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Abstract: In this note, we consider general growth-fragmentation equations from a
probabilistic point of view. Using Foster-Lyapunov techniques, we study the recur-
rence of the associated Markov process depending on the growth and fragmentation
rates. We prove the existence and uniqueness of its stationary distribution, and we
are able to derive precise bounds for its tails in the neighborhoods of both 0 and
+∞. This study is systematically compared to the results obtained so far in the
literature for this class of integro-di�erential equations.
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1 Introduction

In this work, we consider the growth and fragmentation of a population of microorganisms (typically,
bacteria or cells) through a structured quantity x which rules the division. For instance, one can consider
x to be the size of a bacterium. The bacteria grow and, from time to time, split into two daughters.
This behavior leads to an integro-di�erential equation, which can also model numerous phenomena in-
volving fragmentation, like polymerization, network congestions or neurosciences. In the context of a
dividing population, we refer to [Per07, Chapter 4] for background and biological motivations, and to
[Mic06, DJG10] for motivations in determining the eigenelements of the equation, which correspond to
the Malthusian parameter of the population (see [Per07]). Regardless, if we denote by u(t, x) the con-
centration of individuals of size x at time t, such dynamics lead to the following growth-fragmentation
equation:

∂tu(t, x) + ∂x[τ(x)u(t, x)] + β(x)u(t, x) = 2

∫ ∞
x

β(y)κ(x, y)u(t, y)dy, (1.1)

for x, t > 0, where τ and β are the respective growth rate and fragmentation rate of the population, and
κ is the fragmentation kernel (here we adopt the notation of [CDG12]).

The evolution of this population, or rather its probabilistic counterpart, has also been widely studied
for particular growth and division rates. In the context of network congestions, this is known as the TCP
window size process, which received a lot of attention recently (see [LvL08, CMP10, BCG+13b, ABG+14]).
Let us provide the probabilistic interpretation of this mechanism. Consider a bacterium of size X, which
grows at rate τ and randomly splits at rate β following a kernel κ, as before. We shall denote by
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Q(x, dy) := xκ(yx, x)dy to deal with the relative size of the daughters compared to the mother's, so that∫ x

0

f(y)κ(y, x)dy =

∫ 1

0

f(xy)Q(x, dy).

We shall naturally assume that, for any x > 0,∫ x

0

κ(y, x)dy =

∫ 1

0

Q(x, dy) = 1.

If we dismiss one of the two daughters and carry on the study only with the other one, the growth
and fragmentation of the population can also be modeled by a Piecewise deterministic Markov process
(PDMP) (Xt)t≥0 with càdlàg trajectories a.s. The dynamics of X are ruled by its in�nitesimal generator,
de�ned for any function f in its domain D(L):

Lf(x) := τ(x)f ′(x) + β(x)

∫ 1

0

[f(xy)− f(x)]Q(x, dy). (1.2)

We shall call (Xt)t≥0 a growth-fragmentation process. It is a Feller process, and we denote by (Pt)t≥0
its semigroup (for reminders about Feller processes or PDMPs, see [EK86, Dav93]). If we denote by
µt = L (Xt) the probability law of Xt, the Kolmogorov's forward equation ∂t(Ptf) = LPtf is the weak
formulation of

∂tµt = L′µt,

where L′ is the adjoint operator of L in L2(L) where L stands for the Lebesgue measure. Now, if µt
admits a density u(t, ·) with respect to L, then the equation above writes

∂tu(t, x) = L′u(t, x) = −∂x[τ(x)u(t, x)]− β(x)u(t, x) +

∫ ∞
x

β(y)κ(x, y)u(t, y)dy. (1.3)

Note that (1.3) is the conservative version of (1.1), since for any t ≥ 0,
∫∞
0
u(t, x)dx = 1, which comes

from the fact that there is only one bacterium at a time.

Remark 1.1 (Link with biology): Working with the probabilistic version of the problem allows us
not to require the absolute continuity of µt nor Q(x, ·). This is useful since many biological models set
Q(x, ·) = δ1/2 (equal mitosis) or Q(x, ·) = U ([0, 1]) (uniform mitosis). Note that biological models usually

assume that
∫ 1

0
yQ(x, dy) = 1/2, so that the mass of the mother is conserved after the fragmentation,

which is automatically satis�ed for a symmetric division, but we do not require this hypothesis in our
study. Without going into further details, we highlight that it is possible to study both daughters with
a structure of random tree, as in [BDMT11, DHKR15], the latter also drawing a bridge between the
stochastic and deterministic viewpoints. ♦

In the articles [DJG10, CDG12, BCG13a], the authors investigate the behavior of the �rst eigenvalue
and eigenfunction of (1.1), with a focus on the dependence on the growth rate τ and the division rate
β. Although it has been previously done for speci�c rates, they work in the setting of general functions
τ and β. The aim of this paper is to provide a probabilistic counterpart to the aforementioned articles,
by studying the Markov process (Xt)t≥0, and to explain the assumptions for the well-posedness of the
problem. We provide a probabilistic justi�cation to the links between the growth and fragmentation rates,
with the help of the renowned Foster-Lyapunov criterion. We shall also study the tails of distribution
of the stationary measure of the process when it exists. We will see that, although the assumptions are
similar, there is a di�erence between the tails of the stationary distribution in the conservative case and
in the non-conservative case.

This paper is organized as follows: in Section 2, we study the Harris recurrence of X as well as
the existence and uniqueness of its stationary distribution π, and we compare our conditions to those
of [CDG12]. In Section 3, we study the moments of π and obtain precise upper bounds for its tails of
distribution in the neighborhoods of both 0 and +∞.
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2 Balance Between Growth and Fragmentation

To investigate the assumptions used in [CDG12], we turn to the study of the Markov process generated
by (1.2). More precisely, we will provide a justi�cation to the balance between τ and β with the help of
a Foster-Lyapunov criterion. Note that we shall not require the fragmentation kernel Q(x, dy) to admit
a density with respect to the Lebesgue measure L(dy). Moreover, in order to be as general as possible,

we do not stick to the biological framework and thus do not assume that
∫ 1

0
Q(x, dy) = 1/2, which will

be (technically) replaced by Assumption 2.2.i) below.

We start by stating general assumptions on the growth and fragmentation rates.

Assumption 2.1 (Behavior of τ and β). Assume that:

i) The functions β and τ are continuous, and τ is locally Lipschitz.

ii) For any x > 0, β(x), τ(x) > 0.

iii) There exist constants γ0, γ∞, ν0, ν∞ and β0, β∞, τ0, τ∞ > 0 such that

β(x) ∼
x→0

β0x
γ0 , β(x) ∼

x→∞
β∞x

γ∞ , τ(x) ∼
x→0

τ0x
ν0 , τ(x) ∼

x→∞
τ∞x

ν∞ .

Note that, if τ and β satisfy Assumption 2.1, then Assumptions (2.18) and (2.19) in [CDG12] are
ful�lled (by taking µ = |γ∞| or µ = |ν∞|, and r0 = |ν0| therein).

The following assumption concerns the expected behavior of the fragmentation, and is easy to check
in most cases, especially if Q(x, ·) does not depend on x. For any a ∈ R, we de�ne the moment of order
a of Q(x, ·) by

Mx(a) :=

∫ 1

0

yaQ(x, dy), M(a) := sup
x>0

Mx(a).

Assumption 2.2 (Moments of Q). Assume that:

i) There exists a > 0 such that M(a) < 1.

ii) There exists b > 0 such that M(−b) < +∞.

Note that, in particular, Assumption 2.2 implies that, for any x > 0,

Q(x, {1}) = Q(x, {0}) = 0.

Let us make another assumption, concerning the balance between the growth rate and the fragmen-
tation rate in the neighborhoods of 0 and +∞, which is fundamental to obtain an interesting Markov
process.

Assumption 2.3 (Balance of β and τ). Assume that

γ0 > ν0 − 1, γ∞ > ν∞ − 1.

Let us mention that Assumptions 2.1.iii) and 2.3, could be replaced by integrability conditions in the
neighborhoods of 0 or +∞, see Assumptions (2.21) and (2.22) in [CDG12]. However, we make those
hypotheses for the sake of simplicity, and for easier comparisons of our results to [CDG12].

Remark 2.4 (The critical case): This remark concerns the whole paper, and may be omitted at
�rst reading. Throughout Section 2, we can weaken Assumption 2.3 with the following:
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i) Either

γ0 > ν0 − 1, or γ0 = ν0 − 1 and
b

M(−b)− 1
<
β0
τ0
. (2.1)

ii) Either

γ∞ > ν∞ − 1 or γ∞ = ν∞ − 1 and
a

1−M(a)
<
τ∞
β∞

. (2.2)

Indeed, a careful reading of the proof of Theorem 2.5 shows that computations are similar, and the only
change lies in the coe�cients in (2.9) and (2.10), which are still negative under (2.1) and (2.2). This
corresponds to the critical case of the growth-fragmentation equations (see for instance [BW16, DE16]).

However, the behavior of the tail of the stationary distribution changes radically in the critical case.
As a consequence, Section 3 is written in the framework of Assumption 2.3 only. Indeed, it is crucial to
be able to choose a as large as possible (which is ensured in Assumption 3.3), so that π admits moments
of any order. This is not possible under (2.2), since then

lim
a→+∞

a

1−M(a)
= +∞,

so that the Foster-Lyapunov criterion does not apply and we expect the stationary measure to have heavy
tails. ♦

De�ne V as a smooth, convex function on (0,∞) de�ned by

V (x) =

{
x−b if x ∈ (0, 1],
xa if x ∈ [2,∞).

(2.3)

We can now state the main result of this article.

Theorem 2.5 (Recurrence of growth-fragmentation processes). Let X be the PDMP generated by (1.2).
If Assumptions 2.1, 2.2 and 2.3 are in force, then X is irreducible and aperiodic, compact sets are petite
for X, and the process possesses a unique (up to a multiplicative constant) stationary measure π.

Moreover, if
b ≥ ν0 − 1, a ≥ −γ∞,

then X is positive Harris recurrent and π is a probability measure.

Furthermore, if
ν0 ≤ 1, γ∞ ≥ 0,

then X is exponentially ergodic in (1 + V )-norm.

Note that counterexamples of existence of the stationary measure are provided in [DJG10], when
β is constant and τ is a�ne. Before proving Theorem 2.5, let us shortly present the Foster-Lyapunov
criterion, which is the main tool for our proof (the interested reader may �nd deeper insights in [MT93a]
or [MT93b]). The idea is to �nd a so-called Lyapunov function V controlling the excursions of X out
of petite sets. Recall that a set K ⊆ R+ is petite if there exists a probability distribution A over R+

and some non-trivial positive measure ν over R+ such that, for any x ∈ K,
∫∞
0
δxPtA (dt) ≥ ν. We

produce here three criteria, adapted from [MT93b, Theorems 3.2, 4.2 and 6.1], which provide stronger
and stronger results. Recall that, for some norm-like fonction V , we de�ne the V -norm of a probability
measure µ by

‖µ‖V := sup
|f |≤V

|µ(f)| = sup
|f |≤V

∣∣∣∣∫ fdµ

∣∣∣∣ .
Theorem 2.6 (Foster-Lyapunov criterion). Let X be a Markov process with càdlàg trajectories a.s. Let
V ≥ 1 be a continuous norm-like real-valued function. Assume that compact sets of (0,+∞) are petite
for X.

4



Florian Bouguet

i) If there exist a compact set K and a positive constant α′ such that

LV ≤ α′1K ,

then X is Harris recurrent and possesses a unique stationary measure π.

ii) Moreover, if there exist a function f ≥ 1 and a positive constant α such that

LV ≤ −αf + α′1K ,

then X is positive Harris recurrent, π is a probability measure and π(f) < +∞.

iii) Moreover, if f ≥ V , then X is ergodic and there exist C, v > 0 such that

‖µt − π‖1+V ≤ C(1 + µ0(V ))e−vt.

Note that the exponential rate v provided in Theorem 2.6 is not explicit; if one wants to obtain
quantitative speeds of convergence, it is often useful to turn to ad hoc coupling methods (see [BCG+13b]
for instance). Also, note that Assumption 2.2 is su�cient but not necessary to derive ergodicity from a
Foster-Lyapunov criterion, since we only need the limits in (2.9) and (2.10) to be negative. Namely, we
only ask the fragmentation kernel Q(x, ·) to be not too close to 0 and 1, uniformly over x.

Remark 2.7 (Construction of V ): If we are able to prove a Foster-Lyapunov criterion with a norm-
like function V , we want to choose V as explosive as possible (i.e. such that V (x) goes quickly to +∞
when x→ 0 or x→ +∞) to obtain better bounds for the tail of π, since π(V ) is �nite: this is the purpose
of Section 3. If we de�ne V with (2.3), this choice brings us to choose a and b as large as possible in
Assumption 2.2. However, the larger a and b, the slower the convergence (because of the term µ0(V )),
so there is a balance to �nd here.

For many particular growth-fragmentation processes, it is possible to build a Lyapunov function of
the form x 7→ eθx, so that π admits exponential moments up to θ. We shall use a similar function in
Section 3 to obtain bounds for the tails of the stationary distribution. ♦

Proof of Theorem 2.5: We denote by ϕz the unique maximal solution of ∂ty(t) = τ(y(t)) with initial
condition z, and let a, b > 0 be as in Assumption 2.2. Firstly, we prove that compact sets are petite for
(Xt)t≥0. Let z2 > z1 > z0 > 0 and z ∈ [z0, z1]. Since τ > 0 on [z0, z2], the function ϕz is a di�eomorphism
from [0, ϕ−1z (z2)] to [z, z2]; let t = ϕ−1z0 (z2) be the maximum time for the �ow to reach z2 from [z0, z1].
Denote by Xz the process generated by (1.2) such that L (X0) = δz, and T

z
n the epoch of its nth jump.

Let A = U ([0, t]). For any x ∈ [z1, z2], we have

∫ ∞
0

P(Xz
s ≤ x)A (ds) ≥ 1

t

∫ t

0

P(Xz
s ≤ x|T z1 > ϕ−1z (z2))P(T z1 > ϕ−1z (z2))ds

≥ P(T z1 > ϕ−1z (z2))

t

∫ t

0

P(ϕz(s) ≤ x)ds

≥ P(T z1 > ϕ−1z (z2))

t

∫ ϕ−1
z (x)

0

ds

≥ P(T z1 > ϕ−1z (z2))

t

∫ x

z

(ϕ−1z )′(u)du. (2.4)
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Since β and τ are bounded on [z0, z2], the following inequalities hold:

P(T z1 > ϕ−1z (z2)) = exp

(
−
∫ ϕ−1

z (z2)

0

β(ϕz(s))ds

)
= exp

(
−
∫ z2

z

β(u)(ϕ−1z )′(u)du

)

≥ exp

(
−(z2 − z0) sup

[z0,z2]

(
β(ϕ−1z )′

))

≥ exp

(
−(z2 − z0)

(
sup

[z0,z2]

β

)(
inf

[z0,z2]
τ

)−1)
,

since inf [z0,z2](ϕ
−1
z )′ =

(
sup[z0,z2] τ

)−1
. Hence, there exists a constant C such that, (2.4) writes, for

x ∈ [z1, z2], ∫ ∞
0

P(Xz
s ≤ x)A (ds) ≥ C(x− z1),

which is also ∫ ∞
0

δzPsA (ds) ≥ CL[z1,z2],

where LK is the Lebesgue measure restricted to a borelian set K. Hence, by de�nition, [z0, z1] is a petite
set for the process X.

Now, let us show that the process (Xt) is L(0,∞)-irreducible with similar arguments. Let z1 > z0 > 0
and z > 0. If z ≤ z0,

E
[∫ ∞

0

1{z0≤Xzt≤z1}dt

]
≥ P(T z1 > ϕ−1z (z1))E

[∫ ∞
0

1{z0≤Xzt≤z1}dt

∣∣∣∣T z1 > ϕ−1z (z1)

]
≥ exp

(
−(z1 − z0)

(
sup

[z0,z1]

β

)(
inf

[z0,z1]
τ

)−1)
ϕ−1z0 (z1). (2.5)

If z > z0, for any t0 > 0 and n ∈ N, the process Xz has a positive probability of jumping n times

before time t0. Recall that
∫ 1

0
yaQ(x, dy) ≤ M(a) < 1. For any n > (log(z) − log(z0)) log(M(a)−1)−1,

let 0 < ε < za0 − (zM(a)n)a. By continuity of (x, t) 7→ ϕx(t), there exists t0 > 0 small enough such that,
∀(x, t) ∈ [0, z]× [0, t0],

ϕx(t)a ≤ xa +
ε

n+ 1
, E[(Xz

t0)a|T zn ≤ t0] ≤ (zM(a)n)a + ε < za0 .

Then, using Markov's inequality

P(Xz
t0 ≤ z0|T

z
n ≤ t0 < T zn+1) ≥ 1−

E[(Xz
t0)a|T zn ≤ t0 < T zn+1]

za0
> 0.

Then, P(Xz
t0 ≤ z0) > 0 for any t0 small enough, and, using (2.5)

E
[∫ ∞

0

1{z0≤Xzt≤z1}dt

]
≥ E

[∫ ∞
t0

1{z0≤Xzt≤z1}dt

∣∣∣∣Xz
t0 ≤ z0

]
P(Xz

t0 ≤ z0)

≥ exp

(
−(z1 − z0)

(
sup

[z0,z1]

β

)(
inf

[z0,z1]
τ

)−1)
ϕ−1z0 (z1)P(Xz

t0 ≤ z0)

> 0.

Aperiodicity is easily proven with similar arguments.
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We turn to the proof of the Lyapunov condition. For x ≥ 2, V (x) = xa and

LV (x) = a
τ(x)

x
V (x) + β(x)

∫ 1

0

V (xy)Q(x, dy)− β(x)V (x)

≤
(
a
τ(x)

x
− β(x)

)
V (x) + β(x)

∫ 1/x

0

(xy)−bQ(x, dy)

+ β(x)

∫ 2/x

1/x

2aQ(x, dy) + β(x)

∫ 1

2/x

(xy)aQ(x, dy)

≤
(
a
τ(x)

x
− β(x)

)
V (x) + β(x)

(
x−bMx(−b) + 2a + xaMx(a)

)
≤
(
a
τ(x)

x
− β(x)

(
1−Mx(a)− Mx(−b)

xbV (x)
− 2a

V (x)

))
V (x). (2.6)

For x ≤ 1, V (x) = x−b and

LV (x) =

(
−bτ(x)

x
+ β(x)(Mx(−b)− 1)

)
V (x). (2.7)

Combining γ∞ > ν∞ − 1 with Assumption 2.2.i), for x large enough we have

a
τ(x)

x
− β(x)

(
1−Mx(a)− Mx(−b)

xbV (x)
− 2a

xV (x)

)
≤ aτ(x)

x
− β(x) (1−M(a) + o(1)) ≤ 0.

Likewise, combining γ0 > ν0 − 1 with Assumption 2.2.ii),

−bτ(x)

x
+ β(x)(Mx(−b)− 1) ≤ −bτ(x)

x
+ β(x) (M(−b)− 1) ≤ 0

for x close enough to 0. Then, Theorem 2.6.i) entails that X is Harris recurrent, thus admits a unique
stationary measure (see for instance [KM94]).

Note that (2.6) writes
LV (x) ≤ −β∞(1−M(a) + o(1))xa+γ∞ ,

so that, if we can choose a ≥ −γ∞, then

lim
x→∞

−β∞(1−M(a) + o(1))xa+γ∞ < 0.

Likewise, (2.7) writes
LV (x) ≤ −(bτ0 + o(1))xν0−1−b, (2.8)

so, if b ≥ ν0 − 1, we get
lim
x→0
−(bτ0 + o(1))xν0−1−b < 0.

Then, there exist positive constants A,α, α′

LV ≤ −αf + α′1[1/A,A],

where f ≥ 1 is a smooth function, such that f(x) = xν0−1−b for x close to 0, and f(x) = xa+γ∞ for x
large enough. Then, Theorem 2.6.ii) ensures positive Harris recurrence for X.

Now, if we assume γ∞ ≥ 0 and ν0 ≤ 1 in addition, then there exists α > 0 such that

lim
x→+∞

a
τ(x)

x
− β(x)

(
1−Mx(a)− Mx(−b)

xbV (x)
− 2a

xV (x)

)
≤ lim
x→+∞

a
τ(x)

x
− β(x) (1−M(a) + o(1)) ≤ −α, (2.9)
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and

lim
x→0
−bτ(x)

x
+ β(x)(Mx(−b)− 1) ≤ lim

x→0
−bτ(x)

x
+ β(x) (M(−b)− 1) ≤ −α. (2.10)

Combining (2.6) and (2.7) with (2.9) and (2.10) respectively, and since V is bounded on [1, 2], there exist
positive constants A,α′ such that

LV ≤ −αV + α′1[1/A,A].

The function V is thus a Lyapunov function, for which Theorem 2.6.iii) entails exponential ergodicity for
X.

3 Tails of the Stationary Distribution

In this section, we use, and reinforce when necessary, the results of Theorem 2.5 to study the asymptotic
behavior of the tails of distribution of the stationary measure π. We will naturally divide this section
into two parts, to study the behavior of π(dx) as x → 0 and as x → +∞. Hence, throughout this
section, we shall assume that X satis�es Assumptions 2.1, 2.2 and 2.3. The key point is to use the fact
that π(f) < +∞ provided in the second part of Theorem 2.6. We recall that L stands for the Lebesgue
measure on R.

In order to compare our results to those of [BCG13a, Theorem 1.8], we consider the same framework
and make the following assumption:

Assumption 3.1 (Density of Q and π). Assume that:

i) For any x > 0, Q(x, ·) � L and Q(x, dy) = q(y)dy, and there exist constants q0, q1 ≥ 0 and
µ0, µ1 > −1 such that

q(x) =
x→0

q0x
µ0 + o(xµ0), q(x) =

x→1
q1(1− x)µ1 + o((1− x)µ1).

ii) π � L and π(dx) = G(x)dx, and there exist constants G0, G∞, G̃∞ > 0 and α0, α∞, α̃∞ ∈ R such
that

G(x) ∼
x→0

G0x
α0 , G(x) ∼

x→+∞
G∞x

α∞ exp
(
−G̃∞xα̃∞

)
.

We do not require the coe�cients q0, q1 to be (strictly) positive, so that this assumption can also
cover the case Q(x, dy) = δr(dy) for 0 < r < 1, which is widely used for modeling physical or biological
situations. For the sake of simplicity, the hypotheses concerning the density of π (resp. Q) in the
neighborhood of both 0 and +∞ (resp. 0 and 1) are gathered in Assumption 3.1, but it is clear that we
only need either the assumption on the left behavior or on the right behavior to precise the fractional
moments or the exponential moments of the stationary distribution. In the same spirit, we could weaken
Q(x, ·) � L into Q(x, ·) admitting a density with respect to L only in the neighborhoods of 0 and 1,
bounded above by q.

Theorem 3.2. Let X be the PDMP generated by (1.2). If Assumptions 2.1, 2.2 and 2.3 hold, and if

b ≥ ν0 − 1, (3.1)

then ∫ 1

0

xν0−1−bπ(dx) < +∞.

Moreover, if Assumption 3.1 holds and µ0 + 2− ν0 > 0, then

α0 ≥ µ0 + 1− ν0.

8
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Proof: The �rst part of the theorem is a straightforward consequence of (2.8).

Combining Assumption 2.2.ii) with Assumption 3.1.i), we naturally have to take b < µ0 + 1. Thus,
for any ε ∈ (0, µ0 + 1), we take b = µ0 + 1 − ε. De�ne V with (2.3) as before, so that, for x ≤ 1,
V (x) = x−µ0−1+ε and

LV (x) ≤
(
−bτ(x)

x
+ β(x)(M(−b)− 1)

)
V (x) ∼

x→0
−bτ0xν0−µ0−2+ε.

Applying Theorem 2.6.ii) with f(x) = xν0−µ0−2+ε, which tends to +∞ when µ0 + 1− ν0 > −1, we have
π(f) < +∞ so ∫ 1

0

xα0+ν0−µ0−2+εdx < +∞, α0 > 1 + µ0 − ν0 + ε,

for any ε > 0. Thus α0 ≥ µ0 + 1− ν0.

Now, we turn to the study of the tail of distribution of π(dx) as x→ +∞. Since choosing a polynomial
function as a Lyapunov function can only provide the existence of moments for π, we need to introduce
a more coercive function to study in detail the behavior of its tail of distribution and get the existence
of exponential moments. We begin with the following assumption.

Assumption 3.3. Let θ = γ∞ + 1 − ν∞. Assume there exists 0 < C < 1 such that, for any ε > 0 and
0 < η < β∞(θτ∞)−1, there exists x0 > 0 such that

sup
x≥x0

∫ 1

0

y−ε exp
(
ηxθ(yθ − 1)

)
Q(x, dy) < 1− C.

It is easy to understand this assumption if

Ṽ (x) = x−εeηx
θ

(3.2)

and if L (Y (x)) = Q(x, .); then, Assumption 3.3 rewrites

sup
x≥x0

E[Ṽ (xY (x))]

Ṽ (x)
≤ 1− C.

Once again, this is asking the fragmentation kernel to be not too close to 1. As we will see, this is quite
natural when Q has a regular behavior around 0 and 1.

Proposition 3.4. Assumption 3.3 holds for any C ∈ (0, 1) whenever Assumption 3.1.i) holds.

Proof: De�ne Ṽ as in (3.2) for x ≥ 1, larger than 1, and increasing and smooth on R. For any (large)
x > 0, for any (small) δ > 0,

E[Ṽ (xY (x))] = E[Ṽ (xY (x))|Y (x) ≤ 1− δ]P(Y (x) ≤ 1− δ) + E
[
Ṽ (xY (x))1{Y (x)>1−δ}

]
≤ Ṽ ((1− δ)x) + E

[
Ṽ (xY (x))1{Y (x)>1−δ}

]
. (3.3)

It is clear that, for δ < 1,

lim
x→+∞

Ṽ ((1− δ)x)

Ṽ (x)
= lim
x→+∞

(1− δ)−ε exp
(
−η(1− (1− δ)θ)xθ

)
= 0.

9
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On the other hand, using Hölder's inequality with q > max(1,−1/µ1) and p−1 + q−1 = 1, as well as a
Taylor expansion, there exists some constant Cδ ≥ 1 such that∫ 1

1−δ
Ṽ (xy)q1(1− y)µ1dy = q1Ṽ (x)

∫ δ

0

exp
(
ηxθ((1− y)θ − 1)

)
yµ1(1− y)−εdy

≤ q1
(1− δ)ε

[∫ δ

0

yqµ1dy

]1/q
Ṽ (x)

[∫ δ

0

exp
(
ηpxθ((1− y)θ − 1)

)
dy

]1/p

≤ CδṼ (x)

[∫ δ

0

exp
(
−ηpθxθy

)
dy

]1/p

≤ CδṼ (x)

[
1− exp

(
−ηpθxθδ

)
ηpθxθ

]1/p
.

The term (ηpθxθ)−1(1 − exp
(
−ηpθxθδ

)
) converges to 0 as x → +∞, so that there exists x0 > 0 such

that, for any x ≥ x0 and C ∈ (0, 1),[
1− exp

(
−ηpθxθδ

)
ηpθxθ

]1/p
≤ 1− C

2Cδ
,

Ṽ ((1− δ)x)

Ṽ (x)
≤ 1− C

2
.

Plugging these bounds into (3.3) achieves the proof.

Now, we can characterize the weight of the asymptotic tail of π and recover [BCG13a, Theorem 1.7].

Theorem 3.5. Let X be the PDMP generated by (1.2). If Assumptions 2.1, 2.2, 2.3 and 3.3 hold, then∫ +∞

1

xν∞−1−ε exp
(
ηxθ
)
π(dx) < +∞, θ = γ∞ + 1− ν∞, η =

Cβ∞
θτ∞

, ε > 0.

Moreover, if Assumption 3.1 is also in force, then either:

• α̃∞ > γ∞ + 1− ν∞;

• α̃∞ = γ∞ + 1− ν∞ and G̃∞ > Cβ∞((γ∞ + 1− ν∞)τ∞)−1;

• α̃∞ = γ∞ + 1− ν∞, G̃∞ = Cβ∞((γ∞ + 1− ν∞)τ∞)−1 and α∞ ≥ −ν∞.

Remark 3.6 (Link with the estimates of [BCG13a]): Note that the hypotheses (2.3) and (3.1)
corresponds to the assumptions required for [BCG13a, Theorem 1.8] to hold, with the correspondence

µ0 ↔ µ− 1, ν0 ↔ α0, µ0 + 2− ν0 > 0↔ µ+ 1− α0 > 0.

Actually, the authors also assume this strict inequality to prove the existence of the stationary distribution,
which we relax here, and we need it only in Theorem 3.1 to provide a lower bound for α0, which rules
the tail of the stationary distribution in the neighborhood of 0. By using Lyapunov methods, there is no
hope in providing an upper bound for α0, but we can see that this inequality is optimal by comparing it
to [BCG13a, Theorem 1.8] so that, in fact,

α0 = µ0 + 1− ν0.

If ν0 > 1, we do not recover the same equivalents for the distribution of G around 0. This is linked to
the fact that there is a phase transition in the non-conservative equation at ν0 = 1, since the tail of G
relies deeply on the function

Λ(x) =

∫ x

1

λ+ β(y)

τ(y)
dy,

10
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where λ is the Malthusian parameter of the equation, which is the growth of the pro�les of the integro-
di�erential equation. However, we deal here with the conservative case, for which this parameter is
null. The bounds that we provide are indeed consistent with the computations of the proof of [BCG13a,
Theorem 1.8] in the case λ = 0.

Concerning the estimates as x → +∞, as mentioned above, we can not recover upper bounds, and
then sharp estimates, for α∞, G∞, α̃∞ with Foster-Lyapunov methods. From the proof of Theorem 3.5,
it is clear that the parameters η and θ are optimal if one wants to apply Theorem 2.6. Under second-
order-type assumptions like [BCG13a, Hypothesis 1.5], it is clear that

Λ(x) =

∫ x

1

β(y)

τ(y)
dy ∼

x→+∞

β∞
τ∞(γ∞ + 1− ν∞)

xγ∞+1−ν∞ .

This explains the precise value of η, but we pay the price of having slightly more general hypotheses
about Q than [BCG13a] with a factor C arising from Assumption 3.3, which leads to have no disjunction
of cases for α∞. Also, since we deal with the case λ = 0, the equivalent of the function Λ is di�erent from
the aforementioned paper when γ∞ < 0, so that max{γ∞, 0} does not appear in our computations. ♦

Proof of Theorem 3.5: Let Ṽ as in (3.2), that is

Ṽ (x) = x−εeηx
θ

,

with η, θ given in Theorem 3.5. Then, following the computations of the proof of Theorem 2.5, we get,
for x > x0,

LṼ (x) ≤
(
ηθτ∞x

θ−1+ν∞ − Cβ∞xγ∞ − ετ∞xν∞−1
)

(1 + o(1))Ṽ (x)

≤ −ετ∞xν∞−1(1 + o(1))Ṽ (x)

≤ −ετ∞
2
xν∞−1Ṽ (x).

Using Theorem 2.6.ii) with f(x) = xν∞−1Ṽ (x), the last inequality ensures that∫ +∞

1

f(x)π(dx) < +∞.

Now, in the setting of Assumption 3.1, the following holds:∫ +∞

1

f(x)π(dx) < +∞⇐⇒
∫ +∞

1

xν∞−1−ε+α∞ exp
(
ηxθ − G̃∞xα̃∞

)
dx < +∞. (3.4)

It is clear then that the disjunction of cases of Theorem 3.5 is the only way for the integral on the
right-hand side of (3.4) to be �nite.
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