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Abstract. Fault injection attacks are a real-world threat to cryptosystems, in particular
asymmetric cryptography. In this paper, we focus on countermeasures which guarantee
the integrity of the computation result, hence covering most existing and future fault at-
tacks. Namely, we study the modular extension protection scheme in previously existing
and newly contributed variants of the countermeasure on elliptic curve scalar multipli-
cation (ECSM) algorithms. We find that an existing countermeasure is incorrect and we
propose new “test-free” variant of the modular extension scheme that fixes it. We then
formally prove the correctness and security of modular extension: specifically, the fault
non-detection probability is inversely proportional to the security parameter. Finally, we
implement an ECSM protected with test-free modular extension during the elliptic curve
operation to evaluate the efficient of this method on Edwards and twisted Edwards curves.

Keywords: fault injection attack, modular extension, asymmetric cryptography, elliptic
curve cryptography, Edwards curves.

1 Introduction

Properly used cryptography is a key building block for secure information exchange. Thus,
implementation-level hacks must be considered seriously in addition to the threat of cyber-
attacks. In particular, fault injection attacks target physical implementations of secured devices
in order to induce exploitable errors.

Asymmetric cryptography Asymmetric cryptography addresses different needs such as key ex-
change and digital signature. RSA, Diffie-Hellman, and ElGamal have been used for decades,
and elliptic curve cryptography (ECC) algorithms such as ECDSA [24] are more and more de-
ployed. ECC pairing-based cryptography has recently been accelerated in practice and is thus
becoming practical [36]. For example, the construction of “pairing-friendly” elliptic curves is an
active subject [23]. Homomorphic encryption schemes are getting more practical and are pro-
gressively considered viable solutions for some real-world applications requiring strong privacy.
All these algorithms use large numbers and take place in mathematical structures such as finite
rings and fields, which enables powerful mathematical properties but also facilitates attacks.
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Fault Attacks As put forward in the reference book on fault analysis in cryptography [27, Chp. 9],
there are three main categories of fault attacks.
1) Safe-error attacks consist in testing whether an intermediate variable is dummy (usually in-
troduced against simple power analysis [30]) or not, by faulting it and looking whether there is
an effect on the final result.
2) Cryptosystem parameter alterations aim at weakening the algorithm in order to ease key ex-
traction. For example [10], invalid-curve fault attacks consist in moving an ECC computation to
a weaker curve, enabling the attacker to use cryptanalysis attacks exploiting the faulty outputs.
3) Finally, the most serious attacks belong to the differential fault analysis (DFA) category.
Often the attack path consists in comparing correct and faulted outputs, like in the well-known
BellCoRe attack on CRT-RSA (RSA sped up using the Chinese Remainder Theorem), or the
sign-change fault attack on ECC.

The BellCoRe attack [15] on CRT-RSA introduced the concept of fault injection attacks. It
is very powerful: faulting the computation even in a very random way yields almost certainly
an exploitable result allowing to recover the secret primes of the RSA modulus N = pq.

The sign-change attack [14] on ECC consists in changing the sign of an intermediate elliptic
curve point in the midst of an elliptic curve scalar multiplication (ECSM). The resulting faulted
point is still on the curve so the fault is not detected by traditional point validation countermea-
sures. Such a fault can be achieved by for instance changing the sign in the double operation of
the ECSM algorithm (line 3 of Alg. 1). If the fault injection occurs during the last iteration of

the loop, then the final result Q̂ = [−2
∑n−1
i=1 ki2

i−1]P + k0P = −Q+ 2k0P , i.e., either Q̂ = −Q
or Q̂ = −Q+2P depending on k0, which reveals the value of k0 to the attacker. This process can
be iterated to find the other bits of the scalar, and optimizations exist that trade-off between
the number of necessary faulted results and the required exhaustive search.

Input : P ∈ E , k =
∑n−1
i=0 ki2

i (n is the scalar size in bits, where ki ∈ {0, 1})
Output : [k]P

1 Q← O . O is the point at infinity

2 for i← n− 1 down to 0 do
3 Q← 2Q . ECDBL

4 if ki = 1 then Q← Q+ P . ECADD

5 return Q

Algorithm 1: Double-and-add left-to-right scalar multiplication on elliptic curve E .

Both RSA and ECC algorithms continue to be the target of many new fault injection
attacks: see [3,31,11,12,21] just for some 2014 papers. Besides, this topic is emerging and other
new fault attacks will appear sooner or later. Hence, the need for efficient and practical generic
countermeasures against fault attacks is obvious. David Wagner from UC Berkeley concurs
in [40]: “It is a fascinating research problem to establish a principled foundation for security
against fault attacks and to find schemes that can be proven secure within that framework.”

Countermeasures Verifications compatible with mathematical structures can be applied either
at computational or at algorithmic level.

Algorithmic protections have been proposed by Giraud [22] (and many others [16,32,29]) for
CRT-RSA, which naturally transpose to ECC, as shown in [28]. These protections are imple-
mentation specific (e.g., depend on the chosen exponentiation algorithm) and are thus difficult
to automate, requiring specialized engineering skills.
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Computational protections have been pioneered by Shamir in [37] using modular extension,
initially to protect CRT-RSA. The idea is to carry out the same computation in two different
algebraic structures allowing to check the computation before disclosing its result. For example
protecting a computation in Fp consists in carrying out the same computation in Zpr and Fr (Zpr
is the direct product of Fp and Fr), where r is a small number (r � p); the computation in Zpr
must match that of Fr when reduced modulo r, if not an error is returned, otherwise the result in
Zpr is reduced modulo p and returned. The principle of modular extension is sketched in Fig. 1.
This method operates at low level (integer arithmetic), thereby enabling countermeasures (and
optimizations) to be added on top of it. They are thus easily maintained, which explains why
this method is quite popular. Indeed, there is a wealth of variants for CRT-RSA stemming from
this idea [1,39,26,13,17,19], as well as a few proofs-of-concept transposing it to ECC [14,2,25].
Despite the nonexistence of literature, the same idea could apply to post-quantum code-based
cryptography, pairing, and homomorphic computation for instance. Therefore, our paper focuses
on computational countermeasures.

Fr

Fr

= error

output Fp

false

tr
ue

Fp

Zpr

Fp

Fig. 1. Sketch of the principle of modular ex-
tension.

On the one hand, the variety of CRT-RSA
countermeasures shows that fault attacks are a
threat that is taken seriously by both the aca-
demic and the industrial communities. On the
other hand, it bears witness to the artisanal way
these countermeasures were put together. Indeed,
the absence of formal security claims and of proofs
added to the necessity of writing implementations
by hand results in many weaknesses in existing
countermeasures and thus in many attempts to
create better ones.

Contributions The countermeasure described in [2] can be applied only on Weierstrass curve, and
the overhead computation is 48% for curve with parameters on 256 bits. The main disadvantage
of this countermeasure is the need for point testing during the addition and doubling operations.
These tests can differ in Zpr and Fr, hence a loose security proof, because the computation in
Fr can be trapped in the point at infinity.

In this paper, we take advantage of the speed-up record on ECDSA computation using
the twisted Edwards curve Ed25519 [6] coded with NaCl crypto-library [9]. We propose a new
countermeasure against faults injection based on modulus extension with only one “test-free”
addition operation using complete and unified formulas of addition point on Edwards and twisted
Edwards curves. This allows for a synchronized computation in Fp and Fr while computing in
Zpr, as opposed to the state-of-the-art countermeasures, such as [14,2,25]. Our countermeasure
is new insofar as we give explicit conditions on the prime r: they happen to be easily met in
the case of Edwards curves (see Sec. 6.1), whereas they restrict the number of possible r to
a little number of values for the popular twisted Edwards curves (see Sec. 6.2). The overhead
computation of this countermeasure is 28% for Edwards curve and 39% for twisted Edwards
curve on 32-bit processors, such as an ARM Cortex-M4.

Outline The rest of the paper is organized as follows. Section 2 described the details of the
existing countermeasure for ECC. Section 3 is the theoretical analysis of our new countermeasure
using the modular extension with test-free. Section 4 described the mathematical background
on the Edwards curves. The description of our countermeasure to make the modular extension
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without test in the elliptic curve operation is in Section 5. Section 6 explains the overhead of
computation and some examples of our countermeasure. Section 7 concludes.

2 Existing Countermeasures for ECC

Countermeasures against fault injection attacks have been proposed for elliptic curve compu-
tations, but they are actually incorrect. For example, in [14], Blömer, Otto, and Seifert (BOS)
propose a countermeasure based on the modular extension idea of Shamir for CRT-RSA [37].
The problem is that the modular extension scheme cannot actually be applied as is to Weier-
strass elliptic curve, because the tests in the ECDBL and ECADD operations are not true at
the same times for the computation in Zpr and the one in Fr, which breaks the scheme and
will yield false negatives. This behavior can be a serious security issue as it reveals information
about the inputs.

In 2010 Joye patented [25] essentially the same countermeasure except it uses Fr2 and Zpr2
instead of Fr and Zpr, which does not address the raised issues.

In [2], Baek and Vasyltsov (BV) propose a countermeasure based on modular extension and
point verification. The particularity of this countermeasure is that instead of computing a sibling
ECSM on a smaller curve E(Fr) to compare with its redundant counterpart over E(Zpr), it only
checks whether the point obtained by reducing the result E(Zpr) modulo r is on the E(Fr) curve
(i.e., whether it satisfies the curve equations modulo r). Because of that, BV does not suffer
from BOS problem. However, the correctness of BV comes with a drawback: indeed, faults may
go undetected if they happen before O (the point at infinity) is reached in the computation
modulo r as the intermediate point quickly tends to (0 : 0 : 0) in projective coordinates and
stays there until the end.

It is actually possible to get the best of both world: what is needed is BOS approach (i.e.,
pure modular extension scheme) but without the problematic tests. Luckily, Edwards curves
allow to perform ECC without tests thanks to a complete addition law, as will be detailed in
Sec. 4. But before, we will formally analyze the security of the modular extension scheme when
the implementation is test-free.

3 Security Analysis of Modular Extension

Definition 1 (Fault model). We consider an attacker who can fault data by randomizing
or zeroing any intermediate variable, and fault code by skipping any number of consecutive
instructions.

Remark 1. The three fault models have been described several times in the literature. For ex-
ample, randomizing faults are discussed in [15], zeroing faults in [18], and instruction skip faults
in [35].

Definition 2 (Attack order). We call order of the attack the number of faults (in the sense
of Def. 1) injected during the target execution.

In the rest of this section, we focus mainly on the resistance to first-order attacks on data.

Definition 3 (Secure algorithm). An algorithm is said secure if it is correct and if it either
returns the right result or an error constant when faults have been injected, with an overwhelming
probability.
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Theorem 1 (Security of test-free modular extension). Test-free algorithms protected us-
ing the modular extension technique, are secure as per Def. 3. In particular, the probability of
non-detection is inversely proportional to the security parameter r.

Proof. Faulted results are polynomials of faults. The result of an asymmetric cryptography
computation can be written as a function of a subset of the intermediate variables, plus some
inputs if the intermediate variables do not suffice to finish the computation. We are interested
in the expression of the result as a function of the intermediate variables which are the target of
a transient or permanent fault injection. We give the formal name x̂ to any faulted variable x.
For convenience, we denote them by x̂i, 1 ≤ i ≤ n, where n ≥ 1 is the number of injected faults.
The result consists in additions, subtractions, and multiplications of those formal variables (and
inputs). Such expression is a multivariate polynomial. If the inputs are fixed, then the polynomial
has only n formal variables. We call it P (x̂1, . . . , x̂n). For now, let us assume that n = 1, i.e.,
that we face a single fault. Then P is a monovariate polynomial. Its degree d is the multiplicative
depth of x̂1 in the result.

A fault is not detected if and only if P (x̂1) = P (x1) mod r, whereas P (x̂1) 6= P (x1) mod p.
Notice that the latter condition is superfluous insofar since if it is negated then the effect of the
fault does not alter the result in Fp.

Non-detection probability is inversely proportional to r. As the faulted variable x̂1 can take
any value in Zpr, the non-detection probability Pn.d. is given by:

Pn.d. =
1

pr − 1
·

∑
x̂1∈Zpr\{x1}

1P (x̂1) = P (x1) mod r

=
1

pr − 1
·
(
− 1 + p

r−1∑
x̂1=0

1P (x̂1) = P (x1) mod r

)
. (1)

Here, 1condition is an indicator function: it is equal to 1 (resp. 0) if the condition is true (resp.
false).

Let x̂1 ∈ Zr, if P (x̂1) = P (x1) mod r, then x̂1 is a root of the polynomial ∆P (x̂1) =
P (x̂1)− P (x1) in Zr. We denote by #roots(∆P ) the number of roots of ∆P over Zr. Thus (1)
computes (p×#roots(∆P )− 1)/(pr − 1) ≈ #roots(∆P )/r.

Study of the proportionality constant. A priori, bounds on this value are broad since #roots(∆P )
can be as high as the degree d of ∆P in Zr, i.e., min(d, r − 1). However, in practice, ∆P looks
like a random polynomial over the finite field Zr, for several reasons:

– inputs are random numbers in most cryptographic algorithms, such as probabilistic signature
schemes,

– the coefficients of ∆P in Zr are randomized due to the reduction modulo r.

In such case, the number of roots is very small, despite the possibility of d being large. See for
instance [33] for a proof that the number of roots tends to 1 as r → ∞. Interestingly, random
polynomials are still friable (i.e., they are clearly not irreducible) in average, but most factors
of degree greater than one happen not to have roots in Zr. Thus, we have Pn.d. & 1

r , meaning
that Pn.d. ≥ 1

r but is close to 1
r . A more detailed study of the theoretical upper bound on the

number of roots is available in Sec. A.
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The same law applies to multiple faults. In the case of multiple faults (n > 1), then the prob-
ability of non-detection generalizes to:

Pn.d. = 1
(pr−1)n ·

∑
x̂1,...,x̂n∈Zpr\{x1}×...×Zpr\{xn}

1P (x̂1,...,x̂n)=P (x1,...,xn) mod r

= 1
(pr−1)n ·

∑
x̂2,...,x̂n∈

∏n
i=2 Zpr\{xi}

 ∑
x̂1∈Zpr\{x1}

1P (x̂1,...,x̂n)=P (x1,...,xn) mod r


= 1

(pr−1)n ·
∑

x̂2,...,x̂n∈
∏n

i=2 Zpr\{xi}

[p×#roots(∆P )− 1]

= 1
(pr−1)n · (pr − 1)n−1 [p×#roots(∆P )− 1]

=
p×#roots(∆P )− 1

pr − 1
.

Therefore, the probability not to detect a fault when n > 1 is identical to that for n = 1. Thus,
we also have Pn.d. ≈ 1

r in the case of multiple faults of the intermediate variables7.

4 Edwards Curves

In mathematics, the Edwards curves are a family of elliptic curves studied by Harold M. Ed-
wards in 2007 [20]. Technically, an Edwards curve is not elliptic, because it has singularities;
but resolving those singularities produces an elliptic curve. The concept of elliptic curves over
finite fields is widely used in elliptic curve cryptography. Applications of Edwards curves to
cryptography were developed by Bernstein and Lange: they pointed out several advantages of
the Edwards form in comparison to the more well known Weierstrass form.

4.1 Edwards curves over large-characteristic fields

Definition 4 (Edwards curves). On the finite field Fp with p a prime number, an elliptic
curve in Edwards form has parameters c, d in the finite field Fp and coordinates (x, y) satisfying
the following equation:

x2 + y2 = c2(1 + dx2y2), (2)

with cd(1− c4d) 6= 0.

The main advantage to use the Edwards curves is that addition formulas are unified : doubling
and addition operations are the same. Affine unified addition formula is (x1, y1) + (x2, y2) =
(x3, y3), where: {

x3 = x1y2+y1x2

c(1+dx1x2y1y2)
,

y3 = y1y2−x1x2

c(1−dx1x2y1y2)
.

(3)

The affine negation formula is as expected: −(x1, y1) = (−x1, y1).
The neutral element of the curve is the point (0, c). Contrary to Weierstrass curves, this

point is not special (there is no abstract “point at infinity”), but verifies the curve equation.
The point (0,−c) has order 2. The points (c, 0) and (−c, 0) have order 4.

7 Note that this study does not take correlated faults into account.
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Bernstein and Lange [7] proved that if d is not a square in Fp then the unified addition law is
complete. This means that the addition formula is valid for all points, with no exception. That
is one of the advantages of Edwards curves over Weierstrass curves in which the addition law is
not complete: a complete addition law provides some resistance to side-channel attacks.

4.2 Twisted Edwards curves over large-characteristic fields

Twisted Edwards curves are a generalization of Edwards curves [5].

Definition 5 (Twisted Edwards curves). Let p a prime number. On the finite field Fp, an
elliptic curve in twisted Edwards form has parameters a, d in the finite field Fp and coordinates
(x, y) satisfying the following equation:

ax2 + y2 = 1 + dx2y2, (4)

with ad(a− d) 6= 0.

Like Edwards curves, the addition formulas are unified. Affine unified addition formula is
(x1, y1) + (x2, y2) = (x3, y3), where: {

x3 = x1y2+y1x2

1+dx1x2y1y2
,

y3 = y1y2−ax1x2

1−dx1x2y1y2
.

(5)

The neutral element is (0, 1). Affine negation formula is natural: −(x1, y1) = (−x1, y1).
Addition law is complete if a is a square and d is a non-square [7].

5 Practical Study

On Edwards curves and twisted Edwards curves, the addition law is complete: addition formulas
work for all pairs of input points. In particular, there is no troublesome point at infinity. Another
advantage of Edwards curve is the atomicity of the formula doubling and adding and the constant
time to protect the classical Side-Channel Attack. The addition law is unified, meaning that there
are no test to verify if the two input points are equal, opposite or different. To be more efficient,
we use the unified projective coordinates to the addition law ECADD-complete-unified named
“add-2007-bl-2” on [8] or on [7, Sec. 4, page 9].

The ECSM with modular extension protection using complete unified addition formulas
is given in Alg. 2. The first phase can compute offline, because find r verifies the lemmas 1
and 2 is not trivial. The second phase is composed by two ECSM computation online. The
first ECSM computation consists in multiplying the point P with the scalar k on the ring Zpr
using the parameters defined later in this section by the proprieties 1 or 2. The second ECSM
computation is the multiplication of the point P ′ with the scalar k on the small curve over
Fr using the parameters defined in the lemmas 1 or 2. It is worthwhile to note that these two
ECSM share the same code (see. Alg. 3).

Given an elliptic curve over Fp and a point (xG, yG), we define by λ the multiple of p to add
when the point on curve equation is plunged from Fp to Z. Formally,

Definition 6 (Parameter λ for Edwards curves). Given an Edwards elliptic curve of equa-
tion (2), the parameter λ is the integer satisfying the relationship in Z:

x2G + y2G = c2(1 + dx2Gy
2
G) + λp.
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Input : P ∈ E(Fp), k ∈ Z
Output : Q = [k]P ∈ E(Fp)

Offline phase

Edwards Curves:

1 Compute λp = x2G + y2G − c2(1 + cx2y2)
2 repeat
3 Choose a random prime r < p
4 Compute x′G = XG mod r
5 Compute y′G = yG mod r
6 Compute c′ = c2 + λp mod r

7 Compute d′ = dc2

c2+λp
mod r

until x′G 6= 0 and y′G 6= 0 and c′d′(1 −
c′4d′) 6= 0 and c′ a square and d′ a no-
square

. r verifies the lemma 1

Twisted Edwards Curves:

1 Compute λ = (1 + dx2Gy
2
G − ax2G + y2G)÷ p

2 Find all the factor r smaller than p of λ
3 for each factor r do
4 Compute x′G = xG mod r
5 Compute y′G = yG mod r
6 Compute a′ = a mod r
7 Compute d′ = d mod r
8 if x′G 6= 0 and y′G 6= 0 and a′d′(a′−d′) 6=

0 and a′ a square and d′ a no-square
then

9 break . r verifies the lemma 2

else
10 r does not work

11 Determine the small curve E(Fr) with parameter c′ (or a′) and d′ , and a point P ′(x′G, y
′
G) is on

that curve.
12 Determine the combined curve E(Zpr) with parameter C = CRT (c, c′) (or A = CRT (a, a′)) and

D = CRT (d, d′) . using properties 1 and 2.

Online phase

13 (Xpr : Ypr : Zpr) = ECSM(P, k, E(Zpr)) . without test on the point and on the scalar value

14 (Xr : Yr : Zr) = ECSM(P ′, k, E(Fr)) . without test on the point and on the scalar value

15 if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr) then
16 return (Xpr mod p : Ypr mod p : Zpr mod p)

else
17 return error

Algorithm 2: ECSM with modular extension protection using complete unified addition formu-

las.
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Definition 7 (Param. λ for twisted Edwards curves). Given a twisted Edwards elliptic
curve of equation (4), the parameter λ is the integer satisfying the following relationship in Z:

ax2G + y2G = 1 + dx2Gy
2
G + λp.

5.1 Edwards curves

Lemma 1. Let p be a prime and an Edwards curve over Fp as per definition 4, parameterized
by c, d. Let λ as per definition 6.

Let r be a prime number r < p, such that c2 + λp is a non-zero square in Fr, xG mod r 6= 0
and yG mod r 6= 0. The set of points which satisfy Er : x2 + y2 = c′2(1 + d′x2y2) mod r with{

c′2 = c2 + λp mod r and

d′ = dc2

c2+λp mod r

is an Edwards curve, generated by the point (x′G, y
′
G) = (xG mod r, yG mod r).

If the parameters c′ and d′ satisfy c′d′(1− c′4d′) 6= 0 and d′ is not a square in the finite field
Fr, then the ECSM computation on this small Edwards curve E(Fr) is complete, i.e., can be
computed without point or scalar conditional tests.

Proof. Let r a prime number smaller than p. If c, d, p, λ verify the conditions given in definitions 4
and 6, and if c2 + λp is a non-zero square in Fr, then we have on Z:

x2G + y2G = c2(1 + dx2Gy
2
G) + λp

= (c2 + λp) + c2dx2Gy
2
G.

As by hypothesis (c2 + λp) mod r 6= 0, then we have in Fr:

x2G + y2G = (c2 + λp)

(
1 +

c2d

c2 + λp
x2Gy

2
G

)
.

As in addition (c2 + λp) is a square in Fr, we have in Fr:

x2G + y2G =
(√

c2 + λp
)2(

1 +
c2d

c2 + λp
x2Gy

2
G

)
.

By definition 4, the parameter c′ =
√
c2 + λp in Fr and d′ = c2d

c2+λp in Fr with the assumption

c′d′(1 − c′4d′) 6= 0 are the parameters of the Edwards curve Er and the point (x′G, y
′
G) =

(xG mod r, yG mod r) is on the curve E(Fr) by curve construction.
If xG mod r 6= 0 and yG mod r 6= 0 then the order of the point (x′G, y

′
G) is greater than 4,

because the point at infinity and the point of order 2 on E(Fr) have the x-coordinate equal to
zero, and the point of order 4 on E(Fr) has the y-coordinate equal to zero.

If d′ is not a square in Fr, then the addition law on this small curve is unified and complete [7].
Thus there is no need for point verification testing when performing additions in an ECSM, and
the scalar can be an integer greater than the order of the small curve E(Fr).

For the purpose of the modular extension countermeasure, we extend the notion of Edwards
curve to rings8 (such as Zpr).
8 Similar idea can be found in [14,2,25]; we explicit it here for the article to be self-contained.

9



Proposition 1. Let an Edwards curve defined on Fp with the parameters c, d and the point
(xG, yG). If a random number r verifying the lemma 1 can be found to define the Edwards curve
E(Fr) with the parameters c′, d′, then C = CRT (c, c′) and D = CRT (d, d′) are the parameters
of an Edwards elliptic curve over the rings Zpr. This curve parameters permit to detect a fault
thanks to the comparison at line 15 in the Algorithm 2.

Proof. We introduce the following notations:

– We denote by Ptp with p in index a point named Pt computed on the E(Fp);
– We denote by Ptr with r in index a point named Pt computed on the E(Fr);
– We denote by Ptpr with pr in index a point named Pt computed on the E(Zpr).

The input value of the two ECSMs verify the equality using the projective coordinates,
because we have as input (xG, yG) for the combined curve and (x′G, y

′
G) for the small curve:

X- coordinate: x′G = xG mod r,

Y - coordinate: y′G = yG mod r,

Z- coordinate: 1 = 1 mod r.

(6)

The ECSM computation over the combined curve on the ring extension Zpr and the small
curve over finite field Fr do consist in the same sequence of addition operations (ECADD-
complete-unified).

Let Ppr and Pr be two points such that XPr
= XPpr

mod r, YPr
= YPpr

mod r, ZPr
= ZPpr

mod r. Let Qpr and Qr be two points such that XQr = XQpr mod r, YQr = YQpr mod r, ZQr =
ZQpr mod r.

We compute Rr the result of ECADD-complete-unified between Pr and Qr over E(Fr), and
Rpr the result of ECADD-complete-unified between Ppr and Qpr over E(Zpr).

The computation of the projective coordinates of Rpr is composed by addition, subtraction,
multiplication over the ring Zpr using the projective coordinates of Ppr and Qpr and the two
curve parameters C and D.

The computation of the projective coordinates of Rpr is composed by addition, subtraction,
multiplication over the ring Zpr using the projective coordinates of Pr and Qr and the two curve
parameters c′ and d′.

By construction C = CRT (c, c′) and D = CRT (d, d′), we have C mod r = c′ and D mod
r = d′, so the projective coordinates of Rpr are pairwise equal modulo r with the projective
coordinates of Rr.

As the ECADD-complete-unified operation conserves the equality of the point coordinates
value modulo r, we conclude that the ECSM computation conserves the equality of the point
coordinates value modulo r between the computation over the ring extension and over the finite
field Fr.

5.2 Twisted Edwards curves

Lemma 2. If a, d, p, λ verify the conditions defined in definition 7, then if we can choose a prime
factor r of λp such that xG mod r 6= 0 and such that the point (x′G, y

′
G) = (xG mod r, yG mod r)

generates the curve E(Fr) : a′x2 + y2 = 1 + d′x2y2 where a′ = a mod r and d′ = d mod r.
If the parameters a′ and d′ satisfy a′d′(a′ − d′) 6= 0, a′ is a square and d′ is a non-square

in the finite field Fr, then the ECSM computation on this small twisted Edwards curve E(Fr)
requires no point and scalar tests.
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Proof. If a, d, p, λ verify the conditions given in definition 7, then we have we have on Z:

ax2G + y2G = 1 + dx2Gy
2
G + λp.

Let r a prime factor of λp, then λp = 0 mod r. Hence we have:

(a mod r)(xG mod r)2 + (yG mod r)2

= 1 + (d mod r)(xG mod r)2(yG mod r)2.

By definition 5, the parameters (a′, d′) = (a mod r, d mod r) with the assumption a′d′(a′−d′) 6=
0 are the parameters of the twisted Edwards curve Er and the point (x′G, y

′
G) = (xG mod

r, yG mod r) is on the curve Er by curve construction.
By definition 5, the parameters (a′, d′) = (a mod r, d mod r) with the assumption a′d′(a′ −

d′) 6= 0 are the parameters of the twisted Edwards curve E(Fr) and the point (x′G, y
′
G) =

(xG mod r, yG mod r) is on the curve E(Fr) by curve construction.
If a′ is a square and d′ is a non-square in Fr, then the addition law on this small curve is

unified and complete [7], which implies that no point verification testing is required for each
addition in ECSM, and that the scalar can be an arbitrary integer, for instance greater than
the order of the small curve.

For the purpose of the modular extension countermeasure depicted in Alg. 2, we extend the
notion of twisted Edwards curve to rings8 (such as Zpr).

Proposition 2. Let a twisted Edwards curve defined on Fp with the parameters a, d and the
point (xG, yG). If a random number r verifying the lemma 2 can be found to define the twisted
Edwards curve E(Fr) with the parameters a′, d′, then A = a and D = d are the parameters of a
twisted Edwards curve over the ring Zpr.

If xG mod r 6= 0 then the point (x′G, y
′
G) is not the point at infinity. So, this point (x′G, y

′
G)

is a generator of a non-trivial subgroup of the elliptic curve E(Fr).
This curve parameters permit to detect a fault with the comparison at line 15 in the Algo-

rithm 2.

Proof. The input value of the two ECSM verify the equality using the projective coordinates,
because we have as input (xG, yG) for the combined curve and (x′G, y

′
G) for the small curve, as

described previously in Eqn. (6).
The ECSM computation over the combined curve on the ring extension Zpr and the small

curve over finite field Fr consist in the same sequence of addition operations (ECADD-complete-
unified). Namely, the sequence is given in Alg. 3, where E is either E(Zpr) or E(Fr).

By construction A = a,D = d and we have a mod r = a′ and d mod r = d′, so the projective
coordinates of Rpr are equal modulo r two by two with the projective coordinates of Rr.

As the ECADD-complete-unified operation conserves the equality of the point coordinates
value modulo r, we conclude that the ECSM computation conserves the equality of the point
coordinates value modulo r between the computation over the ring extension and over the finite
field Fr.

5.3 Discussion

About small curve requirements Both for Edwards and twisted Edwards curves, the small
curve is of course not a cryptographic-grade curve. Indeed, the modulus r is too small and the
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curve might have points of low order. However, the small curve is not intended to be the support
of a secure cryptographic operation: the computation on this curve actually remains internal to
fault-detection-enabled ECSM. That is, the small curve is intended here to carry out exactly
the same computation as that done in the curve on the extended ring, in order to enable the
integrity verification.

Resistance to some attacks As a general guideline, additional protection against the common
point attack [4] shall be enforced. This attack is based on curve parameters alteration, with the
hope that the obtained curve is weak. Thus, to thwart this attack, the curve parameters shall
be tested before and after the computation.

6 Performance

Our implementation uses the projective coordinates described in [7, Sec. 4, page 9]. Projective
unified addition version takes 10M+ 1S + 1C+ 1D+ 7A whereM is the cost of multiplication,
S is the cost of square, C is the cost of multiplying by c, D is the cost of multiplying by d, and
A abbreviates addition. The ECSM is the algorithm add-always left-to-right like described in
Alg. 3. The bitwidth of the modulus is denoted by n (e.g., n = 256 for Ed25519). We denote
by n′ the number of words of the modulus, that is n′ = 256/32 = 8 on 32-bit platforms (or
n′ = 256/16 = 16 on 16-bit platforms). We consider that cost of a multiplication of two numbers

composed by n′ words is n′
2
, cost of a square S is 0.8M and the addition A is n′. The Table 1

permits to compare the time of each ECADD-complete-unified, depending of the number of
words n′.

ECADD-complete-unified ECADD-complete-unified ECADD-complete-unified Total cost of the
Computational

Curves type
on Fp on Zpr on Fr countermeasure

overhead with:

n′ = 8 n′ = 16

Edwards 11.8n′2 + 7n′ 11.8n′2 + 30.6n′ + 18.8 19.8 11.8n′2 + 30.6n′ + 38.6 ≈ +28% ≈ +13%

Twisted Edwards 11.8n′2 + 7n′ 12.8n′2 + 32.6n′ + 29.8 19.8 12.8n′2 + 32.6n′ + 49.6 ≈ +39% ≈ +21%

Table 1. Theory of the elliptic curve addition cost

Input : P ∈ E , k =
∑n−1
i=0 ki2

i (n is the scalar size in bits, where ki ∈ {0, 1})
Output : [k]P

1 R0 ← P
2 R1 ← P
3 j ← n− 2
4 b← 0
5 while j ≥ 0 do
6 R0 ← R0 +Rb . ECADD-complete-unified

7 b← b⊕ kj
8 j ← j + kj − 1

9 return R0

Algorithm 3: Add-always left-to-right scalar multiplication on elliptic curve E .

6.1 Edwards curve example

For our experiment, we generate a Edwards curve on the finite field F2255−19 defined by x2+y2 =
1− 6x2y2 mod 2255 − 19.
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Using the Prop. [34, sec 3.1], this Edwards curve corresponds to an elliptic curve defined by
E : v2 = u3 + a2u

2 + a4u on F2255−19, with a2 = −5 and a4 = 49. The number of elements
defined on the curve computed by MAGMA tool [38] is:

#E(2255 − 19) = 2255 + 138694172605265013181071149003381840660.

We find a generator point (xG, yG) on the Edwards curve with:

xG =53746514586250388770967951861766021561817370662802863797712166095360241234126,

yG =19570081233560550597987439135529516381390903225319934175948181057081969418594.

The co-factor of the curve is 4. For the small curve, we can choose r = 2147499037; hence we have
c′ = 1800340494, d′ = 1430405543, x′G = 28751952 and y′G = 1290929995. These parameters
verify the lemma 1. The probability of fault non-detection is about equal to 2−31.

Remark: The probability namely “c2 + λp is a non-zero square in Fr” is about 1/2 and

the probability namely “ dc2

c2+λp is a non-zero no-square in Fr” is about 1/2. To generate 500.000

random primes r < 232 verifying the lemma 1, using online version on MAGMA tool [38], the
time is 110.769 seconds. The number of random prime number generated is 1.999.238. The
probability that a random prime r meets the requirement of lemma 1 is less than 1/4 verified
by this experimental part.

6.2 Twisted Edwards curve example: Curve25519 and Ed25519

On the finite field F2255−19, the elliptic curve Curve25519 defined by the equation v2 = u3 +
48662u2+u is birationally equivalent to the twisted Edwards Curves Ed25519 defined by equation
−x2 + y2 = 1− 121665

121666x
2y2.

This equivalence is given by:{
x = u

v

√
−48664

y = u−1
u+1

or

{
u = 1+y

1−y
v = 1+y

(1−y)x
√
−48664

. (7)

The Curve25519 is a Montgomery curve, where very efficient computations can be carried
out using only the X and Z coordinates. We find a generator point (xG, yG) on the twisted
Edwards curve Ed25519 with:

xG =247274132351065410025545745716755888346227681673976384567264236825212336082063,

yG =15549675580280190176352668710449542251549572066445060580507079593062643049417.

The prime factors of λ (recall definition 7) smaller9 than p are stored in the Table 2.
For the small curve like described in Table 2, we can choose:

1. r = 78857, a′ = 32865, d′ = 47471, x′G = 71670 and y′G = 16752, or
2. r = 843229, a′ = 839079, d′ = 43998, x′G = 96826 and y′G = 488894.

These parameters verify the lemma 2.
The probability of fault non-detection is about equal to 2−16 for the first case and to 2−19

for the second case.
Important remark: we notice that the small verification field Fr cannot be chosen at

random. Instead, the value of r is highly constrained, as shown in Tab. 2. This limitation of the
ring extension countermeasure was not previously known.

9 Actually, there is in λ only one factor larger than p, of length ≈ 900 bits, hence of no practical use—it
is indeed more efficient to perform the computation several times or to verify the signature.
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Prime factors r 2 3 17 47 78857 843229 159962189299

Length in bit of r 2 2 5 7 16 19 40

r verifies the lemma 2 False False False False True True False

Table 2. Prime Factors < p of λ for the generator point (xG, yG) given in example (curve Ed25519

defined in Sec. 6.2)

6.3 Comments about results

One can see in Table 1 that the global time computation increases by 28% or 39% for each addi-
tion operation using a 256-bit curve with a 32-bit processor (n′ = 8). The computation overhead
decreases when the curve parameters and the security increase. Remarkably, the implementation
code is the same for the two ECSM computations. The memory storage requirement is increased
by two word registers for each variable.

7 Conclusions

It is well known that detecting faults while computing elliptic curve cryptography can be
achieved thanks to ring extension. In this paradigm, two entangled computations are carried out
in the extended ring, allowing to tightly produce the functional result along with a redundant
one, which can be checked independently. However, classical methods fail because the redun-
dant computation evaluated standalone or entangled can be different, owing to some tests being
independently evaluated when the elliptic curve formulae are not complete. Edwards curves
and twisted Edwards curves have complete formulae, hence are not concerned with the issue of
consistent tests requirement. Still, the application of ring extension involves some technicalities,
we discuss in the paper. Namely, Edwards curves require an adaptation with Chinese reminder
theorem of the curve constant parameter. As for twisted Edwards curves, the modulus extension
can only be performed with a factor of λ, which is related both to the curve parameters and to
the base point.

The outcome is a provable fault detection method for (twisted) Edwards curves which, despite
its simplicity, is novel, elegant and effective.
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A Theoretical Upper-Bound for #roots

It is interesting to study the theoretical upper bound on the number of roots in practical cases.
Leont’ev proved in [33] that if P is a random polynomial in Fp then #roots(P ) ∼ Poisson(λ = 1),
i.e., P(#roots(P ) = k) = 1

ek! . In the case of ∆P mod r, we know that there is always at least
one root, when x̂1 = x1, so we can rewrite ∆P (x̂1) = P (x̂1) − P (x1) = R(x̂1) · a(x̂1 − x1),
where a is some constant, and R is indeed a random polynomial of degree r − 2, owing to
the modular reduction of ∆P by r. So we know that #roots(∆P ) = 1 + #roots(R), hence
P(#roots(∆P ) = k) = P(#roots(R) = k − 1), which is 0 if k = 0 and 1

e(k−1)! otherwise. We

want the maximum value of k which has a “plausible” probability, let us say that is 2−p, e.g.,
2−256. Since the values of a Poisson distribution of parameter λ = 1 are decreasing, we are
looking for k such that: P(#roots(R) = k − 1) = 1

e(k−1)! ≤ 2−256. This would suggest that

k & 58.
This result means that Pn.d. is predicted to be at most 57

r , with r being at least a 32-bit
number, i.e., that Pn.d. is at maximum ≈ 2−26, and that this worst-case scenario has a probability
of ≈ 2−256 of happening, in theory.

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5  6  7  8

P
ro

b
a
b
ili

ty

#roots

Poisson(1)
k = 3

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5  6  7  8

P
ro

b
a
b
ili

ty

#roots

Poisson(1)
k = 15

Fig. 2. #roots probability for ECSM [k]G.

The figure 2 shows typical number of roots (obtained with SAGE) for practical cases in
ECC, and compare them to the theoretical predictions. In this figure, we chose values of k of
the form 2j − 1, which maximize the number of operations, and thus the size and degree of the
resulting ∆P polynomials. For each value of k, we expressed the polynomial ∆P corresponding
to the ECSM [k]G, and did so for a thousand random G. We then plotted for i = 0 to 8 the
number of [k]G for which #roots(∆P ) = i+1 divided by 1000, that is the estimated probability

P̂(#roots(∆P ) = i+ 1). Let us denote by Z the Boolean random variable which is equal to one

if ∆P has a (i+ 1) roots, and zero otherwise. Our estimation of P̂(#roots(∆P ) = i+ 1) is thus

the expectation of 1
1000

∑1000
j=1 Zj . This random variable follows a binomial distribution, of mean

p = P(#roots(∆P ) = i+ 1) and variance p(1− p)/1000. The later values are used for the error
bars ([p−

√
p(1− p)/1000, p+

√
p(1− p)/1000]).

The two graphs in Fig. 2 correspond to two corner-cases:
1. k = 3 = (11)2: the number of roots is small because the polynomial degree is small (it is

13). (recall that #roots(P ) cannot exceed the degree of P ).
2. k = 15 = (1111)2: the number of roots is also small, but this times because the result of

Leont’ev applies. Indeed, the degree is 7213, thus the polynomial is much more random-
looking.
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Fig. 3. Degree of the polynomial ∆P against the value of k (in log-log scale).

Actually, it is computationally hard to count the roots of polynomials of degree greater than
7213. But it can be checked that the degree of the polynomials is growing exponentially with
k. This is represented in Fig. 3, where we see that the degree is about equal to k3.25 (of course,
when k has a large Hamming weight, as in (11 . . . 1)2, the degree is larger than when k is hollow,
as in (10 . . . 0)2). In particular, the polynomial ∆P reaches degree 232 (resp. 264) when k has
about 10 (resp. 18) bits. Thus, modulo r (recall Eqn. (1)), the polynomial ∆P has maximal
degree as long as the fault is injected before the last 10 (resp. 18) elliptic curve operations when
r fits on 32 bits (resp. 64 bits).

18


