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1. Introduction 1.1. Motivations. A variety of polymer pinning models have been studied in theoretical and mathematical physics in the past decades, see [START_REF] Hollander | Random Polymers[END_REF][START_REF] Giacomin | Random Polymer models[END_REF][START_REF] Giacomin | Disorder and critical phenomena through basic probability models[END_REF] for reviews. We introduce in this paper a new type of disordered pinning model that we call pinning on a quenched renewal. Before giving its definition, we recall two well-studied related models that motivate the introduction and the study of this new model.

Pinning on an inhomogeneous defect line. The disordered pinning model was introduced by Poland and Scheraga [START_REF] Poland | Occurence of a phase transition in nucleic acid models[END_REF] to model DNA denaturation, and it has recently been the subject of extensive rigorous mathematical studies, cf. [START_REF] Giacomin | Random Polymer models[END_REF][START_REF] Giacomin | Disorder and critical phenomena through basic probability models[END_REF]. We recall its definition.

Let τ = {τ 0 = 0, τ 1 , . . .} be a discrete recurrent renewal process of law P, and let ω = (ω n ) n∈N be a sequence of IID random variables of law denoted P, with finite exponential moment M (λ) = E[e λω ] < +∞, for λ > 0 small enough. Then, for β > 0 and h ∈ R, and a fixed realization of ω (quenched disorder), the Gibbs measure is defined by where Z β,ω N,h is the partition function, which normalizes P β,ω N,h to a probability measure. This Gibbs measure corresponds to giving a (possibly negative) reward βω n +h to the occurrence of a renewal point at n. In this context it is natural to think of the polymer configuration as the space-time trajectory of some Markov chain, with the polymer interacting with a potential whenever it returns to some particular site, for example the origin; then τ represents the times of these returns.

This system is known to undergo a localization phase transition when h varies, and much attention has been given to the question of disorder relevance, that is, whether the quenched and annealed systems (with respective partition functions Z β,ω N,h and EZ β,ω N,h ) have different critical behaviors. The so-called Harris criterion [START_REF] Harris | Effect of random defects on the critical behaviour of ising models[END_REF] is used to predict disorder relevance, and its characterization in terms of the distribution of the renewal time τ 1 has now been mathematically settled completely [START_REF] Alexander | The effect of disorder on polymer depinning transitions[END_REF][START_REF] Alexander | Quenched and annealed critical points in polymer pinning models[END_REF][START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF][START_REF] Cheliotis | Variational characterization of the critical curve for pinning of random polymers[END_REF][START_REF] Derrida | Fractional moment bounds and disorder relevance for pinning models[END_REF][START_REF] Giacomin | Disorder relevance at marginality and critical point shift[END_REF][START_REF] Lacoin | The martingale approach to disorder irrelevance for pinning models[END_REF][START_REF] Toninelli | Critical properties and finite-size estimates for the depinning transition of directed random polymers[END_REF], the complete necessary and sufficient condition for critical point shift being given only recently, in [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF].

An interesting approach to this problem is based on a large deviation principle for cutting words out of a sequence of letters [START_REF] Birkner | Quenched large deviation principle for words in a letter sequence[END_REF], see [START_REF] Cheliotis | Variational characterization of the critical curve for pinning of random polymers[END_REF]: quantities of the model, such as critical points, are expressed as variational formulas involving (quenched and annealed) rate functions I que and I ann . In [START_REF] Cheliotis | Variational characterization of the critical curve for pinning of random polymers[END_REF], the authors consider a version of τ truncated at a level T , and it is implicitly shown that a lower bound on the critical point shift is, for all β > 0, lim

T →∞ 1 m T lim N →∞ 1 N E σ E log E exp σ N n=1 βω n -log M (β) 1 {n∈τ } + 1 2 log M (2β)1 {n∈τ ∩σ} (1.2)
where m T is the mean inter-arrival time of the truncated renewal, and σ is a quenched trajectory of a renewal with the same (truncated) law P; thus σ N ∼ m T N . Note that the first term of the summand on the right side of (1.2) gives the quenched Hamiltonian from (1.1) calculated at the annealed critical point u = -log M (β). The second term of the summand corresponds to a quenched system in which the disorder is sparse (at least without the truncation), in the sense that it is 0 except at the sites of the quenched renewal σ, and these sites have a limiting density of 0 when σ 1 has infinite mean, that is (1.3) lim

N →∞
|σ ∩ {1, . . . , N }| N = 0 P σ -a.s.

Since the quenched system is not pinned at the annealed critical point, the limit (1.2) would be 0, meaning no pinning, without that second term. The question is then roughly whether the additional presence of the very sparse disorder σ is enough to create pinning (this oversimplifies slightly, as we are ignoring the limit T → ∞). It therefore suggests the question, of independent interest, of whether such very sparse disorder creates pinning for arbitrarily small β, in the simplified context where the first term in the summand is absent and there is no truncation. Our purpose here is to answer that question positively: under an appropriate condition on the tail exponents of the return times τ 1 and σ 1 , there is pinning for arbitrarily small β. It should also be noted that the sum in (1.2) is up to σ N , not N as in (1.1). To create positive free energy, τ must be able to hit an order-N number of sites σ i , which is impossible for a length-N polymer with extremely sparse disorder satisfying (1.3), see [START_REF] Janvresse | Pinning by a sparse potential[END_REF].

Pinning on a Random Walk. The Random Walk Pinning Model considers a random walk X (whose law is denoted P X ), which is pinned to another independent (quenched) random walk Y with distribution P Y identical to P X , see [START_REF] Birkner | Collision local time of transient random walks and intermediate phases in interacting stochastic systems[END_REF]. For any β > 0, the Gibbs measure is given by

(1.4) dP Y N,β dP X (X) := 1 Z Y N,β e β N n=1 1 {Xn=Yn} .
This system undergoes a localization phase transition: above some critical value β c , the random walk X sticks to the quenched trajectory of Y , P Y -a.s. Here X and Y are assumed irreducible and symmetric, with log P X (X 2n = 0) n→∞ ∼ -ρ log n: for example, with ρ = d/2 in the case of symmetric simple random walks on Z d .

One can compare this model to its annealed counterpart, in which the partition function is averaged over the possible trajectories of Y , E Y [Z Y N,β ], with corresponding critical value β ann c . Non-coincidence of quenched and annealed critical points implies the existence of an intermediate phase for the long-time behavior of several systems (such as coupled branching processes, parabolic Anderson model with a single catalyst, directed polymer in random environment): we refer to [START_REF] Birkner | Collision local time of transient random walks and intermediate phases in interacting stochastic systems[END_REF][START_REF] Birkner | Annealed vs quenched critical points for a random walk pinning model[END_REF] for more details on the relations between these models and the random walk pinning model.

The question of non-coincidence of critical points for pinning on a random walk has only been partially answered: it is known that β c > β ann c if ρ > 2, see [START_REF] Birkner | Collision local time of transient random walks and intermediate phases in interacting stochastic systems[END_REF], and in the special cases of d-dimensional simple random walks, β c > β ann c if and only if d ≥ 3 [START_REF] Berger | On the critical point of the random walk pinning model in dimension d = 3[END_REF][START_REF] Birkner | Annealed vs quenched critical points for a random walk pinning model[END_REF][START_REF] Birkner | Disorder relevance for the random walk pinning model in dimension 3[END_REF] (note that the case d ≥ 5 was already dealt with the case ρ > 2). It is however believed that one has β c > β ann c whenever ρ > 1.

The model we introduce now is related to this one, in the sense that we replace the random walks by renewals: we study a renewal τ , which interacts with an object of the same nature, that is a quenched renewal σ.

1.2. Pinning on a quenched renewal. We consider two recurrent renewal processes τ and σ, with (possibly different) laws denoted respectively by P τ and P σ . We assume that there exist α ≥ 0, α > 0, and slowly varying functions ϕ(•), ϕ(•) (see [START_REF] Bingham | Regular Variation[END_REF] for a definition) such that for all n ≥ 1

P τ (τ 1 = n) = ϕ(n) n -(1+α) and P σ (σ 1 = n) = ϕ(n) n -(1+ α) . (1.5) Let (1.6) d τ = min Supp τ 1 , d σ = min Supp σ 1 ,
where Supp χ denotes the support of the distribution of a random variable χ. At times we will add the assumption (1.7)

d τ ≤ d σ ,
which ensures that certain partition functions carrying the restriction σ N = τ N cannot be 0, for sufficiently large N .

Let us write |τ | n for |τ ∩ {1, . . . , n}|. We consider the question of the pinning of τ by the renewal σ: the Hamiltonian, up to N σ-renewals, is H N,σ (τ ) := |τ ∩ σ| σ N . For β ≥ 0 (the inverse temperature) and for a quenched trajectory of σ, we introduce the Gibbs transformation P σ N,β of P τ by (1.8) dP σ N,β

dP τ := 1 Z σ N,β e β|τ ∩σ|σ N 1 {σ N ∈τ } ,
where Z σ N,β := E τ exp(β|τ ∩ σ| σ N )1 {σ N ∈τ } is the partition function. Note that the resulting polymer is constrained, meaning τ is required to have a renewal at the endpoint σ N of the polymer. 0 τ σ contacts Figure 1. The renewal σ is quenched (here, we have N = 13 σ-renewals), and the renewal τ collects a reward β for each contact with a σ-renewal (here, |τ ∩ σ| σ N = 6).

Proposition 1.1. The quenched free energy, defined by (1.9) F(β) := lim

N →∞ 1 N log Z σ N,β = lim N →∞ 1 N E σ log Z σ N,β
exists and is constant P σ -a.s. F is non-negative, non-decreasing and convex. There exists

β c = β c (P σ ) ≥ 0 such that F(β) = 0 if β ≤ β c and F(β) > 0 if β > β c .
Proof. We have

Z σ N +M,β ≥ E τ exp(β|τ ∩ σ| σ N )1 {σ N +M ∈τ } 1 {σ N ∈τ } = Z σ N,β Z θ N σ M,β
, where θ is the "shift operator applied to increments":

(θσ) i = σ i+1 -σ 1 .
Therefore the sequence (log Z σ N,β ) n∈N is superadditive, and using Kingman's subadditive Theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF], one gets the P σ -a.s. existence of the limit in (1.9), and moreover (1.10)

F(β) = F(β, P σ ) = sup n∈N 1 N E σ log Z σ N,β .
The non-negativity trivially follows from the fact that β ≥ 0, and the convexity is classical and comes from a straightforward computation.

A standard computation gives that, when the derivative of F(β) exists,

(1.11) ∂ ∂β F(β) = lim N →∞ P σ N,β 1 N |τ ∩ σ| σ N ,
where P σ N,β also denotes the expectation with respect to the measure defined in (1.8). Therefore, when F(β) > 0, a positive proportion of σ-renewal points are visited by τ , and β c marks the transition between a delocalized and localized phase.

Remark 1.2. We have chosen to work with the constrained version of the model, by including 1 {σ N ∈τ } in the partition function. We stress that the free energy is the same as for the corresponding "free" partition function, (1.12) Z σ,free N,β := E τ e β N n=1 1 {σn∈τ } .

Indeed, let K be such that P τ (τ 1 = k) > 0 for all k ≥ K. Consider a trajectory τ for which the last renewal in [0, σ N -K] is at some point σ N -k. We can map τ to a constrained trajectory τ by removing all renewals of τ in (σ N -K, σ N ) and adding a renewal at σ N . This is a 2 K -to-1 map, and the Boltzmann weight of τ is smaller than that of τ by a factor no smaller than e -βK P τ (τ

1 = k) ≥ e -βK min K≤j≤σ N P τ (τ 1 = j) ≥ cσ -(2+α) N
for some constant c > 0. Hence there exists C > 0 such that for all large N , (1.13)

Z σ N,β ≤ Z σ,free N,β ≤ C(σ N ) 2+α Z σ N,β .
It is straightforward from (1.5) (and because we impose α > 0) that lim N →∞ N -1 log σ N = 0 P σ -a.s., which with (1.13) gives lim N →∞ N -1 log Z σ,free N,β = F(β), P σ -a.s. 1.3. The annealed model. We will compare the quenched-renewal pinning model to its annealed counterpart, with partition function E σ Z σ N,β = E τ,σ e β|τ ∩σ|σ n 1 {σn∈τ } . The annealed free energy is defined by

(1.14) F ann (β) := lim N →∞ 1 N log E σ Z σ N,β .
The existence of the annealed free energy is straightforward, using the superadditivity of log E σ Z σ N,β . Note that this model does not treat τ and σ symmetrically. Closely related is what we will call the homogeneous doubled pinning model, in which the length of the polymer is fixed, rather than the number of renewals in σ: the partition function and free energy are

Z hom n,β := E τ,σ e β|τ ∩σ|n 1 {n∈τ ∩σ} , F hom (β) = lim n→∞ 1 n log Z hom n,β ,
and the corresponding critical point is denoted

β hom c
. This model is exactly solvable, see [START_REF] Giacomin | Random Polymer models[END_REF]Ch. 2], and in particular, its critical point is

β hom c = -log P τ,σ (τ ∩ σ) 1 < ∞) = log 1 + E σ,τ [|τ ∩ σ|] -1 , with the convention that 1 ∞ = 0. Proposition 1.3. There exists some β ann c ≥ 0 such that F ann (β) = 0 if β ≤ β ann c and F ann (β) > 0 if β > β ann c . One has β ann c = β hom c = log 1 + E σ,τ [|τ ∩ σ|] -1
, and in particular β ann c = 0 if and only if the renewal τ ∩ σ is recurrent. From Jensen's inequality, we have F(β) ≤ F ann (β), so that β c ≥ β ann c . When τ ∩ σ is recurrent, β ann c = 0, and our main theorem will say that β c = 0 as well. In the transient case we have β ann c > 0 and we can ask whether β c = β ann c or not. 1.4. On the recurrence/transience of τ ∩ σ. The criterion for the recurrence of the renewal τ ∩ σ is that

(1.15) E σ E τ [|τ ∩ σ|] = n∈N P σ (n ∈ σ)P τ (n ∈ τ ) = +∞.
Under the assumption (1.5), the exact asymptotic behavior of P τ (n ∈ τ ) is known. We write a ∧ b for min(a, b). Defining the truncated mean and tail

m(n) = E τ τ 1 ∧ n , r n := P τ (τ 1 > n) ,
we have

(1.16) P τ (n ∈ τ ) n→∞ ∼          r -2 n n -1 ϕ(n) if α = 0 , α sin(πα) π n -(1-α) ϕ(n) -1 if 0 < α < 1 , m(n) -1 if α = 1, E τ [τ 1 ] = +∞ , E τ [τ 1 ] -1 if E τ [τ 1 ] < +∞ .
The first is from [START_REF] Nagaev | The renewal theorem in the absence of power moments[END_REF], the second is due to Doney [17, Thm. B], the third is due to Erickson [18, Eq. (2.4)], and the fourth is the classical Renewal Theorem.

Applying (1.16) to τ ∩σ in (1.15), we see that α+ α > 1 implies that τ ∩σ is recurrent, and also that α + α < 1 implies that τ ∩ σ is transient. The case α + α = 1 is marginal, depending on the slowly varying functions ϕ(•) and ϕ(•): if also α, α > 0 then τ ∩ σ is recurrent if and only if (1.17)

n∈N 1 nϕ(n) ϕ(n) = +∞.
For the case α = 0, α = 1, we have recurrence if and only if

(1.18) n∈N ϕ(n) n m(n)P τ (τ 1 ≥ n) 2 = +∞, where m(n) = E σ (σ 1 ∧ n), which is slowly varying since α = 1.

Main results

2.1.

Results and comments. Our main result says that in the case where τ ∩σ is recurrent, or transient with α + α = 1, the quenched and annealed critical points are equal (so both equal to 0 in the recurrent case). When α + α < 1, a sufficient condition for unequal critical points involves another exponent

α * := 1 -α -α α , which arises naturally in that P σ,τ (σ n ∈ τ ) n→∞ ∼ ϕ * (n)n -(1+α * )
for some slowly varying ϕ * (see Lemma 4.1).

Theorem 2.1. Assume (1.5).

If α > 0 and α + α ≥ 1, then β c = β ann c ; (2.1) If α > 0, α + α < 1 and α * > 1 2 , then β c > β ann c . (2.2) Note that α * > 1/2 is equivalent to α + 3 2 α < 1.
We suspect that this condition can be removed in (2.2), and in that direction, our next result shows that if (as seems plausible) the equality of critical points is determined entirely by the exponents α, α and the asymptotics of ϕ, ϕ, then under the condition α, α > 0, it is necessary and sufficient for equality of critical points that α + α ≥ 1, that is, (2.2) is true without the condition α * > 1/2. Theorem 2.2. For any α, α > 0 with α + α < 1 and any slowly varying functions ϕ(•), ϕ(•), there exist distributions for τ and σ satisfying P τ (τ

1 = n) n→∞ ∼ ϕ(n)n -(1+α) and P σ (σ 1 = n) n→∞ ∼ ϕ(n)n -(1+ α) , with β c > β ann c .
We expect that, following the same scheme of proof, one can extend Theorem 2.2 to the case α = 0, α ∈ (0, 1). However, in the interest of brevity we do not prove it here, since it would require separate estimates from [START_REF] Alexander | Local limit theorems and renewal theory with no moments[END_REF].

Let us now make some comments about these results.

1. Since the renewal τ ∩ σ can be recurrent only if α + α ≥ 1, one has from (2.1) that β c = 0 if and only if β ann c = 0, that is if and only if τ ∩ σ is recurrent. This is notable in that |τ ∩ σ| = +∞ P σ,τ -a.s. is enough for τ to be pinned on a quenched trajectory of σ for all β > 0, even though a typical σ-trajectory is very sparse.

2.

When α + α = 1, τ ∩ σ can be either recurrent or transient depending on (1.17)- (1.18). Thus we have examples with transience where the critical points are positive and equal.

If

E σ [σ 1 ]
< +∞, we have a system of length approximately E σ [σ 1 ]N . Here we already know from [START_REF] Janvresse | Pinning by a sparse potential[END_REF] that the renewal τ is pinned for all β > 0, since there is a positive density of σ-renewal points in the system.

4.

We note in Remark 4.4 that if n → P(n ∈ τ ) is non-increasing, then some calculations are simplified, and we can go slightly beyond the condition α * > 1/2, to allow α * = 1/2 with lim k→∞ ϕ(k

) (1-α)/ α φ(k) = +∞. Here φ(k) = ϕ(k) -1 if α ∈ (0, 1) and φ(k) = ϕ(k)/P τ (τ 1 > k) 2 if α = 0.
The monotonicity of n → P(n ∈ τ ) follows easily if the renewal points j of τ correspond to times 2j of return to 0 of a nearest-neighbor Markov chain (birth-death process.) Indeed, one can then couple two trajectories (one non-delayed, the other one delayed by 2k for some k ≥ 1) the first time they meet, and show that P(k + n ∈ τ ) ≤ P(n ∈ τ ) for any n ≥ 1.

5.

The random walk pinning model (1.4) is quite analogous to our model, replacing only 1 {σn∈τ } by 1 {Xn=Yn} . In our model, the decay exponent 1 + α * of the probability P σ,τ (σ n ∈ τ ) corresponds to the parameter ρ in [START_REF] Birkner | Collision local time of transient random walks and intermediate phases in interacting stochastic systems[END_REF] (the decay exponent of P X,Y (X n = Y n ).) Theorem 2.1 is in that sense stronger than its counterpart in the random walk pinning model, since α * > 1/2 translates into ρ > 3/2, compared to ρ > 2 in [START_REF] Birkner | Collision local time of transient random walks and intermediate phases in interacting stochastic systems[END_REF]. Moreover, Theorem 2.2 supports the conjecture that the quenched and annealed critical points differ whenever ρ > 1, see Conjecture 1.8 in [START_REF] Birkner | Collision local time of transient random walks and intermediate phases in interacting stochastic systems[END_REF].

2.2.

Variations of the main model: balanced and elastic polymers. Pinning, in the quenched or annealed model, means that τ hits a positive fraction of the sites in the quenched renewal σ, up to some σ N . The number of renewals in τ is unlimited. We can alternatively consider the balanced polymer with τ constrained to satisfy τ N = σ N .

A second alternative pinning notion asks whether a positive fraction of τ renewals hit sites of σ, by considering a polymer of length τ N instead of σ N . Physically this may be viewed as an elastic polymer, since τ has a fixed number N of monomers and needs to stretch or contract to place them on renewals of σ.

First variation: balanced polymer, τ N = σ N . We first consider τ constrained to have τ N = σ N , since in that case, both pinning notions are equivalent.

We introduce

(2.3) Ẑσ N,β = E τ exp(β|τ ∩ σ| σ N )1 {τ N =σ N } , and 
(2.4) F(β) := lim N →∞ 1 N log Ẑσ N,β = lim N →∞ 1 N E σ [log Ẑσ N,β ] P σ -a.
s. The proof of Proposition 1.9 applies here, establishing the existence and non-randomness of this limit.

For the balanced polymer we need the condition (1.7), for otherwise the partition function is 0 with positive probability (whenever σ N = N d σ , see (1.6)), and therefore

N -1 E σ [log Ẑσ N,β ] = -∞ for all N ∈ N. Further, suppose E σ [σ 1 ] < E τ [τ 1 ]. Then σ N ∼ E σ [σ 1 ]N a.
s., so P τ (τ N = σ N ) decays exponentially in N . It is easy to see that therefore F(β) < 0 for small β. In this sense the constraint τ N = σ N dominates the partition function, which in unphysical, so we assume

E σ [σ 1 ] ≥ E τ [τ 1 ]
, which ensures F(β) ≥ 0 for all β > 0. There then exists a critical point βc := inf{β : F(β) > 0} such that F(β) > 0 if β > βc and F(β) = 0 if β ≤ βc . The positivity of F(β) implies that τ visits a positive proportion of σ-renewal points, and also that a positive proportion of τ -renewals sit on a σ-renewal point. Clearly, one has that Z σ N,β ≥ Ẑσ N,β , so that βc ≥ β c . The following proposition establishes equality, and is proved in Section 6.

Proposition 2.3. Assume (1.5) and (1.7).

If E σ [σ 1 ] ≥ E τ [τ 1 ], and in particular if E σ [σ 1 ] = +∞, then βc = β c .
Hence, here again, βc = 0 if and only if τ ∩ σ is recurrent.

Second variation: elastic polymer of length τ N . In the elastic polymer, pinning essentially means that a positive fraction of τ -renewals fall on σ-renewals. The partition function is (2.5) Zσ N,β = E τ exp(β|τ ∩ σ| τ N ) . Standard subadditivity methods to establish existence of lim N →∞ N -1 log Zσ N,β do not work here, but we can consider the lim inf instead, since its positivity implies pinning in the above sense. We therefore define (2.6) F(β) := lim inf

N →∞ 1 N E σ log Zσ N,β ,
which is non-decreasing in β, and the critical point βc := inf{β : F(β) > 0}. Compared to the balanced polymer, here it is much less apparent a priori that we should have βc ≥ β c . It could be favorable for τ to jump far beyond σ N to reach an exceptionally favorable stretch of σ, before τ N . The original model (1.8) does not permit this type of strategy, so the question is whether this allows pinning in the elastic polymer with β < β c . The answer is no, at least if α > 0, or if α = 0 and α ≥ 1, as the following shows; the proof is in Section 6. We do not know whether βc = β c when α = 0 and α < 1.

Proposition 2.4. Assume (1.5) with α > 0:

(i) βc ≤ β c ; (ii) βc = β c if α > 0 and if α = 0, α ≥ 1.
In particular, βc = 0 whenever τ ∩ σ is recurrent.

2.3. Organization of the rest of the paper. We now present a brief outline of the proofs, and how they are organized.

In Section 3, we prove the first part (2.1) of Theorem 2.1, to establish pinning of the quenched system when β > β ann c , with α + α ≥ 1. We use a rare-stretch strategy to get a lower bound on the partition function: the idea is to consider trajectories τ which visit exponentially rare stretches where the renewals of σ have some (not-well-specified) special structure which reduces the entropy cost for τ to hit a large number of σ sites. In Section 3.2, we classify trajectories of σ according to the size of this entropy cost reduction, then select a class which makes a large contribution to the annealed free energy F ann (β) > 0 (we will fix β > β ann c ). We call trajectories in this class accepting, and the localization strategy of Section 3.3 consists in visiting all accepting segments of σ. More detailed heuristics are presented in Section 3.1.

In Section 4, we prove the second part (2.2) of Theorem 2.1. First, we rewrite the partition function as that of another type of pinning model -see Section 4.1; this reduces the problem to a system at the annealed critical point β ann c > 0. We then employ a fractional moment method, combined with coarse-graining, similar to one developed for the disordered pinning model [START_REF] Berger | Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift[END_REF][START_REF] Derrida | Fractional moment bounds and disorder relevance for pinning models[END_REF][START_REF] Giacomin | Marginal relevance of disorder for pinning models[END_REF][START_REF] Giacomin | Disorder relevance at marginality and critical point shift[END_REF], and later used for the random walk pinning model [START_REF] Berger | On the critical point of the random walk pinning model in dimension d = 3[END_REF][START_REF] Birkner | Annealed vs quenched critical points for a random walk pinning model[END_REF][START_REF] Birkner | Disorder relevance for the random walk pinning model in dimension 3[END_REF]. In Sections 4.2-4.3, we show how one can reduce to proving a finite-size estimate of the fractional moment of the partition function. Then to show that the fractional moment of the partition function is small, we describe a general change of measure argument in Section 4.4. The change of measure is based on a set J of trajectories σ, defined in Section 4.5, which has high probability, but becomes rare under certain conditioning which, roughly speaking, makes the partition function Z σ N,β large. Identification of such an event is the key step; our choice of J only works in full generality for α * > 1/2, necessitating that hypothesis.

In Section 5, we define an alternative event in place of J which, by similar methods, allows examples of distributions of τ, σ with α+ α < 1 and arbitrary α * ∈ (0, 1), for which β c > β ann c . In Section 5.1, we find a sufficient condition on the distributions of τ, σ for the alternative event to have the required properties -primarily, P σ,τ (σ 1 ∈ τ ) must be much greater than P σ,τ (σ n ∈ τ for some n ≥ 2); see Remark 5.5. Then, in Section 5.2, we construct examples of τ, σ for which this condition holds.

In Section 6, we study the variants of the model introduced in Section 2.2, and prove Propositions 2.3-2.3. We mainly use some particular localization strategies to obtain lower bounds on the free energy of these two models.

The Appendix is devoted to the proof of technical lemmas on renewal processes.

2.4. Notations. Throughout the paper, c i are constants which depend only on the distributions of τ and σ, unless otherwise specified.

Recall the truncated means

m(n) = E τ (τ 1 ∧ n), m(n) = E σ (σ 1 ∧ n).
When α, α > 0 we denote by a n the typical size of τ n , b n the typical size of σ n , A n the typical size of max{τ 1 , τ 2 -τ 1 , . . . , τ n -τ n-1 }, and B n the typical size of max{σ 1 , σ 2 -σ 1 , . . . , σ nσ n-1 }. More precisely, B n is defined (up to asymptotic equivalence) by

B 1 = d σ , B n ≥ d σ , B α n ϕ(B n ) -1 n→∞ ∼ n, (2.7) 
(see (1.6)) and b n by

b n = B n if 0 < α < 1, b n m(b n ) -1 n→∞ ∼ n if α = 1 and E σ [σ 1 ] = ∞, b n = E σ [σ 1 ]n if E σ [σ 1 ] < ∞, (2.8)
and A n , a n are defined analogously for the distribution of τ 1 . The following can be found in [START_REF] Bingham | Regular Variation[END_REF]. These sequences are unique up to asymptotic equivalence, and in the infinite-mean case with 0 < α, α ≤ 1, there exist slowly varying functions ψ and ψ, whose asymptotics are explicit in terms of α, α and ϕ, ϕ, such that (2.9)

a n = ψ(n) n 1/α , b n = ψ(n) n 1/ α .
The sequences A -1 n max{τ 1 , τ 2 -τ 1 , . . . , τ n -τ n-1 } and B -1 n max{σ 1 , σ 2 -σ 1 , . . . , σ n -σ n-1 } converge in distribution, and the limits have strictly positive densities on (0, ∞). When the corresponding exponents α, α are in (0, 1), the ratios τ n /a n and σ n /b n converge to stable distributions, which have strictly positive densities on (0, ∞). When the exponent α, α ∈ [1, ∞), the same ratios converge in probability to 1. This follows from the law of large numbers when the mean is finite, and from the convergence in distribution of (τ n -n m(n))/A n to a stable law if α = 1 and E τ [τ 1 ] = +∞, in which case n m(n)/A n → ∞, see for example [START_REF] Feller | An introduction to Probability Theory and its applications[END_REF]XVII.5 Thm. 3]. Define

(2.10) dτ = min{n ≥ 1 : P τ (k ∈ τ ) > 0 for all k ≥ n}, and dσ similarly.

3. Rare-stretch strategy: proof of the first part of Theorem 2.1

3.1. Sketch of the proof. We use a rare-stretch localization strategy to show that, when α + α ≥ 1, we have F(β) > 0 for all β > β ann c . The idea is to identify "accepting" stretches of σ that we then require τ to visit; the contribution to the free energy from such trajectories τ is shown sufficient to make the free energy positive. Here, the definition of an accepting stretch is made without describing these stretches explicitly, in the following sense: for fixed large , different configurations {σ 1 , . . . , σ } are conducive to large values of |τ ∩ σ| to different degrees, as measured by the probability P τ |τ ∩ σ| ≥ δ ) for some appropriate δ.

We divide (most of) the possible values of this probability into a finite number of intervals, which divides configurations σ into corresponding classes; we select the class responsible for the largest contribution to the annealed partition function, and call the corresponding trajectories σ accepting. We then get a lower bound for the quenched partition function by considering trajectories of length N which visit all accepting stretches of σ of length .

3.2. Preliminaries on the annealed system. We first define the accepting property for σ. Let I τ and I be the rate functions, for contact fractions δ, for the renewals τ and τ ∩ σ, respectively:

(3.1)

I τ (δ) := -lim n→∞ 1 n log P τ (|τ | n ≥ δn), I(δ) := -lim n→∞ 1 n log P σ,τ (|τ ∩ σ| n ≥ δn).
It is straightforward that

I τ (δ) = δJ τ (δ -1 )
, where J τ is the usual rate function for i.i.d. sums distributed as the gap between renewals in τ , and similarly for I(δ). Let

δ max = sup{δ ∈ [0, 1] : I(δ) < ∞} and 0 < δ < δ max . Then (3.2) P σ,τ (|τ ∩ σ| n ≥ δn) = e -I(δ) n (1+o(1)) .
For technical reasons, we need the following lemma: it says that the rate function I(δ) is unchanged when also imposing σ n ∈ τ , and that σ n grows only polynomially.

Lemma 3.1. Suppose α > 0. For all δ < δ max , for b n from (2.8), (3.3) lim n→∞ 1 n log P σ,τ σ n ∈ τ, σ n ≤ 2b n |τ ∩ σ| n ≥ δn = 0, so that (3.4) P σ,τ |τ ∩ σ| n ≥ δn , σ n ∈ τ, σ n ≤ 2b n = e -I(δ) n (1+o(1)) .
Proof. Let ε > 0 and let m be the least integer in [δn, ∞). Since δ < δ max , there exists η > 0 with

lim n→∞ 1 n log P σ,τ (τ ∩ σ) m ≤ (1 -η)n |τ ∩ σ| n ≥ δn ≥ lim n→∞ 1 n log P σ,τ |τ ∩ σ| (1-η)n ≥ δn |τ ∩ σ| n ≥ δn > -ε. (3.5)
Since b n > n and σ n /b n converges either to a stable limit or to 1, there exist n 0 ≥ 1 and θ > 0 as follows. For n large and δn

≤ j ≤ (1 -η)n, m ≤ k ≤ j, P σ,τ σ n ∈ τ, σ n ≤ 2b n (τ ∩ σ) m = j; σ k = j ≥ P σ σ n-k ≤ b n-k min k≤n+bn P τ (k ∈ τ ) ≥ θ min k≤2bn P τ (k ∈ τ ), (3.6)
which is bounded below by an inverse power of n, uniformly in such j. Therefore

lim n→∞ 1 n log P σ,τ σ n ∈ τ, σ n ≤ 2b n (τ ∩ σ) m ≤ (1 -η)n = 0,
which with (3.5) proves (3.3), since ε is arbitrary.

Since we take β > β ann c = β hom c , the associated annealed and homogeneous double pinning free energies are positive:

(3.7) F ann (β) ≥ F hom (β) = sup δ>0 (βδ -I(δ)) > 0. Let δ < δ max satisfy (3.8) β δ -I( δ) > 1 2 F hom (β),
and let

f n (σ) := P τ |τ ∩ σ| n ≥ δn) 1 {σn∈τ } 1 {σn≤2bn} .
Note that f n is actually a function of the finite renewal sequence B := {0, σ 1 , . . . , σ n }, so we may write it as f n (B). We decompose the probability that appears in f n according to what portion of the cost I( δ)n is borne by σ versus by τ : we fix ε > 0 and write

(3.9) P σ,τ |τ ∩ σ| n ≥ δn, σ n ∈ τ, σ n ≤ 2b n ≤ 0≤k≤1/ε P σ f n (σ) ∈ e -(k+1)εI( δ)n , e -kεI( δ)n e -kεI( δ)n + e -(1+ε)I( δ)n .
Then by Lemma 3.1, there exists some n ε large enough so that for n ≥ n ε ,

e -(1+ε)I( δ)n ≤ 1 2 P σ,τ |τ ∩ σ| n ≥ δn, σ n ∈ τ, σ n ≤ 2b n . Hence choosing k 0 = k 0 (n) ∈ [0, 1/ε]
to be the index of the largest term in the sum in (3.9), we have

(3.10) P σ f n (σ) ∈ e -(k 0 +1)εI( δ)n , e -k 0 εI( δ)n e -k 0 εI( δ)n ≥ 1 2 1 1 + 1/ε P σ,τ |τ ∩ σ| n ≥ δn, σ n ∈ τ, σ n ≤ 2b n .
We let a := a(n) := k 0 ε, so a ∈ [0, 1] represents, roughly speaking, the proportion of the cost I( δ) borne by τ in the most likely cost split, i.e. in the k = k 0 term. Lemma 3.1 says that if n ≥ n ε for some n ε large enough, one has that

P σ,τ |τ ∩ σ| n ≥ δn, σ n ∈ τ, σ n ≤ 2b n ≥ e -(1+ε/2)I( δ)n .
Then, (3.10) gives that

(3.11) P σ f n (σ) ∈ e -(a+ε)I( δ)n , e -aI( δ)n ≥ 1 2 ε 1 + ε e aI( δ)n e -(1+ε/2)I( δ)n ≥ e -(1-a+ε)I( δ)n ,
where the last inequality holds provided that n is large enough (n ≥ n ε ). This leads us to define, for n ≥ n ε the event A n for σ (or more precisely for {0, σ 1 , . . . , σ n }) of being accepting, by

(3.12) σ ∈ A n if f n (σ) ∈ (e -(a+ε)I( δ)n , e -aI( δ)n ] .
Then (3.11) gives the lower bound

P σ (σ ∈ A n ) ≥ e -(1-a+ε)I( δ)n if n ≥ n ε . Moreover we have for n ≥ n ε E τ e β|τ ∩σ|σ n 1 {σn∈τ } 1 {σ∈An} ≥ e β δn P τ |τ ∩ σ| σn ≥ δn, σ n ∈ τ, σ n ≤ 2b n 1 {σ∈An} ≥ e (β δn-(a+ε)I( δ))n 1 {σ∈An} . (3.13) 3.3. Localization strategy. Let us fix β > β ann c = β hom c
, δ as in (3.8) and large (in particular ≥ n ε , so that (3.13) holds for n = .) We divide σ into segments of jumps which we denote Q 1 , Q 2 , . . ., that is, Q i := {σ (i-1) +1 -σ (i-1) , . . . , σ i -σ (i-1) }. We say that Q i is an accepting segment if Q i ∈ A . We now write A for A , and a for a( ). Let (3.14) p

A := P σ (Q i ∈ A) ≥ e -(1-a+ε)I( δ) ,
where the inequality is from (3.11). Informally, the strategy for τ is then to visit all accepting segments, with no other restrictions on other regions. On each such segment one has an energetic gain of at least e (β δn-(a+ε)I( δ))n , thanks to (3.13).

We define M 0 := 0, and iteratively

M i := inf{j > M i-1 ; Q j ∈ A}; then M i -M i-1 are independent geometric random variables of parameter p A . Imposing visits to all the accepting segments Q M i (that is imposing σ M i , σ (M i +1) ∈ τ ), one has (3.15) Z σ M k ,β ≥ E τ k i=1 exp β σ ∩ τ ∩ (σ (M i -1) , σ M i ] 1 {σ M i ∈τ } 1 {σ (M i -1) ∈τ } .
So, using (3.13), and with the convention that P τ (0 ∈ τ ) = 1, we have

(3.16) log Z σ M k ,β ≥ k i=1 log P τ σ (M i -1) -σ M i-1 ∈ τ + β δ -(a + ε)I( δ) .
Letting k go to infinity, and using the Law of Large Numbers twice, we get

F(β) ≥ lim inf k→∞ 1 M k log Z σ M k ,β ≥ 1 E σ [M 1 ] 1 E σ log P τ σ (M 1 -1) ∈ τ + β δ -(a + ε)I( δ) , (3.17) with E σ [M 1 ] = 1/p A .
We are left with estimating 1 E σ log P τ σ (M 1 -1) ∈ τ . For any α ≥ 0 and non-random times n, (1.16) ensures that, for any η > 0, one can find some n η such that, for all n ≥ n η , (3.18) log

P τ (n ∈ τ ) ≥ -(1 -α ∧ 1 + η) log n .
Therefore if η is chosen large enough, and ≥ η , one has

(3.19) E σ log P τ σ (M 1 -1) ∈ τ ≥ -(1 -α ∧ 1 + η)E σ [1 {M 1 >1} log σ (M 1 -1) ].
The following is proved below.

Lemma 3.2. Let η > 0 and suppose α > 0 in (1.5). Provided is sufficiently large we have

E σ [1 {M 1 >1} log σ (M 1 -1) ] ≤ 1 + η α ∧ 1 log + log 1 p A .
Combining (3.19) with Lemma 3.2, one gets for ≥ η , and provided that η is large so that 1 log ≤ η,

(3.20) 1 E σ log P τ σ (M 1 -1) ∈ τ ≥ -(1 -α ∧ 1 + η) 1 + η α ∧ 1 1 log 1 p A + η .
From (3.17) and (3.20), and assuming that η is sufficiently small (depending on ε), we get

(3.21) F(β) ≥ p A β δ -(a + ε)I( δ) - 1 -α ∧ 1 α ∧ 1 (1 + ε) 1 log 1 p A -ε . Now, the crucial point is that α + α ≥ 1, so that (1 -α ∧ 1)/ α ∧ 1 ≤ 1
, and one has

F(β) ≥ p A β δ -(a + ε)I( δ) -(1 + ε) 1 log 1 p A -ε ≥ p A β δ -(a + ε)I( δ) -(1 + ε)(1 -a + ε)I( δ) -ε ≥ p A 1 2 F hom (β) -(3 -a + ε)εI( δ) -ε , (3.22)
where we used (3.14) in the second inequality, and (3.8) in the third one. If we choose ε small enough, we therefore have that

F(β) ≥ 1 4 p A F hom (β) > 0, as soon as β > β ann c = β hom c . This completes the proof of (2.2) Theorem 2.1. Proof of Lemma 3.2. Let us first bound E σ log σ n for deterministic large n. Consider first α ∈ (0, 1). Let η ∈ (0, 1/4). From [17], whenever k/b n → ∞, P σ (σ n = k) ∼ nP σ (σ 1 = k). Hence using (1.5), uniformly in t > 1 + η, as n → ∞, (3.23) P σ (σ n ≥ n t/ α ) = (1 + o(1))nP σ (σ 1 ≥ n t/ α ) ≤ n 1-t+η .
Therefore there exists some n η such that if n ≥ n η ,

E σ α log σ n log n ≤ 1 + η + ∞ 1+η P σ log σ n ≥ t α log n dt ≤ 1 + η + n 1+η ∞ 1+η e -t log n dt ≤ 1 + η + 1 log n , (3.24) so that, provided that n is large enough, (3.25) E σ log σ n ≤ 1 + 2η α log n.
For α ≥ 1, we can multiply the probabilities P σ (σ 1 = n) by the increasing function cn γ for appropriate c, γ > 0, and thereby obtain a distribution with tail exponent in (1 -η, 1) which stochastically dominates the distribution of σ 1 . This shows that

E σ log σ n ≤ 1 + 2η 1 -η log n.
Thus for all α > 0 and η ∈ (0, 1/4), for n large,

(3.26) E σ log σ n ≤ 1 + 4η α ∧ 1 log n.
Now let n A = K/p A , with K (large) to be specified. First, provided that is large enough,

(3.27) E σ 1 {M 1 >1} 1 {M 1 ≤2n A } log σ (M 1 -1) ≤ E σ log σ 2n A ≤ 1 + 4η α ∧ 1 log(2n A ) ,
where we used (3.26) in the last inequality. Second, fixing m ≥ 3, we have for any j ∈

(m -1)n A , mn A E σ [1 {M 1 >1} log σ (M 1 -1) | M 1 = j] = E σ log σ (j-1) | Q 1 / ∈ A, . . . , Q j-1 / ∈ A ≤ E σ [log σ mn A | Q 1 / ∈ A, . . . , Q mn A / ∈ A] ≤ m r=1 E σ log σ rn A -σ (r-1)n A Q i / ∈ A ∀i ∈ (r -1)n A , rn A = m E σ (log σ n A | Q i / ∈ A ∀i ≤ n A ) ≤ m E σ [log σ n A ] (1 -p A ) n A . (3.28)
Hence, using (3.26), one has that if is large enough,

E σ 1 {M 1 ∈((m-1)n A ,mn A ]} log σ (M 1 -1) ≤ P σ M 1 > (m -1)n A m 1 + 4η α ∧ 1 log(n A ) (1 -p A ) n A ≤ m(1 -p A ) (m-2)n A 1 + 4η α ∧ 1 log(n A ) ≤ 2me -(m-2)K 1 α ∧ 1 log(n A ) . (3.29)
Combining (3.27), and (3.29), we obtain, provided that K is large enough (depending on η)

E σ 1 {M 1 >1} log σ (M 1 -1) ≤ 1 + 4η α ∧ 1 log(2n A ) + ∞ m=3 2me -(m-2)K 1 α ∧ 1 log(n A ) ≤ 1 + 5η α ∧ 1 log(2n A ) ≤ 1 + 6η α ∧ 1 log + log 1 p A , (3.30)
where the last inequality is valid provided that is large. In this section and the following ones, we deal with the case α + α < 1. In particular, one has 0 ≤ α < 1, 0 < α < 1 and α * > 0. Moreover, the renewal τ ∩ σ is transient, so E σ,τ [|τ ∩ σ|] < +∞, and the annealed critical point is

β ann c = -log 1 -E σ,τ [|τ ∩ σ|] -1 > 0.
4.1. Alternative representation of the partition function. We use a standard alternative representation of the partition function, used for example in the Random Walk Pinning Model, see [START_REF] Birkner | Collision local time of transient random walks and intermediate phases in interacting stochastic systems[END_REF] and [START_REF] Berger | On the critical point of the random walk pinning model in dimension d = 3[END_REF][START_REF] Birkner | Annealed vs quenched critical points for a random walk pinning model[END_REF][START_REF] Birkner | Disorder relevance for the random walk pinning model in dimension 3[END_REF], and in other various context: it is the so-called polynomial chaos expansion, which is the cornerstone of [START_REF] Caravenna | Polynomial chaos and scaling limits of disordered systems[END_REF].

We write e β = 1 + z, and expand (1 + z)

N n=1 1 {σn∈τ } : we get (4.1) Z σ N,β = N m=1 z m 1≤i 1 <•••<im=N E τ m k=1 1 {σ i k ∈τ } = N m=1 z m 1≤i 1 <•••<im=N m k=1 E τ [1 {σ i k -σ i k-1 ∈τ } ],
where i 0 := 0. Now, let us define

(4.2) K * (n) := 1 E τ,σ [|τ ∩ σ|] E τ,σ [1 {σn∈τ } ],
so that n∈N K * (n) = 1, and we denote ν a renewal process with law P ν and inter-arrival distribution P ν (ν

1 = n) = K * (n).
In particular, ν is recurrent. The following lemma is proven in Appendix A.2; the asymptotics of ϕ * are given explicitly in the proof.

Lemma 4.1. Under Assumption (1.5), with α > 0 and α + α < 1, there exists a slowly varying function ϕ * (•) such that

(4.3) K * (n) = ϕ * (n)n -(1+α * ) with α * = 1 -α -α α > 0 .
We want to interpret the expansion (4.1) as the partition function of some pinning model, with underlying renewal ν. We define z ann

c := e β a c -1, so that z ann c = E τ,σ [|τ ∩ σ|] -1 .
Then we write z = z ann c e u : thanks to (4.2), we have

Z σ N,β =: Žσ N,u = N m=1 e um i 1 <•••<im=N m k=1 K * (i k -i k-1 )w(σ, i k-1 , i k ) = E ν e u|ν∩(0,N ]| W (ν, σ, [0, N ])1 {N ∈ν} , (4.4) with (4.5) w(σ, a, b) := E τ [1 {σ b -σa∈τ } ] E τ,σ [1 {σ b -σa∈τ } ] , E σ [w(σ, a, b)] = 1,
and

(4.6) W (ν, σ, [a, b]) := E τ [ k:ν k ∈[a,b] 1 {σν k ∈τ } ] E τ,σ [ k:ν k ∈[a,b] 1 {σν k ∈τ } ] , E σ [W (ν, σ, [a, b])] = 1.
Thus Žσ N,u corresponds to a pinning model: an excursion (ν i , ν i+1 ] of ν is weighted by e u w(σ, ν i , ν i+1 ). Note that, since E σ [w(σ, a, b)] = 1, the annealed partition function,

E σ Žσ N,u = E ν e u|ν∩(0,N ]| 1 {N ∈ν} ,
is the partition function of a homogeneous pinning model, with an underlying recurrent renewal ν: the annealed critical point is therefore u ann c = 0. 4.2. Fractional moment method. We are left with studying the new representation of the partition function, Žσ N,u , and in particular, we want to show that its (quenched) critical point is positive. For that purpose, it is enough to show that there exists some u > 0 and some ζ > 0 such that

(4.7) lim inf n∈N E σ ( Žσ N,u ) ζ < +∞.
Indeed, using Jensen's inequality, one has that

(4.8) F(β) = lim N →∞ 1 N E σ log Z σ N,β = lim N →∞ 1 ζN E σ log( Žσ N,u ) ζ ≤ lim inf N →∞ 1 ζN log E σ ( Žσ N,u ) ζ , so that (4.7) implies F(β) = 0.
4.3. The coarse-graining procedure. Let us fix the coarse-graining length L = 1/u, and decompose the system into blocks of size L: B i := {(i -1)L + 1, . . . , iL}, i ≥ 1. Considering a system of length nL, for n ∈ N, we have (4.9)

Žσ nL,u = I={1≤i 1 <•••<im=n} d i 1 ≤f i 1 d i 1 ,f i 1 ∈B i 1 • • • d im ≤f im =nL d im ∈B im m k=1 Žσ [d i k ,f i k ],u K * (d i k -f i k-1 )w(σ, f i k-1 , d i k ),
where

f 0 = i 0 = 0 and Žσ [a,b],u := E ν e u|ν∩(a,b]| W (ν, σ, [a, b])1 {b∈ν} ]|a ∈ ν ≤ eE ν W (ν, σ, [a, b])1 {b∈ν} ]|a ∈ ν = e Žσ [a,b],0
. Then, we denote by Z I the partition function with u = 0, and where ν is restricted to visit only blocks

B i for i ∈ I: if I = {1 ≤ i 1 < • • • < i m = n -1}, (4.10) Z I := d i 1 ≤f i 1 d i 1 ,f i 1 ∈B i 1 • • • d im ≤f im =nL d im ∈B im m k=1 Žσ [d i k ,f i k ],0 K * (d i k -f i k-1 )w(σ, f i k-1 , d i k ).
For We choose ζ given by (1 + α * /2)ζ = 1 + α * /4. We will show in the next two sections that for every δ > 0, there exists L 0 such that for any L ≥ L 0 (4.12) 4) .

E σ [(Z I ) ζ ] ≤ δ |I| |I| k=1 (i k -i k-1 ) -(1+α * /
With (4.11), this shows that

(4.13) E σ ( Žσ nL,u ) ζ ≤ I⊂{1,...,n},n∈I |I| k=1 e ζ δ (i k -i k-1 ) 1+α * /4 .
We choose δ so that K(n) = e ζ δn -(1+α * /4) sums to 1, making it the inter-arrival probability of a recurrent renewal process τ . We then have E σ ( Žσ nL,u ) ζ ≤ P τ (n ∈ τ ) ≤ 1, which yields (4.7) and concludes the proof of the second part of Theorem 2.1.

4.4.

Change of measure argument. To estimate Z I and prove (4.12), we use a change of measure, but only on the blocks B i , for i ∈ I. The idea is to choose an event J L depending on {0, σ 1 , . . . , σ L } which has a small probability under P σ , but large probability under the modified measure, see Lemma 4.2 or Lemma 5.1.

With the event J L to be specified, we define, for some (small) η > 0,

(4.14) g(σ) := η1 J L + 1 J c L , g I := i∈I g(σ B i ),
where σ B i = {0, σ iL+1 -σ iL , . . . , σ (i+1)L -σ iL } is the translation of σ by σ iL . Using Hölder's inequality, we have

(4.15) E σ [(Z I ) ζ ] = E σ [g -ζ I (g I Z I ) ζ ] ≤ E σ (g I ) -ζ/(1-ζ) 1-ζ E σ [g I Z I ] ζ .
The first term on the right in (4.15) is easily computed: assuming we choose J L with

P σ (J L ) ≤ η ζ/(1-ζ) , we have E σ (g I ) -ζ/(1-ζ) 1-ζ = E σ (g(σ)) -ζ/(1-ζ) |I|(1-ζ) = η -ζ/(1-ζ) P σ (J L ) + P σ (J c L ) |I|(1-ζ) ≤ 2 |I| . (4.16)
We are left to estimate

E σ g I Z I . For this it is useful to control E σ [g(σ) Žσ [a,b] ] for 0 ≤ a < b ≤ L. From the definition of g, (4.17) E σ [g(σ) Žσ [a,b] ] ≤ ηE σ [ Žσ [a,b] ] + E σ 1 J c L Žσ [a,b] . Then, provided that we can show E σ 1 J c L Žσ [a,b] ≤ ηP ν (b -a ∈ ν) whenever b -a ≥ εL, we conclude (4.18) E σ [g(σ) Žσ [a,b] ] ≤ (2η + 1 {b-a<εL} )P ν (b -a ∈ ν).
The following lemma fills in the missing pieces of the preceding, so we can conclude that (4.16) and (4.18) hold in the case α * > 1/2. The proof is in section 4.5. Lemma 4.2. Suppose (1.5) holds, with α > 0 and α + α < 1. If α * > 1/2, then for any fixed η > 0 and ε > 0, there exist events J L determined by {0, σ 1 , . . . , σ L }, and

L 0 > 0, such that, if L ≥ L 0 , (4.19) P σ (J L ) ≤ η ζ/(1-ζ)
and moreover, for

0 ≤ a < b ≤ L with b -a ≥ εL, (4.20) E σ 1 J c L Žσ [a,b],0 ≤ η P ν (b -a ∈ ν) . Additionally, for all L, E σ 1 J L Žσ [a,b],0 ≤ P ν (b -a ∈ ν).
In Section 5, we show that without the restriction α * > 1/2, for arbitrary α, α with α + α < 1, there exist distributions of τ and σ with these tail exponents, and suitable events I L with the same properties as J L , see Lemma 5.1. The same conclusion (4.18) follows similarly.

To bound E σ g I Z I we need the following extension of Lemma 4.2, which concerns a single block, to cover all blocks. The proof is in section 4.5.

Lemma 4.3. Suppose (1.5) holds, with α > 0 and α + α < 1. If α * > 1/2 and ζ < 1, η > 0, ε > 0 are fixed, then there exist an event J L on {0, σ 1 , . . . , σ L }, and L 0 > 0, such that if L ≥ L 0 then P σ (J L ) ≤ η ζ/ (1-ζ) , and for every

I = {1 ≤ i 1 < • • • < i m = n} one has (4.21) E σ g I Z I ≤ d i 1 ≤f i 1 d i 1 ,f i 1 ∈B i 1 • • • d im ≤f im =nL d im ∈B im m k=1 K * (d i k -f i k-1 )(2η + 1 {f i k -d i k <εL} )P ν (f i k -d i k ∈ ν).
For fixed δ > 0, we claim that, by taking ε, η small enough in Lemma 4.3, if L is large enough,

(4.22) E σ g I Z I ≤ |I| k=1 δ (i k -i k-1 ) 1+α * /2 .
This, together with (4.15) and (4.16), enables us to conclude that (4.12) holds, with δ replaced by δ = 2δ 2ζ , since ζ(1

+ α * /2) = 1 + α * /4.
Proof of (4.22). For every

I = {1 ≤ i 1 < i 2 < • • • < i m = n} we have by Lemma 4.3 (4.23) E σ g I Z I ≤ E ν 1 E I m k=1 (2η + 1 {F i k -D i k <εL} ) ,
where we set

E I := ν : {i : ν ∩ B i = ∅} = I , D i := min{ν ∩ B i }, F i := max{ν ∩ B i } .
We next show that given δ > 0, for ε, η sufficiently small, for any given I and 1 ≤ k ≤ m (4.24) sup

f i k-1 ∈B i k-1 E ν (2η + 1 {F i k -D i k <εL} )1 {ν∩B i =∅ ∀ i k-1 <i<i k , ν∩B i k =∅} F i k-1 = f i k-1 ≤ δ(i k -i k-1 ) -(1+α * /2) ,
where we used the convention that i 0 = 0, f 0 = 0 and B i 0 = {0}. Then, we easily get (4.22) by iteration. First, we see that for every

f i k-1 ∈ B i k-1 , we have (4.25) E ν 1 {ν∩B i =∅ ∀ i k-1 <i<i k , ν∩B i k =∅} F i k-1 = f i k-1 = P ν f i k-1 + ν 1 ∈ B i k | ν 1 ≥ i k-1 L -f i k-1 . If i k-1 -i k = 1, we bound this by 1. If i k -i k-1 ≥ 2, writing for simplicity j k := i k -i k-1 -1 ≥ 1, the right side of (4.25) is at most sup 0≤m≤L P ν ν 1 ∈ (m + j k L, m + (j k + 1)L] | ν 1 > m ≤ L P ν (ν 1 ≥ L) sup j k L≤x≤(j k +2)L P ν (ν 1 = x) ≤ c 1 Lϕ * (L) -1 L α * ϕ * (j k L)(j k L) -(1+α * ) ≤ c 2 j -(1+α * /2) k , (4.26)
where we used the existence of a constant c 3 such that, for all a ≥ 1 and L large, ϕ * (aL)/ϕ * (L) ≤ c 3 a α * /2 . In the end, we have

(4.27) 2ηE ν 1 {τ ∩B i =∅ ∀ i k-1 <i<i k , τ ∩B i k =∅} F i k-1 = f i k-1 ≤ c 4 η(i k -i k-1 ) -(1+α * /2) .
It remains to bound the rest of (4.24). We decompose the expectation according to whether

D i k ∈ ((i k -1)L, (i k -γ)L] or not, where γ := ε (α * ∧1)/(1+α * ) ε. Note that if D i k ≤ (i k -γ)L and F i k -D i k ≤ εL then i k L -F i k ≥ 1 2 γL. We therefore have E ν 1 {D i k ∈((i k -1)L,(i k -γ)L]} 1 {F i k -D i k <εL} 1 {τ ∩B i =∅ ∀ i k-1 <i<i k , τ ∩B i k =∅} F i k-1 = f i k-1 ≤ sup 0≤m≤L P ν ν 1 ∈ [m + j k L, m + (j k + 1 -γ)L] | ν 1 > m × εL =0 P ν ( ∈ ν)P ν (ν 1 ≥ 1 2 γL) .
Then, using (4.26) if i k -i k-1 ≥ 2, or bounding the probability by 1 if i k -i k-1 = 1, we bound this from above for large L by

(4.28) c 2 (i k -i k-1 ) -(1+α * /2) ϕ * (γL) (γL) α * εL =0 P ν ( ∈ ν) ≤ c 5 ε α * ∧1 γ -α * (i k -i k-1 ) -(1+α * /2) .
For the last inequality, we used (1.16) to get that

P ν ( ∈ ν) ≤ c 6 min{1, ϕ * ( ) -1 α * -1 } for all ≥ 1.
We now deal with the term when

D i k ∈ ((i k -γ)L, i k L]. We have (4.29) E ν 1 {D i k ∈((i k -γ)L,(i k +1)L]} 1 {τ ∩B i =∅ ∀ i k-1 <i<i k , τ ∩B i k =∅} F i k-1 = f i k-1 ≤ sup 0≤m≤L P ν ν 1 ∈ (m + (j k + 1 -γ)L, m + (j k + 1)L] | ν 1 > m .
We can now repeat the argument of (4.24). If i k -i k-1 = 1, we get (4.30)

sup 0≤m≤L P ν ν 1 ∈ (m + (1 -γ)L, m + L] | ν 1 > m ≤ γL P(ν 1 ≥ L) sup (1-γ)L≤x≤2L P ν (ν 1 = x) ≤ c 7 γ . If i k -i k-1 ≥ 2,
we end up similarly with the bound c 8 γ(i k -i k-1 ) -(1+α * /2) . Combining the bounds (4.28) and (4.30), one gets that (4.31)

E ν 1 {F i k -D i k <εL} 1 {τ ∩B i =∅ ∀ i k-1 <i<i k , τ ∩B i k =∅} F i k-1 = f i k-1 ≤ c 9 γ(i k -i k-1 ) -(1+α * /2) ,
where we used the fact that ε α * ∧1 γ -α * = γ. Combining (4.27) and (4.31), we obtain (4.24) with δ = c 4 η + c 9 γ, completing the proof of (4.22) and thus of (4.12). 4.5. Proof of Lemma 4.2: choice of the change of measure, We rewrite the partition function in (4.20) as follows:

1 P ν (b -a ∈ ν) E σ 1 J c L Žσ [a,b],0 = E ν E σ 1 J c L W (σ, ν, [a, b]) a, b ∈ ν = E ν E σ,τ 1 J c L k:ν k ∈[a,b] 1 {σν k ∈τ } E τ,σ [ k:ν k ∈[a,b] 1 {σν k ∈τ } ] a, b ∈ ν = E ν P σ,τ J c L | A L (ν) ν 0 = a ; b ∈ ν ; ν ∩ (b, L] = ∅ , (4.32)
where, for any renewal trajectory ν, we defined the event (4.33)

A L (ν) = {(σ, τ ) : σ ν k ∈ τ for all k such that ν k ∈ [0, L]} .
Observe that if we find a set G of (good) trajectories of ν satisfying

P ν G ν 0 = a ; b ∈ ν ; ν ∩ (b, L] = ∅ ≥ 1 -η/2
whenever L ≥ L 0 and b -a ≥ εL, then

E ν 1 G c P σ,τ J c L | A L (ν) ν 0 = a ; b ∈ ν ; ν ∩ (b, L] = ∅ ≤ η/2.
To get (4.20), it is therefore enough to show that provided L is large and b -a ≥ εL, we have that for all ν ∈ G (4.34)

P σ,τ J c L | A L (ν) ≤ η/2.
We now construct the event J L and the set G (see (4.67) and (4.58)), and show (4. [START_REF] Feller | An introduction to Probability Theory and its applications[END_REF])-(4.20). Write L = γ L k L and decompose [0, L] into γ L subblocks of length k L . We take

(4.35) k L ≡ 1 if E ν [ν 1 ] < ∞, k L , γ L → ∞ to be specified, if E ν [ν 1 ] = ∞. Define (4.36) S L,j = max (j-1)k L <i≤jk L {σ i -σ i-1 }. It is standard that S L,1 /B k L has a nontrivial limiting distribution if k L → ∞ (see Section 2.4
), and since 0 < α < 1 we also have b n = B n . Define

Y L = {j ≤ γ L : S L,j > r L B k L } = γ L j=1 1 {S L,j >r L B k L } ,
where r L L→∞ → ∞ slowly, to be specified. Our goal is to show that the conditioning by A L (ν) (for ν ∈ G with appropriate G) induces a reduction in E σ [Y L ] of a size y L which is much larger than Var(Y L ) and Var(Y L |A L (ν)); then, one can take J L of the form Y L -E σ [Y L ] ≤ -y L /2 , and obtain P σ (J L ) → 0, and

P σ,τ (J L |A L (ν)) → 1 as L → ∞.
Step 1. We first estimate E[Y L ] and Var(Y L ), without the conditioning on

A L (ν). Suppose first that k L → ∞. Since P σ (σ 1 > n) n→∞ ∼ 1 α ϕ(n)n -α
, one easily has that, for fixed r > 0, as L → ∞,

P σ (S L,1 > r B k L ) = 1 -1 -P σ (σ 1 > r B k L ) k L ∼ 1 -exp -k L P σ σ 1 > rB k L ∼ 1 -exp - 1 α r -α k L ϕ(B k L )B -α k L ∼ 1 -exp - 1 α r -α , (4.37)
where we used (2.8) for the last equivalence. Therefore when r L L→∞ → ∞ slowly enough we have (4.38)

P σ (S L,1 > r L B k L ) L→∞ ∼ k L P σ (σ 1 > r L B k L ) L→∞ ∼ 1 α r -α L ,
and hence

E[Y L ] = γ L P(S L,1 > r L B k L ) L→∞ ∼ 1 α γ L r -α L , Var(Y L ) = γ L P(S L,1 > r L B k L ) 1 -P(S L,1 > r L B k L ) L→∞ ∼ 1 α γ L r -α L .
(4.39)

In the alternative case k L ≡ 1, we have B k L ≡ d σ so whenever r L → ∞ we have

P σ (S L,1 > r L B k L ) = P σ (σ 1 > d σ r L ) L→∞ ∼ 1 αd α σ r -α L ϕ(r L ), so similarly to (4.39), (4.40) E[Y L ] L→∞ ∼ Var(Y L ) L→∞ ∼ 1 αd α σ r -α L ϕ(r L )L.
Step 2. We now study the influence of the conditioning by A L (ν) on the events {σ i -σ i-1 > r B k L } and {S L,j > r L B k L }. Heuristically one expects the probabilities to decrease, and this is readily shown to be true if P τ (n ∈ τ ) is decreasing in n, but in general such monotonicity only holds asymptotically. So instead we show that, for L large enough, (4.41)

P σ,τ S L,j > r L B k L A L (ν), {S L, , = j} ≤ (1 + 2 L ) P σ (S L,j > r L B k L ).
where L → 0 is defined below, see (4.47).

To prove this, we first show that for n ≥ j ≥ 1 and t ≥ 0,

P σ,τ (σ n ∈ τ | σ j -σ j-1 > r L B k L , σ j-1 = t) is not much more than P σ,τ (σ n ∈ τ | σ j-1 = t).
To this end, we can form a coupling (ρ, ρ ) such that ρ has the distribution P σ (σ 1 ∈ •), ρ has the distribution

P σ (σ 1 ∈ • | σ 1 ≥ r L B k L )
, and ρ ≤ ρ . Then, thanks to the exangeability of the (σ i -σ i-1 ) i≥1 , we have for any n ≥ j ≥ 1 and t ≥ 0, (4.42)

P σ,τ (σ n ∈ τ | σ j -σ j-1 > r L B k L , σ j-1 = t) = P σ,τ,ρ (t + ρ + σ n-j ∈ τ ), and 
(4.43) P σ,τ (σ n ∈ τ | σ j-1 = t) = P σ,τ,ρ (t + ρ + σ n-j ∈ τ ).
To bound (4.42) relative to (4.43), we proceed as follows. Let R ≥ 1 and observe that

P σ,τ,ρ t + ρ + σ n-j ∈ τ | t + σ n-j ≤ R ≥ P ρ (R ≤ ρ < 2R) P σ,τ,ρ t + ρ + σ n-j ∈ τ | R ≤ ρ < 2R, t + σ n-j ≤ R ≥ P ρ (R ≤ ρ < 2R) × min R≤m<3R P τ (m ∈ τ ) , (4.44) which depends only on R. On the other hand, since ρ ≥ r L B k L , (4.45) P σ,τ,ρ (t + ρ + σ n-j ∈ τ | t + σ n-j ≤ R) ≤ max m≥r L B k L P τ (m ∈ τ ) ≤ P σ,τ,ρ t + ρ + σ n-j ∈ τ | t + σ n-j ≤ R ,
where by (4.44) the last inequality holds for any fixed sufficiently large R, provided that L is large enough. Now from (1.16), since α < 1, if R and L are large enough, we have that

P τ (m ∈ τ ) ≥ P τ (n ∈ τ ) for all R ≤ m ≤ 1 2 r L B k L and n ≥ r L B k L , which yields P σ,τ,ρ t + ρ + σ n-j ∈ τ t + σ n-j > R, t + ρ + σ n-j ≤ 1 2 r L B k L ≥ P σ,τ,ρ t + ρ + σ n-j ∈ τ t + σ n-j > R, t + ρ + σ n-j ≤ 1 2 r L B k L . (4.46)
To control the contribution when m ≥ 1 2 r L B k L , we define the quantity (4.47) k = sup

P τ (u ∈ τ ) P τ (v ∈ τ ) -1 : u ≥ v ≥ k ,
which satisfies lim k→∞ k = 0. Then, writing L for r L B k L /2 , we have

(1 + L )P σ,τ,ρ t + ρ + σ n-j ∈ τ t + σ n-j > R, t + ρ + σ n-j > 1 2 r L B k L ≥ P σ,τ,ρ t + ρ + σ n-j ∈ τ t + σ n-j > R, t + ρ + σ n-j > 1 2 r L B k L . (4.48)
Combining (4.45), (4.46) and (4.48), we obtain

P σ,τ,ρ t + ρ + σ n-j ∈ τ ≤ (1 + L ) P σ,τ,ρ t + ρ + σ n-j ∈ τ
By (4.43) and (4.42) this is the same as

P σ,τ σ n ∈ τ | σ j -σ j-1 > r L B k L , σ j-1 = t P σ,τ (σ n ∈ τ | σ j-1 = t) ≤ 1 + L , which is equivalent to P σ,τ (σ j -σ j-1 > r L B k L | σ n ∈ τ, σ j-1 = t) P σ,τ (σ j -σ j-1 > r L B k L | σ j-1 = t) ≤ 1 + L ,
or by independence, (4.49)

P σ,τ (σ j -σ j-1 > r L B k L | σ n ∈ τ, σ j-1 = t) P σ,τ (σ j -σ j-1 > r L B k L ) ≤ 1 + L .
Since t and n are arbitrary, this shows that for arbitrary ν, conditionally on A L (ν), the variables (1 {σ i -σ i-1 >r L B k L } ) i≤L are (jointly) stochastically dominated by a Bernoulli sequence of parameter (1 + L )P σ (σ 1 > r L B k L ). In fact, by exchangeability this domination holds for any given σ -σ -1 conditionally on any information about the other variables σ i -σ i-1 . We need to quantify what this conclusion says about the variables S L,j . The following is easily established: there exists δ 0 > 0 such that for all p ∈ (0, 1), ∈ (0, 1) and k ≥ 1 with kp < δ 0 , we have 1

-(1 -(1 + )p) k 1 -(1 -p) k ≤ 1 + 2 .
Taking p = P σ (σ 1 > r L B k L ), k = k L so that pk ≤ δ 0 provided r L is large (see (4.38)), taking = L and using the stochastic domination, we obtain that for L large, for all ν, (4.41) holds.

Step 3. We next want to show that for certain ν and j we can make a much stronger statement than (4.41). Specifically, with L fixed, we say an interval I is visited (in ν) if I ∩ ν = φ, and (for 3 ≤ j < γ L -2) we say the sub-block

Q j = ((j -1)k L , jk L ] is capped if Q j-2 ∪ Q j-1 and Q j+1 ∪ Q j+2 are both visited.
We now prove that, if j is such that Q j is capped, we have (4.50)

P σ,τ S L,j > r L B k L A L (ν) ≤ 2(r L ) -(1-α)/2 P σ,τ S L,j > r L B k L .
Suppose that Q j is capped, and that s is an index such that (ν s-1 , ν s ] ∩ Q j = ∅: we write s ≺ Q j . Note that the events

H s,j = σ : max i∈(ν s-1 ,νs]∩Q j (σ i -σ i-1 ) > r L B k L
are conditionally independent given A L (ν), and (by exchangeability) satisfy (4.51)

P σ,τ H s,j A L (ν) = P σ,τ max 1≤i≤ (σ i -σ i-1 ) > r L B k L σ k ∈ τ ,
where

k := ν s -ν s-1 ≤ 5k L (since Q j is capped), and := |(ν s-1 , ν s ] ∩ Q j | ≤ k.
Furthermore, since α ∈ [0, 1), by (1.16) we have P(m ∈ τ ) = φ(m)m -(1-α) for some slowly varying φ(•). Therefore

P σ,τ σ k ∈ τ max 1≤i≤ (σ i -σ i-1 ) > r L B k L ≤ max m≥r L B k L P τ (m ∈ τ ) ≤ c 10 (r L B k L ) -(1-α) φ(r L B k L ) . (4.52)
On the other hand, since 0 < α < 1, σ n /B n has a non-degenerate limiting distribution with positive density on (0, ∞) (see Section 2.4). Using again that P(m ∈ τ ) = φ(m)m -(1-α) , we therefore find that there exist a constant c 11 such that, for any k ≤ 5k L , (4.53)

P σ,τ (σ k ∈ τ ) ≥ P σ (σ k ∈ [ dτ B k , 2 dτ B k ]) min dτ ≤m≤2 dτ B 5k L P τ (m ∈ τ ) ≥ c 11 B -(1-α) k L φ(B k L ) .
With (4.52) this shows there exists some c 12 such that for large L, provided r L → ∞ slowly enough, (4.54)

P σ,τ σ k ∈ τ max 1≤i≤ (σ i -σ i-1 ) > r L B k L P σ,τ (σ k ∈ τ ) ≤ (c 12 ∨ φ(r L )) r -(1-α) L ≤ r -(1-α)/2 L
, or equivalently, using (4.51), (4.55)

P σ,τ H s,j A L (ν) P σ,τ (H s,j ) = P σ,τ max 1≤i≤ (σ i -σ i-1 ) > r L B k L σ k ∈ τ P σ,τ max 1≤i≤ (σ i -σ i-1 ) > r L B k L ≤ (r L ) -(1-α)/2 .
Since the {H s,j : s ≺ Q j } are independent for fixed j (even when conditioned on A L (ν)), with s≺Q j H s,j = {S L,j > r L B k L } and P σ,τ (S L,j > r L B k L ) → 0 as L → ∞, we have from (4.55) that for large L

P σ,τ S L,j > r L B k L A L (ν) ≤ s≺Q j P σ,τ H s,j A L (ν) ≤ (r L ) -(1-α)/2 s≺Q j P σ,τ (H s,j ) ≤ 2(r L ) -(1-α)/2 P σ,τ (S L,j > r L B k L ) . (4.56)
Step 4. We now control the number of capped blocks Q j . Let

C(ν) = {j ≤ γ L : Q j is capped in ν}, m * (n) := E ν [ν 1 ∧ n] ,
and define what is heuristically a lower bound for the typical size of |C(ν)| (see (4.59) and its proof):

(4.57)

D L :=      γ α * L ϕ * (k L )ϕ * (L) -1 if 0 < α * < 1 , γ L m * (k L )m * (L) -1 if α * = 1, E ν [ν 1 ] = +∞ , Lϕ * (k L )k -α * L if E ν [ν 1 ] < +∞ .
We now restrict our choice of γ L , k L as follows (with further restriction to come):

(i) if E ν [ν 1 ] < +∞, we choose k L ≡ 1, γ L = L, and get D L = Lϕ * (1) ; (ii) if E ν [ν 1 ] = +∞ we choose 1 k L L such that γ L = L/k L is slowly varying, and as L → ∞ we have γ L → ∞ slowly enough so ϕ * (k L ) ∼ ϕ * (L) if α * < 1 or m * (k L ) ∼ m * (L) if α * = 1, which is possible since for α * = 1, m * (n) is slowly varying. We obtain D L ∼ γ α * L 1.
We then fix κ > 0 and define the set G of good trajectories by We wish to choose κ = κ(η, ε) sufficiently small so that, provided that L is large enough and b -a ≥ εL, one has (4.59)

P ν G | ν 0 = a ; b ∈ ν ; ν ∩ (b, L] = ∅ ≥ 1 -η/2 .
For a fixed ε, for large L we have D M ≥ εD L for all M ≥ εL, so it suffices to prove this for ε = 1, that is, to consider only a = 0, b = L. We now consider two cases.

• Case of α * < 1 or E ν [ν 1 ] < +∞. In that case, it is standard that there exists a constant c 13 (η) such that, defining n L := c 13 min(ϕ * (L) -1 L α * , L), we have for L large enough (4.60)

P ν |ν ∩ [0, L/2]| ≤ n L ≤ η .
Observe that each gap (ν s-1 , ν s ] of ν of length ν s -ν s-1 ∈ [2k L , 3k L ) contains a capped sub-block. We therefore simply need to count the number of such gaps: denote

V n := n s=1 1 {νs-ν s-1 ∈[2k L ,3k L )} .
There exists a constant c 14 = c 14 (η) such that, provided that nP ν (ν 1 ∈ [2k L , 3k L )) is large enough, one has (4.61)

P ν V n ≤ c 14 n P ν (ν 1 ∈ [2k L , 3k L )) ≤ η . Using that P ν (ν 1 ∈ [2k L , 3k L )) is of order ϕ * (k L )k -α * L we get that D L ≤ c -1 15 n L P ν (ν 1 ∈ [2k L , 3k L ))
for some c 15 (η), and we obtain

P ν G c | L ∈ ν ≤ P ν s ≤ |ν ∩ [0, L]| : ν s -ν s-1 ∈ [2k L , 3k L ) < κD L L ∈ ν ≤ P ν |ν ∩ [0, L/2]| ≤ n L L ∈ ν + P ν |ν ∩ [0, L/2]| ≥ n L ; V n L < κD L L ∈ ν ≤ c 16 η + c 16 P ν V n L < κ c η n L P ν (ν 1 ∈ [2k L , 3k L ))
≤ 2c 16 η .

In the third inequality, we used Lemma A.1 (Lemma A.2 in [START_REF] Giacomin | Disorder relevance at marginality and critical point shift[END_REF], that we recall in the Appendix since we use it several times) to remove the conditioning at the expense of the constant c 16 . In the last inequality, we used (4.61), taking κ sufficiently small.

• Case of α * = 1, E ν [ν 1 ] = +∞.
First, we claim that with our choice of k L , we have P ν (Q j is capped) L→∞ → 1. Indeed, summing over possible locations of a last visit to Q j gives that for 1 ≤ j ≤ γ L and i ≤ (j -1)k L ,

P ν Q j is visited i ∈ ν ≥ k L -1 m=0 P ν (jk L -m -i ∈ ν)P ν (ν 1 > m) ≥ inf ≤L P ν ( ∈ ν)m * (k L ) ∼ m * (k L ) m * (L) ∼ 1 as L → ∞, (4.62) 
where we used k L -1 m=0 P(ν 1 > m) = m * (k L ) in the second inequality, and (1.16) in the last line. Note that the lower bound in (4.62) is uniform in the specified i, j. Therefore, applying (4.62) three times, we obtain uniformly in j ≤ γ L (4.63)

P ν (Q j is capped) ≥ P ν (Q j-1 , Q j , Q j+1 are visited) L→∞ → 1 .
Recall D L ∼ γ L , and denote W L := |{j ≤ γ L /2 ; Q j is not capped}|, so that E ν [W L ] = o(γ L ), by (4.63). Taking κ = 1/4, thanks to Markov's inequality we then have for large L (4.64)

P ν G c | L ∈ ν ≤ P ν W L ≥ 1 8 γ L | L ∈ ν ≤ c 16 P ν W L ≥ 1 8 γ L → 0 as L → ∞
, where in the second inequality, we used Lemma A.1 to remove the conditioning at the expense of the constant c 16 .

Step 5. We now have the ingredients to control how the conditioning by

A L (ν) shifts E σ [Y L ] = γ L P σ (S L,1 > r L B k L ), when ν ∈ G.
We wish to choose γ L , k L so that, for L sufficiently large, (4.65)

γ L L ≤ 1 8 κD L ≤ 1 8 |C(ν)| for all ν ∈ G.
The second inequality is just the definition of G. When α * ≥ 1, γ L and D L are of the same order, so the first inequality follows from ε L → 0. So consider the case α * < 1, where D L ∼ γ α * L by (ii) after (4.57). Here the first inequality in (4.65) follows if we have

γ 1-α * L -1 L . Since ε n 0 and L/k L is slowly varying, we have B k L L so ε L ≤ ε L so a sufficient condition is γ 1-α * L ε -1 L .
But our only restriction so far is from (ii) after (4.57), that γ L → ∞ slowly enough, so we may choose γ L to satisfy this sufficient condition also.

Thanks to (4.41), (4.55) and (4.65), we have for ν ∈ G and large L

E σ,τ [Y L | A L (ν)] = γ L j=1 P σ,τ (S L,j > r L b k L | A L (ν)) ≤ 2|C(ν)| (r L ) -(1-α)/2 P σ (S L,1 > r L B k L ) + (γ L -|C(ν)|)(1 + 2 L )P σ (S L,1 > r L B k L ) ≤ γ L -|C(ν)| + 2|C(ν)| (r L ) -(1-α)/2 + 2γ L L P σ (S L,1 > r L B k L ) ≤ γ L -1 2 κD L P σ (S L,1 > r L B k L ). (4.66)
Step 6. We now define

J L := σ : j≤γ L 1 {S L,j >r L B k L } ≤ γ L -1 4 κD L P σ (S L,1 > r L b B L ) = Y L -E[Y L ] ≤ - κ 4 D L P σ (S L,1 > r L B k L ) . (4.67) Let us compare P(J L ) and P(J c L |A L (ν)) for ν ∈ G. Since α * > 1/2, γ L D -2 L is of order L -(2α * -1)∧1 → 0, so we can choose r L to satisfy γ L D -2
L r α L → 0, which is compatible with our previous requirement on r L involving (4.54). Using (4.39) and Chebyshev's inequality we then get that (4.68)

P(J L ) ≤ 16γ L κ 2 D 2 L P σ (S L,1 > r L b k L ) n→∞ ∼ 16 α κ 2 γ L D -2 L r α L → 0 as L → ∞.
On the other hand, by (4.41), conditionally on A(ν) with ν ∈ G, the variables 1 {S L,j >r L b k L } , 1 ≤ j ≤ γ L , are (jointly) stochastically dominated by a collection of independent Bernoulli variables with parameter (1

+ 2 L )P σ (S L,1 > r L B k L ). Hence, Var(Y L |A L (ν)) ≤ 2γ L P σ (S L,1 > r L B k L )
and as in (4.68) we obtain (4.69)

P σ,τ (J c L | A L (ν)) ≤ P Y L -E σ,τ [Y L |A L (ν)] ≥ κ 4 D L P σ (S L,1 > r L b k L ) L→∞ → 0 .
We have thus proved (4.19) and (4.34), and hence also (4.20).

Remark 4.4. If n → P(n ∈ τ ) is non-increasing, then we have that k = 0 for all k, and we can replace (4.41) with

P σ,τ S L,j > r L B k L A L (ν), {S L, , = j} ≤ P σ (S L,j > r L B k L ) .
The term γ L L does not appear in the computation in (4.66), and we can drop the condition (4.65). We can therefore choose γ L = L, k L = 1 in all cases, not just when

E ν [ν 1 ] < ∞.
Then for α * < 1, we have D L of order L α * ϕ * (L) -1 , and the condition

γ L D -2 L → 0 in Step 6 becomes L 2α * -1 ϕ * (L) -2 1.
We therefore need α * > 1/2, or α * = 1/2 and ϕ * (L) L→∞ → 0, going slightly beyond the condition α * > 1/2. In Appendix A.2, we show that ϕ (1.16). We have that lim n→∞ ϕ * (n) = 0 if and only if lim k→∞ ϕ(k) (1-α)/ α ϕ 0 (k) = +∞.

* (n) ∼ c ϕ(b n ) -(1-α)/ α ϕ 0 (b n ), with ϕ 0 (k) = ϕ(k) -1 if α ∈ (0, 1), and φ(k) = ϕ(k)/P τ (τ 1 > k) 2 if α = 0, cf.
Proof of Lemma 4.3. The proof of Lemma 4.2 is for a single interval [0, L], and we now adapt it to the whole system: we take the same definition for J L . Then, recalling g I from (4.14), we have similarly to (4.32)

(4.70) E σ g I Z I = d i 1 ≤f i 1 d i 1 ,f i 1 ∈B i 1 • • • d im ≤f im =nL d im ∈B im m k=1 K * (d i k -f i k-1 )P(f i k -d i k ∈ ν) × E ν E σ,τ m k=1 (η + 1 {σ B i k ∈J c L } ) A(ν) E (d i k ,f i k ) 1≤k≤m ,
where, setting

ν B i = ν ∩ B i , E (d i k ,f i k ) 1≤k≤m := ν : ∀1 ≤ k ≤ m , min(ν B i k ) = d i k , max(ν B i k ) = f i k ; ν B i = ∅ if i / ∈ I . Now, for any 1 ≤ k ≤ m such that f i k -d i k ≤ εL or ν B i k / ∈ G, we bound 1 {σ B i k ∈J c L } by 1. We get the bound (4.71) η + 1 {σ B i k ∈J c L } ≤ η + 1 {f i k -d i k ≤εL} + 1 {f i k -d i k >εL} 1 {ν B i k / ∈G} + 1 {σ B i k ∈J c L } 1 {ν B i k ∈G} .
By expanding the product over k ∈ {1, . . . , m}, we obtain

E ν E σ,τ m k=1 (η + 1 {σ B i k ∈J c L } ) | A(ν) E (d i k ,f i k ) 1≤k≤m ≤ K 1 ,K 2 ,K 3 ,K 4 disjoint 4 j=1 K j ={1,...,m} η |K 1 | k∈K 2 1 {f i k -d i k ≤εL} E ν k∈K 3 
1 {f i k -d i k >εL} 1 {ν B i k / ∈G} E σ,τ k∈K 4 1 {σ B i k ∈J c L } 1 {ν B i k ∈G} A(ν) E (d i k ,f i k ) 1≤k≤m . (4.72)
The argument in Step 6 of the proof of Lemma 4.2, using domination of the variables (1 S L,j >r L B k L ) in some B i k by independent Bernoullis, remains valid if we also condition on any information about the other B i , i = i k . This means we can ignore the dependencies between different i k ∈ I, and if L is sufficiently large we get that, since

ν B i k ∈ G for all k ∈ K 4 (4.73) E σ,τ k∈K 4 1 {σ B i k ∈J c L } 1 {ν B i k ∈G} | A(ν) ≤ (η/2) |K 4 | ,
where the bound comes from (4.69).

Then, by independence of the

ν B i k ∩ [d i k , f i k ] conditionally on E (d i k ,f i k ) 1≤k≤m , we get that E ν k∈K 3 1 {f i k -d i k >εL} 1 {ν B i k / ∈G} E (d i k ,f i k ) 1≤k≤m = k∈K 3 
1 {f i k -d i k >εL} P ν ν / ∈ G | ν 0 = 0 ; f i k -d i k ∈ ν ; ν ∩ (f i k -d i k , L] = ∅ ≤ (η/2) |K 3 | , (4.74)
where we used (4.59) in the last inequality. Therefore, plugging (4.73)-(4.74) in (4.72), we get that

E ν E σ,τ m k=1 (η + 1 {σ B i k ∈J c L } ) A(ν) E (d i k ,f i k ) 1≤k≤m ≤ K 1 ,K 2 ,K 3 ,K 4 disjoint 4 j=1 K j ={1,...,m} η |K 1 | (η/2) |K 3 | (η/2) |K 4 | k∈K 2 1 {f i k -d i k ≤εL} = m k=1 (2η + 1 {f i k -d i k ≤εL} ) .

Proof of Theorem 2.2: examples with unequal critical points

5.1. Adaptation of the change of measure. Our proof for α * > 1/2 made use of an event J L , see Lemma 4.2; here we will define an event I L which will play the same role. For this it needs to satisfy the following lemma. Recall that A L (ν) = {(σ, τ ) : σ ν k ∈ τ for all k such that ν k ∈ [0, L]}, and ζ, from (4.12), is given by (1 + α * /2)ζ = 1 + α * /4.

Lemma 5.1. There exist events I L determined by {0, σ 1 , . . . , σ L } as follows. For any η > 0, ε > 0, there exists some L 0 such that, if L ≥ L 0 , (5.1)

P σ (I L ) ≤ η ζ/(1-ζ) . Moreover, for 0 ≤ a < b ≤ L, with b -a ≥ εL (5.2) E σ 1 {I c L } Žσ [a,b],0 ≤ η P ν (b -a ∈ ν) .
Proof. From (4.32) applied to I L , for (5.1) and (5.2) it suffices to have that, as L → ∞

(5.3) P σ (I L ) → 0, E ν P σ,τ I c L | A(ν) ν 0 = a ; b ∈ ν ; ν ∩ (b, L] = ∅ → 0 .
Let us introduce or recall some notations

n i = ν i -ν i-1 , K * (n) = P ν (ν 1 = n) = ϕ * (n)n -(1+α * ) , m * (n) = E ν [ν 1 ∧ n], q L := L α * ϕ * (L) -1 if 0 < α * < 1, L/m * (L) if α * ≥ 1.
(5.4)

Here q L represents the typical order of |ν ∩ [0, L]|.

The event I L will be given in terms of an expectation over trajectories ν, so to avoid ambiguous notation e.g. in (5.3), we define ν to be a renewal with the same distribution as ν. We can then define, for κ > 0 to be specified, (5.5)

I L = 0≤a≤b≤L b-a≥εL σ : log E ν W (σ, ν , [a, b])1 b∈ν a ∈ ν ≥ κq L .
Then the first half of (5.3) is immediate from a union bound and Markov's inequality:

P σ (I L ) ≤ 0≤a≤b≤L b-a≥εL e -κq L E σ E ν W (σ, ν , [a, b])1 b∈ν |a ∈ ν ≤ L 2 e -κq L → 0 (5.6) as L → ∞, where we used that E σ [W (σ, ν , [a, b])] = 1.
For the second bound in (5.3), let (5.7)

U i = U i (σ) = log P τ (σ ν i -σ ν i-1 ∈ τ ) P σ,τ (σ n i ∈ τ ) .
Observe that for any fixed ν with a, b ∈ ν,

E ν W (σ, ν , [a, b])1 b∈ν a ∈ ν ≥ P ν ν ∩ [a, b] = ν ∩ [a, b] a ∈ ν W (σ, ν, [a, b]) (5.8) = exp   |ν∩[a,b]| i=1 log K * (n i )   exp   |ν∩[a,b]| i=1 U i   . (5.9)
Hence, for any ν with a, b ∈ ν

P σ,τ (I c L | A L (ν)) ≤ P σ,τ log E ν W (σ, ν , [a, b])1 b∈ν a ∈ ν < κq L A L (ν) ≤ P σ,τ |ν∩[a,b]| i=1 U i < κq L - |ν∩[a,b]| i=1 log K * (n i ) A L (ν) . (5.10) Now, we denote (5.11) ξ(n) := E σ,τ log P τ (σ n ∈ τ ) P σ,τ (σ n ∈ τ ) σ n ∈ τ = E σ P τ (σ n ∈ τ ) P σ,τ (σ n ∈ τ ) log P τ (σ n ∈ τ ) P σ,τ (σ n ∈ τ ) . Note that E σ,τ [U i |A(ν)] = ξ(ν i -ν i-1 ) = ξ(n i )
, and that ξ(n) > 0 thanks to Jensen's inequality.

We denote

M ξ := E ν [ξ(ν 1 )] = n≥1 K * (n)ξ(n),
and the entropy of K *

H * := E ν [-log K * (ν 1 )] = ∞ n=1 K * (n) log 1 K * (n) .
Now, for fixed a, b such that b -a ≥ εL, let us fix κ to be specified and define the event Ĝ of ν to be good (on [a, b]) by (5.12)

ν ∈ Ĝ if (i) -|ν∩[a,b]| i=1 log K * (n i ) ≤ 2H * |ν ∩ [a, b]| , (ii) |ν∩[a,b]| i=1 ξ(n i ) > 1 2 M ξ |ν ∩ [a, b]| , (iii) |ν ∩ [a, b]| ≥ κ H * q L .
The following lemmas are proven in Section 5.3; the first shows that good ν's are typical. Lemma 5.2. Suppose α * > 0. For any ε, η > 0, there exists some κ 0 > 0 such that for any 0 < κ ≤ κ 0 , and any a, b with b -a ≥ εL,

lim sup L→∞ sup 0≤a<b≤L b-a≥εL P ν ν / ∈ Ĝ ν 0 = a ; b ∈ ν ; ν ∩ (b, L] = ∅ ≤ η.
Lemma 5.3. Suppose α, α > 0 with α + α < 1. For any ν, the U i 's are independent given A L (ν), and we have

E σ,τ [U i | A L (ν)] = ξ(n i ).
Moreover, there exists a constant c 17 such that, for all i ≥ 1,

E σ,τ U 2 i | A L (ν) = E σ P τ (σ n i ∈ τ ) P σ,τ (σ n i ∈ τ ) log 2 P τ (σ n i ∈ τ ) P σ,τ (σ n i ∈ τ ) ≤ c 17 for all i ≥ 1 .
For any ν ∈ Ĝ, thanks to (

P σ,τ (I c L | A L (ν)) ≤ P σ,τ |ν∩[a,b]| i=1 U i < 3H * |ν ∩ [a, b]| A L (ν) . 5.10), (5.13) 
In Lemma 5.6 we will show that there are distributions of τ, σ for which H * ≤ M ξ /12. For such distributions we have from (5.13), Chebychev's inequality, and Lemma 5.3 that for any ν ∈ Ĝ,

P σ,τ |ν∩[a,b]| i=1 U i < 3H * |ν ∩ [a, b]| A L (ν) ≤ P σ,τ |ν∩[a,b]| i=1 [U i -ξ(n i )] < - M ξ 4 |ν ∩ [a, b]| A L (ν) ≤ 16c 17 M 2 ξ |ν ∩ [a, b]| ≤ 16c 17 H * M 2 ξ κq L . (5.14)
Combining (5.14) with Lemma 5.2, we obtain that provided that H * ≤ M ξ /12, for all η > 0, ε > 0 there exist κ > 0 and L 0 such that, for any L ≥ L 0 and any a, b with b -a ≥ εL,

E ν P σ,τ I c L | A(ν) ν 0 = a ; b ∈ ν ; ν ∩ (b, L] = ∅ ≤ 16c 17 H * M 2 ξ κq L + η .
Since q L → +∞ as L → ∞ and η is arbitrary, this proves the second half of (5.3), completing the proof of Lemma 5.1.

We need an analog of Lemma 4.3, to deal with all blocks simultaneously. Let ĝI be similar to g I in (4.14) but with the event J L replaced by I L . Lemma 5.4. Suppose the distributions of τ, σ satisfy H * ≤ M ξ /12, and let ζ < 1, η > 0, ε > 0 be fixed. Then there exists L 0 > 0 such that, if L ≥ L 0 , then P σ (J L ) ≤ η ζ/ (1-ζ) , and for every I ⊂ {1, . . . , m} we have (5.15)

E σ ĝI Z I ≤ d i 1 ≤f i 1 d i 1 ,f i 1 ∈B i 1 • • • d im ≤f im =nL d im ∈B im m k=1 K * (d i k -f i k-1 )(2η + 1 {f i k -d i k <ε L} )P ν (f i k -d i k ∈ ν).
Proof. As in Lemma 4.3, the key is the analog of (4.73). To that end, conditionally on A(ν), the Y j are independent, so by (5.13) and (5.14), if ν B i k ∈ Ĝ for all k ∈ K then (5.16)

E σ,τ k∈K 1 {σ B i k ∈I c L } | A(ν) ≤ k∈K P σ,τ |ν∩[d i k ,f i k ]| j=1 U j < 3H * |ν ∩ [d i k , f i k ]| A L (ν) ≤ γ |K| L ,
where γ L → 0 as L → ∞. The rest of the proof is similar to Lemma 4.3.

Given Lemma 5.4, the proof of Theorem 2.2 proceeds exactly as in Section 4. So the only remaining step is to show there are distributions satisfying H * ≤ M ξ /12. Remark 5.5. Our argument can be tightened to show that if (5.17)

H * < M ξ .
then the critical points are distinct. The condition (5.17) is however not necessary (there are distributions of σ, τ for which H * > M ξ with α * > 1/2), so we include the factor of 12 to reduce technicalities.

5.2.

Distributions of τ and σ with H * ≤ M ξ /12. Recall ξ(n) from (5.11). As noted above, the proof of Theorem 2.2 is complete when we show the following.

Lemma 5.6. Given any α, α > 0 with α + α < 1, and any slowly varying functions ϕ, ϕ, there exist distributions for τ, σ verifying

P τ (τ 1 = n) n→∞ ∼ ϕ(n) n -(1+α) , P σ (σ 1 = n) n→∞ ∼ ϕ(n) n -(1+ α) ,
for which

(5.18) H * = ∞ n=1 K * (n) log 1 K * (n) ≤ 1 12 ∞ n=1 K * (n)ξ(n) = 1 12 M ξ .
The idea is that we can make the entropy H * small mainly by making K * (1) close to 1. This means we need (5. [START_REF] Feller | An introduction to Probability Theory and its applications[END_REF])

P σ,τ (σ 1 ∈ τ ) ∞ n=2 P σ,τ (σ n ∈ τ ).
A lower bound for M ξ is K * (1)ξ(1), so also ξ(1) should not be too small. We choose the inter-arrival distribution for τ and σ (satisfying (1.5)) in the following way. Let ρ and ρ be two recurrent renewals with inter-arrival distributions f ρ (n α) . For some (large) integer a 0 , and setting A 0 = e θa 0 with θ > 0 to be specified (chosen so A 0 is also an integer), we define the inter-arrival distributions of τ and σ:

) := P ρ (ρ 1 = n) = ϕ(n)n -(1+α) and f ρ (n) := P ρ ( ρ = n) = ϕ(n)n -(1+
(5.20)

P σ (σ 1 = a 0 ) = 1 2 , P σ (σ 1 = 2a 0 + m) = 1 2 f ρ (m) , P τ (τ 1 = 1) = 1 2 , P τ (τ 1 = A 0 + m) = 1 2 f ρ (m) for m ≥ 1.
To prove Lemma 5.6 we will need the following lemma, which we prove later in this section.

Lemma 5.7. Let α, α > 0 with α + α < 1. For σ, τ as in (5.20), we can choose a 0 and θ large enough so that

1 2 2 -a 0 ≤ P σ,τ (σ 1 ∈ τ ) ≤ 3 4 2 -a 0 , (5.21) 
P σ,τ (σ n ∈ τ for some n ≥ 2) ≤ 2 -a 0 +2 P σ,τ (σ 1 ∈ τ ), (5.22) P σ,τ (σ n ∈ τ ) ≤ n -(1+α * /2) for all n ≥ exp(2 a 0 /2 ) . (5.23)
Proof of Lemma 5.6. First we use (5.21) and (5.22) to show that K * (1) is close to 1. Define M = {n ≥ 2 : σ n ∈ τ } . From (5.21) and (5.22), assuming a 0 ≥ 2,

P σ,τ (σ n ∈ τ for some n ≥ 1) ≤ (1 + 2 -a 0 +2 )P σ,τ (σ 1 ∈ τ ) ≤ 1 2 .
Hence provided a 0 is large, using (5.21),

∞ n=2 P σ,τ (σ n ∈ τ ) = E σ,τ [M ] = P σ,τ (M ≥ 1) + k≥2 P σ,τ (M ≥ k) ≤ P σ,τ (σ n ∈ τ for some n ≥ 2) + k≥2 (1 + 2 -a 0 +2 ) k P σ,τ (σ 1 ∈ τ ) k ≤ 2 -a 0 +2 P σ,τ (σ 1 ∈ τ ) + 2(1 + 2 -a 0 +2 ) 2 P σ,τ (σ 1 ∈ τ ) 2 ≤ 2 -a 0 +3 P σ,τ (σ 1 ∈ τ ) . (5.24) Therefore (5.25) K * (1) = P σ,τ (σ 1 ∈ τ ) n≥1 P σ,τ (σ n ∈ τ ) ≥ 1 1 + 2 3-a 0 .
To show that H * is small, we divide it into three parts:

(5.26)

H * = K * (1) log 1 K * (1) + exp(2 a 0 /2) n=2 K * (n) log 1 K * (n) + n>exp(2 a 0 /2 ) K * (n) log 1 K * (n)
.

By (5.25), the first term is smaller than 2 3-a 0 . For the middle term, denote

Σ * := n≥1 P σ,τ (σ n ∈ τ ), Σ * := exp(2 a 0 /2) n=2 P σ,τ (σ n ∈ τ ) so that the first sum in (5.26) is exp(2 a 0 /2 ) n=2 P σ,τ (σ n ∈ τ ) Σ * log Σ * P σ,τ (σ n ∈ τ ) ≤ Σ * Σ * log Σ * Σ * + Σ * Σ * exp(2 a 0 /2 ) n=2 P σ,τ (σ n ∈ τ ) Σ * log Σ * P σ,τ (σ n ∈ τ ) ≤ Σ * Σ * log Σ * Σ * + Σ * Σ * 2 a 0 /2 ≤ 2 4-a 0 /2 .
Here in the second inequality we used that the sum is maximized when all the terms are equal, by Jensen's inequality. For the last inequality we used (5.24) to get Σ * ≤ 2 3-a 0 Σ * and took a 0 large enough.

For the last sum in (5.26), we use (5.23) in Lemma 5.7, together with the fact that 1 ≥ Σ * ≥ 2 -a 0 -1 (see (5.21) and (5.24)), to bound that sum by

1 Σ * n>exp(2 a 0 /2 ) P σ,τ (σ n ∈ τ ) log 1 P σ,τ (σ n ∈ τ ) ≤ 2 a 0 +1 n>exp(2 a 0 /2 ) (1 + α * /2) n -(1+α * /2) log n ≤ 2 a 0 +1 1 + α * /2 α * /2 exp 2 a 0 /2 -α * /2 2 a 0 /2 ≤ 2 -a 0 /2 ,
where we took a 0 large enough in the last line.

Combining these bounds, we have for a 0 large (5.27)

H * ≤ 2 3-a 0 + 2 4-a 0 /2 + 2 -a 0 /2 ≤ 2 5-a 0 /2 ,
which can be made arbitrarily small by choosing a 0 large.

In view of (5.27), we are left with showing that M ξ is uniformly bounded away from 0. Thanks to (5.25), we have

M ξ = E ν [ξ(ν 1 )] ≥ 1 2 ξ(1) = 1 2 E σ P τ (σ 1 ∈ τ ) P σ,τ (σ 1 ∈ τ ) log P τ (σ 1 ∈ τ ) P σ,τ (σ 1 ∈ τ ) .
From (5.20) we have that P τ (σ 1 ∈ τ ) = 2 -a 0 if σ 1 = a 0 . Hence, we get thanks to (5.21) that

P τ (σ 1 ∈ τ ) P σ,τ (σ 1 ∈ τ ) ≥ 4 3 if σ 1 = a 0 .
Since x log x ≥ -1/e for all x ≥ 0 we have that (5.28)

P τ (σ 1 ∈ τ ) P σ,τ (σ 1 ∈ τ ) log P τ (σ 1 ∈ τ ) P σ,τ (σ 1 ∈ τ ) ≥ 4 3 log 4 3 if σ 1 = a 0 , -e -1
otherwise.

It follows that ξ(1) ≥ 1 2 ( 4 3 log 4 3 -e -1 ) > 0, so that by (5.27),

1 12 M ξ ≥ 1 48 4 3 log 4 3 -e -1 ≥ 2 5-a 0 /2 ≥ H * ,
provided that a 0 is large. This completes the proof of Lemma 5.6.

Proof of Lemma 5.7. From the definition (5.20) we have (5.29)

P τ (σ 1 ∈ τ )      = 2 -a 0 if σ 1 = a 0 , ≤ 2 -2a 0 if σ 1 ∈ [2a 0 , A 0 ], ≤ 1 if σ 1 > A 0 .
Therefore, we already have the lower bound

P σ,τ (σ 1 ∈ τ ) ≥ P σ (σ 1 = a 0 )2 -a 0 = 1 2 2 -a 0 .
For the upper bound, we use that

P σ (σ 1 > A 0 ) = 1 2 P σ ( ρ > A 0 -2a 0 ) ≤ c 18 ϕ(A 0 )A -α 0 ≤ 2 -2a 0 ,
where we recall that A 0 = e θa 0 , and took θ > (2 log 2)/ α and a 0 large enough. Hence, we get

P σ,τ (σ 1 ∈ τ ) ≤ 2 -a 0 P σ (σ 1 = a 0 ) + 2 -2a 0 P σ (σ 1 ∈ [2a 0 , A 0 ]) + P σ (σ 1 > A 0 ) ≤ 2 -a 0 -1 + 2 -2a 0 ≤ 3 4 2 -a 0 , (5.30) 
for a 0 large enough.

We also have the lower bound (5.31)

P σ,τ (σ 1 ∈ τ ) ≥ 2 -a 0 P σ,τ (σ 1 = a 0 ) = 2 -(a 0 +1) ,
and (5.21) is proven.

Proof of (5.22). In view of (5.31), we need to show that if a 0 is large enough (5.32) P σ,τ (σ n ∈ τ for some n ≥ 2) ≤ 2 1-2a 0 .

For that purpose, we reformulate the definition (5.20) in a more tractable way. Let ξ 1 , ξ 2 , . . . and ξ 1 , ξ 2 , . . . be i.i.d. sequences of variables taking values 0, 1 with probability 1/2 each, and let

M k = k i=1 ξ i , M k = k i=1 ξ i .
Then, according to the definition (5.20), we can write (5.33) τ k

(law) = A 0 M k + k -M k + ρ M k , σ k (law) = (k + M k )a 0 + ρ M k .
Since α + α < 1, we can fix γ ∈ (0, 1) small, satisfying

(5.34) α(1 + 3γ) < 1 , (1 -γ)(1 -α(1 + 3γ)) α > 1 and α(1 -γ)(1 + 3γ) 1 -α -γ < 1 .
We now decompose (5.35) P σ,τ σ n ∈ τ for some n ≥ 2

≤ P σ,τ (∃n ≥ 2 ; σ n ∈ τ ∩ [1, A 0 ]) + P σ,τ (∃k ≥ 1 ; τ k ∈ σ ∩ (A 0 , ∞)) .
In view of (5.20), the first term is bounded by (5.36)

P τ (τ ∩ [2a 0 , A 0 ] = ∅) ≤ 2 -2a 0 .
We fix κ > 2(1 -α)/γ, κ > 1 and decompose the second term on the right in (5.35) as (5.37)

P σ,τ ∃k < a κ 0 ; τ k ∈ σ ∩ (A 0 , ∞) + P σ,τ ∃k ≥ a κ 0 ; τ k ∈ σ ∩ (A 0 , ∞) .
We begin with the first term in (5.37). We have

(5.38) P σ,τ ∃k < a κ 0 ; τ k ∈ σ ∩ (A 0 , ∞) ≤ a κ 0 i=1 P σ,τ τ i ∈ σ ∩ (A 0 , ∞) ≤ a κ 0 sup j≥A 0 P σ (j ∈ σ).
To bound this, we write (5.39)

P σ (j ∈ σ) ≤ k≤j α(1+γ) P σ (σ k = j) + k>j α(1+γ) P σ M k < k 4 + k>j α(1+γ) P σ σ k = j, M k ≥ k 4 .
For the first sum in (A.12), we use the representation (5.33) to write

k≤j α(1+γ) P σ (σ k = j) ≤ k≤j α(1+γ) k m=1 P σ ( ρ m = j -(k + m)a 0 )P σ ( M k = m) .
Now, observe that for j ≥ A 0 we have 2j α(1+γ) a 0 < j/2 assuming a 0 is large, so that in the above sum, j -(k + m)a 0 ≥ j/2. Hence, thanks to Lemma A.2 applied to ρ, there is a constant c 19 such that k≤j α(1+γ)

P σ (σ k = j) ≤ k≤j α(1+γ) k m=1 c 19 m ϕ(j) j -(1+ α) P σ ( M k = m) ≤ c 19 ϕ(j) j -(1+ α) j α(1+γ) k=1 k 2 ≤ c 19 ϕ(j) j -(1-α(1+2γ)) . (5.40)
The second sum in (5.39) is easily controlled: there exists a constant c 20 such that for all k ≥ 1, P τ (M k < k/4) ≤ e -c 20 k . Therefore, for any j ≥ A 0 with a 0 large enough, we have (5.41)

k>j α(1+γ) P σ M k < k/4 ≤ k>j α(1+γ)
e -c 20 k ≤ e -j α .

For the last sum in (5.39), from (5.33) and Lemma A.3 (applied to ρ), there is a constant c 21 such that k>j α(1+γ)

P σ σ k = j, M k ≥ k/4 ≤ k>j α(1+γ) P σ ρ k/4 ≤ j ≤ k>j α(1+γ) exp -c 21 k γ/2(1-α) ≤ e -j γ α/2 , (5.42)
where the last inequality holds for any j ≥ A 0 with A 0 large. Combining (5.39)-(5.42) we obtain that there exist constant c 22 , c 23 > 0 such that, for any j ≥ A 0 , (5.43)

P σ (j ∈ σ) ≤ c 22 ϕ(j) j -(1-α(1+2γ)) ≤ c 23 j -(1-α(1+3γ)) .
Now, recalling that A 0 = e θa 0 , provided that we take θ > 2(1 -α(1 + 3γ)) -1 and then a 0 large, it follows from (5.38) and (5.43) that (5.44)

P σ,τ ∃k < a κ 0 ; τ k ∈ σ ∩ (A 0 , ∞) ≤ c 23 a κ 0 A -(1-α(1+3γ)) 0 ≤ e -2a 0 .
We now consider the second term in (5.37). We bound (5.45) P σ,τ ∃k ≥ a κ 0 ; τ k ∈ σ ∩ (A 0 , ∞) ≤ (I) + (II) + (III), where we set (I) := P τ M k < k 4 for some k ≥ a κ 0 .

(II) :

= P τ M k ≥ k 4 , ρ M k < k (1-γ)/α for some k ≥ a κ 0 , (III) := P σ,τ τ k ∈ σ, M k ≥ k 4 , ρ M k ≥ k (1-γ)/α
for some k ≥ a κ 0 . Similarly to (5.44), (5.46) (I) ≤

k≥a κ 0 P σ M k < k/4 ≤ k≥a κ 0 e -c 20 k ≤ e -2a 0 ,
where the last inequality holds if a 0 is large enough, since κ > 1.

For (II), from Lemma A.3 (applied to ρ), there exists a constant c 22 such that, provided a 0 is large, (II) ≤

m≥a κ 0 /4 P τ ρ m < (4m) (1-γ)/α ≤ m≥a κ 0 /4 exp -c 22 m γ 2(1-α) ≤ e -2a 0 ,
where the last inequality is valid provided that a 0 is large enough, since κ > 2(1 -α)/γ.

As for (III), using the representation (5.33), we obtain that

(5.48) (III) ≤ k≥a κ 0 P σ,τ τ k ∈ σ, τ k ≥ max{k (1-γ)/α , k 4 A 0 } .
Thanks to (5.43), there is a constant c 23 such that (5.49) sup

j≥max{k (1-γ)/α ,kA 0 /4} P σ (j ∈ σ) ≤ c 23 min (kA 0 ) -(1-α(1+3γ)) : k -(1-γ)(1-α(1+3γ))/α .
Using (5.34), we therefore have that

(III) ≤ c 23 A α/(1-α-γ) 0 k=a κ 0 (kA 0 ) -(1-α(1+3γ)) + c 23 k≥A α/(1-α-γ) 0 k -(1-γ)(1-α(1+3γ))/α ≤ c 24 A -(1-α(1+3γ)) 0 A α(1+3γ)α/(1-α-γ) 0 + c 24 A [1-(1-γ)(1-α(1+3γ))/α]α/(1-α-γ) 0 ≤ 2c 24 A -1+[ α(1+3γ)(1-γ)/(1-α-γ)] 0 ≤ e -2a 0 , (5.50)
where the last inequality comes if we choose θ > 2 α(1+3γ) (1-γ) (1-α-γ) -1

-1 (recall A 0 = e θa 0 ), and then take a 0 large enough. Hence (5.46), (5.47), and (5.50) yield (5.51) P σ,τ ∃k ≥ a κ 0 ; τ k ∈ σ ∩ (A 0 , ∞) ≤ 3e -2a 0 . Collecting the estimates (5.36), (5.44) and (5.51), we end up with P σ,τ (σ n ∈ τ for some n ≥ 2) ≤ 2 -2a 0 + 4e -2a 0 , provided that a 0 is large enough, so we have proved (5.32).

Together with (5.53) and (5.52), this proves (5.23) provided that a 0 is large enough. This completes the proof of Lemma 5.7. 5.3. Proof of Lemmas 5.2 and 5.3.

Proof of Lemma 5.3. For b n from (2.8), σ n /b n converges to a stable distribution (see [START_REF] Bingham | Regular Variation[END_REF]), so that thanks to (1.16), there exists a constant c 29 such that (5.57)

P σ,τ (σ n ∈ τ ) ≥ P σ (σ n ∈ [b n , 2b n ]) min m∈[bn,2bn] P τ (m ∈ τ ) ≥ c 29 b -(1-α) n ϕ(b n ) -1
Hence, using (1.16) again, there exists c 30 such that P τ (m ∈ τ ) ≤ c 30 P σ,τ (σ n ∈ τ ) for any m ≥ 1 2 b n . This gives that (5.58)

E σ 1 {σn≥ 1 2 bn} P τ (σ n ∈ τ ) P σ,τ (σ n ∈ τ ) log 2 P τ (σ n ∈ τ ) P σ,τ (σ n ∈ τ ) ≤ c 30 (log c 30 ) 2 ,
and we now turn to the case σ n ≤ 1 2 b n . For k ≥ 1 and m = 2 -k b n , by Lemma A.3, (5.59)

P σ σ n ∈ (m/2, m] ≤ P σ σ n ≤ 2 -k b n ≤ exp -c 31 2 k α/2(1-α) .
On the other hand, thanks to (1.16) there exists a constant c 32 such that for all m ≥ 1,

(5.60) max

j∈(m/2,m] P τ (j ∈ τ ) ≤ c 32 m -(1-α) ϕ(m) -1 .
Combining with (5.57), we get for m = 2 -k b n :

(5.61) max j∈(m/2,m]

P τ (j ∈ τ ) P σ,τ (σ n ∈ τ ) ≤ c 33 m -(1-α) ϕ(m) -1 b (1-α) n ϕ(b n ) = c 33 2 k(1-α) ϕ(b n ) ϕ(2 -k b n ) ≤ 2 2k(1-α)
where the last inequality is valid for all k provided that n is large enough, since ϕ is slowly varying. Now (5.59) and (5.61) give that

j< 1 2 bn P σ (σ n = j) P τ (j ∈ τ ) P σ,τ (σ n ∈ τ ) log 2 P τ (j ∈ τ ) P σ,τ (σ n ∈ τ ) ≤ k≥1 exp -c 31 2 k α/2(1-α) 2 2k(1-α) (log 2 2k(1-α) ) 2 < +∞, (5.62)
which completes the proof.

Proof of Lemma 5.2. It is enough to show that, for ξ(n) from (5.11) and η > 0, (5.63) lim

n→∞ P ν   1 |ν ∩ [0, n]| |ν∩[0,n]| i=1 log 1 K * (ν i -ν i-1 ) ≥ 2E ν log 1 K * (ν 1 ) n ∈ ν   = 0;
(5.64)

lim n→∞ P ν   1 |ν ∩ [0, n]| |ν∩[0,n]| i=1 ξ(ν i -ν i-1 ) ≤ 1 2 E ν (ξ(ν 1 )) n ∈ ν   = 0,
and, for κ small enough, (5.65) lim sup

L→∞ sup L≥n≥εL P ν |ν ∩ [0, n]| < κ H * q L n ∈ ν ≤ η.
We first prove (5.63)-(5.64). We can apply Lemma A.1 to remove the conditioning by n ∈ ν, at the cost of a constant c 16 . This and the weak law of large numbers give (5.66)

P ν   1 |ν ∩ [0, n/2]| |ν∩[0,n/2]| i=1 log 1 K * (ν i -ν i-1 ) ≥ 2E ν log 1 K * (ν 1 ) n ∈ ν   ≤ c 16 P ν   1 |ν ∩ [0, n/2]| |ν∩[0,n/2]| i=1 log 1 K * (ν i -ν i-1 ) ≥ 2E ν log 1 K * (ν 1 )   n→∞ → 0 .
A symmetric result with [0, n/2] replaced with [n/2, n] holds, which in turns give (5.63). The same proof gives (5.64).

For (5.65), we apply again Lemma A.1 to get rid of the conditioning, using that n ≥ εL:

P ν |ν ∩ [0, n]| < κ H * q L | n ∈ ν ≤ P ν |ν ∩ [0, εL/2]| < κ H * q L | n ∈ ν ≤ c 16 P ν |ν ∩ [0, εL/2]| < κ H * q L = c 16 P ν ν κ q L /H * > ε 2 L (5.67)
If α * ∈ (0, 1), then q L = L α * ϕ * (L) -1 , and Lemma A.2 gives that there exist κ and a constant c 34 such that for L large,

P ν ν κ q L /H * > ε 2 L ≤ c 34 κq L H * (εL) -α * ϕ * (L) = c 34 ε -α * κ H * < η c 16 .
If α * ≥ 1, then as in (2.8) and the discussion following, for h n satisfying h n /m * (h n ) ∼ n we have ν n /h n → 1 in probability, and for δ > 0,

h δq L m * (h δq L ) ∼ δq L ∼ δL m * (L) ∼ δL m * (δL)
, so h δq L ∼ δL. Hence the last probability in (5.67) approaches 0 as L → ∞, whenever κ/H * < ε/2. In all cases, then, (5.65) follows from (5.67).

6. Variations of the model: proofs of Proposition 2.3 and Proposition 2.4

We start with the proof of Proposition 2.4, since we adapt it for the proof of Proposition 2.3, in which we need to control additionally |τ | σ N . 6.1. Proof of Proposition 2.4(i). We fix β > β c , and find a lower bound on Zσ N,β = E τ exp(β|τ ∩ σ| τ N ) by restricting τ to follow a particular strategy.

As in Section 3, we divide the system into blocks B i := {0, σ (i-1)L+1 -σ (i-1)L , . . . , σ iLσ (i-1)L }, with L to be specified. For b N from (2.8), there exists v 0 > 0 such that P σ (σ N > v 0 b N ) ≤ 1/4 for N large. Define the event of being good by (6.1)

G L := (σ 1 , . . . , σ L ) : 1 L log Z σ L,β ≥ 1 2 F(β) and σ L ≤ v 0 b L .
Since β > β c , there exists L 0 such that, for L ≥ L 0 (6.2)

P σ 1 L log Z σ L,β ≥ 1 2 F(β) ≥ 3 4 , so that (6.3) P σ (G L ) ≥ 1 2 .
We now set

I = I(σ) = {i : B i ∈ G L } = {i 1 , i 2 , .
. .}, the set of indices of the good blocks, and set i 0 = 0. There can be at most v 0 b L τ -renewals per block, so restricting trajectories to visit only blocks with index in I, we get that for all m ∈ N (6.4)

Zσ mv 0 b L ,β ≥ m k=1 P τ (τ 1 = σ (i k -1)L -σ i k-1 L )e F (β)L/2 ,
with the convention that P τ (τ 1 = 0) means 1. Then, letting m → ∞, we get (6.5) lim inf

N →∞ 1 N log Zσ N,β ≥ 1 v 0 b L 1 2 F(β)L + 1 v 0 b L E σ [log P τ (τ 1 = σ (i 1 -1)L )] P σ -a.s.
Let us estimate the last term. Thanks to (1.5), we have that

log P τ (τ 1 = σ (i 1 -1)L ) ≥ -(2 + α)1 {i 1 >1} log σ (i 1 -1)L ,
provided L is large. Then, Lemma 3.2 applies: for L large, since P σ (G L ) ≥ 1/2 we have that

E σ [1 {i 1 >1} log σ (i 1 -1)L )] ≤ 2 α ∧ 1 log L + log 1 P σ (G L ) ≤ 4 α ∧ 1 log L.
Hence for some L 0 , for L ≥ L 0 , (6.6) lim inf

N →∞ 1 N log Zσ N,β ≥ 1 v 0 b L 1 2 F(β)L - 4(2 + α) α ∧ 1 log L .
Hence, provided that L is large enough, we have that F(β) > 0 for any β > β c , meaning β c ≥ βc .

Proof of Proposition 2.4(ii).

Observe that the annealed systems for the original and elastic polymers have the same critical point, by Remark 1.2. Therefore β ann c ≤ βc . When α = 0, α ≥ 1, it then follows from Theorem 2.1 that β c ≤ βc , so equality holds.

Hence it remains to prove β c ≤ βc assuming α > 0, by showing that pinning in the elastic polymer (length-τ N system) implies pinning in the original polymer (length-σ N system.)

In the recurrent case, β c = 0 so there is nothing to prove. So we assume transience, which here implies α, α ∈ (0, 1). Let v N = e 2 αβN/α and τ [0,N ] = {τ 1 , . . . , τ N }. Define X N,j = X N,j (σ) := E τ e β|σ∩τ [0,N ] |σ j 1 {σ j ∈τ [0,N ] } , Proof of Lemma 6.1. Let U = (U i ) i≥1 be an i.i.d. sequence of variables independent of σ, and let (G n ) n≥1 be the σ-field generated by {σ 1 , U 1 , . . . , σ n , U n }. We will define below a stopping time T 1 = T 1 (σ, U ) for the filtration (G n ) n≥1 satisfying T 1 ≤ v N , and denote QN,j (σ) := P T (T 1 = j | σ). The stopping time property means that QN,j (σ) depends only on σ 1 , . . . , σ j .

Write σ (j) for the shifted sequence (σ k -σ j , U k ), k ≥ j. We then define iteratively the stopping times (J i ) i≥1 by J i = J 1 (σ (J i-1 ) ).

For any fixed j 1 < • • • < j m with |j i -j i-1 | ≤ v N (representing possible values of the J i ), we can decompose a product of X variables as follows:

m i=1 X N,j i -j i-1 (σ (j i-1 ) ) = 0= 0 < 1 <•••< n | i -i-1 |≤N ∀ i≤m E e β|σ∩τ [0,mN ] | m i=1 1 {τ i =σ j i } .
Hence, summing over all such j 1 < • • • < j m , we get the bound

0=j 0 <j 1 <•••<jm≤mv N |j i -j i-1 |≤v N m i=1 X N,j i -j i-1 (σ (j i-1 ) ) ≤ 0= 0 < 1 <•••< n | i -i-1 |≤N ∀ i≤m Zσ,T(mv N ) mN,β,0 ≤ N m Zσ,T(mv N ) mN,β,0 .
which can be rewritten

Zσ,T(mv N ) mN,β,0 ≥ N -m 0=j 0 <j 1 <•••<jm |j i -j i-1 |≤v N m i=1 QN,j i -j i-1 (σ (j i-1 ) ) exp m i=1 log X N,j i -j i-1 (σ (j i-1 ) ) QN,j i -j i-1 (σ (j i-1 ) ) = N -m E J exp m i=1 log X N,J i -J i-1 (σ (J i-1 ) ) QN,J i -J i-1 (σ (J i-1 ) ) σ . (6.10)
Here in a mild abuse of notation we write E J [• | σ] for the expectation over U , and we will write E σ,J for the expectation over (σ, U ). Since J 1 is a stopping time, the summands on the right side of (6.10) are i.i.d. functions of (σ, U ). By (6.10) and Jensen's inequality, we have (6.11) log Zσ,T(mv N ) mN,β,0

≥ -m log N + m i=1 E J log X N,J i -J i-1 (σ (J i-1 ) ) QN,J i -J i-1 (σ (J i-1 ) ) σ . Since X N,J 1 (σ) ≥ P τ (τ 1 = σ J 1 ) and J 1 ≤ v N , we have for some c i (6.12) log X N,J 1 (σ) QN,J 1 (σ) ≥ log P τ (τ 1 = σ J 1 ) ≥ -c 36 log σ v N
and hence, writing x -for the negative part of x and using (3.25),

(6.13) E σ,J log X N,J 1 (σ) QN,J 1 (σ) - ≤ c 36 E σ [log σ v N ] ≤ c 37 v N < ∞.
It then follows from (6.10) that lim inf

m→∞ 1 m log Zσ,T(mv N ) mN,β,0 ≥ E σ,J log X N,J 1 (σ) QN,J 1 (σ)
-log N, P σ,J -a.s. (6.14) Combining these bounds and averaging over σ, we get from (6.17) that (6.18) E σ,J log

X N,J 1 QN,J 1 ≥ 1 2 P σ,J (J 1 < R N ) F(β)N -c 36 E σ,J P J (J 1 = R N | σ) log σ v N .
For the first term on the right side of (6.18), when R N (σ) < v N we have from the definition of R N that (6.19)

P J (J 1 < R N | σ) = 1 - R N k=1 (1 -Q N,k ) = 1 -exp -e -F (β)N/2 R N j=1 X N,j ≥ 1 -e -K .
We therefore get using (6.16) that (6.20)

P σ,J (J 1 < R N ) ≥ P σ (R N < v N )(1 -e -K ) ≥ 2 3 ,
provided that K and then N are chosen large enough.

For the last term in (6.18), we have from (6.19) and (6.13) that (6.21)

E σ,J 1 {R N <v N } P J (J 1 = R N | σ) log σ v N ≤ e -K E σ [log σ v N ] ≤ c 38 e -K log v N .
In addition, it is routine that there exists a constant c 39 such that

E σ log σ n log n 2 ≤ c 39 for all n ≥ 2.
Hence using (6.16) and the Cauchy-Schwarz inequality

E σ 1 {R N =v N } log σ v N ≤ (log v N )P σ (R N = v N ) 1/2 E σ log σ v N log v N 2 = o(log v N ) as N → ∞. (6.22)
Combining (6.21) and (6.22) we get that if we take K and then N is large enough, (6.23) c 36 E σ,J P J

(J 1 = R N | σ) log σ v N ≤ 2c 36 c 38 e -K log v N ≤ 1 6 F(β)N.
Plugging (6.20) and (6.23) into (6.18), we finally get (6.15).

6.3.

Proof of Proposition 2.3. As noted in Section 2.2, we only need prove that βc ≤ β c , so let us fix β > β c , and show that F(β) > 0. We write Z σ,f N,β (H) for E τ [e β|τ ∩σ|σ N 1 H ], for an event H. (Note this partition function may involve trajectories not tied down, that is, with σ N / ∈ τ .) A first observation is that for fixed q ≥ 1,

(6.24) log Ẑσ N +q,β ≥ Z σ,f N,β (τ N ≤ σ N ) min dσm≤k≤σ N +q P τ (τ q = k).
By (1.7), if we fix q large enough and then take N large, the minimum here is achieved by k ≥ σ N /2, so by (A.3), it is at least

1 2 qP τ (τ 1 = σ N +q ) ≥ σ -(2+α) N +q
. Using (3.25) we therefore get for large N

E σ log Ẑσ N +q,β ≥ E σ log Z σ,f N,β (τ N ≤ σ N ) -(2 + α)E σ [log σ N +m ] ≥ E σ log Z σ,f N,β (τ N ≤ σ N ) - 2(2 + α) α log N . (6.25) Since Z σ,f N,β (τ N ≤ σ N ) ≥ Ẑσ N,β , (6.25) proves that F(β) = lim N →∞ 1 N log Ẑσ N,β = lim N →∞ 1 N E σ log Z σ,f N,β (τ N ≤ σ N ) P σ -a.s.,
and we therefore work with Z σ,f N,β (τ N ≤ σ N ) instead of Ẑσ N,β . We continue notations from Section 6.1: we take v 0 such that P σ (σ n ≥ v 0 b n ) ≤ 1/4, use G L from (6.1), take L ≥ L 0 large so that (6.3) holds, and consider the set of good blocks I = {i : B i ∈ G L }. The idea of the proof is similar to that of Proposition 2.4, but in addition, we need to control the size of τ L on good blocks.

Case 1: E σ [σ 1 ] = +∞. Here b n = ψ(n)n 1/ α , see (2.9). We need the following technical lemma, whose proof is postponed to Section 6.4. Lemma 6.2. Assume (1.5) and (1.7) with α = 0. If E[σ 1 ] = +∞, then, uniformly for x ≥ 1/10 ,

lim n→∞ 1 n E σ [1 {σxn≥dτ n} log P τ (τ n ≤ σ xn )] = 0 .
We consider m blocks of length L, so N = mL, and define the events (6.3). Using that log Z σ,f mL,β (τ mL ≤ σ mL ) ≥ log P τ (τ mL ≤ σ mL ), we get (6.26)

E 1 := {σ : |I ∩ [1, 7 8 m]| ≥ 1 4 m}, E 2 := {σ : σ mL -σ 7mL/8 ≥ d τ mL}, satisfying P σ (E 1 ) → 1 as m → ∞, by
E σ log Z σ,f mL,β (τ mL ≤ σ mL ) ≥ E σ 1 E 1 ∩E 2 log Z σ,f mL,β (τ mL ≤ σ mL ) + E σ [log P τ (τ mL ≤ σ mL )] .
According to Lemma 6.2, and because of (1.7), we have lim m→∞ 1 mL E σ [log P τ (τ mL ≤ σ mL )] = 0, so we consider the first term on the right in (6.26).

On the event E 1 ∩ E 2 , as in the proof of Proposition 2.4 we restrict to τ visiting only good blocks B i , including visits to the endpoints σ (i-1)L , σ iL . Since (by definition of G L ) on each good block B i there are at most v 0 b L τ -renewals, up to τ m such τ visit at least m := m/(v 0 b L ) good blocks. We also choose L large so that m ≤ 1 8 m: on the event E 1 , it ensures that i m ≤ 7m/8.

We denote k 0 ≤ mL the index such that τ k 0 = σ i m L : since τ mL -τ k 0 ≤ τ mL , we have on On the event E 1 ∩ E 2 we have σ mL -σ i m L ≥ σ mL -σ 7mL/8 ≥ d τ mL, so we then get

E σ 1 E 1 ∩E 2 log Z σ,f N,β (τ N ≤ σ N ) ≥ m k=1 E σ log P τ (τ 1 = σ (i k -1)L -σ i k-1 L ) + 1 2 m F(β)LP σ (E 1 ∩ E 2 ) + E σ 1 E 2 log P τ (τ mL ≤ σ mL -σ i m L )
≥ m 1 4 F(β)L + E σ log P τ (τ 1 = σ (i 1 -1)L ) + E σ 1 {σ mL/8 ≥dτ mL} log P τ (τ mL ≤ σ mL/8 ) , (6.27) where we used that for L large enough, P σ (E 1 ∩ E 2 ) ≥ 1/2. Therefore dividing by mL and letting m → ∞ gives (6.28)

L F(β) ≥ 1 4v 0 b L F(β)L + 1 v 0 b L E σ [log P τ (τ 1 = σ (i 1 -1)L )] ,
where we used Lemma 6.2 to get that lim m→∞ 1 mL E σ 1 {σ mL/8 ≥dτ mL} log P τ (τ mL ≤ σ mL/8 ) = 0.

Then we finish as in the proof of Proposition 2.4: there exists some L 0 such that, for L ≥ L 0 , one has as in (6.6)

(6.29) L F(β) ≥ 1 v 0 b L 1 4 LF(β) - 4(2 + α) α ∧ 1 log L ,
and then taking L sufficiently large shows F(β) > 0.

Case 2. We now deal with the case when µ σ := E σ [σ 1 ] < +∞ and E τ [τ 1 ] ≤ E σ [σ 1 ]. Here b n = µ σ n, see (2.8). Let us fix m ∈ N large, and consider a system consisting in m blocks of length L. Decomposing according to whether the first block is good or not we have, recalling G L from (6.1), E σ [log Z σ,f mL,β (τ mL ≤ σ mL )] ≥ E σ 1 {B 1 ∈G L } 1 {σ mL -σ L ≥dτ mL} log Z σ,f mL,β (τ mL ≤ σ mL ) + E σ [log P τ (τ mL ≤ σ mL )]. (6.30) Recalling the indicator 1 {σ L ∈τ } in the definition of Z σ L,β , if τ k 0 = σ L for some k 0 , then the relation τ mL -τ k 0 ≤ τ mL guarantees that (6.31) Z σ,f mL,β (τ mL ≤ σ mL ) ≥ Z σ L,β × P τ (τ mL ≤ σ mL -σ L ). Provided m exceeds some m 0 we have d τ m/(m-1) < E[τ 1 ] ≤ µ σ , and therefore for sufficiently large L we have P σ (σ (m-1)L ≥ d τ mL) ≥ 1/2. Since B 1 is independent of all other blocks and P σ (G L ) ≥ 1/2, it then follows from (6.31) that for σ ∈ G L , (6.32) E σ 1 {B 1 ∈G L } 1 {σ mL -σ L ≥dτ mL} log Z σ,f mL,β (τ mL ≤ σ mL ) It remains only to control E σ [1 {σ (m-1)L ≥dτ mL} log P τ (τ mL ≤ σ (m-1)L )]. To that end we have the following lemma which we prove in Section 6.4. We choose ε = 1 40 F(β), and fix m 1 ≥ m 0 such that one can apply Lemma 6.3. Then, we take L large enough such that 1 L E σ [1 {σ (m 1 -1)L ≥dτ m 1 L} log P τ (τ m 1 L ≤ σ (m 1 -1)L )] ≥ -1 32 F(β) and also 1 L E σ [log P τ (τ m 1 L ≤ σ m 1 L )] ≥ -1 32 F(β). Combining this with (6.30) and (6.32), we obtain for sufficiently large L (6.34)

E σ log Z σ,f m 1 L,β (τ m 1 L ≤ σ m 1 L ) ≥ 1 16 F(β)L .
To conclude the proof of Proposition 2.3, we use that (log Ẑσ N,β ) N ∈N is an ergodic superadditive sequence, so that F(β) ≥ sup N ∈N

1 N E σ [log Ẑσ N,β ].
In view of (6.25), we therefore have that, if L is large enough, for q as specified after (6.24), (6.35)

F(β) ≥ 1 m 1 L + q E σ log Z σ,f m 1 L,β (τ m 1 L ≤ σ m 1 L ) - 3(2 + α) α log(m 1 L) m 1 L + q .
Then we can use (6.34) to obtain, by taking L large enough, (6.36) where we used (6.37) in the second inequality. Letting n → ∞, we see that the limit is 0 thanks to our choice of α n .

F(β) ≥ 1 m 1 L + q 1 20 F(β)L ≥ 1 30m 1 F(β) > 0 .
Proof of Lemma 6.3. From the standard large deviation principle for i.i.d. sums, we can define the rate function (6.39) Jτ (t) := J τ (µ τ -t) = lim n→∞ -1 n log P τ (τ n ≤ µ τ n -tn), with X := µ τ -τ 1 , and J τ is defined after (3.1). We define Jσ analogously.

It is standard that, since E[X] = 0, we have Jτ (t) = o(t) as t 0. Therefore for fixed ε > 0, for large m we have Jτ (2µ τ /m) ≤ ε/m. We also have, using that µ τ ≤ µ σ , that for any m ≥ 2 P σ σ (m-1)L ≤ (m -2)Lµ τ → 0 as L → ∞.

Hence, observing that (m -2)µ τ ≥ d τ m provided that m has been fixed large enough, we can get E σ 1 {σ (m-1)L ≥dτ mL} log P τ (τ mL ≤ σ (m-1)L )

≥ log P τ τ mL ≤ (m -2)Lµ τ + P σ σ (m-1)L ≤ (m -2)Lµ τ × mL log P τ (τ 1 = d τ ) .

Hence we obtain, using (6.39) Similarly, decomposing according to whether σ mL ≤ (m -2)Lµ τ or not, we have the lower bound E σ log P τ (τ mL ≤ σ mL ) ≥ log P τ τ mL ≤ (m -2)Lµ τ + P σ σ mL ≤ (m -2)Lµ τ × mL log P τ (τ 1 = d τ ) , which in turn also gives that lim inf n→∞ 1 L E σ [log P τ (τ mL ≤ σ mL )] ≥ -ε.

Appendix A. Technical results on renewal processes A.1. Some estimates on renewal processes. First of all, we state a result that we use throughout the paper, which is Lemma A.2 in [START_REF] Giacomin | Disorder relevance at marginality and critical point shift[END_REF] (that was slightly generalized in [START_REF] Alexander | Local asymptotics for the first intersection of two independent renewals[END_REF] to cover the case α = 0). Lemma A.1. Assume that P(τ 1 = k) = ϕ(k)k -(1+α) for some α ≥ 0 and some slowly varying function ϕ(•). Then, there exists a constant C 0 > 0 such that, for all sufficiently large n, for any non-negative function f n (τ ) depending only on τ ∩ {0, . . . , n}, we have

E[f n (τ ) | 2n ∈ τ ] ≤ C 0 E[f n (τ )] .
In the rest of this section, we consider a renewal τ satisfying (1.5) with α ∈ (0, 1). Similar results exist for α = 0 (see [START_REF] Alexander | Local limit theorems and renewal theory with no moments[END_REF]) and for α > 1 (see Appendix A in [START_REF] Berger | Sharp critical behavior for random pinning model with correlated environment[END_REF]), but we do not need them here.

As noted in Section 2.4, for a n as in (2.9), τ n /a n converges to an α-stable distribution with some density h, which is bounded and satisfies (A.1) h(x) ∼ C 1 x -(1+α) as x → ∞, h(x) ≤ C 2 x -(1+α) for all x > 0 .

Further, by the local limit theorem for such convergence, see [24, §50], and the fact that a α k ∼ kϕ(a k ), for any given 0 < θ < K < ∞ we have as k → ∞

P τ (τ k = m) ∼ 1 a k h m a k ≤ C 2 a α k m -(1+α) ≤ 2C 2 km -(1+α) ϕ(m)
uniformly over m ∈ [θa k , Ka k ].

(A.2)

If θ is sufficiently small (depending on δ), then φ(e j /θ) ≥ (e j /θ) -α/2 (1-α) , and thanks to Lemma A.3 and (A.11), the first sum on the right in (A.12) can be bounded by If K is sufficiently large (depending on δ), then thanks to (A.11), the third sum on the right in (A.12) is bounded by

c 52 (Kb n ) -(1-α) ϕ 0 (b n ) ≤ δb -(1-α) n ϕ 0 (b n ).
By (A.1), the integral in (A.13) remains bounded as K → ∞ (using that α + α < 1), and it also remains bounded as θ → 0 thanks to (A.5). Because δ is arbitrary and the second sum (A.13) is also a lower bound for P σ,τ (σ n ∈ τ ), it follows that We therefore conclude, thanks to (2.7), that

K * (n) := 1 E σ,τ [|τ ∩ σ|] P σ,τ (σ n ∈ τ ) = ϕ * (n)n -(1+α * ) ,
for α * = (1 -α -α)/ α and for some slowly varying ϕ * , given asymptotically via (A.15):

ϕ * (n) n→∞ ∼ c 53 ϕ(b n ) -(1-α)/ α ϕ 0 (b n ) with c 53 = 1 E σ,τ [|τ ∩ σ|] +∞ 0 x -(1-α) h(x) dx.
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 12 restricting to τ visiting the first m good blocks,logZ σ,f N,β (τ N ≤ σ N ) ≥ m k=1 log P τ (τ 1 = σ (i k -1)L -σ i k-1 L ) + m 1 (β)L + log P τ (τ mL ≤ σ mL -σ i m L ).

  1 {σ (m-1)L ≥dτ mL} log P τ (τ mL ≤ σ (m-1)L )] .

Lemma 6 . 3 . 1 L 1 L

 6311 If E[τ 1 ] ≤ E[σ 1 ] < +∞,then, for any ε > 0, for sufficiently large m we havelim L→∞ E σ [1 {σ (m-1)L ≥dτ mL} log P τ (τ mL ≤ σ (m-1)L )] ≥ -ε ,and lim L→∞ E σ [log P τ (τ mL ≤ σ mL )] ≥ -ε .(6.33)

6. 4 . 3 .

 43 Proof of Lemmas 6.2-6.Proof of Lemma 6.2. We have the following crude bound: there exists a constant c 40 > 0 such that, for every k ≥ d τ n, (6.37) P τ (τ n ≤ k) ≥ P τ max1≤i≤n {τ i -τ i-1 } ≤ k/n = 1 -P τ τ 1 > k n n ≥ e -c 40 Pτ (τ 1 > k n ) n ,where the last inequality follows from the fact that P τ τ 1 > k n is bounded away from 1, for all k ≥ d τ n.Since E σ [σ 1 ] = +∞, we may choose a sequence α n with α n /n → +∞, and uniformly inx ≥ 1/10, P σ (σ xn ≤ α n ) n→∞ → 0. We get 0 ≥ 1 n E σ 1 {σxn≥dτ n} log P τ (τ n ≤ σ xn ) ≥ 1 n P σ (σ xn > α n ) log P τ (τ n ≤ α n ) + 1 n P σ (σ xn ≤ α n ) log P τ (τ 1 = d τ ) n≥ -c 41 P(τ 1 > α n /n) + P σ (σ xn ≤ α n ) log P τ (τ 1 = d τ ),(6.38) 

1 L

 1 E σ [1 {σ (m-1)L ≥mL} log P τ (τ mL ≤ σ (m-1)L )] ≥ -m Jτ ( 2µ τ m ) ≥ -ε ,which gives the first line in (6.33).

(A. 15 )

 15 P σ,τ (σ n ∈ τ ) α) h(x) dx × b -(1-α) n ϕ 0 (b n ).

Proof of (5.23). It now remains to prove (5.23). We take n ≥ exp(2 a 0 /2 ), and write (5.52) P σ,τ (σ n ∈ τ ) ≤ P σ σ n ≤ n (1-γ)/ α + P σ,τ σ n ∈ τ , σ n > n (1-γ)/ α .

The first term in (5.52) is bounded easily: we use Lemma A.3 (applied to ρ) to get a constant c 25 such that P σ σ n ≤ n (1-γ)/ α ≤ P σ ( M n ≤ n/4) + P σ ( ρ n/4 ≤ n (1-γ)/ α ) ≤ exp -c 20 n + exp -c 25 n γ/2(1-α) ≤ exp -n γ/2 , (5.53) where the last inequality is valid provided that n is large (ensured by having a 0 large) and c 20 is from (5.41).

To bound the second term in (5.52), we write (5.54)

Then, we control P τ (τ k = r) according to whether k > r α/ (1-γ) or not.

If k > r α/(1-γ) , then k is large provided a 0 is large, so we have similarly to (5.53)

To handle k ≤ r α/(1-γ) and r > n (1-γ)/ α , we write

Since n ≥ exp(2 a 0 /2 ), we have A 0 r α/(1-γ) ≤ r/2, provided that α/(1 -γ) < 1, cf. (5.34), and that a 0 is large enough (θ being fixed). In the end, we get that for such k, r, and for m ≤ k, we have

, so that by Lemma A.2 applied to ρ, there is a constant c 26 such that

We thus obtain

In the end, if γ is chosen small enough so that γ(2 + α)/ α < α * /4 (and (5.34) holds), then (5.54) yields (5.56) 4) . and recall

(which is a tail random variable of {σ i -σ i-1 , i ≥ 1}, so is nonrandom, up to a null set) and assume that F(β) > 0. We define the truncated sums Zσ,T(v)

Then it is not hard to show that P σ -a.s., for large N ,

.

Below, we show the following Lemma 6.1. For every β > βc , there exists some N large enough, so that

It is essential here that the truncation in the partition function be at mv N , not at the much larger value v mN , as we want the allowed length of trajectories to grow essentially only linearly in m. But we need to know that with this length restriction, the log of the partition function is still of order mN .

With this lemma in hand, we easily have that

Then thanks to Remark 1.2 (and because 1 m log(mv N ) → 0), we have

which gives that F(β) > 0 for any β > βc , that is β c ≤ βc . This concludes the proof of Proposition 2.4(i).

We will show that there is a choice of N, J 1 , and QN,J 1 (σ) satisfying

The lemma will then follow from (6.14) and (6.15). Fix K to be specified and define

From (6.9), we then have (6.16)

We define the marking probabilities

which only depends on σ 1 , . . . , σ j , and

We may view this as follows: for each j < R N we mark σ j with probability Q N,j , independently, and we mark σ R N with probability 1; σ J 1 is the first σ j to be marked. As a result we have P J (J 1 = j | σ) = QN,j (σ), and J 1 ≤ v N . Note that this weights J 1 toward values j for which X N,j is large, which, heuristically, occurs when σ j follows a favorable stretch of the disorder σ.

We now consider (6.15), and write (6.17)

For the sum in (6.17), using 1 -e -x ≤ x we get X N,j ≥ e N F (β)/2 Q N,j ≥ e N F (β)/2 QN,j for all j < R N , and therefore

For the last term in (6.17), from (6.12) we have

Moreover, Doney [START_REF] Doney | One-sided local large deviation and renewal theorems in the case of infinite mean[END_REF]Thm. A] gives that, uniformly in m a k , (A.3)

Together with (A.2) and Lemma A.3 below, which deals with the case m a k , we thereby obtain the following uniform bound.

Lemma A.2. Assume α ∈ (0, 1). There exists a constant c 42 > 0 such that, for k large enough and all m ≥ k,

For the lower tail we have the following.

Lemma A.3. Assume α ∈ (0, 1). There exist a constant c 43 such that, for all < 1/2 and n ≥ 1

In particular, for any γ ∈ (0, 1), for all n ≥ 1,

Note that this lemma implies that the density h also satisfies

, for some constant c 45 > 0 and sufficiently small x.

Proof of Lemma A.3. Let Λ(t) = log E τ [e tτ 1 ], so that for all t > 0, (A.6)

By (1.5) and standard properties of the Laplace transform, there is a constant c α such that

We have Λ(-t) < -d τ t for all t ∈ (0, +∞), and Λ(-t) ∼ -d τ t as t → +∞, for d τ from (1.6).

In the rest of the proof, we assume a n ≥ d τ n, since otherwise the probability is 0.

We can approximately optimize (A.6) by taking t = t n = t n ( ) given by

Such a solution exists since t -1 Λ(-t) → -∞ as t → 0, t -1 Λ(-t) → -d τ as t → ∞, and 2 a n /n ≥ 2d τ . We therefore end up with (A.9)

so we need a lower bound on a n t n . Let c 45 be given by c -1 45 Λ(-c 45 ) = -2d τ ; then t n ∈ (0, c 45 ], since a n ≥ d τ n. Letting c 46 large enough so that ϕ(x) > 0 for all x ≥ c 46 /c 45 , we then have that ϕ(c 46 /t n ) > 0. Let λ = (1 -α/4)/(1 -α). By (2.8), since a n → ∞ and a n ≥ d τ n, there exists n 0 such that for n ≥ n 0 , (A.10)

, which together show that λ a n ≥ dτ . Therefore there exists c 47 such that

which with (A.7), (A.8), and the first inequality in (A.10) shows that for some c 48 ,

We emphasize that the constants c i and n 0 do not depend on . It follows that λ a n ≥ c 49 /t n , or equivalently a n t n ≥ c 49 -(λ-1) , which with (A.9) completes the proof for n ≥ n 0 . We finish by observing that for q = max n<n 0 a n , for all n < n 0 and ≤ 1/2 we have

and P τ (τ n ≤ a n ) = 0 if < 1/q. Therefore after reducing c 43 if necessary, (A.4) also holds for n < n 0 . We now fix 0 < θ < K < ∞ and δ > 0, and split P σ,τ (σ n ∈ τ ) into three sums: x -(1-α) h(x) dx.