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An original technique that combines digital holography, dual illumination of the sample and cleaning algorithm 3D reconstruction is proposed. It uses a standard transmission microscopy setup coupled with a digital holography detection. The technique is 4D, since it allows to determine, at each time step, the 3D locations (x, y, z) of many moving objects that scatter the dual illumination beam. The technique has been validated by imaging the microcirculation of blood in a fish larvae sample (the moving objects are thus red blood cells RBCs). Videos showing in 4D the moving RBCs superimposed with the perfused blood vessels are obtained.

Introduction

Blood flow i maging techniques are widely used in bio-medical studies, since they can assess physiological processes or can be used for early detection of disease [START_REF] Friedman | Ocular blood flow velocity in age-related macular degeneration[END_REF][START_REF] Pase | Cardiovascular disease risk and cerebral blood flow velocity[END_REF][START_REF] Kur | Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease[END_REF]. However, many blood flow studies require, for imaging purposes, the use of a contrast agent, making blood flow characterization invasive [START_REF] Sakurada | Measurement of local cerebral blood flow with iodo [14c] antipyrine[END_REF][START_REF] Kanno | A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography[END_REF]. Scanning Doppler imaging techniques can be considered to alleviate this issue, but due to the scanning step, acquisition of an image is a time consuming process [START_REF] Yeh | Localized fluid flow measurements with an he-ne laser spectrometer[END_REF]. By analyzing the spatial statistics of the dynamic speckle with the Laser Speckle Contrast Analysis/Imaging (LASCA/LSCI) technique [START_REF] Briers | Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow[END_REF] the blood flow can be imaged [START_REF] Dunn | Laser speckle contrast imaging of cerebral blood flow[END_REF][START_REF] Briers | Laser speckle contrast imaging: theoretical and practical limitations[END_REF]. Improvement of the acquired contrast image has been achieved through exposure time optimization [START_REF] Yuan | Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging[END_REF], or intensity fluctuation analysis [START_REF] Zeng | Laser speckle imaging based on intensity fluctuation modulation[END_REF] resulting in high quality perfusion images. However, these techniques are limited to perfusion monitoring in 2D and unable to reconstruct the structure of the blood flow in 3D.

Proposed by Gabor [START_REF] Gabor | A new microscopic principle[END_REF] and improved by Leith and Upatnieks [START_REF] Leith | Reconstructed wavefronts and communication theory[END_REF] holography records the interference of the field scattered by an object with a known reference field. It is then possible to extract, from this interference pattern, the scattered field that reaches the holographic detector. This is particularly easy in digital holography that uses a camera detector. Holography is intrinsically a 3D technique since the Maxwell equations can be used to back propagate the field from the camera to any point of the 3D space [START_REF] Schnars | Direct recording of holograms by a ccd target and numerical reconstruction[END_REF]. This allows to localize and track a point-like object that scatters light, since its position coincides with the maximum of intensity of the reconstructed field [START_REF] Atlan | Heterodyne holographic microscopy of gold particles[END_REF]. The localization accuracy along the z axis depends strongly on the experimental conditions, in particular on the detection numerical aperture. Nanometric accuracy can be reached in holographic microscopy with a high numerical aperture (NA ≥ 1) objective [START_REF] Lee | Characterizing and tracking single colloidal particles with video holographic microscopy[END_REF][START_REF] Cheong | Strategies for three-dimensional particle tracking with holographic video microscopy[END_REF].

Digital holography has been used to image and qualitatively analyze blood flows in 2D [START_REF] Gao | In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy[END_REF][START_REF] Verrier | Laser doppler holographic microscopy in transmission: application to fish embryo imaging[END_REF]. 3D holographic imaging of blood flow is challenging for a number of reasons. The biologically relevant size of the microcirculation makes it impossible to use a high NA objective, since the field of view would be too small. Blood cells are much larger than the wavelength, and their refractive index is close to the plasma one. The light is then scattered within a small angle in the forward direction. In transmission geometry, this corresponds to a small NA and to a low z accuracy. In reflection geometry, this leads to a low signal, which competes with light scattered by the surrounding living tissues, whose refractive index is not homogeneous in time and space.

In this paper, we have imaged in 3D moving red blood cells (RBCs) in a living fish larvae. We used an original technique that combines digital holography, illumination of the sample and reconstruction along several axis [START_REF] Saglimbeni | Three-axis digital holographic microscopy for high speed volumetric imaging[END_REF], and calculations that involve both standard holographic propagation and 3D reconstruction by a cleaning algorithm [START_REF] Högbom | Aperture synthesis with a non-regular distribution of interferometer baselines[END_REF][START_REF] Soulez | Inverse-problem approach for particle digital holography: accurate location based on local optimization[END_REF][START_REF] Soulez | Inverse problem approach in particle digital holography: out-of-field particle detection made possible[END_REF]. More specifically, the experiment was developed with an holographic microscopy setup working in transmission. To increase the angle diversity of the light scattered by the sample, the illumination was made by two beams that were angularly tilted with respect to the optical axis. At each time point, the difference of successive images was calculated yielding 2-frame holograms that contain information on the light that is scattered by the moving objects (i.e. the RBCs) at that time. Two holograms, that describe the field components of each illumination beam, were then extracted from the data. These two holograms were used to calculate the two scattered fields 3D maps corresponding to each illumination. Since these two maps describe the scattering made by the same RBCs, they must exhibit correlation maximums in locations (x, y, z) that correspond to RBCs. We used thus these correlation maximums to calculate the 3D map of the RBC locations. We got then 3D videos of the moving RBCs and, by averaging, 3D images of perfused blood vessels.

Experimental setup

Our holography set-up is similar to the one of the reference [START_REF] Verrier | Laser doppler holographic microscopy in transmission: application to fish embryo imaging[END_REF] (see Fig. 1). The set-up uses an upright microscope (Olympus® CX41) that has been modified to perform heterodyne holography [START_REF] Le Clerc | Numerical heterodyne holography with two-dimensional photodetector arrays[END_REF] in transmission. The main laser (HL6545MG: 60 mW @ λ = 660 nm, optical frequency ω I ) is split into two arms (illumination and reference) by a beam splitter BS. Two acousto-optic modulators (AOM) at ω 1,2 /2π ≃ 80 MHz control the frequency ω LO of the ref- erence (i.e. local oscillator) field E LO :

ω LO = ω I + ω 1 -ω 2 (1) 
The illumination arm (field E) is split into two branches so as to illuminate the sample in two directions, whose relative angle is 28.3 • . The sample is a zebrafish larvae (150 hours-old) between slide and cover slip. It is imaged with a microscope objective MO (NA= 0.30, G=10).

To achieve off-axis holography, the beam splitter that recombines the signal (E) and reference (E LO ) fields is angularly tilted: (θ = 0). The camera (Mikrotron Eosens CL: 1280 × 1024 pixels, ω CAM /2π = 220 Hz, 10 bits, 14 µm square pitch) records the signal versus reference interference pattern

I m = |E + E LO | 2
, where m = 0...M (with M = 128 to 1024) is the frame or Zebrafishes (Danio rerio, wild type AB line) were maintained according to standard protocols [START_REF] Westerfield | The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio)[END_REF]. Larvae were mounted on a standard glass slide under a 22 mm 1.5 round coverslip. A 0.5 mm thick caoutchouc ring served as a spacer and sealant. They were embedded in a drop of cooling 1.5% low melting point agarose at 37 • C and oriented before gelation. The chamber was filled with 100 mg/l tricaine in filtered tank water and imaging was performed at room temperature. Blood vessels nomenclature is according to [START_REF] Isogai | The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development[END_REF].

3. Data filtering and reconstruction.

4 phase reconstruction of the MO pupil image and selection of the signal corresponding to each illumination direction

We first performed a test experience, in which the field scattered by the sample is detected by 4 phases heterodyne holography. The detection is then made at the illumination frequency, and the holographic signal corresponds to the field scattered by immobile or almost immobile scatterers of the sample (ground glass or zebrafish larvae). The resulting signal is strong and allows for precise optical adjustment of our holographic device. This test experiment is also useful to illustrate the reconstruction procedure. This procedure is similar to the one used in previous works [START_REF] Warnasooriya | Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy[END_REF][START_REF] Verpillat | Dark-field digital holographic microscopy for 3d-tracking of gold nanoparticles[END_REF] (for details see [START_REF] Verrier | Holographic microscopy reconstruction in both object and image half-spaces with an undistorted three-dimensional grid[END_REF]), but with small differences due to the double illumination, and to the need of selecting the signals corresponding to each illumination. In the test experiment, we tuned the LO frequency ω LO to perform 4 phase detection, and we considered 4 phase holograms H 4ϕ . We have thus:

ω LO = ω I + ω CAM /4
(2)

H 4ϕ = [I 0 -I 2 ] + j [I 1 -I 3 ]
where I 0 , I 1 ...I 3 are consecutive camera frames, and j 2 = -1. To select the +1 holographic grating order and to compensate for the MO pupil phase curvature, we performed the holographic reconstruction of the MO pupil by the Schnars et al. method [START_REF] Schnars | Direct recording of holograms by a ccd target and numerical reconstruction[END_REF] yielding H4ϕ (k x , k y ) with: H4ϕ (k x , k y ) = FFT H 4ϕ (x, y) e jk(x 2 +y 2 )/2d

(3

)
where FFT is the discrete Fourier transform operator, and k is the modulus of the wave-vector:

k = 2π/λ .
Here, e jk(x 2 +y 2 )/2d is the quadratic phase factor that determines the reconstruction plane. It depends on the curvature of the reference wave front, and on the distance from the camera to the reconstruction plane. Note that a phase quadratic in k x and k y that affects H 4ϕ is missing in Eq. ( 2) (with respect to the Schnars et al. work [START_REF] Schnars | Direct recording of holograms by a ccd target and numerical reconstruction[END_REF]). This missing phase does not affect the intensity images | H4ϕ (k x , k y )| 2 . Images are obtained with a ground glass (Fig. 2(a)) and with a living zebrafish sample (Fig. 2(b)). Figure 2(a) exhibits a circular zone whose brightness is high and homogeneous. This zone corresponds to the image of the MO pupil that is back illuminated through the ground glass. The brightness is homogeneous because the ground glass scatters light over angles wider than the MO collection angle. Because of the off-axis configuration (angular tilt θ of BS), the pupil image is located in the upper right side of the calculation grid, but it is displayed in the center of Fig. 2(a). Note that diffusers do not move in the ground glass experiment. It results that the scattered field E does not vary with time, and that the 4-phase demodulation made by Eq. ( 2) selects the +1 grating order term, since we have:

H 4ϕ = E * LO E.
The -1 and 0 grating order images, that are zero, are not visible in Fig. 2(a). To get the images of Fig. 2, the reconstruction parameter d (used to calculate the phase factor e jk(x 2 +y 2 )/2d of Eq. ( 3) ) has been adjusted to perform the reconstruction in the MO pupil plane. As seen, the pupil image exhibits sharp edges (white dashed line circle). The useful holographic information was then selected by cropping the pupil zone and by filling the remaining of the calculation grid with zeros. This corresponds to the Cuche et al. spatial filtering of the +1 grating order term EE * LO [START_REF] Cuche | Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[END_REF]. To compensate for the off-axis angular tilt, the cropped zone was translated into the center of the calculation grid.

Figure 2(b) was obtained by imaging a zebrafish sample. Because the sample was quite transparent, the two illumination beams yield two bright spots, which are well separated in the Fourier space (see arrows 1 and 2 in Fig. 2(b) ). Around the spots, we can see two blurred brighter regions corresponding to the light scattered by the sample. Since these brighter regions are well separated, we extracted, from the holographic data H4ϕ , two holograms Hpurple and Hgreen that describe the field scattered from each illumination direction. This was done by cropping, within H4ϕ , two circular zones of radius 240 pixels centered on each spot (dotted white circle in Fig. 2(c) ) yielding the two holograms Hpurple and Hgreen (see purple and green zones in Fig. 2(c) ). Note that all the scattered light has been caught by either Hpurple or Hgreen . The selection of the illumination direction was thus done without loss of information.

Holographic reconstruction of the field scattered by the circulating RBCs

In order to select the signal from moving RBCs, we considered 2-phase holograms H 2ϕ recorded without frequency shift of the LO beam.

ω LO = ω I (4) 
H 2ϕ = I 0 -I 1
The signal resulting from an object that is not moving is not taken into account in H 2ϕ . The images that are reconstructed from H 2ϕ correspond then to the moving components of the sample, i.e. to RBCs. H2ϕ is calculated similarly to H4ϕ by:

H2ϕ (k x , k y ) = FFT e jk(x 2 +y 2 )/2d H 2ϕ (x, y) (5) 
Because H 2ϕ (x, y) is real, H2ϕ exhibits both the +1 and -1 order images. Nevertheless, because of the off-axis configuration, these two images do not overlap. The +1 image is thus selected by cropping the pupil zone (whose exact location has been determined previously by the ground glass experiment), and by translating this zone into the center of the calculation grid. By this way, the useful holographic information is selected and the off-axis angular tilt is compensated. To separate the signals of the two illuminations, we performed, like in section 3.1, two crops of radius 240 pixels centered on the two illumination spots of Fig. 2(c). We obtained the two Fourier space holograms Hpurple (k x , k y ) and Hgreen (k x , k y ), from which we have calculated the two holograms H purple (x, y) and H green (x, y):

H purple (x, y) = FFT -1 Hpurple (k x , k y ) (6) 
H green (x, y) = FFT -1 Hgreen (k x , k y )
where FFT -1 is the reverse Fourier transform operator. The holograms H purple (x, y, z) and H green (x, y, z), reconstructed in planes z, are then calculated by the angular spectrum method [START_REF] Yu | Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method[END_REF]. This method involves two Fourier transforms from the real space holograms H purple (x, y) and H green (x, y), but only one Fourier transform from the Fourier space holograms Hpurple (k x , k y ) and Hgreen (k x , k y ). We have:

H purple (x, y, z) = FFT -1 e -j(k 2 x +k 2 y )z/2k Hpurple (k x , k y ) (7) 
H green (x, y, z) = FFT -1 e -j(k 2 x +k 2 y )z/2k Hgreen (k x , k y )
where FFT is the discrete Fourier transform operator. Here, x, y and k x , k y are discrete coordinates whose pitches are ∆x and ∆k, which obey to N ∆x ∆k = 2π where N = 1024 is the size of the calculation grid.

Up to now, we have considered that both acquisition and reconstruction were made in the image half-space (near the camera). The pitches are then ∆x = D pix and ∆k = 2π/(ND pix ) (where D pix = 14 µm is the size of the camera pixels). x, y and z are the coordinates of the image of the sample (that is conjugated with the sample by MO). This point of view, which is most often adopted in the literature, is not very convenient, since we want to reconstruct the scattered fields with coordinates related to the sample.

A better point of view [START_REF] Verrier | Holographic microscopy reconstruction in both object and image half-spaces with an undistorted three-dimensional grid[END_REF] is to consider that both acquisition and reconstruction are made in the object half-space (i.e. near the sample). H 2ϕ (x, y) is then the hologram recorded in the plane of the object half-space that is conjugated with the camera by MO. All the mathematical transformations made to calculate H purple (x, y) and H green (x, y) yield holograms, whose phases are properly corrected (i.e. the phase of the hologram is the same as the phase of the field). Equation ( 7) performs then the reconstruction with orthogonal coordinates x, y and z that correspond to the real coordinates near the sample. The pitches are ∆x = D pix /G, ∆k = 2πG/(ND pix ), where G is the imaging gain from the plane z = 0 to the camera. Note that G is generally not equal to the objective nominal gain (×10 here), since it depends on the exact location of the camera with respect to MO. The best is to measure the gain G by a calibration procedure.

In analyzing our data, we have considered the second point of view. We have measured G by imaging a USAF target. This calibration yields G = 24.6, ∆x = 14 µm/24.6 = 0.569 µm and ∆k = 2π/(1024∆x). 

Dual illumination reconstructed images and videos

|H purple (x, y, z)| 2 = (1/128) 127 ∑ m=0 |H purple,m (x, y, z)| 2 (8) |H green (x, y, z)| 2 = (1/128) 127 ∑ m=0 |H green,m (x, y, z)| 2 (9) 
The video file Visualization 4 shows the averaged intensity reconstructed images, whose components are |H purple (x, y, z)| 2 and |H green (x, y, z)| 2 . These images are obtained for z = -53.5 to z = +53.5 µm in 101 steps of 1.07 µm. Figure 4 shows the averaged intensity reconstructed images obtained for z = 0 (a), z = +26.7 (b) and z = +53.5 µm (c). Fig. 5. Scheme of the 3D reconstruction process by the cleaning algorithm. In (a) the product between the two 3D grids is calculated. This allows to select, in (b), the point of highest correlation x 1 ; y 1 ; z 1 . Thus, in (c), the point is stored in S purple (x, y, z) and S green (x, y, z) and erased from |H purple (x, y, z 1 )| and |H green (x, y, z 1 )|. From this modified plane, in (d) the overall grid is recalculated. In (e) a new maximum correlation point x 2 ; y 2 ; z 2 is found. Again, in (f), new sources are stored in the associated space of sources and set to zero in the plane z = z 2 of the 3D grid. A new cycle will start and the operation will be repeated K times.

3D reconstruction by a cleaning algorithm

The intensity maps |H purple,m (x, y, z)| 2 and |H green,m (x, y, z)| 2 are not quantitative 3D representations of the scatterers (i.e the RBCs), but are sequences of 2D images of the field scattered by the RBCs in different z planes, as showed in Fig. 6(a). |H purple,m (x, y, z)| 2 corresponds to the purple beam that is scattered, while |H green,m (x, y, z)| 2 corresponds to the green beam. It's only by comparing the signal scattered by the purple and green beams that we determined the 3D location of each RBC, and obtain thus a 3D image of the sample (see Fig. 6(b)) at the time t m , where t m is the recording time of frame m.

To calculate the RBCs locations at time step m, we considered that both holograms H purple and H green result from a sum of K fields, scattered by K sources of field S purple,k and S green,k (with k = 1...K) that describe the scattering of the two beams by the RBC scatterer of index k. We consider thus here single scattering of K independent sources. The holograms H purple and H green result thus from two 3D maps of the sources S purple and S green that scatter the illumination field:

S purple (x, y, z) = K ∑ k=1 S purple,k (x, y, z) (10) 
S green (x, y, z) = K ∑ k=1 S green,k (x, y, z)
Note that we have considered here that sources S purple and S green are highly correlated, since they represent the same scatterers.

In the calculations, we have considered a 3D calculation grid of 512 × 512 × 128 points in x, y and z, and K = 25000 RBC scatterers. This figure (K = 25000) corresponds to about 10% of the area of the calculation grid 512 × 512. The pitch is 2 × 0.569 = 1.138 µm in x and y and 0.68 µm in z. Moreover, we have considered RBCs scatterers whose cross section is one pixel. S purple,k and S green,k are thus zero everywhere except in the location of the k th RBC that is (x k , y k , z k ). Let's describe with more details the calculation algorithm we have used. This algorithm is illustrated by Fig. 5. 1. At each time step m, we first calculate the coordinates (x 1 , y 1 , z 1 ) of the 1 rst RBC. This is done by calculating H purple (x, y, z) and H green (x, y, z) for the 512 × 512 × 128 points of the 3D grid: see Fig. 5(a). We assume then that the location (x 1 , y 1 , z 1 ) of the 1 rst RBC corresponds to a coincidence in the holographic signals H purple and H green . Since the phase of the scattered fields strongly depends on the illumination direction, we consider intensities. We thus calculate the intensity product |H purple | 2 × |H green | 2 in all points of the 3D grid, and say that the maximum of this product is reached in point (x 1 , y 1 , z 1 ). We then consider the 2D holograms H purple (x, y, z 1 ) and H green (x, y, z 1 ) in plane z 1 (Fig. 5(b)), and we split them in two components (Fig. 5(c)):

H purple (x, y, z 1 ) = H purple,1 (x, y, z 1 ) + S purple,1 (x, y, z 1 )
H green (x, y, z 1 ) = H green,1 (x, y, z 1 ) + S green,1 (x, y, z 1 )

The first 2D components S purple,1 and S green,1 describe the field scattered by the first RBC. In plane z 1 , S purple,1 and S green,1 are zero except in point x 1 , y 1 , where they are equal to H purple and H green . On the other hand, H purple,1 and H green,1 describe the fields scattered by the other RBCs. In plane z 1 , H purple,1 and H green,1 are zero in point x 1 , y 1 , and equal to H purple and H green in the other points.

2. We then calculate the location (x 2 , y 2 , z 2 ) of the second RBC by using H purple,1 and H green,1 , which are known in plane z 1 . This is done by calculating H purple,1 and H green,1 in all points of the 3D calculation grid, and by assuming that the maximum of

|H purple,1 | 2 × |H green,1 | 2 is reached in point (x 2 , y 2 , z 2 ): see Fig. 5(d).
The holograms H purple,1 and H green,1 in plane z 2 (Fig. 5(e)) are split again in two components (Fig. 5(f)).

H purple,1 (x, y, z 2 ) = H purple,2 (x, y, z 2 ) + S purple,2 (x, y, z 2 ) H green,1 (x, y, z 2 ) = H green,2 (x, y, z 2 ) + S green,2 (x, y, z 2 ) (12) 
S purple,2 and S green,2 correspond to the second RBC, while H purple,2 and H green,2 to RBCs of index k = 3...K. The algorithm used here is cleaning, because the field sources S purple,1 and S green,1 of the first RBC have been removed from the holographic data H purple,1 and H green,1 that are used to calculate the holographic sources S purple,k≥2 and S green,k≥2 of the other RBCs.

3. The following steps are similar to steps one and two. We calculate the location (x k , y k , z k ) of the k th RBC by using H purple,k-1 and H green,k-1 , which are known in plane z k-1 . H purple,k-1 , H green,k-1 are then calculated in all points. Maximum of

|H purple,k-1 | 2 × |H green,k | 2 yields (x k , y k , z k ).
The holograms H purple,k-1 and H green,k-1 in plane z k are split:

H purple,k-1 (x, y, z k ) = H purple,k (x, y, z k ) + S purple,k (x, y, z k ) H green,k-1 (x, y, z k ) = H green,k (x, y, z 2 ) + S green,k (x, y, z k ) (13) 
We get then the sources S purple,k and S green,k and the holograms H purple,k and H green,k needed to continue the calculation.

4. We get S purple,k and S green,k for k = 1...K i.e. for all RBCs. S purple,k and S green,k are then summed together by Eq. ( 10) yielding the 3D maps S purple (x, y, z) and S green,k (x, y, z).

5. The calculation of S purple and S purple described above at time t m is made for all 2-phase holograms H 2ϕ,m of the sequence. The S purple and S green maps are thus calculated in 4D, with coordinates x, y, z,t = t m .

The calculation described above is quite heavy. To get the location of the k th RBC scatterer, we must calculate the location of the maximum of |H purple,k | 2 × |H purple,k | 2 . It requires 2 × 128 = 256 discrete Fourier transforms (FFTs) of 512 × 512 points, to get H purple,k-1 and H green,k-1 in all the z planes of the 512×512×128 calculation grid, plus some work to calculate |H purple,k | 2 × |H purple,k | 2 for all points, and to determine the location of the maximum. To get S purple and S green at each time step t m , one need to locate K = 25000 RBCs scattered whose area is 1 pixel. This requires 256 × 2.5 10 4 = 6.4 10 6 FFTs, plus some other work. This calculation was done in about 80 mn with a NVidia GTX TITAN Graphics Processing Unit (GPU). In the video files presented further, we have consider sequences of m = 1...122 holograms. The GPU calculation was made in about 122 × 80 mn, i.e. 7 days.

The 3D map of the scatterers obtained by the cleaning algorithm

In order to illustrate how the dual illumination scheme and the cleaning algorithm quantitatively enhance the z-axis confinement of 3D blood vessel structures, we have displayed, in Fig. 6, Without cleaning (see Fig. 6 (a) ), the z confinement is poor. In the XZ and Y Z cuts, the green and purple images of the blood vessels are angularly tilted, and the location of the vessels corresponds to the z location where the green and purple images coincide. With cleaning (see Fig. 6 (b) ), the z confinement is much better. Since the green and purple images coincide, the images are displayed in white. The 3D maps obtained without and with cleaning are also displayed in the video files Visualization 5 and Visualization 6 (x, y and z are swept in 128 steps of pitch 8∆x and ∆z). To image a quite large zone of the zebrafish blood vessel structure, the experiment was made with a NA=0.3 microscope objective. The purple versus green axis angle is thus lower than in [START_REF] Saglimbeni | Three-axis digital holographic microscopy for high speed volumetric imaging[END_REF] (see xz cut of Fig. 6 (a) ), and the z confinement is thus lower too.

Note that the RBCs are much larger than one voxel, but, to keep all useful information, the cleaning algorithm was made by considering one voxel scatterers. K = 25000 corresponds thus to the number of voxels that is considered in the cleaning algorithm. This figure is enough to handle most of the scattered energy, and thus to image all the RBCs, whose number is much lower than K.

Visualization of the data calculated by the cleaning algorithm

The visualization of the 4D maps S purple and S green calculated by the cleaning algorithm is challenging, because of the 4 coordinates. To perform visualization, we have projected the instantaneous intensities |S purple | 2 and |S green | 2 (that are 3D maps of real numbers) along the direction u θ = (cos θ , 1, sin θ ) yielding, for each time step m and each direction u θ , 2D images that can be displayed. The projections are defined by: 

|S purple,θ (x, y,t m )| 2 = ∑ z |S purple (x cos θ + z sin θ , y, z,t m )| 2 (14) |S green,θ (x, y,t m )| 2 = ∑ z |S green (x cos θ + z sin θ , y, z,t m )| 2
We have displayed the projection |S purple,θ | 2 in purple and |S green,θ | 2 in green in a video file of 122 images (Visualization 7), where the time index varies from m = 1 to 122 in 122 steps, while the angle varies from θ = -30 • to +30 • in 61 steps, and from θ = +30 • to -30 • in 61 steps. It should be stressed that the cleaning algorithm is nonlinear, in the sense that it emphasizes the moving scatterers, whose signal is highest, which happen to be here the RBCs. Lower contributions to the signal such as vasomotion have not been detected. 

Conclusion

In this paper, we proposed an original imaging technique that combines a digital holographic microscopy setup with dual illumination of the sample, and calculations involving both stan-dard holographic reconstruction and 4D calculations by a cleaning algorithm. The setup uses an upright microscope that has been transformed into an heterodyne holographic device [START_REF] Le Clerc | Numerical heterodyne holography with two-dimensional photodetector arrays[END_REF] working in transmission. The holograms H purple and H green that correspond to the scattering of each illumination beams were extracted from the camera recorded data I m . By making the hypothesis that the two holograms H purple and H green were generated by the same scatterers (i.e. the moving red blood cells), the location of the scatterers (x k , y k and z k ) and their complex scattering amplitudes S purple and S green were calculated by a cleaning algorithm. The amplitudes S purple and S green are 4D data (x, y, z and t) that were used to generate video files showing in 4D the RBCs (Visualization 7), the blood vessels (Visualization 8) and the RBCs superimposed with the blood vessels (Visualization 9).

In comparison with other techniques dedicated to monitor in vivo blood flow, including laser Doppler and laser speckle, the proposed approach has the major advantage, specifically thanks to the recording of holograms, to be able to measure 3D aspects of the RBC movements. The proposed method can be still improved by using a more efficient cleaning algorithm for the 3D reconstruction and a setup allowing a larger angle of separation of the two illuminations beams. These improvements should yield faster calculations and higher z resolution. Future work should allow to calculate 3D maps of velocity vectors by analyzing H purple and H green at successive instants of time t m and t m+1 .

Fig. 1 .

 1 Fig. 1. Heterodyne digital holographic microscopy experimental arrangement. AOM1, AOM2: acousto-optic modulators (Bragg cells) that shift the frequency of the local oscillator beam; MO: microscope objective; M: mirror; BS: angularly tilted cube beam splitter. E and E LO : signal and reference complex fields.

Fig. 2 .

 2 Fig. 2. (a, b) Zoom of the upper right hand corner of the intensity images | H4ϕ (k x , k y )| 2 obtained with 4-phase holograms by reconstructing the MO pupil plane. (c) Fourier space hologram obtained after translation of the selected zone in the center of the calculation grid. The purple and green zones correspond to the holograms related to each illumination direction. The sample is a ground glass (a) or zebrafish sample (b,c).

Figures 2 (

 2 Figures 2(a) and 2(b) show the reconstructed images of the pupil. The display is made in arbitrary log scale for intensity: | H4ϕ | 2 .Images are obtained with a ground glass (Fig.2(a)) and with a living zebrafish sample (Fig.2(b)). Figure2(a) exhibits a circular zone whose brightness is high and homogeneous. This zone corresponds to the image of the MO pupil that is back illuminated through the ground glass. The brightness is homogeneous because the ground glass scatters light over angles wider than the MO collection angle. Because of the off-axis configuration (angular tilt θ of BS), the pupil image is located in the upper right side of the calculation grid, but it is displayed in the center of Fig.2(a). Note that diffusers do not move in the ground glass experiment. It results that the scattered field E does not vary with time, and that the 4-phase demodulation made by Eq. (2) selects the +1 grating order term, since we have:H 4ϕ = E * LO E.The -1 and 0 grating order images, that are zero, are not visible in Fig.2(a). To get the images of Fig.2, the reconstruction parameter d (used to calculate the phase factor e jk(x 2 +y 2 )/2d of Eq. (3) ) has been adjusted to perform the reconstruction in the MO pupil plane. As seen, the pupil image exhibits sharp edges (white dashed line circle). The useful holographic

Fig. 3 .

 3 Fig. 3. Reconstructed intensity image of RBCs made with the 2-phase hologram H 2ϕ,m (see Eq. (4)) where the time index is m = 77. The purple and green components H purple,m (x, y, z) and H green,m (x, y, z) of the images were obtained by selecting the purple and the green zones of Fig. 2(c). Reconstruction was made with z = -26.7 (a), z = 0 (b) and z = +26.7 µm (c). The displayed images (a..c) correspond to image 77 of file Visualization 1 (a), Visualization 2 (b) and Visualization 3 (c). Dorsal side left, anterior to the top. Bar is 100 µm.

Fig. 4 .

 4 Fig. 4. Averaged intensity reconstructed images made with 2 phases holograms: H 2ϕ,m = I m -I m-1 and with ω 1 = ω 2 . The purple and green components |H purple (x, y, z)| 2 and |H green (x, y, z)| 2 are calculated with Eq. (8). Reconstruction was made with z = 0 (a), z = +26.7 (b) and z = +53.5 µm (c). The displayed images correspond to image 51 (a), 76 (b) and 101 (c) of file Visualization 4. Bar is 100 µm.

Fig. 6 .

 6 Fig. 6. Results of the 3D reconstruction made without (a) and with (b) the cleaning algorithm. (a) cuts of |H purple (x, y, z)| 2 and |H green (x, y, z)| 2 along the planes XY (upperright image highlighted in blue), Y Z (upper-left, red) and XZ (lower, yellow). (b) cuts of |S purple,θ | 2 and |S green,θ | 2 along the planes XY , Y Z and XZ. In (a) and (b) the cuts correspond respectively to images 64 of the video file Visualization 5 and Visualization 6. The blue, red and yellow lines represent the relative positions of the planes XY , Y Z and XZ.

Fig. 7 .

 7 Fig. 7. Instantaneous projections |S purple,θ | 2 and |S green,θ | 2 . The projections correspond to images 1, 32 and 46 of the video file Visualization 7, i.e. to time m = 1 and angle θ = -30 • (a), m = 32 and θ = 0 • (b), and m = 46 and θ = +15 • (c). The display is made in arbitrary logarithmic scale: |S purple,θ | 2 is displayed in purple, |S green,θ | 2 in green. Bar is 100 µm.

Figure 7

 7 shows the images 1, 32 and 46 of the file Visualization 7, which correspond to time m = 1 and projection angle θ = -30 • (a), m = 32 and θ = 0 • (b), m = 46 and θ = +15 • (c). The individual RBCs and its 3D motion can be seen in the video file.

Fig. 8 .

 8 Fig. 8. Averaged projection |S purple,θ | 2 and |S green,θ | 2 . The projections correspond to images: 1, 41 and 61 of the video file Visualization 8 i.e. to time m = 1 and angle θ = -40 • (a), m = 1 and θ = 0 • (b), and θ = +20 • (c). The display is made in arbitrary logarithmic scale: |S purple,θ | 2 is displayed in purple, |S green,θ | 2 in green. Bar is 100 µm.To visualize the entire trajectories of the RBCs, that correspond to the inside of the per-

  Figure 7 shows the images 1 (a), 41 (b) and 61 (c) of file Visualization 8, which correspond to θ = -40 • (a), θ = 0 • (b), and θ = +20 • (c). The 3D character of the blood vessels is clearly seen in the video file since the images of the blood vessels depends on the projection angle θ .

Fig. 9 .

 9 Fig. 9. Averaged projections |S purple,θ | 2 and |S green,θ | 2 superimposed with the instantaneous projections |S purple,θ | 2 and |S green,θ | 2 . The projections correspond to images 1, 32 and 46 of file Visualization 9, i.e. to time index m = 1 and projection angle θ = -30 • (a), m = 32 and θ = 0 • (b), m = 46 and θ = +15 • (c). The display is made in arbitrary logarithmic scale: |S purple,θ | 2 is displayed in purple, |S green,θ | 2 in green. Bar is 100 µm. To better visualize the 3D character of the motion of the RBCs, we have superimposed in a video file (Visualization 9) the averaged projections |S purple,θ | 2 and |S green,θ | 2 that show the perfused blood vessels, with the instantaneous projections |S purple,θ | 2 and |S green,θ | 2 that show the motion of individuals RBCs. In the video file Visualization 9, the time index varies from m = 1 to 122 in 122 steps, while the angle varies from θ = -30 • to +30 • in 61 steps, and from θ = +30 • to -30 • in 61 steps. The projections are displayed in arbitrary logarithmic scale: the averaged projections |S purple,θ | 2 and |S green,θ | 2 are displayed in blue and red, while the instantaneous projections |S purple,θ | 2 and |S green,θ | 2 are both displayed in green. With this choice of colors, the blood vessels are seen in purple, while the individual RBCs are white.Figure 9 shows the images 1 (a) , 32 (b) and 46 (c) of file Visualization 9, which correspond to time index m = 1 and projection angle θ = -30 • (a), m = 32 and θ = 0 • (b), m = 46 and θ = +15 • (c). The 3D character of the blood vessels is clearly seen in the video file. The 3D character of the RBCs motion is seen visible. As expected, the RBCs follow the blood vessels paths.

  Figure 9 shows the images 1 (a) , 32 (b) and 46 (c) of file Visualization 9, which correspond to time index m = 1 and projection angle θ = -30 • (a), m = 32 and θ = 0 • (b), m = 46 and θ = +15 • (c). The 3D character of the blood vessels is clearly seen in the video file. The 3D character of the RBCs motion is seen visible. As expected, the RBCs follow the blood vessels paths.
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