementation of OLAP systems with NoSQL
These systems have several advantages such as

flexibility and scalability. The increasing scientific research in this direction
of different

logical notations for NoSQL systems where structures and values are clearly sepa-

data ware-

─ the computation of the OLAP cube using NoSQL technologies.

2 State of the art

Several research works have focused on translating data warehousing concepts into a
relational (R-OLAP) logical level [3,6] as multidimensional databases are mostly
implemented using the relational technologies. Mapping rules are used to convert
structures of the conceptual level (facts, dimensions and hierarchies) into a logical
model based on relations. Moreover, many works have focused on implementing
logical optimization methods based on pre-computed aggregates (also called material-
ized views) [1]. However, R-OLAP implementations suffer from scaling-up to large
data volumes (i.e. “Big Data”) and research is currently underway for new solutions
such as using NoSQL systems [17]. Our approach aims at revisiting these processes
for automatically implementing multidimensional conceptual models directly into
NoSQL models.

Other studies investigate the process of transforming relational databases into a
NoSQL logical model (see Fig. 1). In [14], the author proposed an approach for trans-
forming a relational database into a column-oriented NoSQL database. In [18], the
author studies “denormalizing” data into schema-free databases. However, these
approaches never consider the conceptual model of data warehouses. They are limited
to the logical level, i.e. transforming a relational model into a column-oriented model.
More specifically, the duality fact/dimension requires guaranteeing a number of con-
straints usually handled by the relational integrity constraints and these constraints
cannot be considered when using the logical level as starting point.

This study highlights that there are currently no approaches for automatically and
directly transforming a data warehouse multidimensional conceptual model into a
NoSQL logical model. It is possible to transform multidimensional conceptual models
into a logical relational model, and then to transform this relational model into a logi-
cal NoSQL model. However, this transformation using the relational model as a pivot
model has not been formalized as both transformations were studied independently of
each other. Also, this indirect approach can be tedious.

We can also cite several recent works that are aimed at developing data ware-
houses in NoSQL systems whether columns-oriented [9], document-oriented [5], or
key-value oriented [19]. However, the main goal of these papers is to propose bench-
marks. These studies have not focused on the model transformation process and they
only focus one NoSQL model. These models [5,9,19] require the relational model to
be generated first before the abstraction step.

In our approach we consider the conceptual model as well as logical models that
allow distributing multidimensional data vertically using a column-oriented model.
Finally we take into account hierarchies in our transformation rules by providing
transformation rules to manage the pre-computed aggregates structured using an ag-
gregate lattice.

3 MULTIDIMENSIONAL CONCEPTUAL MODEL AND
CUBE

3.1 Conceptual Multidimensional Model

To ensure robust translation rules we present the multidimensional model used at the
conceptual level [10,16].

A multidimensional schema, namely E, is defined by (FE, DE, StarE) where:

─ FE={ F1,…, Fn} is a finite set of facts,
─ DE={ D1,…, Dm} is a finite set of dimensions,
─ StarE: FE →2�

�
 is a function that associates facts of FE to sets of dimensions along

which it can be analyzed (2�
�
is the power set of DE).

A dimension, denoted Di∈DE (abusively noted as D), is defined by (ND, AD, HD)
where:

─ ND is the name of the dimension,
─ AD={��

�,…,��
�} ∪{ idD, AllD} is a set of dimension attributes,

─ HD={��
�,…,�	

�} is a set hierarchies.

A hierarchy of the dimension D, denoted Hi∈HD, is defined by (NHi, ParamHi,
WeakHi) where:

─ NHi is the name of the hierarchy,
─ ParamH=<idD,
�

��,…,
	�
�� , AllD> is an ordered set of vi+2 attributes which are

called parameters of the relevant graduation scale of the hierarchy, ∀k∈[1..vi],

��∈AD.

─ WeakHi: ParamHi →2�
��������� is a function associating with each parameter

possibly one or more weak attributes.

A fact, F∈FE, is defined by (NF, MF) where:

─ NF is the name of the fact,
─ MF={ f1(m1),…, fv(mv)} is a set of measures, each associated with an aggregation

function fi.

3.2 OLAP cube

The pre-computed aggregate lattice or OLAP cube (also called sometimes the
OLAP cuboid lattice) corresponds to a set of views or cuboids each being a subset of
dimensions associated to a subset of measures of one fact. Technically, each view or
cuboid corresponds to an analysis query. OLAP cuboids are pre-computed to speed up
analysis query execution and thus facilitate analyzing data according to dimension
combinations. Measure data is grouped according to the dimensions and aggregation

Code de champ modifié

functions are used to summarize the measure data according to these groups. Formal-
ly, an OLAP cuboid O is derived from E, O = (FO,DO) such that:

─ FO is a fact derived from F (F∈FE) with a subset of measures, MO⊆MF.
─ DO⊆2�����(�)⊆DE is a subset of dimensions of DE. More precisely, DO is one of

the combinations of the dimensions associated to the fact F (StarE(F)).

If we generate OLAP cuboids using all dimension combinations of one fact, we have
an OLAP cuboid lattice [1,3] (also called a pre-computed aggregate lattice or cube).

3.3 Case study

We use an excerpt of the star schema benchmark [5]. It consists in a monitoring of a
sales system. Orders are placed by customers and the lines of the orders are analyzed.
A line consists in a part (a product) bought from a supplier and sold to a customer at a
specific date. The conceptual schema of this case study is presented in Fig. 2.

The fact FLineOrder is defined by (LineOrder, {SUM(Quantity), SUM(Discount),
SUM(Revenue), SUM(Tax)}) and it is analyzed according to four dimensions, each
consisting of several hierarchical levels (called detail levels or parameters):

─ The Customer dimension (DCustomer) with parameters Customer (along with the
weak attribute Name), City, Region and Nation,

─ The Part dimension (DPart) with parameters Partkey (with weak attributes Size and
Prod_Name), Category, Brand and Type; organized using two hierarchies HBrand
and HCateg,

─ The Date dimension (DDate) with parameters Date, Month (with a weak attribute,
MonthName) and Year,

─ The Supplier dimension (DSupplier) with parameters Supplier (with weak attributes
Name), City, Region and Nation.

From this schema, called ESSB, we can define cuboids, for instance:

─ (FLineOrder, {DCustomer, DDate, DSupplier }),
─ (FLineOrder, {DCustomer, DDate }).

Fig. 2. Graphical notations [10,16] of the multidimensional conceptual model.

4 Modeling a data warehouse using column-oriented stores

4.1 Column-oriented data model formalism

Column-Oriented NoSQL models provide tables with a flexible schema (untyped
columns) where the number of columns may vary between each record (called rows).
Each row has a row key and a set of column families. Physical storage is organized
according to these column families, hence a “vertical partitioning” of the data. A col-
umn family consists of a set of columns, each associated with a qualifier (name) and
an atomic value. Every value can be “versioned” using a timestamp. The flexibility of
a column-oriented NoSQL database enables managing the absence of some columns
between the different table rows. However, in the context of multidimensional data
storage, this rarely happens as data is usually highly structured. This implies that the
structure of a column family (i.e. the set of columns of the column family) will be the
same for all table rows.

The following notations are used for describing a NoSQL model with respect to
the definition of conceptual models. In addition to attribute names and values that are
also present in the conceptual model, we focus here on the structure of rows.

We define a row RT as a combination of:

─ T: the table where the row belongs
─ F: the column families of the table
─ K: all column names

DATE

CUSTOMER

PART

Customer City

LineOrder

Quantity

Discount

Revenue

Tax

Date

Partkey

Category

Prod_Name

Month Year

Month_Name

HCust

HBrand

Dimension

Hierarchy

Fact

Measures

Parameter

Weak Attributes

HTime

All

Brand

All

Legend

– FSSB={FLineOrder}

– DSSB={DCustomer, DPart, DDate, DSupplier},

– StarSSB(FLineOrder)={DCustomer, DPart, DDate, DSupplier}

HTIME

SUPPLIER
Supplier City Region

Name

All

HSuppl

Name

Region Nation

AllType

Size

HCateg

Nation

─ V: all atomic values of the column
─ key: the row identifier
─ P: all attributes mapped as a combination of row, column-family and column

name. A attribute path p∈P is described as p=RT.f:q:v where f∈F, q∈K and v∈V.

The example displayed in Fig. 3 uses a tree-like representation and describes a row
(r i) identified by the key named Key (with a value v0) in a table called SSB.

4.2 Column-oriented models for data warehousing

In column-oriented stores, the data model is determined not only by its attributes and
values, but also by the column families that group attributes (i.e. columns). In rela-
tional database models, mapping from conceptual to logical structures is more
straightforward. In column-oriented stores, there are several candidate approaches,
which can differ on the tables and structures used. So far, no logical model has been
proven better than another one and no mapping rules are widely accepted.

In this section, we present three logical column-oriented models. The first two
models do not split data. Data contains redundancy as all the data about one fact and
its related dimensions is stored in one table. The first model (MLC0) stores data
grouped in a unique column family. In the second model (MLC1), we use one column
family for each dimension and one dedicated for the fact. The third model (MLC2)
splits data into multiple tables therefore reducing redundancy.

─ MLC0: For each fact, all related dimensions attributes and all measures are com-
bined in one table and one column family. We call this approach the “simple flat
model”.

─ MLC1 (inspired from [4]): For each fact, all attributes of one dimension are stored
in one column family dedicated to the dimension. All fact attributes (measures) are
stored in one column family dedicated to the fact attributes. Note that there are dif-
ferent ways to organize data in column families and this one of them.

─ MLC2: For each fact and its dimensions, we store data in dedicated tables one per
dimension and one for the fact table. We keep these tables simple: one column
family only. The fact table will have references to the dimension tables. We call
this model the “shattered model”. This model has known advantages such as less
storage space usage, but it can slow down querying as joins in NoSQL can be prob-
lematic.

Fig. 3. Tree-like partial representation of a column-oriented table.

4.3 Mappings with the conceptual model

The formalism that we have defined earlier enables us to define a mapping from the
conceptual multidimensional model to each of our three logical models. Let O = (FO,
DO) be a cuboid for a multidimensional model E built from the fact F with dimensions
in DE.

Table 1 shows how we can map any measure m of FO and any dimension D of DO
into all 3 models MLC0, MLC1 and MLC2. Let T be a generic table, TD a table for the
dimension D, TF a table for a fact F and cf a generic column family.

Table 1. Transformation rules from the conceptual model to the logical models.

Conceptual: multi-
dimensional model

Logical: Column-oriented models
MLC0 MLC1 MLC2

∀D∈DO, ∀d∈AD
(d is an attribute of D)

d→ RT.cf:d d→ RT.cfD:d
d→��

�
.cf.d ∧

if d=idD then
d→��

�
.cf.d

∀m∈FO m→ RT.cf.m m→ RT.cfF:m m→��
�
.cf.m

The above mappings are detailed in the following paragraphs.

row

key

Customer

v0

Part

Date

LineOrder

Customer C02265
Name M. Smith
City Toulouse
Region Midi Pyrénées
Nation France

Partkey P09878
Prod_Name Copper valve c3

date 03-31-2015
month 03-2015
month_name March
year 2015

Quantity 10

Structure Values

Table

Size 10x15x10

Supplier

Supplier SP015678

Discount 0
Revenue 3.5789

Brand B3
Type Connector
Category Plumbing

Name CPR Int.
City Madrid
Region Center Spain
Nation Spain

Tax 2.352

ri

ri+1

ri-1

…

… …

…

Conceptual to MLC0. To instantiate this model from the conceptual model, three
rules are applied:

─ Each cuboid O (FO and its dimensions DO) is translated into a table T with only one
column family cf.

─ Each measure m∈FO is translated into an attribute of cf, i.e. RT.cf:m.
─ For all dimensions D∈DO, each attribute d∈AD of the dimension D is converted

into an attribute (a column) of cf, i.e. RT.cf:d.

Conceptual to MLC1. To instantiate this model from the conceptual model, five
rules are applied:

─ Each cuboid O (FO and their dimensions DO) is translated into a table T.
─ The table contains one column family (denoted cfF) for the fact F.
─ The table contains one column family (denoted cfD) for every dimension D∈DO.
─ Each measure m∈FO is translated into an attribute (a column) in cfF, i.e. RT.cfF:m.
─ For all dimensions D∈DO, each attribute d∈AD of the dimension D is converted

into an attribute (a column) of cfD, i.e.RT.cfD:d.

Conceptual to MLC2. To instantiate this model from the conceptual model, three
rules are applied:

─ Given a cuboid O, the fact FO is translated into a table TF with one column family
cf and each dimension D∈DO is translated into a table TD with one column family
cfD per table.

─ Each measure m∈FO is translated into an attribute of the column family cf in the
table TF, i.e. ��

�
.cf:m.

─ For all dimensions D∈DO, each attribute d∈AD of the dimension D is converted
into an attribute (a column) in the column family cf of the table TD, i.e. ��

�
.cf:d.

And if d is the root parameter (idD), the attribute is also translated as an attribute in
the column family cf of the table TF, i.e. ��

�
.cf:d.

5 Experiments

Our goal is firstly to validate the instantiation of data warehouses with our three logi-
cal approaches. Secondly we consider model conversion from one model MLCi to
another MLCj, with j≠i. Thirdly we generate OLAP cuboids and we compare the
computation effort required by each models. We use the Star Schema Benchmark,
SSB [5], that is popular for generating data for decision support systems. We use
HBase, one of the most popular column-oriented system, as NosQL storage system.

5.1 Protocol

Data: Data is generated using an extended version of SSB to generate raw data spe-
cific to our models in normalized and denormalized formats. This is very convenient
for our experimental purposes.

The benchmark models a simple product retail example and corresponds to a typi-
cal decision support star-schema. It contains one fact table “LineOrder” and 4 dimen-
sions “Customer”, “ Supplier”, “ Part” and “Date” (see Fig. 2 for an excerpt). The
dimensions are composed of hierarchies; e.g. Date is organized according to one hier-
archy of attributes (d_date, d_month, d_year).

We use different scale factors (sf), namely sf=1, sf=10, sf=100 in our experiments.
The scale factor sf=1 generates approximately 107 lines for the “LineOrder” fact, for
sf=10 we have approximately 108 lines and so on. For example, using the split model
we will have (sf x 107) lines for “LineOrder” and a lot less for the dimensions which
is typical as facts contain a lot more information than dimensions.

Data loading: Data is loaded into HBase using native instructions. These are sup-
posed to load data faster when loading from files. The current version of HBase loads
data with our logical model from CSV2 files.

Lattice computation: To compute the aggregate lattice, we use Hive on top of
HBase to ease query writing as Hive queries are SQL-like. Four levels of aggregates
are computed on top of the detailed facts (see Fig. 5). These aggregates are: all com-
binations of 3 dimensions, all combinations of 2 dimensions, all combinations of 1
dimension, and all data (detailed fact data). At each aggregation level, we apply ag-
gregation functions: max, min, sum and count on all measures.

Hardware. The experiments are done on a cluster composed of 3 PCs (4 core-i5,
8GB RAM, 2x2TB disks, 1Gb/s network), each being a worker node and one of them
also acting as dispatcher (name node).

5.2 Experimental results

In Table 2 we summarize data loading times by model and scale factor. We can ob-
serve at scale factor SF1, we have 107 lines on each line order table for a 997 MB disk
memory usage for MLC2 (3.9GB for both MLC0 and MLC1). At scale factor SF10
and SF100 we have respectively 108 lines and 109 lines and 9.97GB (39GB MLC0
and MLC1) and 97.7GB (390GB MLC0 and MLC1) for of disk memory usage. We
observe that memory usage is lower in the MLC2 model. This is explained by the
absence of redundancy in the dimensions. For all scale factors, the “dimension” tables
“Customers”, “Supplier”, “Part” and “Date” have respectively 50000, 3333, 3333333
and 2556 records.

2 CSV, Comma separated values files.

Table 2. Data loading time and storage space required for each model in HBase.

 MLC0 MLC1 MLC2

SF1 (sf=1, 107 lines) 380s / 3.9GB 402s / 3.9GB 264s / 0.997GB

SF10 (sf=10 108 lines) 3458s / 39GB 3562s / 39GB 2765s / 9.97GB

SF100 (sf=100, 109 lines) 39075s / 390GB 39716s / 390GB 33097s / 99.7GB

In Fig. 4, we show the time needed to convert one model to another model using SF1
data. When we convert data from MLC0 to MLC1 and vice-versa conversion times
are comparable. To transform data from MLC0 to MLC1 we records are just split on
the several columns families and during the reverse (MLC1 to MLC0), we fuse rec-
ords. The conversion is more complicated when we consider MLC0 and MLC2. To
convert MLC0 data into MLC2 we need to split data in multiple tables: we have to
apply 5 projections on original data and select only distinct keys for dimensions. Alt-
hough, we produce less data (in memory usage), more processing time is needed than
when converting data to MLC1. Converting from MLC2 to MLC0 is the slowest pro-
cess by far. This is due to the fact that most NoSQL systems (including HBase) do not
natively support joins efficiently.

Fig. 4. Inter-model conversion times using SF1.

In Fig. 5, we sumarize experimental results concerning the computation of the OLAP
cuboids at different levels of the OLAP lattice for SF1 using data from the model
MLC0. We report the time needed to compute the cuboid and the number of records it
contains.

We observe as expected that the number of records decreases from one level to the
lower level. The same is true for computation time. We need between 550 and 642
seconds to compute the cuboids at the first level (using 3 dimensions). We need be-
tween 78 seconds and 480 seconds at the second layer (using 2 dimensions). And we
only need between 2 and 23 seconds to compute the cuboids at the third and fourth
level (using 1 and 0 dimensions).

OLAP cube computation using the model MLC1 provides similar results. The
performance is significantly lower with the MLC2 model due to joins. These
differences involve only the first layer of the OLAP lattice (the layer composed of
cuboids constructed using 3 dimensions), as the other layers can be computed from
the latter (aggregation functions used are all commutative [1]). Table 3 summarizes
these differences in computation time. We also report the full results for computing
all lattice aggregates using MLC0 in Fig. 5 where arrows show computation paths
(e.g. the view or cuboid CD can be computed from all cuboids that combine the C and
D dimensions (Customer and Date): CSD and CPD).

Table 3. Computation time of the first layer of OLAP lattice (3 dimension combinations).

 MLC1 MLC M2 MLC M0
CSD 556s 4892s 564s
CSP 642s 5487s 664s
CPD 573s 4992s 576s
SPD 540s 4471s 561s
Dimensions used: C = Customer, S = Supplier, D = Date, P = Part (i.e. Product)

Fig. 5. Computation time and record count for each OLAP cuboid (letters are dimension
names: C=Customer, S=Supplier, D=Date, P=Part/Product).

Discussion. We observe that comparable times are required to load data in one model
with the conversion times (except of MLC2 to MLC0). We also observe “reasona-
ble3” times for computing OLAP cuboids. These observations are important. At one
hand, we show that we can instantiate data warehouses in document-oriented data
systems. On the other, we can think of cuboids of OLAP cube lattice that can be com-
puted in parallel with a chosen data model.

6 Conclusion

In this paper, we studied instantiating multidimensional data warehouses using
NoSQL column-oriented systems. We proposed three approaches at the column-
oriented logical model. Using a simple formalism that separate structures from values,
we described mappings from the conceptual level (described using a multidimension-

3 “Reasonable time” for a Big Data environment running on commodity hardware (without an

optical fiber network between nodes, i.e. the recommended 10,000 GB/s).

Record count

Computation time (seconds)

CSPD

CS

CSD CPD SPDCSP

SP PDCD SDCP

C S DP

All

9,392,109 rows

642s

4,470,422 rows

556s
9,790,169 rows

573s

9,390,777 rows

540s

317,415 rows

386s

21,250 rows

62s

937,478 rows

481s

21,250 rows

62s

937,475 rows

417s

85 rows

9s

3,750 rows

23s

250 rows

17s

1 row

3s

250 rows

17s

62,500 rows

78s

10,000,000 rows

0s, no computation time (only loading time)

al conceptual schema) to the logical level (described using NoSQL column-oriented
logical schemas).

Our experimental work illustrates the instantiation of a data warehouse with each
of our three approaches. Each model has its own weaknesses and strengths. The shat-
tered model (MLC2) uses less disk space, but it is quite inefficient when it comes to
answering queries (most requiring joins in this case). The simple models MLC0 and
MLC1 do not show significant performance differences. Converting from one model
to another is shown to be easy and comparable in time to “data loading from scratch”.
One conversion is significantly very time consuming and corresponds to merging data
from multiple tables (MLC2) into one unique table. Interesting results were also ob-
tained when computing the OLAP cuboid lattice using the column-oriented models
and they are reasonable enough for a big data framework.

For future work, we will consider logical models in alternative NoSQL architec-
tures, i.e. document-oriented models as well as graph-oriented models. Moreover,
after exploring data warehouse instantiation across different NoSQL systems, we need
to generalize across all these logical models. We need a simple formalism to express
model differences and we need to compare models within each paradigm and across
paradigms (e.g. document versus column). Finally we intend to study others query
languages frameworks such as PIG or PHOENIX and compare them with Hive.

7 Acknowledgements

These studies are supported by the ANRT funding under CIFRE-Capgemini part-
nership.

8 References

1. Bosworth, A., Gray, J., Layman, A., Pirahesh, H.: Data cube: A relational aggregation oper-
ator generalizing group-by, cross-tab, and sub-totals. Tech. Rep. MSR-TR-95-22, Microsoft
Research (February 1995)

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2), 4:1-4:26 (Jun 2008)

3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology.SIGMOD
Record 26, pp. 65-74 (1997)

4. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R., Implementing Multidi-
mensional Data Warehouses into NoSQL, 17th Int. Conf. on Enterprise Information Systems,
vol. DISI, to appear, 2015.

5. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R., Benchmark for OLAP on
NoSQL Technologies, Comparing NoSQL Multidimensional Data Warehousing Solutions,
in 9th Int. Conf. on Research Challenges in Information Science (RCIS), IEEE, to appear,
2015.

6. Colliat, G.: Olap, relational and multidimensional database systems. SIGMODRec. 25(3),
pp. 64-69 (Sep 1996), http://doi.acm.org/10.1145/234889.234901

7. Cuzzocrea, A., Bellatreche, L., Song, I.Y.: Data warehousing and olap over bigdata: Current
challenges and future research directions. In: Proceedings of the Sixteenth International
Workshop on Data Warehousing and OLAP. pp. 67-70.DOLAP '13, ACM, New York, NY,
USA (2013)

8. Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensionaldata:
The big data revolution! In: Proceedings of the ACM 14th InternationalWorkshop on Data
Warehousing and OLAP. pp. 101-104. DOLAP '11, ACM,New York, NY, USA (2011)

9. Dehdouh, K., Boussaid, O., Bentayeb, F.: Columnar nosql star schema benchmark.In: Model
and Data Engineering, vol. 8748, pp. 281-288. Springer InternationalPublishing (2014)

10. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: A conceptual modelfor data
warehouses. International Journal of Cooperative Information Systems 7, pp. 215-247
(1998)

11. Harter, T., Borthakur, D., Dong, S., Aiyer, A.S., Tang, L., Arpaci-Dusseau, A.C., Arpaci-
Dusseau, R.H.: Analysis of hdfs under hbase: a facebook messages casestudy. In: FAST. pp.
199-212 (2014)

12. Kimball, R., Ross, M., The Data Warehouse Toolkit: The Definitive Guide to Dimen-

sional Modeling, 3rd ed., John Wiley & Sons, Inc., 2013.
13. Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system. SIGOPS

Oper. Syst. Rev. 44(2), pp. 35-40 (Apr 2010)
14. Li, C., 2010. Transforming relational database into hbase: A case study. Int. Conf. on Soft-

ware Engineering and Service Sciences (ICSESS), IEEE, pp. 683–687.
15. ONeil, P., ONeil, E., Chen, X., Revilak, S.: The star schema benchmark and aug-mented

fact table indexing. In: Performance Evaluation and Benchmarking, vol. 5895, pp. 237-252.
Springer Berlin Heidelberg (2009)

16. Ravat, F., Teste, O., Tournier, R., Zuruh, G.: Algebraic and graphic languages for OLAP
manipulations. IJDWM 4(1), pp. 17-46 (2008)

17. Stonebraker, M.: New opportunities for new sql. Commun. ACM 55(11), 10-11 (Nov 2012)
18. Vajk, T., Feher, P., Fekete, K., Charaf, H., 2013. Denormalizing data into schema-free data-

bases. 4th Int. Conf. on Cognitive Infocommunications (CogInfoCom), IEEE, pp. 747–752.
19. Zhao, H., Ye, X.: A practice of tpc-ds multidimensional implementation on nosql database

systems. In: Performance Characterization and Benchmarking, vol. 8391, pp. 93-108 (2014)

