
HAL Id: hal-01362864
https://hal.science/hal-01362864v1

Preprint submitted on 9 Sep 2016 (v1), last revised 24 Aug 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature Learning with Matrix Factorization Applied to
Acoustic Scene Classification

Victor Bisot, Romain Serizel, Slim Essid, Gael Richard

To cite this version:
Victor Bisot, Romain Serizel, Slim Essid, Gael Richard. Feature Learning with Matrix Factorization
Applied to Acoustic Scene Classification. 2016. �hal-01362864v1�

https://hal.science/hal-01362864v1
https://hal.archives-ouvertes.fr


1

Feature Learning with Matrix Factorization Applied
to Acoustic Scene Classification

Victor Bisot, Romain Serizel, Slim Essid, and Gaël Richard
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Abstract—In this paper, we study the usefulness of various
matrix factorization methods for learning features to be used
for the specific Acoustic Scene Classification problem. A com-
mon way of addressing ASC has been to engineer features
capable of capturing the specificities of acoustic environments.
Instead, we show that better representations of the scenes can
be automatically learned from time-frequency representations
using matrix factorization techniques. We mainly focus on ex-
tensions including sparse, kernel-based, convolutive and a novel
supervised dictionary learning variant of Principal Component
Analysis and Nonnegative Matrix Factorization. An experimental
evaluation is performed on two of the largest ASC datasets
available in order to compare and discuss the usefulness of these
methods for the task. We show that the unsupervised learning
methods provide better representations of acoustic scenes than
the best conventional hand-crafted features on both datasets.
Furthermore, the introduction of a novel nonnegative supervised
matrix factorization model and Deep Neural networks trained
on spectrograms, allow us to reach further improvements.

Index Terms—Acoustic Scene Classification, Feature learning,
Matrix Factorization

I. INTRODUCTION

THE task of identifying the environment in which a sound
has been recorded is now commonly referred to as

Acoustic Scene Classification (ASC) [1]. The main objective
is to attribute a semantic label to recorded soundscapes,
often corresponding to the type of location in which the
scene takes place, such as a train station, in a bus or a
residential area. Recognizing acoustic environments is one
of the challenging tasks of the more general Computational
Auditory Scene Analysis (CASA) [2] research field and is
receiving an increasing interest in the machine listening com-
munity. Analyzing the surrounding audio environment may
allow devices to increase their context awareness capabilities,
especially when geolocalization and visual data is not available
[3]. Up to now, ASC has proven to be important in many
real life applications such as robotic navigation [4], personal
archiving [5] or surveillance [3]. The growing interest for ASC
has also motivated the community to organize challenges such
as the AASP DCASE challenge in 2013 [6] and in 2016 [7].

The analysis of environmental sounds, can be separated in
two more specific problems: ASC and acoustic event classi-
fication. At first, the acoustic event and scene classification
tasks were not always clearly distinguished, in fact both
scene and event labels coexisted in many datasets [4], [8].
More recently, research in ASC mainly aims at classifying
longer segments of audio recordings and thus needs methods
capable of characterizing acoustic environments as a whole.

This aspect is particularly challenging as acoustic scenes are
constituted of superpositions of an important variety of sound
events, which are not all relevant to describe the environment.

One of the first steps in designing an ASC system is usually
the choice of the features used to describe the acoustic environ-
ments. Motivated by their success in speech analysis, one of
the original choices has been the Mel Frequency Cepstral Co-
efficients (MFCC) [4], [9]. These features have shown to give
somewhat limited performance for ASC. In fact, environmental
sounds are a lot less structured than speech or music signals.
They can be of very different nature and have a high variability
in their temporal and spectral structures. Perceptual studies of
acoustic scenes explained how humans use particular event-
cues in order to differentiate acoustic environments [10]. This
suggests that having a way of better characterizing the acoustic
events occurring in the scenes will help to more accurately
discriminate the acoustic environments. Following this idea,
the authors in [11] proposed a system which uses sequences
of labeled events in the training phase in order to improve the
classification of acoustic scenes. In most cases, the various
events occurring in the scene are not labeled. This encourages
to choose or design features capable of describing these events
in an unsupervised manner. To address this problem, notable
trends in ASC are for example to extract features inspired from
computer vision [12], [13] or focus on modeling the statistical
distribution of more traditional features over time [14], [15].

In this paper, we study the benefits of automatically learn-
ing features directly from time-frequency representations of
acoustic scenes. Motivated by the success of spectrogram
image features for ASC [12], [13], learning features from
spectrograms can provide representations that are adapted
to the data while addressing the general lack of flexibility
of hand-crafted features. In fact, most ASC works relied
on feature engineering techniques, often inspired from other
tasks, to extract representations. The main drawback of such
approaches, is that the resulting hand-crafted features generally
lack the capability to generalize to problems other than the
ones they have been initially designed for. Here, the goal is to
learn features by decomposing time-frequency representations
on a dictionary of basis elements representing the data. In
general, dictionaries can either be predefined or automatically
learned form the data using dictionary learning techniques
[16]. The learned features are then obtained by projecting
the data on to the dictionary, often relying on sparse coding
methods [17]. Here, we perform feature learning using matrix
factorization techniques, which have the advantage of jointly
learning the dictionary and the projections. In our case, the
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dictionary elements can be seen as frequency templates of
characteristic events occurring during the scenes which we
will refer to as basis events. Then, the projections of each data
example on the dictionary contains the activations coefficients
of the basis events during the recording. Especially in the case
of nonnegative decompositions, this process is similar to the
human strategy for discriminating acoustic scenes [10], the
learned basis events being the event cues used to identify the
environments. Hence, the projections are used as the learned
features for the classification step. Learning features from
time-frequency representations has shown promising results
in other sound classification fields such as noisy acoustic
event classification [18], speaker identification [19] or music
information retrieval [20] and often offers improvements over
hand-crafted features.

The first part of this study extends our previous work
[21] by comparing popular unsupervised matrix factorization
techniques, as well as some of their well known extensions, on
a new ASC dataset. The first category of methods considered
here are unsupervised, meaning the labels are not used to
inform the decompositions. Unsupervised matrix factoriza-
tions methods have the advantage of being simpler to tune
and less complex than their supervised counterparts while
providing good representations adapted to the data at hand.
They include sparse, kernel-based and convolutive variants of
Principal Component Analysis (PCA) and Nonnegative Matrix
Factorization (NMF) [22]. Then, we present a new contribution
by adapting a supervised matrix factorization model known as
Task-driven Dictionary Learning (TDL) [23] to suit the ASC
task. We introduce a nonnegative extension of the TDL model,
including a modification of the original algorithm, where a
nonnegative dictionary is jointly learned with a multi-class
classifier. Finally, we compare the performance of the matrix
factorization variants and deep learning methods such as feed-
forward Deep Neural Networks (DNN) that are state-of-the-
art for many classification tasks. An experimental study is
performed on two different ASC datasets, the DCASE 2016
scene classification dataset [7] and the LITIS Rouen dataset
[12]. The different methods are studied under the same simple
preprocessing and classification blocks to ensure fair compari-
son. The experimental results suggest that unsupervised matrix
factorization is a good alternative to hand-crafted features for
the task. Indeed, many of the variants presented allow us to get
significant improvements over the best state-of-the-art features
for ASC. Finally, we reach further improvement by jointly
learning nonnegative dictionaries and the classifier with our
new TDL algorithm as well as with DNN.

The rest of the paper is organized as follows. Information
about the previous works in ASC is presented in Section II.
Section III details the preprocessing steps before the feature
learning. The different unsupervised variants of matrix fac-
torization considered are then presented in Section IV. The
supervised dictionary learning model as well as the proposed
modifications are detailed in Section V. Section VI presents
an experimental evaluation of the compared techniques. The
proposed systems are compared to the state-of-the-art results
in Section VII. Finally, some conclusions are suggested in
Section VIII.

II. RELATED WORKS

The combination of MFCC with Hidden Markov Models
(HMM) or Gaussian Mixture Models (GMM), inspired from
speech recognition, has been a common way to approach ASC
in early works. This combination still serves as a baseline
in the recent DCASE evaluation campaigns [6], [7]. For
improved performance, MFCC have often been combined with
a set of popular low-level features such as zero-crossing rate,
spectral-roll off as well as linear predictive coefficients [14],
[24]. Alternatively, other filter-banks such as Gammatones
were considered instead of the Mel-spectrum [25]. Another
important part of ASC works focused on finding features
better suited for the task. This lead to the introduction of
more complex features such as expansion coefficients obtained
by a decomposition over a Gabor dictionary [26] or features
representing the background of acoustic environments using
minimum statistics on spectrograms [27]. Moreover, in the
last few years, particular attention has been dedicated to
the use of image features which are extracted from time-
frequency images of acoustic scenes. For instance, Histograms
of Oriented Gradients (HOG) were exploited for ASC [12].
They aim at characterizing the spectro-temporal variations of
acoustic events occurring in a scene by computing the gradient
of pixels in time-frequency images. In addition to HOG, other
spectrogram image-based features have been proposed such as
the Subband Power Distribution (SPD) [13] or Local Binary
Patterns [28].

Because of the frame-based nature of many of these fea-
tures, a particular focus on temporal integration is required
in order to model the distribution of the features across the
full duration of the scene. A common way of modeling the
temporal information is either to extend the feature set with
their first and second order derivatives or to compute their
average over time, possibly combined with more complex sta-
tistical functions [14], [29]. The use of Recursive Quantitative
Analysis (RQA) [15] on MFCC has also proven to be effective
for modeling temporal information.

The combination of various frame based features often leads
to high dimensional representations which can be reduced
using Principal Component Analysis (PCA) or independent
component analysis [24]. As for the decision stage, most ASC
works use a maximum likelihood approach, modeling the data
with GMM [4], [9] and/or HMM [24] or with max-margin
classifiers such as Support Vector Machines [12], [14] with
their linear or kernel-based formulations. Some also proposed
the use of decision trees and random forests [30], [31] or a
Deep Neural Network using MFCC as the input features [32].

Closer to our work, NMF [33] and Shift-Invariant Proba-
bilistic Latent Component Analysis [34] have been used for
ASC. In both cases, they were applied to decompose each data
example, i.e. an audio excerpt, on a small dictionary. They aim
at learning a few spectral templates per example, considering
the dictionaries for each example as features. Instead, we will
show, for various matrix factorization methods, how learning
a common dictionary from the full training set, then using it
to represent the audio data, by projection on to that dictionary,
allows us to obtain competitive features for ASC. On the Litis
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Rouen Dataset [12], the state-of-the-art hand crafted features
is the combination of HOG and SPD [13]. More recently,
[35] proposed a supervised linear combination of a bag of
frame approach to learn features using Fisher vectors and HOG
features, showing improvement compared to the hand-crafted
features alone.

III. LEARNING FEATURES FROM TIME-FREQUENCY
IMAGES

In this section, we describe the general framework under
which we intend to compare matrix factorization techniques in
a fair way. We start with the choice of a suited time-frequency
representation for the acoustic scenes. We then introduce a
set of simple pooling steps applied to the representations in
order to build the data matrix from which we will learn the
features. Furthermore, we explain how matrix factorization is
applied on the data matrix to learn a common dictionary on
the training set, the projections of the data on the dictionary
being used as features for classification. Finally, we describe
how a decision is taken on the full duration of the audio
examples. The different construction steps of the data matrix
are illustrated in Fig. 1.

A. Low-level time-frequency representation

The low-level time-frequency representations from the sig-
nals using a Constant Q-transform (CQT). Commonly used for
music information retrieval tasks, the CQT has also often been
the chosen representation to compute image-based features
in ASC [12], [35]. It mainly helps by providing log-scaled
frequency bands, closer to the behavior of the human auditory
system, while being a lower dimensional representation of
signals compared to short time Fourier transforms. We denote
by S ∈ RP×T+ the CQT of a given recording, where T is the
number of time frames and P the number of frequency bands.
Without loss of generality, in the remainder of this paper, the
recordings are assumed to have equal length.

B. Matrix factorization for feature learning

The general idea of matrix factorization methods is to jointly
learn a dictionary and the projections of the data on this
dictionary. The dictionary is constituted of a set of basis
vectors each representing certain aspects of the data. We recall
that in our case, the basis vectors are referred to as “basis
events” as they can be seen as representations of possible
events occurring during the scenes. For both unsupervised
and supervised techniques, the dictionary is only learned on a
training set of the data. The features are obtained by projecting
the data on the set of learned basis events in the dictionary.

The first feature learning approach studied here consists in
directly learning a common dictionary from the full training
set. In that case, we assume that the input data to decompose
is stored in a common data matrix V ∈ RP×N , where P is
the number of features and N the number of examples. Then,
the matrix factorization techniques search for a factorization
of the data matrix V as a product of two matrices such that
V ≈WH. The matrix W ∈ RP×K is the dictionary containing

the K basis events. The projection matrix H ∈ RK×N contains
the projections (or event activations) of each data vector on
the elements of W. The test set data is decomposed on the
fixed dictionary W learned from the training set.

C. Building the data matrix

Many of the confronted factorization techniques do not
include any form of temporal modeling in their original
formulations and would benefit from an adapted temporal
preprocessing of the data. Moreover, trying to decompose
the whole set of full time-frequency images would lead to
unreasonable matrix sizes. Therefore, we apply two simple
slicing and pooling steps aiming at reducing the dimensionality
of the data while providing a suitable representation to the
feature learning step. To do so, we start by dividing each
time frequency image S into M non-overlapping slices of
length Q = T/M . We use Sm to denote the Q-frames long
spectrogram slice starting Q ×m frames after the beginning
of the recording. The CQT image S is now considered as a
set of consecutive shorter spectrograms S = [S0, ...,SM−1].
Each of the M spectrogram slices are then averaged over
time resulting in M vectors. Assuming we have L training
examples, every recording is now represented by a set of
vectors V(l) = [v(l)

0 , ..., v(l)
M−1] where v(l)

m is a vector of size
P obtained by averaging the slice S(l)

m over time. We extract
the L sets of vectors V(l) in the training set and stack them
column-wise to build the data matrix V ∈ RP×N+ , where
V = [V(1), ...,V(L)] and N = ML.

Reshaping the time-frequency images in that manner helps
representing the frequency signature of the scene at different
times in the recording. In fact, each spectrogram slice will
contain time-frequency information of various events occur-
ring in the scene. The matrix factorization step will gather in
the dictionary, a representation of the most frequent events,
i.e. the averaged slices. On the other hand, the events that are
occurring the less frequently will not have a great impact on
the construction of the dictionary. Thus, only the most relevant
sets of events to characterize the scenes will be modeled and,
for a dictionary of sufficient size, the projections on these
basis events will be able to discriminate between most acoustic
environments.

Alternative temporal integration techniques could be used
in addition to the average [36]. In this work, we choose to
perform a simple pooling based on averaging over time to
focus on the impact of the matrix factorization techniques.

D. Classification

At this stage we have M feature vectors per audio recording
example and a decision needs to be taken for attributing a
label to the full example. The final feature vector for each
excerpt is built by averaging its M projection vectors, stored in
the activation matrix H. Finally, the classifier is a regularized
linear logistic regression in its multinomial formulation [37],
trained on the learned features. Logistic regression has the
benefit of having a direct multinomial formulation not relying
on one-versus strategies. It can also directly output the class
probabilities for each data point. The classifier is kept linear
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Fig. 1: Building steps of the data matrix V, input representation
for the matrix factorizations.

in the comparative study to better observe the ability of the
feature learning methods to produce discriminative features.

IV. UNSUPERVISED MATRIX FACTORIZATION VARIANTS

In this section, we briefly present different formulations
of the matrix factorization problem we intend to compare
experimentally. They mostly extend the basic formulation
given in III-B, often by adding constraints on the matrices W
and H. All the methods can be regarded as variants of PCA
or NMF. We will describe unsupervised extensions of PCA
and NMF including sparsity, kernel-based and convolutive
factorizations.

A. Nonnegative matrix factorization

NMF is a well known technique to decompose nonneg-
ative data into nonnegative dictionary elements [22]. Many
problems benefit from the nonnegativy of the decomposition
to learn better representations of the data, especially in the
audio processing field. In fact, most of the time-frequency
representations for audio signals contain only nonnegative co-
efficients. For multi-source environments like acoustic scenes,
the nonnegative constraints allows for interpreting the time-
frequency representation as a sum of different nonnegative
objects, corresponding to the different sources. In NMF, the
goal is to find a decomposition that approximates the data
matrix V ∈ RP×N+ such as V ≈ WH with W ∈ RP×K+

and H ∈ RK×N+ . NMF is obtained by solving the following
optimization problem:

min
W,H

Dβ(V|WH) s.t. W,H ≥ 0 (1)

where Dβ represents the β-divergence [38]. The particular
cases of interest for the β-divergence are the Euclidean dis-
tance (β = 2), Kullback-Leibler (β = 1) and Itakura-Saito
(β = 0). For more information about NMF generalities the
interested reader is referred to the numerous publications on
the topic [39], [40].

B. Sparse matrix factorization

Sparsity is often desired in matrix factorization in order
to provide a more robust and interpretable decomposition.
Here, we aim at building a common dictionary of basis
events capable of representing all the labels in the dataset.
In that case, for a more meaningful decomposition, each data
point should be explained by a small subset of the dictionary
elements, containing the most relevant basis events to describe
the corresponding scene label. Therefore, we are particularly
interested in adding sparsity constraints to the activation matrix
in the PCA and NMF decompositions. In the case where we
have an `1-norm penalty to promote sparsity of the activation
matrix, the matrix factorization problem is generally defined
as:

min
W,H

Dβ(V|WH) + λ

K∑
k=1

‖hk:‖1 s.t. ‖wk‖2 = 1; (2)

the vector hk: is the row in H and wk the column in W indexed
by k, 1 ≤ k ≤ K.

1) Sparse PCA: There are many different formulations for
the sparse PCA model. In our work we use the one presented in
[16] which presents sparse PCA as a more general dictionary
learning problem. In the context of sparse dictionary learning,
the matrices W and H are the solution of the problem (2),
with Dβ being the Euclidean distance (β = 2).

2) Sparse activations with sparse NMF: As for sparse PCA
there are many ways of enforcing sparsity in NMF. We use
the sparse NMF formulation presented in [41] which is simply
obtained by adding nonnegative constraints on W and H to the
problem equation (2). The advantages of this formulation and
its optimization procedure with the general β-divergence are
summarized in [42].

C. Kernel-based matrix factorizations

Some families of matrix factorization methods, such as
Kernel PCA [43] (KPCA) and Kernel NMF [44] (KNMF),
decompose the data in a transformed feature space. Kernel
methods have the advantage of being able to deal with data
that is non linearly separable, by projecting them into a higher
dimensional feature space. Indeed, the kernel formulations
of the matrix factorization problems can help exhibit more
complex relations in the input data. Given a feature mapping
function Φ from the original space to the transformed space,
the desired decomposition approximates the data Φ(V) in the
transformed space: Φ(V) ≈WΦH, where WΦ is the dictionary
of basis vectors in the transformed space. Usually, the basis
vectors in WΦ are defined as convex linear combinations of
the data in the transformed space. Even though we do not
necessarily have access to the data in the new feature space, a
dot product in the transformed space, i.e the kernel function, is
always defined. Thus, one can compute the projection matrix
H without explicitly knowing Φ(V) and WΦ, by having access
to WT

ΦΦ(V). For more information about KNMF and KPCA,
the interested reader is referred to [43], [44].
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Fig. 2: Building steps of the data matrix V, input representation
for the matrix factorizations.

D. Convolutive NMF

The convolutive NMF presented in [45] is an extension of
the NMF, suited to decompose time-frequency representations.
It extracts 2D basis vectors corresponding to groups of con-
secutive time frames. By doing so, convolutive NMF allows
us to decompose the spectrogram of a scene in a dictionary of
different slices, containing time-frequency images of acoustic
events occurring during the scene. If one takes a spectrogram
S ∈ RP×T+ , the convolutive NMF seeks the following approx-
imation of S:

S ≈
τ∑
t=1

Wt

t→
H , (3)

where Wt ∈ RP×K+ and the kth column of Wt corresponds
to the time frame t ∈ [[1, τ ]] of the 2D dictionary element
indexed by k, 1 ≤ k ≤ K. Applying the operation t → to
H shifts its columns t indexes to the right while putting the
first t columns to 0. For audio data, the convolutive NMF
has proven to be effective to model the temporal evolution
of acoustic events represented in time-frequency images [19].
However, applying it directly on the previously defined data
matrix V makes less sense since the temporal structure of the
events was in part discarded by the pooling steps. Therefore,
the architecture of the feature learning system is changed
when using the convolutive NMF and is illustrated in Fig. 2.
Here, we extract a different 3D dictionary W(l) for each audio
example l in the training set. The W(l) are concatenated to
build a global dictionary Ŵ = [W(1), ...,W(L)]. The resulting
global dictionary is too large and possibly very redundant,
therefore we perform a K-means clustering on Ŵ in order
to build a reduced dictionary W, containing the Kc cluster
centers. The feature vector learned for a given data example l
is obtained by projecting its spectrogram S(l) on W, followed
by computing the average of the resulting projection matrix
H(l) ∈ RKc×T

+ over time.

V. SUPERVISED DICTIONARY LEARNING

Supervised matrix factorization problems aim at finding
decompositions that can, at the same time, provide good

approximations of the data and are also adapted to address
a target problem. For example, supervised decompositions
have been applied to improve source separation [46], image
denoising [23] or image classification tasks [47]. In our case,
the goal is to make use of the labels in the decompositions to
learn a dictionary that will help improving the classification
performance. As mentioned previously, nonnegative factor-
izations are well suited for decomposing audio from multi-
source environments. Therefore, we are particularly interested
in having a supervised variant of NMF. Supervision has been
introduced to NMF by using Fisher discriminant analysis [48],
[49], adding a binary label matrix to the data [50] or by
maximizing the margin between the projections [51]. In this
work, we will focus on adapting the task driven dictionary
learning (TDL) model introduced in [23] to our problem by
applying it to nonnegative cases with a multinomial logistic
regression classification scheme.

A. Task-driven dictionary learning model

The general idea of TDL is to group the dictionary learning
and the training of the classifier in a joint optimization
problem. Influenced by the classifier, the basis vectors are
encouraged to explain the discriminative information in the
data while keeping a low reconstruction cost. The TDL model
first considers the optimal projections h?(v,W) of the data
point v on the dictionary W. The projections are defined as
solutions of the elastic-net problem [52] expressed as

h?(v,W) = min
h∈RK

1

2
‖v−Wh‖22 + λ1‖h‖1 +

λ2

2
‖h‖22; (4)

where λ1 and λ2 are nonnegative regularization parameters.
Given each data point v is associated with a label y in a
fixed set of labels Y , a classification loss ls(y,A,h?(v,W))
is defined, where A ∈ A are the parameters of the classifier.
The TDL problem is then expressed as a joint minimization
of the expected classification cost over W and A:

min
W∈W,A∈A

f(W,A) +
ν

2
‖A‖22, (5)

with
f(W,A) = Ey,v[ls(y,A,h?(v,W)]. (6)

Here, W is defined as the set of dictionaries containing unit
l2-norm basis vectors and ν is a regularization parameter on
the classifier’s parameters to prevent over-fitting. The problem
in equation (6) is optimized with stochastic gradient descent
in [23]. After randomly drawing a data point v, the optimal
projection h?(v,W) is first computed. Then, the classifier
parameters A and the dictionary W are successively updated
by projected gradient. The main steps of the original algorithm
are presented in Algorithm 1. Here, I denotes the number
of iterations, one iteration corresponds to an update of A
and W with respect to one data point. The gradient of the
classification cost with respect to the dictionary W is written
as∇Wls(y,A,h?) and ρ is the projected gradient step size. The
operation ΠW is the projection on W , the set of dictionaries
with unit `2 norm basis vectors. We refer the reader to [23]
for a more complete description of the model.
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Algorithm 1 Original stochastic gradient descent algorithm
for the TDL model
Require: V,W ∈ W,A ∈ A, λ1, λ2, ν, I, ρ

for i = 1 to I do
Draw a random data point v and its label y
Compute h? = h?(v,W) solution of Eq (4)
A← ΠA[A− ρ(∇Als(y,A,h?) + νA)]
Compute ∇Wls(y,A,h?) as in [23]
W← ΠW [W− ρ∇Wls(y,A,h?)]

end for
return W,A

B. New formulation

In this section we present our modifications of the original
TDL model in order to address the specificities of the task. In
particular, it needs to classify averaged projections, to learn
nonnegative dictionaries and to consider the multinomial
logistic regression as the classifier in the model.

1) Classifying averaged projections: The original formula-
tion supposes each projection h?(v,W) is classified individu-
ally. Instead, we want to classify the mean of the projections of
the data points v(l) belonging to the sound example l ∈ [[1, L]]

with V(l) = [v(l)
0 , ..., v(l)

M−1] (see section III-C). We define h(l)

as the averaged projection of V(l) on the dictionary, where
ĥ

(l)
= 1

M

∑M
m=1 h?(v(l)

m ,W). Thus, the expected classification
cost is now expressed as:

f(W,A) = Ey,V[ls(y,A, ĥ
(l)

)]. (7)

This alternate formulation only slightly modifies the gradients
of f(W,A) with respect to W and A.

2) Multinomial logistic regression: In order to stay consis-
tent with the rest of the compared methods, we propose to use
a multinomial logistic regression [37] as the classifier in the
model. Compared to the two-class formulation chosen in [23],
it has the advantage of learning a common dictionary for all the
labels instead of relying on a one-versus-all strategy, without
having to tune more parameters. The resulting supervised
matrix factorization model can then be more clearly confronted
to the unsupervised matrix factorization plus multinomial
logistic regression feature learning systems.

3) A nonnegative version of the model: Motivated by the
success of nonnegative decompositions for audio classification
tasks, we believe the TDL model could benefit from having
a nonnegative formulation. Although it was mentioned as
possible by the authors in [23], it has not been applied and
will lead to improved results in our case. For the nonnegative
TDL, the projections h? are required to be nonnegative,
resulting in equation (4) becoming a nonnegative version of
the elastic-net problem. Moreover, the set W is now the set
of dictionaries with unit `2-norm basis vectors having only
nonnegative coefficients.

4) Modified algorithm: We propose a novel modification
of the original algorithm presented in [23]. The modified
algorithm is presented in Algorithm 2. It alternates between
an update of the classifier using the full set of projections and
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Fig. 3: Evolution of the objective function for the nonnegative
TDL model through iterations with Algorithm 2 on two dictio-
nary sizes K. The two examples are from the first training set
of the LITIS dataset, following the same experimental setting
as described in Section VI-H.

an update of the dictionary by stochastic projected gradient on
a full epoch. 1 The multinomial logistic regression parameters
A are no longer updated with stochastic gradient descent but
with one iteration of the L-BFGS algorithm [53] using the full
set of averaged projections in Ĥ

?
(V,W) = [ĥ

(1)
, ..., ĥ

(L)
].

Therefore, the gradient step ρ only impacts the dictionary
update step, making the results less sensible to its tuning.
Finally, the dictionary update follows the same steps as in
Algorithm 1. but is done separately on a full epoch at each
iteration, after the classifier has been updated. The projection
ΠW on W guaranties the dictionary only has nonnegative
coefficients. In practice, we always observed a decrease in
the objective function, i.e. the regularized multinomial logistic
loss, when using the Algorithm 2. An example of the evolution
of the values of the objective function on two examples is
given in Fig. 3.

Algorithm 2 Modified algorithm for the nonnegative TDL
model
Require: V,W ∈ W,A ∈ A, λ1, λ2, ν, I, ρ

for i = 1 to I do
∀l ∈ [[1, L]] compute ĥ

(l)
= 1

M

∑M
m=1 h?(v(l)

m ,W)

Set Ĥ
?
(V,W) = [ĥ

(1)
, ..., ĥ

(L)
]

Update A with one iteration of L-BFGS
for n = 1 to N do

Draw a random data point v and its label y
Compute h? = h?(v,W)
Compute ∇Wls(y,A,h?) as in [23]
W← ΠW [W− ρ∇Wls(y,A,h?)]

end for
end for
return W,A

1An epoch is defined as a full pass through a random permutation of the
training set resulting in the number of iterations I being the number of passes
through the data.
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VI. EXPERIMENTAL EVALUATION

A. The acoustic scene classification datasets

We evaluate the different feature learning methods on two
of the largest publicly available ASC datasets.

a) LITIS Rouen Dataset : The LITIS dataset [12] is to
our knowledge the largest ASC datasets publicly available.
It contains 25 hours of urban audio scenes recorded with a
smart-phone, split into 3026 examples of 30 s without overlap
forming 19 different classes. Each class corresponds to a
specific location such as in a train station or at the market.
The authors provided 20 training-test splits where 80% of the
examples are kept for training and the other 20 % for testing.
We keep the same splits to guaranty comparable results to
previous publications on the dataset.

b) DCASE 2016 Scene dataset : The DCASE dataset
corresponds to the development dataset provided for the scene
classification task of the 2016 edition of the IEEE AASP
DCASE challenge [7]. It contains 10 hours of urban audio
scenes recorded with an electret binaural microphone, split into
1170 examples of 30 s without overlap forming 15 different
classes. It has some labels in common with the Litis Dataset.
We use the same 4 training-test splits provided by the authors,
where 25% of the examples are kept for testing. Special care
has been put into grouping recordings from similar locations in
the same fold. Moreover, despite being smaller than the LITIS
dataset, the set of recordings for a given label seems to contain
more variability. The only available results on this dataset
are from the baseline system provided for the challenge. The
baseline is a GMM model trained on MFCC features extracted
from each scene.

B. Time-frequency representation extraction

The CQT were extracted with the YAAFE toolbox [54] after
rescaling the signals in [−1, 1]. For the LITIS dataset, the
CQT has 12 bands per octave from 5 to 11025 Hz resulting
in P = 134 frequency bands. For the DCASE dataset, since
the recordings are of better quality, the frequency range for
the CQT extraction goes from 5 to 22050 Hz resulting in
P = 146 frequency bands. For both datasets, the examples are
30-second long, the CQT are extracted using 60-ms windows
without overlap resulting in T = 500 time frames. Some
ASC systems benefited from using shorter windows or a
higher number of frequency bands, whereas in our case,
increasing those values has not provided any notable increase
in performance. In order to build the data matrix (see also
Section III-C and Fig. 1), we use 2-s long slices leading to
M = 15 slices per example. In most cases, keeping shorter
slices did not help to significantly improve the performance.
We found M = 15 slices to be a good compromise between
complexity and performance.

C. Evaluation protocol

A log compression is applied to spectrograms before the
pooling step when we use the PCA and its variants. For the
different NMF extensions, we tried using a log(1 + x) type
compression since negative data points are not permitted but

better results were obtained with a square root compression.
The data is scaled to have unit variance and centered for the
PCA variants only. The obtained projections are also scaled
and standardized before classification. The classifier is a linear
multi-class logistic regression trained with scikit-learn [55]. In
order to compute the results for each training-test split we use
the average F1 score over all classes. The final F1 score is its
average value over all splits. Finally, statistical significance
is asserted via a cross-validated student t-test (p < 0.05).
A summary of the matrix factorization variants compared is
presented in Table I. The results for the state-of-the art hand-
crafted features on both datasets are given in Table II in
order to discuss the interest of the feature learning methods
presented for the task. Some of the results are presented only
in terms of precision as they were in the original publication
[12].

PCA NMF
Variants Tested Max K Tested Max K
Non modified o 128 o 1024
Sparse activations o 128 o 1024
Kernel-based o 1024 × ×
Convolution × × o 1024
TDL o 1024 o 1024

TABLE I: Summary of the variants tested for PCA and NMF.
Max K specifies the highest dictionary size tested for each
technique. The different variants are marked with an “o” if
they are presented in the experimental evaluation and with an
“×” if they are not.

DCASE 2016 F1 score
MFCC + GMM baseline [7] 70.9

LITIS Rouen Precision F1 score
MFCC + RQA [12] 86.0 -
HOG [13] 91.2 90.5
HOG+SPD [13] 93.3 92.8

TABLE II: Results with the best hand-crafted features on both
datasets.

D. Basic matrix factorizations

We first focus on basic matrix factorizations techniques. F1
scores are presented in Table III. For PCA, the dictionary size
is limited to the dimension of the feature space (the number
of frequency bands P ). Therefore the results are presented for
K = 128. The performance for NMF on the LITIS dataset
slightly differs from [21] where the projection matrix H was
jointly learned with W. The approach used here is to, first learn
the dictionary during the training stage, then separately fully
reproject the training data on the fixed dictionary. This leads
to better results for higher values of K. The NMF problem
does not have a unique solution and the estimated model is
known to be sensible to initialization. Therefore NMF was
tested on 5 different random initializations, where we kept the
one providing the lowest reconstruction cost on the training
data.
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DCASE 2016 LITIS Rouen
K=128 K=256 K=512 K=128 K=256 K=512

PCA 73.7 ± 3 - - 89.8 ± 2 - -

NMF β = 2 78.5 ± 5 79.6 ± 4 80.1 ± 4 87.7 ± 2 89.8 ± 1 90.8 ± 1
NMF β = 1 79.3 ± 5 79.7 ± 3 79.5 ± 4 88.8 ± 1 90.1 ± 1 91.5 ± 1
NMF β = 0 79.5 ± 4 79.5 ± 4 80.1 ± 4 88.9 ± 1 90.4 ± 1 91.1 ± 1

TABLE III: F1 scores and standard deviations for PCA and NMF on different dictionary sizes K

As shown in Table III, for both datasets better performance
is obtained with the NMF decompositions, which confirms the
usefulness of the nonnegativity constraint for acoustic scenes.
For NMF, the choice of the β-divergence has almost no impact
on the results. Indeed, applying the square root compression
on the data compensates for some of the drawbacks of the
Euclidean distance (β=2) by diminishing the differences in
scales between data points. The performance of NMF on
the DCASE dataset shows that even with a simple matrix
factorization approach, we can obtain better performance than
the typical MFCC + GMM method. We can also observe
that the performance of NMF is improved when taking higher
values of K on the LITIS dataset, whereas it is not clear for the
DCASE dataset. It can be due to the LITIS dataset containing
3 times more training data, thus needing more basis events to
describe the whole data matrix. In that case, the NMF system is
still sufficient to outperform the results obtained with MFCC +
RQA (Table II), but not yet those obtained with more complex
image features.

E. Influence of sparsity

In this section we propose to study the effects of adding
sparsity constraints to the PCA and NMF-based feature learn-
ing system. The F1 scores are presented in Table IV. The
λ parameter is the regularization parameter controlling the
influence of the `1-norm penalty in equation (2). For Sparse
NMF the results are only presented when obtained with the
Euclidean distance (β = 2). In most cases, the Euclidean
distance showed a slight increase in performance compared
to other divergences without any significant improvements.

As expected, the results in Table IV show that sparsity
helps in most cases for both dataset, except for K = 128 on
the LITIS one, where adding sparsity to the activation matrix
in the PCA and NMF decompositions always decreases the
results. This can be attributed to differences in size between the
two datasets. While the sparsity constraint generally improves
performance for the DCASE dataset, the impact is particularly
clear on the LITIS dataset where a significant improvement is
obtained for higher values of K. Moreover, we reach a 94.1%
F1 score obtained with λ = 0.25 and K = 1024, which is a
first significant improvement over the 92.8% F1 score obtained
with the best image features on the dataset [13].

F. Influence of non-linearity

In this section we study the influence of using kernel-based
extensions of the PCA. A Gaussian kernel was used for the
KPCA. The σ parameter for the Gaussian kernel function is

tuned using cross-validation on a sub-set of the data. The
results are reported in Table V. Unfortunately, for KNMF,
the computation time gets prohibitive for high values of K,
preventing us from providing results. The performance of
KNMF for lower values of K were reported in [21], the F1
scores obtained were significantly below the regular NMF for
similar dictionary sizes. Indeed, the presence of the Gram
matrix Φ(V)TΦ(V) ∈ RN×N in the multiplicative update
rules makes KNMF much more complex than NMF when
N >> P .

DCASE 2016 LITIS Rouen
K=512 K=1024 K=512 K=1024

Kernel PCA 79.7 ± 3 79.5 ± 3 94.3 ± 1 95.6 ± 1

TABLE V: F1 scores for Kernel PCA on different dictionary
sizes K

Unlike regular PCA, for Kernel PCA, the dictionary size is
not limited to the dimension of the input feature space since
we decompose the data in the transformed space. By using
KPCA with 1024 components, we obtain a 95.6% F1 score on
the LITIS dataset which significantly outperforms the previous
results for PCA as well as the best spectral image features.
KPCA also improves the performance compared to PCA for
the DCASE dataset but does not manage to outperform the
regular NMF. In fact, the gap of performance between regular
PCA and NMF is larger for the DCASE data, suggesting that
even the kernel formulation of PCA does not compensate for
the benefits of the nonnegative decomposition.

G. Convolutive NMF

Since the convolutive NMF is applied on full spectrograms,
the feature learning architecture is different from the previous
experiments as described in Section IV-D. The spectrograms
are decomposed using 2D dictionary elements of τ = 4 time
frames (0.25 seconds) for the LITIS dataset and τ = 8 time
frames (0.5 seconds) for the DCASE dataset. Decomposing on
longer slices did not provide better results. Each full duration
spectrogram in the training set is approximated by a dictionary
of 40 basis slices (for the DCASE) or 80 basis slices (for the
LITIS). The results shown in Table VI are given for different
number Kc of cluster centers obtained after applying the K-
means to W in order to reduce the size of the dictionary. The
convolutive NMF is compared to the regular NMF using the
same alternate feature learning architecture illustrated in Fig.
2. The regular NMF applied on this architecture is referred to
as NMF + clustering. This method uses the regular NMF to
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DCASE 2016 LITIS Rouen

Sparse PCA λ = 0 λ = 0.1 λ = 0.25 λ = 0.5 λ = 1 λ = 0 λ = 0.1 λ = 0.25 λ = 0.5 λ = 1

K=128 73.7 ± 3 77.5 ± 5 79.7 ± 3 78.3 ± 3 76.8 ± 4 90.0 ± 2 90.0 ± 2 89.1 ± 2 82.6 ± 2 65.2 ± 4

Sparse NMF λ = 0 λ = 0.1 λ = 0.25 λ = 0.5 λ = 1 λ = 0 λ = 0.1 λ = 0.25 λ = 0.5 λ = 1

K=128 78.5 ± 5 78.1 ± 5 77.7 ± 4 78.3 ± 3 77.0 ± 3 88.5 ± 2 88.2 ± 2 88.0 ± 2 86.7 ± 2 87.1 ± 2
K=256 78.4 ± 5 79.4 ± 5 79.3 ± 4 79.4 ± 4 78.6 ± 4 88.9 ± 2 90.8 ± 1 90.6 ± 1 90.1 ± 2 90.1 ± 2
K=512 80.4 ± 5 80.2 ± 4 82.3 ± 5 80.8 ± 4 81.7 ± 2 91.2 ± 1 92.0 ± 1 93.3 ± 1 91.9 ± 1 91.1 ± 1
K=1024 81.4 ± 5 81.4 ± 5 82.0 ± 4 81.4 ± 2 82.1 ± 3 92.0 ± 1 93.1 ± 1 94.1 ± 1 92.1 ± 1 91.8 ± 2

TABLE IV: F1 scores and standard deviation for Sparse NMF and Sparse PCA for different dictionary sizes K and sparsity
constraints λ. The bold values denote the best score for each value of K and the underlined values highlight the best scores
for all values of K.

learn a separate basis of 5 vectors on each 2-s spectrogram
slice. Similarly to convolutive NMF, the concatenation of all
basis vectors is processed by clustering to keep a dictionary of
size Kc used to extract the projection features. The best results
were obtained with the Itakura-Saito divergence (β = 0) for
both methods.

First, the convolutive NMF appears to be well suited to
address the specific difficulties of ASC. In fact, it decomposes
an acoustic scene as a superposition of different short acoustic
events. Contrarily to the regular NMF, the basis events being
2D slices, their temporal structure is also modeled by the
dictionary. On both datasets, the results obtained with convo-
lutive NMF are slightly better than with the NMF + clustering
method. Similar observations have been made for speaker
identification in noisy conditions [19]. In line with the sparse
NMF and the kernel PCA, convolutive NMF also significantly
improves the baseline reaching a 82.5% F1 score for the
DCASE dataset and significantly outperforms the reference
best spectral image features for the LITIS dataset with a
94.5% F1 score. However, even the best results obtained with
convolutive NMF do not present any significant improvements
compared to the best sparse NMF scores given in Table IV.
This observation suggests that the way we build the data
matrix in Section III-C offers a sufficient representation of
acoustic scenes while being a lot more compact. Meaning that
keeping only the averaged frequency information in slices of
the spectrograms may be enough to learn good features for
discriminating acoustic scenes.

H. Supervised dictionary learning

The results obtained when applying the task-driven dictio-
nary learning model to perform supervised matrix factorization
are presented in Table VII. We especially highlight the results
obtained with our novel variant of the model in the nonneg-
ative case (nonnegative TDL). The nonnegative TDL is also
compared to results obtained with sparse NMF which can be
seen as its unsupervised counterpart. The dictionaries for the
TDL model are initialized using unsupervised sparse NMF
for the nonnegative case and the dictionary learning function
from the spams toolbox [56] in the general case. The weights
of the classifier are initialized by applying multinomial logistic
regression to the projections on the initialized dictionary. In the
algorithm, the projections on the dictionary (corresponding to
equation (4)) are computed using the lasso function from the

spams toolbox [56]. Then, the classifier is updated using one
iteration of the scikit-learn [55] implementation of the multi-
nomial logistic regression with the L-BFGS solver. The model
is trained over I = 10 iterations with a 0.001 initial gradient
step for dictionary update. The decaying of the gradient steps
over iterations follows the same heuristic as suggested in [23].
The `1 regularization parameter and the logistic regression’s
regularization ν were tuned on a development set of the first
training fold, where λ2 was set to 0, λ1 was varied in the set
{0.1, 0.25, 0.5} and ν in the set {0.1, 1, 10}.

First, we can see from the results in Table VII that for
all cases, using the nonnegative formulation of TDL helps
improving the results compared to the more general model.
It demonstrates that adding the nonnegative constraints to the
model can be beneficial when applied to sound classifica-
tion tasks, especially to decompose audio from multi-source
environments like urban acoustic scenes. The performance
without the nonnegative constraint is particularly low for
the DCASE dataset, this could have been hinted at by the
performance of PCA compared to regular NMF (see Table
III). When comparing to sparse NMF, the results obtained with
smaller dictionary sizes (K = 128 or K = 256) particularly
stand out. Indeed, by learning basis vectors adapted to the
classification task, the model is capable of factorizing the
relevant information in much smaller dictionaries. The whole
dataset can be well explained by only a small number of
basis events, giving a more compact common representation.
This may be particularly interesting when fast projections of
new incoming data on the learned dictionary is needed. For
example, with K = 128, the results increase from a 78.5 % F1
score to a 81.0 % F1 score for the DCASE dataset and from
a 88.5 % F1 score to a 94.7 % F1 score on the LITIS dataset.
On the two datasets, the results stop increasing at K = 512
and in both cases, they improve the best sparse NMF results.
The proposed nonnegative TDL model succeeds in introducing
supervision to the regular sparse NMF-based feature learning
systems for ASC. It is beneficial both for improving perfor-
mance over unsupervised decompositions and to learn smaller
representations with good discriminative power.

I. Deep neural networks

DNN are the state-of-the-art approach in many classification
tasks, and attempts have been made to apply them to ASC [32].
Therefore, we decided to compare the matrix factorization
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DCASE 2016 LITIS Rouen
Kc=256 Kc=512 Kc=1024 Kc=256 Kc=512 Kc=1024

NMF + clustering 76.1 ± 5 79.6 ± 3 79.9 ± 3 90.1 ± 2 92.2 ± 1 93.7 ± 1
Convolutive NMF 77.7 ± 2 80.8 ± 2 82.5 ± 2 90.5 ± 2 92.6 ± 1 94.5 ± 1

TABLE VI: F1 scores and standard deviation for convolutive NMF and NMF with clustering for different dictionary sizes Kc.

DCASE 2016 LITIS Rouen
K=128 K=256 K=512 K=1024 K=128 K=256 K=512 K=1024

Sparse NMF 78.5 ± 5 79.4 ± 4 82.3 ± 5 82.0 ± 4 88.5 ± 2 90.8 ± 1 93.3 ± 1 94.1 ± 1
TDL 77.0 ± 3 75.9 ± 3 73.9 ± 3 73.5 ± 3 94.0 ± 1 94.2 ± 1 94.3 ± 1 94.1 ± 1

Nonnegative TDL 81.0 ± 3 83.1 ± 3 83.3 ± 3 82.1 ± 3 94.7 ± 1 95.7 ± 1 96.0 ± 1 95.8 ± 1

DNN 78.5 ± 5 96.9 ± 1

TABLE VII: F1 scores and standard deviations for the TDL model and nonnegative TDL model compared to the Sparse NMF
results on different dictionary sizes K. The last row reports the F1 scores and standard deviations obtained with the DNN.

approaches described here to a feed-forward fully connected
DNN used for feature extraction. The DNN is composed of
three hidden layers, the first two layers contain 1500 elements
when applied to the LITIS dataset and 500 for the DCASE.
For both datasets, the last hidden layer is composed of 100
elements. This latter layer is used to extract features at runtime.
During training, the targets of the DNN are the classes of the
scene classification problem such that the network architecture
can be summarized as follows: 134 x 1500 x 1500 x 100 x
19 for the LITIS dataset and 146 x 500 x 500 x 100 x 15 for
the DCASE.

The DNN is trained with the Lasagne toolkit.2 The DNN
weights are initialized with Glorot weights sampled from a
uniform distribution [57]. Rectified linear unit (ReLU) activa-
tions [58] are used in hidden layers and softmax activations are
applied to the output layer. The objective function is a cate-
gorial cross-entropy that is suited to multinomial classification
problems. The DNN is trained with the Adam algorithm [59]
over 100 epochs with a constant 0.001 learning rate. In order
to prevent over-fitting, dropout with probability 0.5 is applied
to the hidden layers [60].

The results obtained with the DNN architectures described
above are reported in Table VII. They are compared to those
obtained with the nonnegative TDL which is the best perform-
ing approach of all the matrix factorization variants. The DNN
improves the results compared to best matrix factorization
variants for the LITIS Rouen dataset reaching a 96.9 % F1
score, although the difference is not significant with the 96.0%
F1 score obtained with nonnegative TDL. On the other hand,
for the DCASE dataset, DNN is outperformed by most of the
matrix factorization methods. This can be attributed to the lack
of training data for the DCASE dataset, where in the case of
smaller training sets, decompositions such as NMF can be a
good alternative to learn meaningful representations. Testing
more complex architectures for the network lead to more over-
fitting and consequently worst results. The higher intra-class
variability due to the design of the dataset tends to make the
appropriate discriminative information harder to learn leading
to the supervised methods being more sensible to over-fitting.

2http://lasagne.readthedocs.io/

VII. COMPARISON TO THE STATE OF THE ART

Table VIII summarizes some of the results obtained with
the matrix factorization variants presented here and compares
them to the state-of-the-art on the LITIS and DCASE datasets.
In particular we include results from some of the best hand-
crafted features [12], [13], other results obtained with DNN
and a method which uses a combination of hand-crafted
features with feature learning [35]. For the LITIS dataset, we
highlight two other published methods of interest. The first is a
deep learning approach from [32], where a feed-forward deep
neural network is fit with MFCC combined with other low-
level features which we refer to as DNN+MFCC. The second
one is the work from [35] which uses a supervised combination
of two probabilistic SVMs, one is fit with HOG features and
the other with a bag-of-frame approach on the same features.
The results will be given in mean accuracy over all folds, this
being the measure used for most previous works.

DCASE LITIS
Feature-based methods

MFCC + GMM baseline 72.5 -
HOG+SPD [13] - 93.4

Feature learning-based methods
Kernel PCA K = 1024 80.2 96.0
Sparse NMF K = 1024 82.7 94.6
Nonnegative TDL K = 512 83.8 96.4
Ye et al.’s [35]’s - 96.1

Deep learning methods
DNN +MFCC [32] - 92.2
Our DNN 79.0 97.1

TABLE VIII: Accuracy scores of the best feature learning
variants presented here compared to the state-of-the-art results
on both datasets.

The performance of the spectral image features highlighted
that important information could be extracted from the time-
frequency images and that, averaging that information over
time, can be a good way of characterizing acoustic scenes.
To follow this trend, Ye et al. combined hand-crafted features
with a feature learning approach also on spectrogram images
which leads to a 96.1 % accuracy score [35]. The Kernel PCA
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and Nonnegative TDL variants manage to reach similar results
without using hand-crafted features with a 96% and 96.4%
accuracy scores respectively. In [35], the feature learning part
alone gives a 94.5% accuracy, suggesting that slightly better
results could be obtained if the best variants presented were
combined with some of the mentioned spectral image features.
The two deep learning approaches compared mainly differ
by the input representation given to the DNN. The results
when fitting a DNN on MFCC and more traditional features
are significantly lower than those obtained with the feature
learning approaches. Meanwhile, when a DNN is trained
using directly the preprocessed versions of the time-frequency
images (data matrix V assembled as described in Section
III-C), that is the same input representation as the matrix fac-
torization methods, we reach a 97.1 % accuracy, outperforming
the reference methods. This observation, combined with the
success of image features for ASC, show that the task benefits
from learning directly with the spectrograms unlike the more
popular audio features such as MFCC, that struggle to give
good performance even when given to learn more complex
classifiers like DNNs.

VIII. CONCLUSION

In this paper we studied and compared different matrix
factorization methods to perform feature learning for ASC.
In order to focus on the impact of the learning approach,
the methods presented were confronted on the same input
representation of the data, and exploited with a simple linear
classifier. This allowed us to emphasize the benefit of nonneg-
ative constraints in the decompositions with the NMF variants,
which helped improving the results in both the unsupervised
and supervised settings. We also proposed a novel supervised
dictionary learning model for nonnegative decompositions. By
jointly optimizing the factorization and classification prob-
lems, the resulting nonnegative TDL decomposition is capable
of providing better dictionaries that are more compact than
their unsupervised counterparts. Finally, we confronted a DNN
to supervised dictionary learning model. The nonnegative TDL
model obtained similar or significantly better performance than
the DNN

We evaluated the feature learning methods on two of the
largest available ASC datasets. On both of them, the feature
learning approaches presented here significantly improved
results to the previous best compared hand crafted features.
Engineering hand crafted features is still one of the more
popular approaches to ASC. While their study is interesting
to highlight the specificities of the task, they lack flexibility
and often only describe certain aspects of the scenes. Instead,
in this study, we have shown that a common representation
of the data could be learned with matrix factorization, with
the advantage of automatically adapting to the data at hand.
In our future research, motivated by the good performance
of the nonnegative TDL model for ASC, we plan to adapt
the model to other sound classification tasks such as acoustic
event detection. Indeed, the model has the advantage of being
able to adapt to a specific target problem and could be linked
to more complex or dynamical classifiers.
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