
HAL Id: hal-01362520
https://hal.science/hal-01362520

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic-based web services for devices selection
Gérald Rocher, Jean-Yves Tigli

To cite this version:
Gérald Rocher, Jean-Yves Tigli. Semantic-based web services for devices selection. [Research Report]
Laboratoire I3S / UNS. 2015. �hal-01362520�

https://hal.science/hal-01362520
https://hal.archives-ouvertes.fr

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS 2000, route des
Lucioles - Les Algorithmes - bât. Euclide B 06900 Sophia Antipolis - France http://www.i3s.unice.fr

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS

UMR7271

SEMANTIC-BASED

WEB SERVICES FOR DEVICES

SELECTION

Gérald Rocher, Jean-Yves Tigli

EQUIPE SPARKS

Rapport de Recherche

09-2015

http://www.i3s.unice.fr/

2

SEMANTIC-BASED
WEB SERVICES FOR DEVICES

SELECTION
Gérald Rocher1, Jean-Yves Tigli2

Equipe SPARKS

09-2015 - 73 pages

Abstract:

The last decade achievements in computer hardware miniaturization and power consumption reduction has
permitted the multiplication of connected devices integrated in everyday life physical objects (chair, table,
lamp, etc…) and physical environments (house, building, vehicle, etc…). These devices implement resources
interacting with objects (actuator) and/or gathering data (sensor) about themselves, the objects or the
environment. Access to these resources is achieved through services exposing their interfaces and allowing
communication with the digital world. Widely deployed in so called ambient environments, these devices and
services are selected by ambient applications (service matchmaking) that make them work in concert to assist
users in several distinct domains (healthcare, smart houses, etc…). This cooperation requires a strong
interoperability between devices, firstly achieved by allowing them to communicate. Although work on
communication protocols (IoT, Internet of Things) tries to provide a solution to the technological
heterogeneity issue, it is still challenging due to the large number of initiatives in this field. Among all the
possible solutions, web-services based approach (WoT, Web of Things) is now widely accepted.

With this hypothesis, and going a step further, the purpose of the present document is to address the semantic
heterogeneity issue inherent to the large number of heterogeneous devices and services present in the
environment targeting multiple domains (smart homes, smart cities, building automation, healthcare, etc…).
This heterogeneity is problematic for ambient applications to select, among all the available devices and
services, the most relevant ones. We investigate in this document how semantic web technologies can be
leveraged to enrich devices and services with semantic annotations used to qualify it (SWoT, Semantic Web
of Things) and help applications selection mechanism to increase the relevancy of the selected devices and
services.

Key-words: internet of things, semantic web of things

1 Laboratoire I3S – Université Nice Sophia Antipolis – gerald.rocher@etu.unice.fr

2 Laboratoire I3S – Université Nice Sophia Antipolis, Polytech’Nice Sophia – jean-yves.tigli @unice.fr

Table of Contents
Introduction... 8

1.1 Motivations .. 8
1.2 Context .. 8
1.3 Structure of the document... 8

2. Knowledge Modeling ... 10

2.1 Introduction ... 10
2.2 Semantic Web Knowledge Modeling Technologies in a Nutshell...................................... 11

2.2.1 Triples and URIs ... 11
2.2.2 RDF .. 12
2.2.3 RDFS .. 13
2.2.4 OWL Family ... 14
2.2.5 Knowledge modeling language compatibility .. 16
2.2.6 Summary: The Modeling Layers... 17

2.3 What knowledge in the context of ambient environments? .. 18
2.4 Which Meta Meta Model to Use?.. 18
2.5 The Open World Assumption.. 20
2.6 Ontology Modeling Approaches... 21

2.6.1 Global Ontology (GO) Approach ... 21
2.6.2 Multiple Local Ontology Approach (MLO) .. 22
2.6.3 Hybrid Approach ... 23
2.6.4 Fragmented Hybrid (FH) Approach... 23

2.7 Conclusion .. 24
2.8 References .. 25

3. Knowledge Extraction... 26

3.1 Introduction ... 26
3.2 From Knowledge to Annotations... 26

3.2.1 Extraction From Upper Ontologies .. 26
3.2.2 Extraction From Web Pages .. 27

3.3 Web Services Standards Used to Convey the Knowledge ... 28
3.3.1 Web Services Description Languages.. 28

3.4 Conclusion .. 30
3.5 References .. 31

4. Knowledge Integration .. 33

4.1 Introduction ... 33
4.2 Knowledge Base ... 34
4.3 Reasoning ... 35

4.3.1 Knowledge Base Interpretation .. 35
4.3.2 Reasoning Tasks .. 35

4.3.3 ∑ Saturation & Inference Rules.. 36
4.3.4 Reasoning Over Linked Vocabulary ... 37

4.4 Ambient Systems Dynamicity and Impacts on the Knowledge Integration 37
4.4.1 Role Assertion Level Dynamicity ... 38
4.4.2 Concept Assertion Level Dynamicity ... 38
4.4.3 GCI Level Dynamicity ... 39

4.5 Heterogeneous GCI Integration Issues... 40
4.5.1 Ontology Merging & Integration .. 40
4.5.2 Ontology Alignment and Mapping ... 40
4.5.3 All Together .. 41

4.6 The Semantic Heterogeneity is Good! ... 41
4.7 Knowledge integration model .. 42
4.8 Experimentations ... 44

4.8.1 Use-case#1 : A New Environment Exploration .. 44
4.8.2 Use-case#2 : Search For Energy-Efficient Devices.. 44
4.8.3 Experimentations Setup ... 44
4.8.4 Results... 45

4.9 Conclusion .. 48

Semantic based web services for devices selection Table of content

4

4.10 References .. 48
5. Knowledge Management ... 50

5.1 Introduction ... 50
5.2 GCI Size Containment ... 50
5.3 GCI Quality Over Time... 51

5.3.1 Incoherencies and Inconsistencies Management .. 51
5.3.2 Validity ... 52

5.4 Conclusion .. 52
5.5 References .. 53

6. Knowledge Retrieval ... 54

6.1 Introduction ... 54
6.2 SPARQL .. 54
6.3 Selection Rule Model Proposal .. 56

6.3.1 Selection Rule Semantic Heterogeneity Management.. 57
6.3.2 From Subgraphs Matching to Ontology Similarity Measurement 57
6.3.3 Selection Rule Answers Ranking .. 58
6.3.4 Selection Rule Expressivity vs Knowledge Base Content Evolution 59

6.4 Use-case .. 60
6.4.1 Selection Rule Definition at Design Time ... 60
6.4.2 Selection Rule Alignment with Knowledge Base at Run Time...................................... 60
6.4.3 Selection Rule Enrichment with New GCI at Run Time .. 60

6.4.4 Selection Rule ⇔ Knowledge Base Similarity Measurement ... 61
6.4.5 Selection Rule Answers Extraction and Ranking .. 61

6.5 Conclusion .. 63
6.6 References .. 64

7. Conclusion and Future Work .. 65

7.1 Summary .. 65
7.2 Future work ... 66

8. Bibliography ... 68

9. Annexes .. 69

9.1 Sub-Ontology Extraction Tool .. 69
9.1.1 Introduction... 69
9.1.2 Gathering Ontology from the Web... 69
9.1.3 Extracting Sub-Ontology ... 69
9.1.4 Measuring the Similarity Between Ontologies .. 73
9.1.5 SPARQL Endpoint .. 74
9.1.6 Conclusion ... 74
9.1.7 References .. 74

Table of figures

Figure 1 : IoT : Technological & Semantic heterogeneity1 .. 9
Figure 2 : The Semantic Web stack ... 11
Figure 3 : Simple RDF graph example ... 12
Figure 4 : Structuring RDF graph ... 13
Figure 5 : A small RDFS knowledge description model .. 13
Figure 6 : Knowledge modeling abstraction layers.. 17
Figure 7 : Ambient environment knowledge types.. 18
Figure 8 : OWL family DL correspondance .. 20
Figure 9 : IoT 2003 - 2020 projection1 .. 21
Figure 10 : IoT companies and device manufacturers ... 22
Figure 11 : Ontology modeling, the GO approach .. 22
Figure 12 : Ontology modeling, the MLO approach ... 23
Figure 13 : Ontology modeling, the hybrid approach ... 23
Figure 14 : Ontology modeling, the FH approach .. 24
Figure 15 : MLO-LD approach .. 28
Figure 16 : WS-* SWS approaches... 29
Figure 17 : MLO + Top down services description approach ... 29
Figure 18 : MLO + Bottom up services description approach .. 29
Figure 19 : Mobile ambient system .. 38
Figure 20 : Fixed ambient system .. 38
Figure 21 : The role assertion level dynamicity .. 38
Figure 22 : The concept assertion level dynamicity .. 39
Figure 23 : The terminological knowledge .. 39
Figure 24 : Ontology Merging & Integration .. 40
Figure 25 : Ontology alignment and mapping .. 40
Figure 26 : GCI Integration process over time ... 41
Figure 27 : Knowledge integration model ... 42
Figure 28 : ABox integration process over time ... 43
Figure 29 : ABox integration ... 43
Figure 30 : Knowledge model management approaches expected performances .. 43
Figure 31 : Elederly people displacement scheme ... 44
Figure 32 : Elederly people displacement scheme ... 44
Figure 33 : Use-case#1 local ontologies (potentially incomplete).. 45
Figure 34 : Use case#1 execution results ... 46
Figure 35 : Android tablet simple ontology .. 47
Figure 36 : Hifi simple ontology ... 47
Figure 37 : Ontology exemple : E concept removal ... 51
Figure 38 : Ontology incoherency and inconsistency examples ... 51
Figure 39 : SPARQL query RDF subgraph matching .. 55
Figure 40 : Proposed rule model .. 56
Figure 41 : SPARQL query based rule model... 56
Figure 42 : Selection Rule GCI alignment with knowledge base GCI ... 57
Figure 43 : Selection rule enrichment over time ... 59
Figure 44 : Selection rule defined at design time .. 60
Figure 45 : Knowledge base at t+n .. 60
Figure 46 : Selection rule aligned with knowledge base content.. 60
Figure 47 : Basic TV ontology brought by a newly discovered device .. 61
Figure 48 : Basic TV ontology is merged with the selection rule .. 61
Figure 49 : Knowledge base extracted sub-ontology from selection rule.. 62
Figure 50 : Sub-ontology defining the concept TV and its instance(s) .. 62
Figure 51 : From IoT to SWOT+ ... 66
Figure 52 : From functional composition to semantic composition ... 67
Figure 53 : Gathering ontology from the web... 69
Figure 54 : Selection of the concept to be extracted in a sub-ontology (1).. 69
Figure 55 : Ontology vizualization with WebVOWL .. 70
Figure 56 : Selection of the concept to be extracted in a sub-ontology (2).. 70
Figure 57 : Snake sub-ontology .. 70

file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865269
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865270
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865271
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865272
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865273
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865274
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865275
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865276
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865277
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865279
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865280
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865281
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865282
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865283
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865284
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865285
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865286
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865287
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865288
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865289
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865292
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865293
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865294
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865296
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865297
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865298
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865299
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865300
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865301
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865302
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865303
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865304
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865305
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865306
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865307
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865308
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865309
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865310
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865311
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865312
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865313
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865314
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865315
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865316
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865317
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865318
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865319
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865320
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865322
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865323
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865324
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865325

Semantic based web services for devices selection Table of content

6

Figure 58 : LOV vocabulary selection .. 71
Figure 59 : Alignment algorithm and threshold value selection .. 71
Figure 60 : Snake sub-ontology aligned with LOV vocabulary ... 71
Figure 61 : Alignment with WordNet synonyms .. 72
Figure 62 : Snake ontology aligned with WordNet synonyms ... 72
Figure 63 : Transistive inferences added to the sub-ontology ... 72
Figure 64 : Sub-ontology knowledge coverage by depth ... 73
Figure 65 : Sub-ontology knowledge coverage by probability ... 73
Figure 66 : Sub-ontology consistency checking ... 73
Figure 67 : Sub-ontology generation... 73
Figure 68 : SPARQL endpoint ... 74

file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865326
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865327
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865331
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865332
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865333
file:///C:/Users/Gerald/Documents/Projet_stage_M2/Publications/Final_report/Final_Report.docx%23_Toc428865336

List of Tables

Table 1 : DLs family main constructors .. 19
Table 2 : OWL family expressivity vs computing complexity comparison ... 20
Table 3 : Knowledge base ABox, TBox and RBox axioms ... 34

Table 4 : ALC constructors... 35
Table 5 : State of the art reasoners comparison [10] ... 37
Table 6 : Instances ranking with regards to the selection rule.. 62

Publications

[1] G.Rocher, J.Y. Tigli, Stephane Lavirotte, Rahma Daikhi. Run-Time knowledge model enrichment in
SWoT: A step toward ambient services selection relevancy. 2015 IoT international conference, Seoul.

[2] … and more to come 

Introduction

1.1 Motivations

The last decade achievements in computer hardware miniaturization and power consumption reduction
has permitted the multiplication of connected devices integrated in everyday life physical objects (chair, table,

lamp, etc…) and physical environments (house, building, vehicle, etc…). These devices implement resources

interacting with objects (actuator) and/or gathering data (sensor) about themselves, the objects or the
environment [1]. Access to these resources is achieved through services exposing their interfaces and allowing

communication with the digital world. Widely deployed in so called ambient environments [2], these devices
and services are selected by ambient applications (service matchmaking) that make them work in concert to

assist users in several distinct domains (healthcare, smart houses, etc…). This cooperation requires a strong

interoperability between devices, firstly achieved by allowing them to communicate. Although work on
communication protocols (IoT, Internet of Things) tries to provide a solution to the technological
heterogeneity issue, it is still challenging due to the large number of initiatives in this field [3]. Among all the

possible solutions, web-services based approach (WoT, Web of Things) is now widely accepted [4].
With this hypothesis, and going a step further, the purpose of the present document is to address the

semantic heterogeneity issue inherent to the large number of heterogeneous devices and services present in

the environment targeting multiple domains (smart homes, smart cities, building automation, healthcare,

etc…)(Figure 1). This heterogeneity is problematic for ambient applications to select, among all the

available devices and services, the most relevant ones. We investigate in this document how semantic web

technologies can be leveraged to enrich devices and services with semantic annotations used to qualify it

(SWoT, Semantic Web of Things) and help applications selection mechanism to increase the relevancy of

the selected devices and services.

1.2 Context

The CONTINUUM1 project addresses the problem of the service continuity in the context of ambient

environments. It aims at defining theoretical models needed to enable software’s to dynamically adapt

themselves to their environment and ensure the service continuity to mobile users in heterogeneous and
physical environments where available resources are variable over time. Three challenges have been identified:

(1) the management and adaptation to the context, (2) the management of the semantic heterogeneity and

(3) the control of the balance in between the system autonomy and the human control. This project has
resulted so far in the development of a middleware (WComp)[5] based on component and services assembly

[6] giving the software’s the capability to adapt themselves to the multiple context aspects (device

interconnection, physical environment state, users, etc…) thereby ensuring service continuity. This

document represents a straight continuation of this project and addresses the semantic heterogeneity
challenge.

1.3 Structure of the document
In chapter 2 (Knowledge Modeling), we review the main technologies used in the domain of the semantic

web to formally describe the knowledge (Paragraph 2.2). We describe the underlying theoretical foundations
of these technologies and address it from two points of views: (1) The knowledge expressivity they provide,

(2) their computational complexity. Then, we give an overview of the knowledge types to be described in the

context of ambient environments (Paragraph. 2.3) and propose a knowledge modeling approach based on
heterogeneous devices and services description models (Paragraph. 2.6).

In chapter 3 (Knowledge Extraction), we address the challenge of developing knowledge models and
propose some approaches aimed at leveraging the world wide web available formal knowledge and translating

it to reusable knowledge models (Paragraph. 3.2). Then we review several standards used to convey the

knowledge from the devices to the ambient systems and challenge them with regards to their ability at
conveying all the necessary knowledge types to be described (Paragraph. 3.3).

In chapter 4 (Knowledge Integration), we first describe the knowledge base foundations (Paragraph. 4.2)
and reasoning capabilities (Paragraph. 4.3). We review: (1) the challenges at dynamically integrating

Semantic based web services for devices selection Introduction

9

heterogeneous knowledge models in a knowledge base over time (enrichment), (2) the approaches helping to

cope with it (Paragraph 4.5) and (3) explain (Paragraph 4.6) the main advantages of having a continuous
1Project for service continuity in ubiquitous and mobile computing - French national research agency - ANR-08-VERS-0005.

knowledge enrichment. We then present an overall integration model (Paragraph. 4.7) and validate it on two

motivating scenarios (Paragraph. 4.8).

In chapter 5 (Knowledge Management), we review some knowledge base management solutions aimed at:

(1) limiting the size of the knowledge base over time (Paragraph. 5.2), and (2) ensuring the quality of the

knowledge base content (consistency, coherency and validity)(Paragraph. 5.3).

In chapter 6 (Knowledge Extraction), we give an overview of SPARQL (Paragraph. 6.2), the standard

for querying and retrieving information from a knowledge base, and its foundations. We demonstrate that
the SPARQL underlying knowledge retrieval model is not suitable when used to execute expressive selection

rules on unknown knowledge base content. Therefore, we propose an alternative (Paragraph. 6.3) that is

validated on a use-case (Paragraph. 6.4).

The chapter 7 (Conclusion and Future Work) finally concludes this document with a short summary

and provide an outlook on the potential future work.

1Internet of Things Architecture - IoT-A

Figure 1 : IoT : Technological & Semantic heterogeneity1

Application domains

Semantic heterogeneity

Communication protocols

Technological heterogeneity

2. Knowledge Modeling

2.1 Introduction .. 10
2.2 Semantic Web Knowledge Modeling Technologies in a Nutshell 11

2.2.1 Triples and URIs .. 11
2.2.2 RDF .. 12
2.2.3 RDFS .. 13
2.2.4 OWL Family .. 14
2.2.5 Knowledge modeling language compatibility ... 16
2.2.6 Summary : The Modeling Layers ... 17

2.3 What knowledge in the context of ambient environments?.................................... 18
2.4 Which Meta Meta Model to Use? ... 18
2.5 The Open World Assumption .. 20
2.6 Ontology Modeling Approaches .. 21

2.6.1 Global Ontology (GO) Approach... 21
2.6.2 Multiple Local Ontology Approach (MLO) ... 22
2.6.3 Hybrid Approach .. 23
2.6.4 Fragmented Hybrid (FH) Approach .. 23

2.7 Conclusion .. 24
2.8 References ... 25

2.1 Introduction

In ambient systems, software applications have to make decisions about devices and services to be used

in concert to assist users. “Make a decision” is a behavior related to intelligence whose foundation is knowledge

[1]. In the context of ambient software applications, this intelligent behavior has to be achieved autonomously
by computational means. Indeed, the physical environment the ambient applications interact with is highly

dynamic and devices and services availability cannot be anticipated. This concern is well addressed by
artificial intelligence (AI) systems based on knowledge representation models and reasoning techniques.

Knowledge representation models are based on formal symbols used to represent a set of propositions

(concepts, relationships between concepts, etc…) believed by the knowledge model designer. Reasoning is the
formal manipulation of the symbols to infer the representation of a new set of propositions.

 As devices communication protocol relies on web-services (WoT, Web of Things), we first investigate in this

chapter, what are the technologies used by the Web community to represent and reason on the knowledge
available on the web (Semantic Web). Such technologies are, for example, used by web search engines to

retrieve and rank the most relevant web information based on user needs or preferences from metadata used
to qualify web pages content. The problem statement the semantic web technologies help to solve, is close to

the problem of selecting, among all the devices and services available in the environment, the most relevant

ones to assist users based on their needs, preferences, etc… This has already been well understood and
addressed by the WoT community and semantically enriched metadata are now widely used to qualify devices

and services (SWoT, Semantic Web of Things).

However, in most of the current work, metadata relies on ad-hoc knowledge representation models
structuring all the concepts and relationships for a specific domain targeting specific applications (smart

homes, smart cities, building automation, healthcare, etc…). Thus, extending the scope of use of the

information to multiple applicative domains implies to develop a comprehensive knowledge representation
model from heterogeneous knowledge representation models which is unlikely to happen in the SWoT context

where domains to cover are countless. In addition, most of the existing domain knowledge description models

doesn’t follow the semantic web best practices1, limiting, de facto, the reusability of their information outside

their initial scope [2].

Then, after having reviewed the several knowledge representation modeling approaches and, after having
defined the knowledge to be represented in the context of ambient systems, we propose an approach based

on heterogeneous knowledge representation models to qualify and self-describe devices and services through

semantically enriched metadata. Unlike current approaches, knowledge description models are restricted to
the devices they describe and are embedded in the metadata.
1www.w3.org/2014/02/wot/papers/gyrard-2.pdf

Semantic based web services for devices selection Knowledge Modelization

11

2.2 Semantic Web Knowledge Modeling Technologies in a Nutshell

The term “Semantic Web” represents an evolution of the world wide web from a web of interlinked documents

targeted towards human consumers to a web of data that makes web content more machine processable (aka

Web 3.0).

“I have a dream for the Web [in which computers] become capable of analyzing all the data on the Web —

the content, links, and transactions between people and computers. A “Semantic Web”, which should make

this possible, has yet to emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and our

daily lives will be handled by machines talking to machines. The “intelligent agents” people have touted for

ages will finally materialize.”

— Tim Berners-Lee, Weaving the Web [3]

Semantic web technologies are summarized in the “Semantic

Web Stack” (Figure 2). There are many good introductory

documents available on the semantic web and associated

technologies. The reader interested in acquiring a more detailed
knowledge in this area will read the following documents:

“Semantic Web for the Working Ontologist” [4], “A Semantic Web

Primer” [5], “Programming the Semantic Web” [6], etc…

Semantic modeling is the process of interpreting the world (or
specific domains of interest) by asserting statements about the

world, in other words, enouncing constraints on the possible world
states. For that purpose, the interesting technologies in the

Semantic web stack are (1) triples and URI (Uniform Resource

Identifier), (2) RDF (Resource Description Framework) and
RDFS (RDF-Schema), (3) OWL (Web Ontology Language),

succinctly described in the next paragraphs.
Each language brings different expressivity capabilities (different abilities to describe the world and express

statements about it). The higher is the expressivity the lower is the abstraction of the described world and

better could be the relevancy of the selected services.

2.2.1 Triples and URIs

A triple describes a proposition (a fact, a statement) composed of a subject, a predicate and an object.

For example the triple “iQ700 hasManufacturer Siemens” is a proposition stating that iQ700 entity is

manufactured by Siemens. The predicate, in that case, defines a relationship between the subject and the

object (the term “Semantics” refers to this simple data model linking together two entities by a relationship).

Subject and predicate may also be referred to as property and value respectively. For example the triple

“iQ700 hasTemperature 125” is a proposition stating that the entity property “hasTemperature” has value

“125”.

A triple provides an explicit semantics based on agreed terms. The terms used in the propositions (subject,
predicate, object, property, value type) have to be unambiguously defined. For that purpose URIs (Uniform

Resource Identifier) [8] are used to uniquely identify each term of a proposition. For example, the statement

“iQ700 hasManufacturer Siemens” can then be rewritten as follow:

<http://www.example.org/iQ700><http://www.example.org/hasManufacturer><http://www.example.

org/Siemens>

Therefore, from a semantic standpoint, the terms <http://www.example.org/iQ700> and

<http://www.my-ontology.com/iQ700> are two different resources.
<http://www.example.org/> and <http://www.my-ontology.com/> are the URI prefix.

Figure 2 : The Semantic Web stack

Semantic based web services for devices selection Knowledge Modelization

12

2.2.2 RDF

The stack above triples and URI is the Resource Description Framework (RDF). RDF is a graph model used
to describe web resources. The graph is a set of triples where subject and object are nodes of the graph, and

the predicate is a directed edge describing the relationship between nodes (Figure 3). All nodes and edges are

defined by URIs except when the edge defines is a property in which case the object is a literal value (plain
or typed). RDF introduces a mechanism to make URIs more readable by aliasing URI prefix with an RDF

prefix namespace (For example “rdf” for <http://www.w3.org/1999/02/22-rdf-syntax-ns#>).

While graph representation is good for humans understanding, it is not adequate for machines to process

the information it describes. For that reason RDF graph statements are serialized to an XML-based syntax

document (RDF/XML format). Note that several other serialization formats exist, among which the most

used are Turtle (Terse RDF Triple Language) and N3 (N-Triple). In this document, all listings use the

abbreviated RDF/XML notation.

An RDF/XML document is represented by the tag rdf:RDF. The content of the document is a set of

descriptions represented by the tag rdf:Description. Each description is a statement about a resource

defined either by attribute rdf:ID or rdf:about. In a general form, the triple <subject,predicate,object>

can be serialized in the XML/RDF form as follow:

<rdf:Description rdf:about="subject">

 <ex:predicate>

<rdf:Description rdf:about="object"/>

 </ex:predicate>

</rdf:Description>

Therefore, the graph in Figure 3 can be serialized in RDF/XML format as follow:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:ex=”http://www.example.org#”>

<rdf:Description rdf:about=”http://www.example.org/iQ700”>

<ex:hasManufacturer rdf:about=http://www.example.org/Siemens”/>

</rdf:Description>

</rdf:RDF>

RDF introduces a small vocabulary to express statements about the knowledge. For example, rdf:type

expresses membership hierarchy used to structure the graph. Hence, the graph in Figure 3 can, for example,
be structured as shown in Figure 4 (considering two additional statements).

Beside rdf:type, RDF defines a vocabulary to write collections (rdf:first, rdf:rest, rdf:nil,
rdf:List), describe structured values (rdf:value) or containers of values (rdf:Seq, rdf:Bag,

rdf:Alt,etc…) without making any strong restriction/conditions on it.

RDF also introduces a reification mechanism used to make statements about other statements by
turning statements into resources. In the general form the triple <subject,predicate,object> can be reified

under the resource “StatementAboutStatement” as follow:

http://www.example.org/iQ700

http://www.example.org/Siemens

http://www.example.org/hasManufacturer

Figure 3 : Simple RDF graph example

Semantic based web services for devices selection Knowledge Modelization

13

<rdf:Statement rdf:ID="StatementAboutStatement">

<rdf:subject rdf:resource="subject"/>

<rdf:predicate rdf:resource="predicate"/>

<rdf:object rdf:resource=”object”/>

</rdf:Statement>

RDF is a universal generic language not suited to define semantics for any particular application domain. For

that purpose, RDFS (RDF-Schema), the next layer in the Semantic stack on top of RDF, has to be used.

2.2.3 RDFS

RDFS extends RDF vocabulary and introduces basic elements (class, class hierarchy, inheritance,

properties and properties hierarchy), helping the knowledge description model designer to describe and classify

the concepts, the entities and the relationships of a specific application domain. This extended vocabulary
actually allows designer to add semantic constraints linked to a particular application domain. The knowledge

description model of a specific domain is called an ontology.
By introducing the notion of class, RDFS also introduces the notion of instances (or individuals) of a class.

The relationship between class and its instance(s) is done through rdf:type. For instance, a simple ontology

is depicted in Figure 5.

By inheritance, ex:Siemens and ex:iQ700 are also respectively an ex:Company and an ex:Appliance.

Additionally, RDFS introduces some mechanisms to define a signature of a relationship restraining its scope
of application (note that relationships and properties as defined in Paragraph. 2.2.1 are both described using

rdf:Property). For example, the description of the relationship ex:hasManufacturer can be described as
follow:

Figure 4 : Structuring RDF graph

ex:iQ700 ex:Siemens
ex:hasManufacturer

ex:Oven

rdf:type rdf:type

ex:Manufacturer

ex:Company

rdf:type

Classes

Instances of

classes

Figure 5 : A small RDFS knowledge description model

ex:hasManufacturer

rdfs:subClassOf

rdf:type

ex:Appliance

ex:Manufacturer

ex:Oven

ex:iQ700

rdfs:subClassOf

ex:Siemens

“2”^^xsd:integer

ex:hasRacks

Semantic based web services for devices selection Knowledge Modelization

14

<rdf:Property rdf:ID="http://www.example.org/hasManufacturer">

 <rdfs:domain rdf:resource="http://www.example.org/Appliance"/>

 <rdfs:range rdf:resource="http://www.example.org/Manufacturer"/>

</rdf:Property>

The whole ontology depicted in Figure 5 is defined here after using RDFS :

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF

xmlns:xsd=”&xsd;”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”>

<rdfs:Class rdf:ID=”Appliance”/>

<rdfs:Class rdf:ID=”Company”/>

<rdfs:Class rdf:ID=”Oven”>

<rdfs:subClassOf rdf:resource=”#Appliance”/>

<rdfs:Class>

<rdfs:Class rdf:ID=”Manufacturer”>

<rdfs:subClassOf rdf:resource=”#Company”/>

<rdfs:Class>

<rdf:Property rdf:ID=”hasManufacturer">

<rdfs:domain rdf:resource="#Appliance"/>

<rdfs:range rdf:resource="#Manufacturer"/>

</rdf:Property>

<rdf:Property rdf:ID=”hasRacks">

<rdfs:domain rdf:resource="#Oven"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</rdf:Property>

<rdf:Description rdf:about=”#Siemens”>

 <rdf:type rdf:resource=”#Manufacturer”/>

</rdf:Description>

<rdf:Description rdf:about=”#iQ700”>

 <rdf:type rdf:resource=”#Oven”/>

 <hasManufacturer rdf:resource=”#Siemens”/>

 <hasRacks rdf:datatype=”&xsd;integer”>2</hasRacks>

</rdf:Description>

</rdf:RDF>

2.2.4 OWL Family

On top of RDF and RDFS in the Semantic web stack, OWL (Web Ontology Language) brings much

more expressivity for describing classes, properties and relationships by relying on and extending RDF fact-
stating ability and RDFS class and property structuring capabilities. It allows the designer to specify a class

as logical combinations of other classes (owl:intersectionOf, owl:unionOf, etc…) or to express disjointure

between classes (owl:disjointWith). Additional class axioms can also be used to define equality between
classes (owl:equivalentClass and owl:sameAs).

OWL extends rdf:Property semantics with owl:datatypeProperty, owl:ObjectProperty, etc… Some

restrictions can be defined on the property values (owl:allValuesFrom, owl:someValuesFrom,

owl:maxCardinality, etc…). Finally OWL adds some properties characterization mechanisms like symmetry

(owl:SymetricProperty), transitivity (owl:TransistiveProperty) or inverse property (owl:InverseOf).

Finally, ontology import is supported (owl:import) allowing to reuse and share ontologies.

Semantic based web services for devices selection Knowledge Modelization

15

For example [11], using RDFS a knowledge designer can:

 Declare classes like Manufacturer, Appliance, Oven,

 State that Oven is a subclass of Appliance,

 State that Siemens and Samsung are both instances of the class Manufacturer,

 Declare hasManufacturer as a property relating the class Appliance (its domain) and Manufacturer

(its range),

 State that hasRacks is a property, with Oven as its domain and integer as its range,

 State that iQ700 is an instance of the class Oven, and that its hasRacks has value 2.

With OWL he can additionally:

 State that Manufacturer and Appliance are disjoint classes;

 State that Siemens and Samsung are distinct individuals;

 Declare manufacturerOf as the inverse property of hasManufacturer;

 State that the class MultipleRacks is defined precisely as those members of the class Oven that have
at least 2 values for the property hasRacks;

 State that hasRacks is a functional property (An Oven instance cannot have multiple values for

rack).

These are the main capabilities brought by OWL. For a complete overview, the reader will review the

OWL reference document [9] and the OWL guide [10].

The whole ontology depicted in Figure 5 (enriched with above statements) can be defined with OWL as

follow:

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF

xmlns:xsd=”&xsd;”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”

xmlns:owl=”http://www.w3.org/2002/07/owl#”

xmlns="http://www.example.org/home#"

xml:base=”http://www.example.org/iQ700”>

<owl:Ontology rdf:about=”http://www.example.org/iQ700”>
<owl:versionInfo>1.0</owl:versionInfo>

<rdfs:comment>An ontology example</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID=”Appliance”/>

<owl:Class rdf:ID=”Company”/>

<owl:Class rdf:ID=”Oven”>

<rdfs:subClassOf rdf:resource=”#Appliance”/>

</owl:Class>

<owl:Class rdf:ID=”Manufacturer”>

<rdfs:subClassOf rdf:resource=”#Company”/>

<owl:disjointWith rdf:resource=”#Appliance”/>

</owl:Class>

<owl:Class rdf:about=”#Siemens”/>

 <rdf:type rdf:resource=”#Manufacturer”/>

</owl:Class>

<owl:Class rdf:about=”Samsung”>

 <rdf:type rdf:resource=”#Manufacturer”/>

<owl:disjointWith rdf:resource=”#Siemens”/>

</owl:Class>

Semantic based web services for devices selection Knowledge Modelization

16

<owl:Class rdf:ID=”MultipleRacks”>

 <owl:Restriction>

 <owl:onProperty rdf:resource="hasRacks"/>

 <owl:someValuesFrom>

 <xsd:minInclusive rdf:datatype="&xsd;integer">2</xsd:minInclusive>

 </owl:someValuesFrom>

 </owl:Restriction>

</owl:Class>

<owl:Class rdf:ID=”iQ700”>

 <rdf:type rdf:resource=”#Oven”/>

 <hasRacks rdf:datatype=”&xsd;integer”>2</hasRacks>

 <hasManufacturer rdf:resource=”#Siemens”/>

</owl:Class>

<owl:ObjectProperty rdf:ID=”hasManufacturer">
<rdfs:domain rdf:resource="#Appliance"/>

<rdfs:range rdf:resource="#Manufacturer"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="manufacturerOf">

 <owl:inverseOf rdf:resource="#hasManufacturer"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID=”hasRacks">
<rdfs:domain rdf:resource="#Oven"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:about="#hasRacks"/>

</rdf:RDF>

OWL is quite complex and is derived in three sub-languages (from the less to the maximal complexity):

1) OWL Lite has a limited expressivity (class hierarchy, simple restrictions). For instance it is not
possible with OWL Lite to state that an appliance has one manufacturer but can have one or multiple

references names,

2) OWL DL has a high expressivity (full OWL vocabulary with some usage restrictions). For instance,
with OWL DL, a class cannot be also an individual or a property,

3) OWL Full has the maximal expressivity (full OWL vocabulary without any restriction).

From a statement expressivity standpoint, OWL Lite ⊏ OWL DL ⊏ OWL Full.

OWL has been revised (OWL2 [27][28]) to overcome short-comings of OWL, such as expressivity issues,

problems with its syntax, etc… OWL 2 is backward compatible with OWL and comes with two major sub-

languages (OWL2 DL and OWL2 FULL) and three profiles (OWL 2 EL, OWL 2 QL and OWL 2 RL) that

have restricted expressivity (but still sufficient for a large variety of applications) and thus favorable
computational properties.

2.2.5 Knowledge modeling language compatibility

It is important to notice that OWL Lite and OWL-DL are not extensions of RDF language. An RDF
triple is not necessarily valid in these sub-languages.

Firstly, in OWL Full, owl:Class is defined as equivalent to rdfs:Class (then all subclasses of
rdfs:Class are also subclasses of owl:Class) whereas in OWL Lite and OWL DL, owl:Class is defined as

a subclass of rdfs:Class (and then classes in an RDF/RDFS document that are subclasses of rdfs:Class

cannot be a instances or subclasses of owl:Class).
Secondly, OLW introduces owl:dataTypeProperty and owl:ObjectProperty whereas RDFS uses

rdf:Property. In OWL Full, owl:ObjectProperty is defined as equivalent to rdf:Property whereas
owl:dataTypeProperty is defined as a subclass of rdf:Property and then also a subclass of

owl:objectProperty (all properties in OWL defined with owl:datatypeProperty are also considered as

Semantic based web services for devices selection Knowledge Modelization

17

owl:objectProperty). In OWL Lite and OWL DL, owl:ObjectProperty and owl:datatypeProperty are

defined as disjoint to rdf:Property.

2.2.6 Summary: The Modeling Layers

We have reviewed so far the Semantic web technologies (standard vocabularies RDF/RDFS and OWL) a

knowledge designer can use to formally describe the set of terms and relationships of a specific domain
knowledge model (specific vocabulary, ontology). Thus, standard vocabularies is the meta model of the

specific vocabulary. Knowledge designers give an abstraction model of the real world by stating a se t of facts

on the individuals defining a model. This model is built upon the specific vocabulary of terms and relationships
which act as the meta model of the model. The Figure 6 (from [15]) depicts the complete overview of these

abstraction layers.

Figure 6 : Knowledge modeling abstraction layers

Represents real world objects

Abstract syntax

(RDF)

ov:Oven

ov:Manufacturer

ov:Appliance

ex:iQ700 ex:Siemens

ov:hasManufacturer

rdfs:domain

rdfs:range
rdfs:subClassOf

ex:hasManufacturer

rdfs:Resource

rdfs:Class rdf:Property

Subject Object

rdfs:range

rdf:type

rdf:type

rdfs:subClassOf

Predicate

rdfs:domain

rdfs:subClassOf

rdf:type

rdf:type

rdf:type

Meta meta Model

Standard

vocabularies

(RDF, RDFS, OWL)

Meta Model

Definition of

terminology

(Vocabularies/

Ontologies)

Model

Asserion of facts

Abstraction

rdf:type

rdf:type

Semantic based web services for devices selection Knowledge Modelization

18

2.3 What knowledge in the context of ambient environments?

We have given so far a short introduction on the main semantic web technologies aimed at describing and

model a knowledge and their associated modeling layers. Now let ’s define what type of knowledge has to be

modeled in order to help ambient systems, based on this knowledge, to select the relevant devices and services
and then better assist the users.

 From an architecture standpoint, ambient systems are built upon software services integrated in devices

placed in a physical environment (embedded in an object, on users, etc…). These devices implement resources
interacting with objects (actuator) and/or gathering data (sensor) about themselves, the objects or the

environment. Access to these resources is achieved through the services exposing their interface to the ambient

application. From this description results three fundamental knowledge types (Figure 7):

1. The contextual knowledge denotes facts qualifying the device in its environment (aka context aware

applications) gathered from sensors. For instance, its location, its acceleration, etc… This kind of

knowledge can be associated to instance properties and values in the semantic web description

language (the model layer).
2. The structural knowledge denotes facts qualifying the intrinsic characteristics of the device and/or

the resources. For instance, its size, its category (TV, Car, Oven, Lamp, etc…), etc… This kind of

knowledge can be associated to the meta model layer defining concepts and properties, relating either
a concept to another (e.g. TV is a Device) or a concept to a value (TV has display size 15 inches).

3. Finally, the functional knowledge, that is the web services APIs, have to be described (method names,

input types, output types). This is necessary: (1) to give a semantic of the purpose/usage of the

services (functionality, pre-conditions, post-conditions, etc…), (2) as the web services have to work in

concert, some web services output are input to some others and interoperability verification are needed

(data types).

As being related to real world environments and objects, the ambient systems underlying knowledge model

has to be as expressive as possible to give the knowledge designer the capacity to describe the world
components and express statements about them as accurately as possible. This is key in order to minimize

the abstraction level and then, increase the chance, for the ambient systems, to efficiently segregate devices
and services and select the most relevant ones.

2.4 Which Meta Meta Model to Use?

At a first glance, one can say that the more a language is expressive the better it is to accurately shape

a model of a knowledge domain. So, OWL family and more particularly OWL Full seems to be the best choice
for describing the complex knowledge about ambient environments (Paragraph 2.3). At this point, it seems

appropriate to discuss the reasoning capabilities of these languages (linked to their expressivity) and their

impacts in term of computing complexity (and hence in term of the whole ambient system responsiveness).
Indeed, the choice of the modeling language has (also) to be driven by the constraints inherent to the

“embedded” characteristic of the ambient systems and then their relatively low computing resources.

Reasoning (see also Paragraph. 4.3) is the process of deriving facts that are not explicitly expressed in the
ontology (inferencing). First-order logic (FOL, also called predicate logic) is the formal foundation of the

Figure 7 : Ambient environment knowledge types

Device

Physical environment

Service

Resource
API

Contextual knowledge

Structural knowledge

Functional knowledge

Semantic based web services for devices selection Knowledge Modelization

19

OWL language and is good at representing the knowledge (based on triples) and reason on it. Actually, from

a logical standpoint, OWL classes are unary predicates (e.g. Device(x) standing for x is a Device), properties
are binary predicates mapping an instance of a class (the domain of the relationship) to instances of a class

or datatype (the range of the relationship), and constraints which could be translated to logical formulas.

The issue with FOL is that the logical entailment computation problem is not decidable (It doesn’t exist a
computational process that solves the problem in a finite number of steps). Description logics (DLs)

[23][24][25][26] are fragments of FOL which have been created to overcome FOL decidability issue (DLs have

restrictions on logical formulas thereby ensuring decidability). Each DL brings more or less expressivity power
and reasoning capabilities (computational complexity) depending logics formulas supported.

DLs are composed by basic descriptions (the atomic concepts (A,B,…), the atomic roles (R,…) and the

individuals) and constructors (Table 1) from which can be built complex concepts (C,D…) and roles
descriptions. The DL syntax is given by its signature and the constructors. The example in Figure 5 can be

represented in DL as follow:

Manufacturer ⊑ Company

Oven ⊑ Appliance ⊓ ∀hasManufacturer.Manufacturer
Oven(iQ700)

Manufacturer(Siemens)
hasManufacturer(iQ700; Siemens)

In the example above, Manufacturer, Company and Oven are concepts names, hasManufacturer is a role

name and iQ700 and Siemens are individual names. ⊓(intersection) and ∀(value restriction) are constructors.

Table. 1 summarizes the main DLs (AL, ALC, S) and extensions (I,H,F, etc…) and associated constructors

along with OWL syntax.

Table 1 : DLs family main constructors

OWL is built upon DLs (Figure 8) and, from a DLs standpoint, OWL family expressivity/computational
complexity could be classified as depicted in the Table 2.

DL syntax Description OWL syntax

A Atomic concept URI

⊤ Top owl:Thing

⊥ Bottom owl:Nothing

C,D Complex concept owl:Class

R Atomic role
owl:ObjectProperty

owl:datatypeProperty

¬C Negation owl:complementOf

C ⊓ D Intersection owl:intersectionOf

𝐶 ⊔ 𝐷

𝐶 ⊔ 𝐷 =⊥

Union

Disjointure

owl:unionOf

owl:disjointWith

∀R. ⊤ All individuals of the domain of R

∃R.C Existential restriction owl:someValuesFrom

∀R.C Value restriction owl:allValuesFrom

R-1 Inverse role owl:inverseProperty

nR Number restriction ow:minCardinality

owl:maxCardinality nR.C Qualified number restriction

{𝑎1, … , 𝑎𝑛}
Individuals

owl:oneOf

DL Constructors

AL
⊤,⊥,A,¬A,C⊓D,∀R. ⊤,

 ∀R. C

Extensions…

ALC ¬C , C ⊔ 𝐷, ∃R.C

S
Roles transitivity

See Paragraph. 4.3

+I R-1

+H
Roles hierarchy

See Paragraph. 4.3

+F
Functional roles

See Paragraph. 4.3

+N
(≥nR)

(≤nR)

+Q
(≥nR.C)

(≤nR.C)

+O {𝑎1,… , 𝑎𝑛}

Semantic based web services for devices selection Knowledge Modelization

20

OWL Family DLs Family
Worst-case reasoning*

combined Complexity**
Expressivity Comments

OWL Lite SHIF EXPTIME1 ++

OWL DL SHOIN NEXPTIME2 +++

OWL Full N/A Non decidable +++++

OWL 2 DL SROIQ [29] N2EXPTIME3 ++++

OWL 2 EL EL++ PTIME4 ++

For applications that need to
create ontologies with very large

number of classes and/or
properties (TBox)

OWL 2 QL
DL-Lite
based

NLOGSPACE5 +

For applications that want to

reason on top of very large
volumes of data (ABox)

OWL 2 RL PTIME -
For applications that want to

describe rules in ontologies.

*Ontology Consistency, Class Expression Satisfiability, Class Expression Subsumption, Instance Checking (See Paragraph. 4.3)
**The complexity measured with respect to both the size of the axioms, the size of the assertions

1EXPTIME : The set of problems resolved by deterministic Turing machine using at most exponential time
2NEXPTIME : The set of problems resolved by non-deterministic Turing machines using at most exponential time
3N2EXPTIME : The set of problems resolved by non-deterministic Turing machines using at most double exponential time.
4PTIME : The set of problems resolved by deterministic Turing machine using at most polynomial time
5NLOGSPACE : The set of problems resolved by Turing machines using at most logarithmic working memory
Note: NLOGSPACE ⊆ PTIME ⊆ EXPTIME ⊆ NEXPTIME ⊆ N2EXPTIME

Table 2 : OWL family expressivity vs computing complexity comparison

The choice of the knowledge modeling language to be used (the meta meta model) to describe the devices
and the services (the meta model and the model), taking into account the high modeling language expressivity

needed in the context of ambient environments and the reasoning decidability, leads to choose OWL(2) DL.

2.5 The Open World Assumption

In [4], authors have identified the following characteristics of the semantic web knowledge description
languages:

1) Anyone can say Anything about Any topic (AAA). A knowledge model designer is free to write any
assertions (the model in Figure 6) envisioning a meaning whose terms (subject, predicate and object)

are either defined by himself or, as often the case and promoted by the W3C, rely on known published

vocabularies6 (the meta model in Figure 6). Note that the authorities publishing these vocabularies
cannot enforce the way it has to be used. Thus, it is necessary, for the designer, to get an expertise of

6http://lov.okfn.org/dataset/lov/

N

(≥nR)

(≤nR)

F
Functional roles

C

(¬C)

Ԑ

(∃R.C)

U

(𝐶 ⊔ 𝐷)

AL ALC SH

SHOIN

SHIF

S
(Roles transitivity)

H

(Roles hierarchy)

O

I

(∀R.C)

(𝐶 ⊓ 𝐷)

OWL Lite

OWL DL

Figure 8 : OWL family DL correspondance

Semantic based web services for devices selection Knowledge Modelization

21

2) The domain to be modeled or rely on a domain expert familiar with the underlying semantics of the

terms. While it cannot be completely avoided, this would limit the semantic heterogeneity issue that
may prevent different vocabularies about the same domain to cooperate as they use different concepts

and relationships for the same meaning,

3) Open World Assumption (OWA): due to 1), there might be new or complementary knowledge
description that we are not aware of. Therefore, no conclusion can be drawn from the non-existence

of assertions (As opposed to the Close World Assumption (CWA) where missing assertions are
considered false),

4) Non unique naming assumption: Importantly, as designer can locally define URIs, the same concept

can be represented by different URIs across several ontologies (in that case, OWL allows to define
class equivalence).

These characteristics are very important in the case of their application to describe real world devices and
services. In most of the current ambient applications, devices and services knowledge description models rely

on static and ad-hoc vocabularies (meta model) defining and structuring all the concepts and relationships
for a specific domain targeting specific applications (smart homes, smart cities, building automation,

healthcare, etc…).

However, while this approach is a solution for handling the semantic heterogeneity issue (the meaning of
all the assertions in the devices and services knowledge description models rely on a global and common

vocabulary), it limits the scope of use of the

information to a single applicative domain.
Extending the scope of use of the information to

multiple applicative domains implies to develop a
comprehensive vocabulary describing the world

from heterogeneous vocabularies which is unlikely

to happen in the SWoT context where domains to
cover are countless.

There are many IoT companies and connected
devices manufacturers all around the world (

Figure 10), and certainly much more to come

(Figure 9), each of them addressing a particular
domain (Figure 1) and having their own

understanding and context usages of terms that it
would be worth to describe through heterogeneous

vocabularies (referring to AAA).

2.6 Ontology Modeling Approaches

Some projects acknowledged the fact that multiple heterogeneous ontologies management is needed in the
case of systems targeting a wide range of applicative domains. For example, in the context of ambient

intelligent environments (AIEs), ATRACO project authors [12][13] envision that a comprehensive, agreed

and validated ontology is unlikely to happen, and that, more realistically, device manufacturers will
independently develop their own ontologies. Authors in [13], depict three possible ontology architectures to

represent and manage distributed knowledge sources:

2.6.1 Global Ontology (GO) Approach

With this approach, a global domain ontology is used to formally and strictly describe all the concepts,

the relationships and the individuals of a given domain. There is no need for metadata self -describing the
devices and the services in that case. As we have seen previously, an accepted and validated ontology

describing the whole world’s concepts, relationships and instances is unlikely to happen [13]. The approach

and modeling levels distribution is depicted in the Figure 11.

1https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Figure 9 : IoT 2003 - 2020 projection1

Semantic based web services for devices selection Knowledge Modelization

22

Figure 10 : IoT companies and device manufacturers

2.6.2 Multiple Local Ontology Approach (MLO)

With this approach, each device, through embedded metadata, embeds its own domain ontology based on its
own vocabulary (referring to AAA). This approach is the best fitting with our problem statement as it allows

knowledge publishers to rely on their own vocabulary. The approach and modeling levels distribution is
depicted in the Figure. 8.

Some projects make use of heterogeneous ontologies. For example, in the context of ambient intelligent

environments (AIEs), ATRACO project previously discussed [12][13] is built around agents exchanging data
between each other. This project is based on an upper ontology (Paragraph 2.6.3) but allows software agents

to independently and locally describe and rely on their own ontology.

Figure 11 : Ontology modeling, the GO approach

Meta model

Meta meta model

Abstract syntax

Model

Global ontology

Semantic based web services for devices selection Knowledge Modelization

23

2.6.3 Hybrid Approach

Each device defines, through embedded metadata, his own domain knowledge (Model) built from a
common vocabulary (Meta model + Meta meta model, aka Upper ontology). Like for the global ontology

approach depicted in the Paragraph 2.6.1, there is currently no agreed and widely used common and global
vocabulary (world comprehensive meta model) available. The approach and modeling levels distribution is

depicted in the Figure 13.

For example, in [16] authors have defined layered ontologies defining a common ontology from which semantic
annotations can be defined and deployed on devices. The authors highlight the need for a standardization

committee and the need, for the manufacturers to develop their device ontologies based on the defined and
agreed vocabulary. As it is a good solution to cope with the semantic heterogeneity issue, in SWoT context,

it is unlikely that such a standardization could occur.

Most of the projects rely on ad-hoc ontologies specific to domain like smart offices [17], smart homes [18],

ambient assisted living [19], sensors [20], [21] , smart cities [22], etc…

2.6.4 Fragmented Hybrid (FH) Approach

This approach can be placed in between the MLO and the Hybrid approach. An upper ontology is fragmented

in multiple sub-ontologies defining independently each concept of the global ontology (Paragraph. 2.6.1). It is

depicted in the Figure 14. Thus, given an upper ontology U defining C concepts, 𝑈 = 𝑆𝑢𝑏1 ∪ 𝑆𝑢𝑏2 … ∪

 𝑆𝑢𝑏𝑛 𝑤ℎ𝑒𝑟𝑒 𝑛 = ∁. Since both approaches (MLO and FH) can be used together and are conceptually closed,
except if it is explicitly denoted FH, we will consider (and denote) FH as MLO in the rest of the document.

Figure 12 : Ontology modeling, the MLO approach

Figure 13 : Ontology modeling, the hybrid approach

Model#2

Meta meta model

Abstract syntax

relies on

Model#1

Meta model#1 Meta model#2

Local ontology#1 Local ontology#2

Model#2

Meta meta model

Abstract syntax

relies on Model#1

Meta model

Upper ontology

Semantic based web services for devices selection Knowledge Modelization

24

2.7 Conclusion

We have briefly reviewed in this chapter the main web semantic knowledge modeling technologies used
to formally describe knowledge and their capabilities for expressing, with more or less expressivity, facts about

the real world (Paragraph 2.2). We have then defined (Paragraph 2.3), in the context of ambient systems,

the knowledge types to be described: (1) the contextual knowledge, (2) the structural knowledge and (3) the
functional knowledge. Such a variety of knowledge domains to cover enforces the need for a high knowledge

model expressivity. While expressivity is key at reducing the knowledge abstraction level and then helps
ambient systems to better segregate devices and services, it implies computational complexity that may be

problematic for ambient systems with low computational resources. We concluded that OWL(2) DL is the

language better fitting with the expressivity/computational complexity constraints (Paragraph. 2.4).
OWL language is built on: (1) the AAA slogan (Anyone can say Anything about Any topic) and (2) the open

world assumption (there might be new or complementary knowledge description that we are not aware of).
This tells us that the development of a comprehensive model of the world is not going to happen but instead,

as per (1) and (2) paradigms, has to be built from the capitalization of multiple knowledge providers

(Paragraph. 2.5). Unfortunately, most of the approaches, in the domain of ambient systems, relies on an ad-
hoc knowledge model, which goes against the aforementioned paradigms. It exists a constellation of IoT

providers and we envision that each of them will use their own knowledge model. After having reviewed the
main ontology modeling approaches (Paragraph 2.6), we have proposed an approach based on heterogeneous

knowledge representation models (MLO or MLO + FH approaches) to qualify and self-describe devices and

services through semantically enriched metadata (Paragraph 2.6.2).
While this approach brings semantics heterogeneity issues the ambient systems have to cope with when

integrating this heterogeneous knowledge (Chapter 3), it gives outstanding perspectives in term of services
selection relevancy improvement. Indeed, as the same terms might be differently described in heterogeneous

ontologies, they may acquire a more accurate meaning throughout an evolutionary process, the ir meaning

being shaped through the assertions done by their publishers (The IoT manufacturers).

Model#2

Meta meta model

Abstract syntax

Model#1

Meta model

Fragmented Upper ontology

𝑆𝑢𝑏1 𝑆𝑢𝑏2 𝑆𝑢𝑏𝑛 𝑆𝑢𝑏2 Meta model

𝑆𝑢𝑏1 Meta model

Figure 14 : Ontology modeling, the FH approach

Semantic based web services for devices selection Knowledge Modelization

25

2.8 References

[1] Brachman, R., & Levesque, H. (2004). Knowledge representation and reasoning. Elsevier.

[2] Gyrard, A., Bonnet, C., & Boudaoud, K. (2014, March). Enrich machine-to-machine data with semantic web

technologies for crossdomain applications. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp.

559-564). IEEE.

[3] Berners-Lee, T., Fischetti, M., & Foreword By-Dertouzos, M. L. (2000). Weaving the Web: The original design

and ultimate destiny of the World Wide Web by its inventor. HarperInformation.

[4] D. Allemang and J. Hendler. Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL.

Morgan Kaufmann, 2011.

[5] G. Antoniou and F. Van Harmelen. A semantic web primer. 2nd. MIT Press, 2008.

[6] T. Segaran, C. Evans, and J. Taylor. Programming the semantic web. O’Reilly Media, 2009.

[7] Jeremy J. Carroll and Graham Klyne. Resource Description Framework (RDF): Concepts and Abstract Syntax.

W3C Recommendation 10 February 2004. url:http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[8] L. Masinter, T. Berners-Lee, and R.T. Fielding. Uniform resource identifier(URI): Generic syntax (2005).

[9] http://www.w3.org/TR/owl-ref/

[10] http://www.w3.org/TR/owl-guide/

[11] Horrocks, I., Patel-Schneider, P. F., & Van Harmelen, F. (2003). From SHIQ and RDF to OWL: The making

of a web ontology language. Web semantics: science, services and agents on the World Wide Web, 1(1), 7 -26.

[12] Goumopoulos, Christos, et al. "Atraco: Adaptive and trusted ambient ecologies." Self-Adaptive and Self-

Organizing Systems Workshops, 2008. SASOW 2008. Second IEEE International Conference on. IEEE, 2008.

[13] Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & Hübner, S. (2001,

August). Ontology-based integration of information-a survey of existing approaches. In IJCAI-01 workshop:

ontologies and information sharing (Vol. 2001, pp. 108-117).

[14] Kameas, A., & Seremeti, L. (2011). Ontology-based knowledge management in NGAIEs. In Next Generation

Intelligent Environments (pp. 85-126). Springer New York.

[15] Holst, T. (2013). Structural analysis of unknown RDF datasets via SPARQL endpoints (Doctoral dissertation,

Master thesis defense 11).

[16] Dibowski, H., & Kabitzsch, K. (2011). Ontology-based device descriptions and device repository for building

automation devices. EURASIP Journal on Embedded Systems, 2011, 3.

[17] Ryu, M., Kim, J., & Yun, J. (2015). Integrated Semantics Service Platform for the Internet of Things: A Case

Study of a Smart Office. Sensors, 15(1), 2137-2160.

[18] Vacher, M., Istrate, D., Portet, F., Joubert, T., Chevalier, T., Smidtas, S., ... & Méniard, S. (2011, August).

The sweet-home project: Audio technology in smart homes to improve well -being and reliance. In Engineering

in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 5291 -5294).

IEEE.

[19] Jacquet, C., Mohamed, A., & Bellik, Y. (2013). An Ambient Assisted Living Framework with Automatic Self -

Diagnosis. International Journal on Advances in Life Sciences, 5(1).

[20] Park, D. H., Bang, H. C., Pyo, C. S., & Kang, S. J. (2014, March). Semantic open IoT service platform

technology. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 85-88). IEEE.

[21] Alirezaie, M., & Loutfi, A. (2014). Reasoning for Improved Sensor Data Interpretation in a Smart Home. arXiv

preprint arXiv:1412.7961.

[22] Lécué, F., Schumann, A., & Sbodio, M. L. (2012). Applying semantic web technologies for diagnosing road

traffic congestions. In The Semantic Web–ISWC 2012 (pp. 114-130). Springer Berlin Heidelberg

[23] Baader, F. (2003). The description logic handbook: theory, implementation, and applications. Cambridge

university press.

[24] Horrocks, I. (2005). Owl: A description logic based ontology language. In Logic Programming (pp. 1-4). Springer

Berlin Heidelberg.

[25] Krötzsch, M., Simancik, F., & Horrocks, I. (2012). A description logic primer. arXiv preprint arXiv:1201.4089.

[26] Horrocks, I., Patel-Schneider, P. F., & Van Harmelen, F. (2003). From SHIQ and RDF to OWL: The making

of a web ontology language. Web semantics: science, services and agents on the World Wide Web, 1(1), 7 -26.

[27] http://www.w3.org/TR/owl2-primer/

[28] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., & Sattler, U. (2008). OWL 2: The next

step for OWL. Web Semantics: Science, Services and Agents on the World Wide Web, 6(4), 309-322.

[29] Horrocks, I., Kutz, O., & Sattler, U. (2006). The Even More Irresistible SROIQ. KR, 6, 57 -67.

3. Knowledge Extraction

3.1 Introduction .. 26
3.2 From Knowledge to Annotations .. 26

3.2.1 Extraction From Upper Ontologies.. 26
3.2.2 Extraction From Web Pages .. 27

3.3 Web Services Standards Used to Convey the Knowledge 28
3.3.1 Web Services Description Languages ... 28

3.4 Conclusion .. 30
3.5 References ... 31

3.1 Introduction

Modeling an ontology from scratch is a long and costly process as it requires experts’ knowledge to be

abstracted in ontologies by using adequate terms, properties and relationships. Also, has we have seen in

Chapter. 2, semantic web knowledge modeling languages are complex and subtle, and there might be
numerous ways to model the same knowledge. So, it is a safe bet that manufacturers, to reduce development

costs, will enforce the knowledge reusability through the development of interoperable knowledge fragments
self-describing the devices and the services (Assuming that manufacturers will be the knowledge publishers).

It already exists a constellation of formally described knowledge freely available all over the web. However,

while formally described, this knowledge cannot be used “as is” to annotate the devices since: (1) it is often
drowned in an Upper ontology or spread out in a web page and (2) does not follow the semantic web best

practices [8], limiting, de facto, the reusability of their information outside their initial scope [1].

 In this chapter we first investigate how to turn the already existing formal knowledge into metadata.
Providing the manufacturers with tools helping them to rapidly extract and encapsulate the knowledge into

metadata is key to reduce the products design to market cycle time. In the second part of this chapter we
will give a short overview of the existing web services description languages that can be used to convey the

formal knowledge descriptions to the ambient systems and investigate if these languages are adapted to

convey all the needed knowledge descriptions types (functional, structural and contextual).

3.2 From Knowledge to Annotations

3.2.1 Extraction From Upper Ontologies

There are numerous upper ontologies available on the web covering several domains (smart offices [2],

smart homes [3], ambient assisted living [4], sensors [5],[6], smart cities [7]). Some ontologies are well-
established ontologies whose terms and relationships semantics have been deeply validated. However, these

ontologies being often huge and, due to the embedded systems limited resources and the high ambient systems

responsiveness needed, cannot be used “as is”. Therefore, an ontology designer would want to reuse, from the
upper ontology, only the statements needed to qualify a given concept (a signature). For instance, DogOnt

[11] ontology (version 3.2.11, 897 classes, 32 object properties, 46 datatype properties and 267 individuals)

aims at defining the vocabulary for Intelligent Domotic Environments (IDE). It defines a set of white goods

(washing machine, stove, oven, fridge, dishwasher, deep freezer, cooker, boiler, etc…) with their associated

concepts hierarchy and relationships. A designer of an ontology O interested by the Fridge signature could

import DogOnt ontology (hereby ensuring Fridge semantics conservation) but the resulting ontology (O ∪

DogOnt) would be much complex to work with (search, reasoning,…). The idea is for the designer of O to

only extract the fragment (aka module, descriptive subgraph, RDF molecule, etc…) of DogOnt that just

describes the Fridge concepts that have to be reused in O. The problem statement is then the following: given

an upper ontology O, we want to extract the minimal set S of assertions (𝑆 ⊑ 𝑂), a module, qualifying the

concept C (𝐶 ∈ 𝑂) without degrading its semantics (extraction safety). This problem is well addressed in the
literature [9][10] and there exists several subgraph extraction methods (Concise bounded description1 (CBD)

of a resource, (more generally a resource), Minimum Self-contained Graphs (MSGs)[27], RDF Molecules [28],

etc…).
1http://www.w3.org/Submission/CBD/

Semantic based web services for devices selection Knowledge Extraction

27

 Also, care has to be taken regarding the upper ontologies quality. Authors in [1] have classified up to 291

IoT based projects ontologies from which only 23 follow the semantic web best practices recommendations

[8].

Module extraction is out of the scope of this document but for the purpose of experimentations (Paragraph.

4.8), we have developed a small straightforward algorithm based on (CBD based) explained hereafter.

Algorithm 1: Module extraction. Given an ontology O and a signature S, compute module O’
begin

 Visited := {};

R := getResource(S);

sList := O.listStatements() where statement’s subject is equal or equivalent to R;

for all stmt ∈ sList do

O’ := O’ + stmt;
extract(stmt);

end for

end;

: extract(stmt)

if(isResource(stmt.subject) and Visited[stmt.subject] = false) {
Visited[stmt.subject] := true;

 r := getResource(stmt.subject);

 pList := getProperties(r);

 for all p ∈ pList {

O’ += p;
extract(p);

 end for
end if

}

3.2.2 Extraction From Web Pages

The World Wide Web contains a lot of data about products and manufacturers (from the manufacturer’s

products web pages or resellers). However, most of these web pages (depicting products features) are
unstructured and not semantically enriched, or when enriched, does not follow the semantic web best practices

[8]. One of the best practices is to publish web data as interlinked RDF graphs (Linked Data (LOD)) following

some basic principles [12]:

1) Use URIs to name things,
2) Use HTTP URIs so that names can be dereferenced,

3) Return a RDF graph upon dereferencing of those URIs,

4) Use HTTP URIs in returned RDF graphs (here the interlinked vision).

(1) is about identifying the data source hence enabling the data extraction tool to check for its reliability,

(4) Here the recommendation is to use the Linked Open Vocabulary (LOV1) as the meta model for the model
describing the data in the returned RDF graphs (and not just owl:sameAs with possible semantic issues [15]).

There are clear advantages at using LOV along with LOD [14]: (1) Most popular vocabularies form now

a core of the Semantic Web standards, (2) vocabularies rely more and more on each other through reusing,

refining or extending, stating equivalences, etc… thus increasing the meaning of the terms used in those
vocabularies, (3) it reduces the semantic heterogeneity (there exist up to 517 vocabularies to date

manufacturers can use to describe their devices). Some tools2 exists to transform a dataset (html, xml, csv,

etc…) to LOD that can further be used to qualify data in the web pages… or directly used in the device
metadata hereby extending the ontology modeling approaches presented in Paragraph. 2.6 with a new one in

between the MLO approach (Paragraph. 2.6.2) and the Hybrid approach (Paragraph. 2.6.3). We call this

additional approach the Multiple Local Ontology approach based on Linked Data (MLO-LD). This approach
is depicted in the Figure 15.
1http://lov.okfn.org/dataset/lov/
2http://www.w3.org/wiki/ConverterToRdf

Semantic based web services for devices selection Knowledge Extraction

28

Since the knowledge is dereferenced, the main advantages of such an approach are:
1. The complete graph can be maintained by the manufacturer ensuring up to date data when retrieving

it (RDF graph versioning),
2. The metadata size is reduced since just the reference to the RDF graph has to be defined.

LOVs are however not perfect. Authors in [13] noted that 3% of the LOV were not dereferenceable (one
cannot retrieve the RDF graph), 25% did not maintain a creation date, 24% did not have a creator name,

etc…

3.3 Web Services Standards Used to Convey the Knowledge

3.3.1 Web Services Description Languages

Ambient applications make devices and services work in concert to assist users in several distinct domains

(healthcare, smart houses, etc…). This cooperation requires an underlying strong interoperability between

devices, firstly achieved by allowing them to communicate. Among all the communication protocols, web-

services (WS) based approaches (WoT, Web of Things, mainly based on WS-* (Service Oriented Architecture)
or REST (Resource Oriented Architecture) approaches) is now widely accepted. W3C1 defines a Web Service

as “a software system designed to support interoperable machine-to-machine interaction over a network. It

has an interface described in a machine processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP-messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards”.

This definition is interesting as it highlights two potential problems in the context of conveying semantically

enriched metadata:
1. WSDL (Web Service Description Language) allows publishers to describe the services functionality

through a set of operations and binding information. However, information are described syntactically,

not semantically.
2. As we have seen in Paragraph. 2.3, the devices and the services knowledge to be described in the

context of helping ambient systems, based on this knowledge, to select the most relevant ones, is the
functional knowledge but also the structural and the contextual knowledge descriptions.

The first point (describe WSs semantically) is addressed by several services description languages
(Semantic Web Services (SWS) research field), such as OWL-S [17], WSMO [18], WSDL-S [19] and SAWSDL

[20]. In the rest of this paragraph, we investigate how these services description languages can cope with the

knowledge to be described other than the functional one (second point).
Author in [21] gives a classification of the several services description languages for WS-* and REST based

web services and denotes two approaches1: (1) the top-down approach where SWS are based on upper
ontologies used to describe web services, (2) the bottom-up incremental approach enriching existing web
 1http://www.w3.org/TR/ws-gloss/

Figure 15 : MLO-LD approach

Model reference

HTTP URI Abstract syntax

Meta meta model

Shared meta models

Manufacturer URI

relies on

Model reference

HTTP URI

Models refers to

refers to

Returns RDF graph

Semantic based web services for devices selection Knowledge Extraction

29

services description standards (WSDL) by adding extensions to connect the syntactic definitions to their

semantic annotations. Back to our vision, (1) it is unlikely that manufacturers will rely on an upper ontology
to describe their products (including their functionalities), (2) we want a fine grained services description

model expressivity; so it seems that the bottom-up approach is the one to adopt in the case of MLO

(Paragraph. 2.6.2) or MLO-LD (Paragraph 3.2.2) approaches.

These description languages, primarily aims at semantically describing the functional knowledge (WS API
description and usage) of the services. Non-functional knowledge representation are mainly related to the

Quality of service (QoS) [25][27]. We propose then to mix-up MLO approach (or MLO-LD) with the bottom
up approach (Figure 18). For information, Figure 17 depicts the MLO approach with the top down approach.

1Unlike REST, WS-* allows to dynamically manage the devices and the services thanks to dynamic discovery (WS-Discovery) and eventing (WS-
Messaging) mechanisms well suited in the context of devices embedded in real physical environments or everyday life objects (Paragraph. 4.4). This

is the approach followed in this work.

Figure 16 : WS-* SWS approaches

WSMO [18]

SWLS [23]

WS-* SWS approaches

Top down Bottom Up

OWL-S [17]

…

WSDL-S [19]

SAWSDL [20]

LIDS [22]

…

Meta meta model

Abstract syntax

relies on

Model#1

1. Contextual info.
2. Structural info.

Meta model#1

Local ontology#1

Services desc.

Model (SAWSDL)

3. Functional info.

relies on

(modelReference)

Local ontology#1

4. Functional info. relies on

Services desc.

Model

Meta meta model

Abstract syntax

relies on

Model#1

3. Contextual info.
4. Structural info.

Meta model#1

Upper ontology

(OWL-S)

Figure 17 : MLO + Top down services description
approach

Figure 18 : MLO + Bottom up services description
approach

Semantic based web services for devices selection Knowledge Extraction

30

3.4 Conclusion

Providing the manufacturers with tools helping them to rapidly extract and encapsulate the knowledge

into metadata is key to reduce the products design to market cycle time. In this chapter we have first

investigated how to turn already existing formal knowledge into metadata either from upper ontology , from
which only the statements needed to qualify a given concept are extracted (a simple extraction algorithm is

provided), or from web pages whose data content is published as interlinked RDF graphs (Linked Data (LD)

⟶ dereferenceable HTTP URIs) whose meta models rely on Linked Open Vocabularies (LOV). Some

converter tools exists transforming any data (from html, csv, xml, etc…) to RDF triples.

From the LD approach arises a new ontology modeling approach (MLO-LD) derived from the MLO

approach (Paragraph 2.6.2) which has the main advantages of (1) drastically reducing the metadata size (only
a reference to an RDF sub-graph is needed in the metadata), (2) permitting manufacturers to maintain an

RDF graphs repositories with possibly revisioning ensuring ambient applications to retrieve the latest RDF

graph revision describing a particular device or service.
In the second part of the chapter we have given a short overview of the existing web services description

languages (for SOA-based WS-*) that can be used to convey the formal knowledge descriptions to the ambient
systems. Two approaches can be used depending on the situation: (1) use a top down approach where an

upper ontology is used to describe the web services functionalities, (2) use a bottom up approach extending

existing web services description languages (WSDL) with semantics capabilities. These description languages
are mainly dedicated at defining the semantics of the services functionalities (input, output, execution flow,

etc…) but not the non-functional knowledge (structural or contextual) other than the Quality of Service

(QoS). We propose to mix-up the MLO approach with the bottom-up approach (assuming that manufacturers
will not rely on an upper ontology to describe the functionalities of the services).

Semantic based web services for devices selection Knowledge Extraction

31

3.5 References

[1] Gyrard, A., Bonnet, C., & Boudaoud, K. (2014, March). Enrich machine-to-machine data with semantic web

technologies for cross-domain applications. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp.

559-564). IEEE.

[2] Ryu, M., Kim, J., & Yun, J. (2015). Integrated Semantics Service Platform for the Internet of Things: A Case

Study of a Smart Office. Sensors, 15(1), 2137-2160.

[3] Vacher, M., Istrate, D., Portet, F., Joubert, T., Chevalier, T., Smidtas, S., ... & Méniard, S. (2011, August).

The sweet-home project: Audio technology in smart homes to improve well -being and reliance. In Engineering

in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 5291 -5294).

IEEE.

[4] Jacquet, C., Mohamed, A., & Bellik, Y. (2013). An Ambient Assisted Living Framework with Automatic Self -

Diagnosis. International Journal on Advances in Life Sciences, 5(1).

[5] Park, D. H., Bang, H. C., Pyo, C. S., & Kang, S. J. (2014, March). Semantic open IoT service platform

technology. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 85-88). IEEE.

[6] Alirezaie, M., & Loutfi, A. (2014). Reasoning for Improved Sensor Data Interpretation in a Smart Home. arXiv

preprint arXiv:1412.7961.

[7] Lécué, F., Schumann, A., & Sbodio, M. L. (2012). Applying semantic web technologies for diagnosing road

traffic congestions. In The Semantic Web–ISWC 2012 (pp. 114-130). Springer Berlin Heidelberg

[8] Semantic Web best practices: Semantic Web Guidelines for domain knowledge interoperability to build the

Semantic Web of Things [Gyrard et al., OneM2M, 2014]

[9] Grau, B. C., Horrocks, I., Kazakov, Y., & Sattler, U. (2007, May). Just the right amount: extracting modules

from ontologies. In Proceedings of the 16th international conference on World Wide Web (pp. 717 -726). ACM.

[10] Cuenca Grau, B., Horrocks, I., Kazakov, Y., & Sattler, U. (2008). Modular reuse of ontologies: Theory and

practice. Journal of Artificial Intelligence Research, 273-318.

[11] Bonino, D., & Corno, F. (2008). Dogont-ontology modeling for intelligent domotic environments (pp. 790-803).

Springer Berlin Heidelberg.

[12] Heath, T., & Bizer, C. (2011). Linked data: Evolving the web into a global data space. Synthesis lectures on the

semantic web: theory and technology, 1(1), 1-136.

[13] Vandenbussche, P. Y., Vatant, B., & Charlet, J. (2012). Linked Open Vocabularies, un écosystème encore

fragile. White paper, Mondeca.

[14] Scharffe, F., Atemezing, G., Troncy, R., Gandon, F., Villata, S., Bucher, B., ... & Vatant, B. (2012). Enabling

linked data publication with the Datalift platform. In Proc. AAAI workshop on semantic cities (pp. No -

pagination).

[15] Halpin, H., Hayes, P. J., McCusker, J. P., McGuinness, D. L., & Thompson, H. S. (2010). When owl: sameas

isn’t the same: An analysis of identity in linked data. In The Semantic Web–ISWC 2010 (pp. 305-320). Springer

Berlin Heidelberg.

[16] Tosi, D., & Morasca, S. (2015). Supporting the semi-automatic semantic annotation of web services: A systematic

literature review. Information and Software Technology, 61, 16-32.

[17] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., ... & Sycara, K. (2004). OWL -

S: Semantic markup for web services. W3C member submission, 22, 2007-04.

[18] De Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., ... & Stollberg, M. (2006). Web service

modeling ontology (wsmo). Interface, 5, 1.

[19] Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P., & Verma, K. (2005). Web service semanti cs-

wsdl-s.

[20] Kopecky, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). Sawsdl: Semantic annotations for wsdl and xml

schema. Internet Computing, IEEE, 11(6), 60-67.

[21] Slimani, T. (2013). Semantic description of web services. arXiv preprint arXiv:1310.7367.

[22] Speiser, S., & Harth, A. (2011). Integrating linked data and services with linked data services. In The Semantic

Web: Research and Applications (pp. 170-184). Springer Berlin Heidelberg.

[23] Berardi, D., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., ... & Tabet, S. (2005). SWSL: Semantic

Web Services Language. Semantic Web Services Initiative (April 2005).

[24] Sheth, A. P. (2003). Semantic web process lifecycle: role of semantics in annotation, discovery, composition and

orchestration.

[25] Verma, K., & Sheth, A. P. (2007). Semantically annotating a web service. IEEE Internet Computing, 11(2), 83.

[26] Klusch, M. (2008). Semantic web service description. In CASCOM: Intelligent Service Coordination in the

Semantic Web (pp. 31-57). Birkhäuser Basel.

[27] Tummarello, G., Morbidoni, C., Puliti, P., & Piazza, F. (2005, May). Signing individual fragments of an RDF

graph. In Special interest tracks and posters of the 14th international conference on World Wide Web (pp. 1020 -

1021). ACM.

Semantic based web services for devices selection Knowledge Extraction

32

[28] Ding, L., Finin, T., Peng, Y., Da Silva, P. P., & McGuinness, D. L. (2005, April). Tracking rdf graph provenance

using rdf molecules. In Proc. of the 4th International Semantic Web Conference (Poster) (p. 42).

4. Knowledge integration

4.1 Introduction .. 33
4.2 Knowledge Base ... 34
4.3 Reasoning ... 35

4.3.1 Knowledge Base Interpretation .. 35
4.3.2 Reasoning Tasks ... 35

a) TBox Reasoning ... 35
b) ABox Reasoning ... 36

4.3.3 ∑ Saturation & Inference Rules ... 36
4.3.4 Reasoning Over Linked Vocabulary... 37

4.4 Ambient Systems Dynamicity and Impacts on the Knowledge Integration................ 37
4.4.1 Role Assertion Level Dynamicity ... 38
4.4.2 Concept Assertion Level Dynamicity ... 38
4.4.3 GCI Level Dynamicity ... 39

4.5 Heterogeneous GCI Integration Issues.. 40
4.5.1 Ontology Merging & Integration.. 40
4.5.2 Ontology Alignment and Mapping... 40
4.5.3 All Together ... 41

4.6 The Semantic Heterogeneity is Good! .. 41
4.7 Knowledge integration model ... 42
4.8 Experimentations .. 44

4.8.1 Use-case#1 : A New Environment Exploration... 44
4.8.2 Use-case#2 : Search For Energy-Efficient Devices .. 44
4.8.3 Experimentations Setup ... 44
4.8.4 Results .. 45

a) Use-case#1 : A New Environment Exploration .. 45
b) Use-case#2 : Search for Energy-efficient Devices .. 45

4.9 Conclusion .. 48
4.10 References ... 48

4.1 Introduction

With the approach proposed in Paragraph. 2.6.2, heterogeneous meta models used to describe the devices

and the services are embedded in devices metadata and scattered in the environment. At some point, this
knowledge has to be made available to the ambient system and integrated in a knowledge base. The knowledge

integration has to cope with two major issues: (1) the physical environment and the devices dynamicity, (2)
the heterogeneity of the knowledge being described through the metadata.

On the other side, such issues might be seen as a clear opportunity for the ambient system to learn from

its interactions with the environment. Indeed, IoT manufacturers have their own understanding and context
usages of terms that they use in the meta models (referring to AAA) and thus these terms, once integrated
together, acquire a more accurate meaning over time (referring to OWA), the meaning being shaped through
assertions done in the heterogeneous meta models. In ambient systems, software applications have to make

decisions about devices and services to be used in concert to assist users. “Make a decision” is a behavior

related to intelligence whose foundation is knowledge. The more accurate is the knowledge, the more relevant
is the decision (Paragraph. 4.6).

In this chapter, we first introduce the knowledge base and its foundations (Paragraph. 4.2 & 4.3).
Then, we depicts the knowledge dynamicity levels inherent to the physical nature of the environment and the

devices and their impacts on the integration process (Paragraph. 4.4). Finally, we present some ontology

interoperability techniques helping to cope with metal model heterogeneity issue (Paragraph. 4.5) and propose
a knowledge integration model (Paragraph. 4.7) validated on two use-cases (Paragraph 4.8).

Semantic based web services for devices selection Knowledge Integration

34

4.2 Knowledge Base

As explained in Paragraph. 2.3, description logics (DLs) underly OWL family (OWL DL is based on

SHOIN). DLs [1][2][3][4] are composed by basic descriptions (the atomic concepts (A,B,…), the atomic roles

(R,…) and the individuals) and constructors (Table 3) from which can be built complex concepts (C,D…)

and roles descriptions. The DL syntax is given by its signature and the constructors.

A DL knowledge base ∑ consists of a TBox (terminology box) and a ABox (assertion box) where TBox

is a finite set (possibly empty) of general concept inclusion (GCI) axioms describing concepts (C,D,…) and

roles R defining how atomic concepts (A,B,…) are related to each other’s (in the form C ⊑ D, meaning D

subsumes C or C ≡ D for equivalence), and ABox a finite set (possibly empty) of assertions describing the
world state in the form C(a) (concept assertion) or R(a,b) (role assertion). Reusing the ontology presented in

Paragraph. 2.4:

Manufacturer ⊑ Company (4.1)

Oven ⊑ Appliance ⊓ ∀hasManufacturer.Manufacturer (4.2)
Oven(iQ700) (4.3)

Manufacturer(Siemens) (4.4)
hasManufacturer(iQ700; Siemens) (4.5)

The TBox contains (4.1) and (4.2), and the ABox contains (4.3), (4.4) and (4.5).

Note that some DLs (S,H or F based) introduce RBox R (role box), a finite set (possibly empty) of

statements of the form1:

1. 𝑅1 ⊑ 𝑅2, role inclusions,
2. Func(r), functional roles,

3. Trans(r), transitive roles.

Statements in R are called role axioms.

Table 3 : Knowledge base ABox, TBox and RBox axioms

TBox and RBox define the general knowledge of a given domain (established at design time by the

ontology designer) and ABox, the knowledge in a specific situation (established at run time). Thus, one can

consider TBox and RBox as a meta model and ABox the model (Paragraph. 2.2.6).

1http://www.cs.man.ac.uk/~ezolin/dl/

DL
Axioms

RBox TBox ABox

AL 𝐶 ⊑ 𝐷 C(a)
r(a,b)

Extensions…

ALC

S Trans(R)

I

H 𝑅1 ⊑ 𝑅2

F Func(r)

DL syntax Comments OWL abstraction

C(a) Concept assertion rdf:type

r(a,b) Role assertion

C ⊑ D

C ≡ D

Concept

inclusions

rdfs:subClassOf

owl:equivalentClass

𝑅1 ⊑ 𝑅2

𝑅1 ≡ 𝑅2

Role inclusions owl:subPropertyOf

owl:equivalentProperty

Func(r) Func. roles

(≤ 1R, >2R)

owl:functionalProperty

Trans(R) Role transitivity owl:TransitiveProperty

Semantic based web services for devices selection Knowledge Integration

35

4.3 Reasoning

4.3.1 Knowledge Base Interpretation

Once a DL signature S is fixed, its model semantics is given by an interpretation I. An interpretation I
for S is given by 𝐼 = ⟨∆𝐼, ∙𝐼⟩ where ∆𝐼 is the interpretation domain (set of individuals) and ∙𝐼 an interpretation

function which maps each atomic concept A to a set 𝐴𝐼 ∈ ∆𝐼, and each atomic role R to a binary relation

𝑅𝐼 ∈ ∆𝐼 ∗ ∆𝐼. Each DL provides a set of constructors extending the interpretation function to give more or

less semantics to atomic concepts and atomic roles (See Table 4 for the ALC semantics).

Constructor ALC syntax Semantics

Top ⊤ ∆𝐼

Bottom ⊥ ∅

Negation on atomic

concepts
¬A (¬A)𝐼 = ∆𝐼 ⧵ 𝐴𝐼

Negation on complex

concepts
¬C (¬C)𝐼 = ∆𝐼 ⧵ 𝐶𝐼

Conjunction C ⊓ D (𝐶 ⊓ 𝐷)𝐼 = 𝐶 𝐼 ∩ 𝐷𝐼

Disjointure 𝐶 ⊔ 𝐷 (𝐶 ⊔ 𝐷)𝐼 = 𝐶 𝐼 ∪ 𝐷𝐼

Existential restriction ∃R.C (∃R. C)𝐼 = {𝑎 ∈ ∆𝐼 | ∃𝑦. 〈𝑎, 𝑏〉 ∈ 𝑅𝐼 ∧ 𝑏 ∈ 𝐶 𝐼}

Value restriction ∀R.C (∀R. C)𝐼 = {𝑎 ∈ ∆𝐼 | ∀𝑏. 〈𝑎, 𝑏〉 ∈ 𝑅𝐼 → 𝑏 ∈ 𝐶 𝐼}

Concept inclusion 𝐶 ⊑ 𝐷 (𝐶 ⊔ 𝐷)𝐼 = 𝐶 𝐼 ⊆ 𝐷𝐼

Table 4 : ALC constructors

An interpretation I is said to be a model of an axiom φ, or I models φ (written 𝐼 ⊨ 𝜑), if the interpretation

of φ in I is not empty. For example, let’s consider ∀hasManufacturer.Manufacturer in Figure 5. 𝐼 = ⟨∆𝐼, ∙𝐼⟩ is

a model of ∀hasManufacturer.Manufacturer where:

∆𝐼= {𝑂𝑣𝑒𝑛, 𝑆𝑖𝑒𝑚𝑒𝑛𝑠,𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒, 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟, 𝑖𝑄700, 𝐶𝑜𝑚𝑝𝑎𝑛𝑦}

And the interpretation function ∙𝐼 is defined by:

𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟𝐼 = {𝑆𝑖𝑒𝑚𝑒𝑛𝑠} ≠ ∅

ℎ𝑎𝑠𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟𝐼 = {〈𝑖𝑄700, 𝑆𝑖𝑒𝑚𝑒𝑛𝑠〉} ≠ ∅

Now, considering a knowledge base ∑〈𝑇, 𝐴〉 and an interpretation I, then 𝐼 ⊨ ∑ (I satisfies ∑) if and only if

for all 𝜑 ∈ 𝑇 ∪ 𝐴, 𝐼 ⊨ 𝜑. ∑ is satisfiable (∑⊭⊥) if it exists such an interpretation I that satisfies ∑.

4.3.2 Reasoning Tasks

Reasoning is the process of discovering implicit knowledge entailed by the knowledge base ∑=〈𝑇, 𝐴〉.

Several entailment tasks are then possible on TBox and ABox (along with RBox for S,H or F DLs based):

a) TBox Reasoning

1. Subsumption (∑ ⊨ (𝐶 ⊑ 𝐷)):

D subsumes C for a terminology T if 𝐶𝐼 ⊆ 𝐷𝐼 for all interpretation I of T;

2. Concept satisf iability (∑⊭ C ≡⊥):
A concept C of a terminology T is satisfiable if it exists an interpretation I of T such

that 𝐶𝐼 ≠ ∅;

3. Concept Equivalence(∑ ⊨ (𝐶 ≡ 𝐷)):

C is equivalent to D for a terminology T if 𝐶𝐼 ≡ 𝐷𝐼 for all interpretation I of T;

Semantic based web services for devices selection Knowledge Integration

36

4. Disjointure (∑ ⊨ (𝐶 ⊔ 𝐷 = ⊥)):

C and D are disjoint in a terminology T if 𝐶𝐼 ∩ 𝐷𝐼 = ∅ for all interpretation I of T;

b) ABox Reasoning

1. Instance checking (∑ ⊨ 𝐶(𝑎)):

For all interpretations I of ∑, check that C(a) holds.

2. Role checking ((∑ ⊨ 𝑅(𝑎, 𝑏)):

For all interpretations 𝐼 ⊨ ∑ check if (𝑎𝑖 ,𝑏𝑖) ∈ 𝑅𝐼;

3. Knowledge base satisf iability (∑⊭⊥):

Check if it exists 𝐼 ⊨ ∑.

Reasoning is used to achieve complex tasks like searching for instances of a concept, or retrieve the concept

of an instance with subsumption task. Also, it is important in discovering possible issues in the knowledge
base (chapter 5):

1. Unsatisfiable concepts (∑⊨ C ≡⊥). In other words, a concept C is unsatisfiable in O if for each

interpretation I of O, 𝐶𝐼 = ∅;

2. Inconsistency. An ontology O is inconsistent if it has no interpretation;

3. Incoherent knowledge base. A knowledge base is said incoherent if it contains at least one unsatisfiable
concept.

4.3.3 ∑ Saturation & Inference Rules

∑ saturation is the process of enriching ABox and TBox information using reasoning tasks and inference1
rules on the knowledge base content. Back to the previous example (Figure 5):

Manufacturer ⊑ Company

Oven ⊑ Appliance ⊓ ∀hasManufacturer.Manufacturer
Oven(iQ700)

Manufacturer(Siemens)
hasManufacturer(iQ700; Siemens)

The saturated ABox is:

ABox = {〈𝑖𝑄700: 𝑂𝑣𝑒𝑛 ⊓ 𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒〉, 〈𝑆𝑖𝑒𝑚𝑒𝑛𝑠: 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 ⊓ 𝐶𝑜𝑚𝑝𝑎𝑛𝑦〉, … }

Several reasoning engines are available and can be used to compute inferences in a knowledge base. Each
of them handles more or less inferencing capabilities depending on the DL expressivity supported (Table 5

from [10]).
As depicted in Table 5, some reasoners support SWRL (Semantic Web Rule Language)[5]. It extends the

set of OWL axioms to enable rules to be combined with an OWL knowledge base. Syntax of the rule language

is close to RuleML. Axioms may consist of RDF, OWL and rule axioms. The language provides pre-defined

sets of built-in functions (e.g. string functions and mathematical functions, etc…). SWRL support allows

knowledge designers to embed custom inference rules directly in the ontology (inference rules specific to a

domain). For instance, considering an ontology defining a role axiom hasPowerConsumption(a,12w), an
SWRL rule may infer the new relation for a: hasPowerEfficiency(a,A+) (See 4.8.2).

1http://www.w3.org/standards/semanticweb/inference

Semantic based web services for devices selection Knowledge Integration

37

Table 5 : State of the art reasoners comparison [10]

4.3.4 Reasoning Over Linked Vocabulary

The MLO-LD approach (Paragraph. 3.2.2) is based on HTTP URIs permitting to retrieve RDF graph by
dereferencing. From an integration standpoint, two approaches are possible:

1. Keep the HTTP URI in the knowledge base without retrieving the associated RDF graph (e.g. the

concept ‘TV’ is defined by the HTTP URI but the RDF graph semantically defining the concept is

not retrieved and integrated in the knowledge base. This approach might be used to keep the

knowledge base size as low as possible or when Linked Open Vocabularies (LOV) are used as meta
model hence improving the alignment process (Paragraph. 4.5.2),

2. Retrieve the RDF graph before integrating it in the knowledge base.

While the first approach is good at maintaining the knowledge base size as low as possible, it limits the

reasoning capabilities and potential miss-generation of interesting inferences.

4.4 Ambient Systems Dynamicity and Impacts on the Knowledge Integration

As seen in Paragraph. 4.2, a DL knowledge base ∑ consists of a TBox axioms (terminology box), a finite

set of general concept inclusion axioms (GCI) describing atomic concepts and roles defining how atomic

concepts are related to each other’s, and ABox axioms (assertion box), a finite set of concept assertions

(instances) or role assertions (properties). The knowledge base is located at the heart of the ambient systems
(either fixed (Figure 20) or mobile (Figure 19)) while the knowledge it contains (ABox, TBox) is brought by

the devices metadata in the environment, theater of physical phenomena (space, time, temperature, quality

of service, etc…) implying some dynamicity at the GCI and the concept and role assertions levels. For

example, in Figure 20, device states in the apartment may change, new devices may appear or disappear over

time, etc… In Figure 19, new devices may be discovered according to the user (on which is attached the

ambient system) movements in the city.

Semantic based web services for devices selection Knowledge Integration

38

4.4.1 Role Assertion Level Dynamicity

Devices placed in the environment, worn by users or embedded in everyday life objects publish values

gathered from sensors and representing the users, the environment or the objects physical states (temperature,

location, battery level, etc…). For instance, in Figure 21, the device metadata brings the oven’s temperature

value through a role assertion (has_temp(Siemens,180)). The oven’s temperature property in the knowledge

base has to be updated according to the oven current temperature. It allows queries (See chapter 6) such as:

“What is the current temperature of the oven?”

4.4.2 Concept Assertion Level Dynamicity

In ambient environments, devices in the environment are not known a priori and unpredictably appear

or disappear (Figure 22). The knowledge base must be kept up to date with the instances of the devices as
they appear or disappear in the environment (For that purpose, a device discovery mechanism is necessary

[11][12][13][14]). At each instant, the knowledge base content is a snapshot of the instances of the devices
available in the environment (for instance Oven(Siemens)) permitting queries like:

“What are currently the domestic appliances present in the kitchen?”

 ∑

Figure 19 : Mobile ambient system Figure 20 : Fixed ambient system

 ∑

Model

Figure 21 : The role assertion level dynamicity

Semantic based web services for devices selection Knowledge Integration

39

Figure 22 : The concept assertion level dynamicity

4.4.3 GCI Level Dynamicity

Based on the approach proposed in the Paragraph. 2.6.2, each device brings its meta model (Figure 23)

and do not rely on an upper meta model common for all the devices.

Figure 23 : The terminological knowledge

Therefore, each device is subject to enrich the knowledge base with new knowledge throughout the life of
the system (Note that user may also enrich the knowledge base [13]). For instance, an initial query like:

“What are the domestic appliances available allowing to cook?”

corresponding to the Figure 22 would return two devices (both ovens being linked to the concept “Cooking”).

If one of the device adds the new concept “Grill” (Figure 23), the initial query can be refined with:

“What are the domestic appliances available to grill?”

returning only one result (Philips oven). Note that along with additional GCI, domain specific inference rules

(as discussed in Paragraph. 4.3) can also be part of the meta model helping to refine the knowledge by
inferring new roles.

Model

Meta Model

Semantic based web services for devices selection Knowledge Integration

40

4.5 Heterogeneous GCI Integration Issues

As discussed in Paragraph. 4.4.3, the GCI level dynamicity enriches the knowledge base with new concepts

and roles descriptions. Therefore, allowing the device knowledge description model to rely on its own meta

model (heterogeneous meta model), leads the knowledge base to cope with:
1) Semantic heterogeneity issues (AAA slogan, Non unique naming assumption);

2) Unsatisfiability;
3) Incoherency;

4) Inconsistency.

An aggravating factor is the necessity, for the knowledge base, to be managed autonomously (possibly

without (or very limited) human interaction). Some ontology interoperability techniques are available to
reduce the aforementioned issues (and then allowing ontology reusability) and are explained here after.

4.5.1 Ontology Merging & Integration

Ontology merging is the process of generating a single, coherent ontology from two or more existing and
different ontologies related to the same (or very similar) domain [15]. Ontology integration is the process of

generating a single ontology in one subject from two or more existing and different ontologies in different

domains [15] (Figure 24). Merge/Integration is an automatic process.

4.5.2 Ontology Alignment and Mapping

Ontology alignment process takes two or more input ontologies and produces a set of correspondences
between concepts that match semantically with each other (Ontology matching is the process of discovering

similarities (∈ ℝ) between two ontologies). These matches are also called mappings [16]. Ontology alignment
is made if the sources become consistent with each other (describe how the concepts in the different ontologies
are logically related) but are kept unchanged (without changing the meaning in the original ontologies) [15]

(Figure 25).

Alignments can be of various cardinalities: 1:1 (one-to-one), 1:m (one-to-many), n:1 (many-to-one) or n:m
(many to-many). A correspondence is a 4-uple: (id, e1, e2, r) where id is the correspondence identifier, e1 and

e2 are entities (e.g. classes and properties of the first and the second ontology), and r is a relation (equivalence

(≡), more general (⊒), disjointure(⊥), etc…) holding between e1 and e2.

Ontology A Ontology B

Correspondences

Alignment

Ontology A Ontology B

Ontology C

URI

URI

URI

Figure 24 : Ontology Merging & Integration

Figure 25 : Ontology alignment and mapping

Semantic based web services for devices selection Knowledge Integration

41

Correspondences have some associated metadata, a frequently used one is a confidence level (called

alignment threshold, in the [0,1] range) in the correspondence results [18]. Alignment engines usually computes
an aggregation of the syntactic and the semantic similarities between e1 and e2 given by the relation r [19][20].

Alignment process requires a user feedback who have to acknowledge the correspondences based on their

associated confidence level before integrating it in the knowledge base. This process can be made automatic
if one accept to integrate all correspondences whose confidence level is greater than a given threshold value.

Ontology matchers are not perfect and along with benchmarking [18], OAEI (Ontology Alignment

Evaluation Initiative) aims at monitoring existing ontology matchers results over years [21].

The MLO-LD approach (Paragraph. 3.2.2) is a good tradeoff at limiting the semantic heterogeneity issue and

improving the alignment process as the meta model relies on a set of shared vocabularies rather than completely

heterogeneous ones.

4.5.3 All Together

The Figure 26 depicts the full GCI integration process in the knowledge base based on aforementioned
techniques.

4.6 The Semantic Heterogeneity is Good!

As explained in Paragraph. 2.2, Semantic modeling is the process of interpreting the world (or specific

domains of interest) by asserting statements about the world, in other words, enouncing constraints on the

possible world states. But it is unlikely that one can produce a comprehensive set of statements fully describing
the world. Allowing devices metadata to rely on heterogeneous meta models (AAA) to describe themselves

and their services leads the knowledge base GCI to increase and say more things about the world. The bigger

is the knowledge, the lower is the set of interpretations holding ‘true’. IoT manufacturers have their own

understanding and context usages of terms that it would be worth to describe in vocabularies (referring to

AAA) and thus get terms acquire a more accurate meaning through an evolutionary process (referring to
OWA), the meaning being shaped through assertions done by their publishers. While the knowledge modeling

language expressivity is key at allowing accurate and subtle world states to be described, allowing the

knowledge evolution over time is key at improving the relevancy of the selected services (The bigger is the

knowledge, the lower is the set of interpretations holding ‘true’).

The concept and role assertions dynamicity level is well addressed in the SWoT community (context

awareness [31], sensor networks [32], etc…). The GCI dynamicity level, and hereby the knowledge base
enrichment over time, on the other side, is not well considered. Some projects make use of heterogeneous

ontologies. For example, in the context of ambient intelligent environments (AIEs), ATRACO project [22] is

built around agents exchanging data between each other. This project is still based on an upper ontology but

Figure 26 : GCI Integration process over time

Reasoning

Knowledge base

GCI

Knowledge base + Correspondences

Correspondences

Merging

&

Integration

Knowledge base + Corr. + GCI

Automatic

Alignment

&

Matching

Merging

&

Integration

Knowledge base + GCI + Corr. + Inferences

Matching threshold = 1.0

LD HTTP URIs

dereferencing

Semantic based web services for devices selection Knowledge Integration

42

allows software agents to independently and locally describe and rely on their own ontology. While an ontology

alignment engine is developed to cope with the semantic heterogeneity issue at run time, it still offers no

perspective for the upper ontology to capitalize the contribution of agents ’ local ontologies over time. In [23]

authors expose some challenges relative to SWoT domain. One of the identified challenges, is the ability, for

the smart products, to be able to learn new emergent knowledge. But authors have been focused on emergent

knowledge brought from user’s interactions and feedbacks (user’s preference learning) or from wiki pages, not

from devices knowledge contributions. In [24] authors address the problem of gathering knowledge in order

to improve user’s interactions with smart products. They propose to use semantic annotations to enrich smart

products workflows aimed at defining tasks and participants in several contexts. Authors highlight the
problem of the domain ontologies shipped with smart products that have to be enriched over time with the

knowledge about user’s environment and interests. They consider possible changes at the ontology level

(ontology extension) and the instance level (ontology population). The instance level described here
corresponds to the knowledge base level. While the authors motivate the need of such knowledge evolution,

no automatic mechanism is proposed for the enrichment other than manual.

4.7 Knowledge integration model

The knowledge integration model is depicted in Figure 27. As soon as a new device is discovered in the
environment, the GCI defined in its metadata are integrated in the knowledge base). Concept assertions and

role assertions (ABox) are integrated in the knowledge base as well but are maintained separately. When the
device is not available anymore, only the ABox are removed from the knowledge base. The ABox integration

Figure 27 : Knowledge integration model

methodology is different compared with the GCI integration methodology and is depicted in Figure 28. While

inferences are not an issue for GCI (as it has to be made persistent), it is not the case for ABox. Actually, it

is easy to keep track of the integrated ABox but much more difficult to keep track (and then remove it from
the knowledge base) the inferences computed from ABox addition. In order to minimize ABox inferences

persistence issue, we first compute inferences on the ABox (local reasoning) before integrating ABox in the
knowledge base. Doing so, we can keep track of the computed local inferences. Then, alignment is performed

and the mapping merged with the knowledge base. Here, the mapping is isolated as well and can be removed

upon device disappearance. The set ⟨ABox, local reasoning⟩ is then merged in the knowledge base and a global
reasoning process is executed. Inferences made at this stage are difficult to track and it would be a time
consuming task (keep track of the differences between the knowledge base content before and after the global

reasoning).

LD HTTP URIs

dereferencing

Semantic based web services for devices selection Knowledge Integration

43

From an implementation standpoint, either:

1) The global reasoning is enabled for ABox integration with the risk of overloading the knowledge
base over time as global inferences are not removed and are then persistent,

2) The global reasoning is enabled but inferences are recorded, so some extra computing time would

be required with possible impacts on the ambient system responsiveness,
3) The global reasoning is disabled with the risk of losing interesting information.

The GCI dynamicity level allows the knowledge base to be enriched throughout the life of the system.

Based on this, and in the SWoT context, we classify here after (Figure 30) the ontology management

approaches described in Paragraph. 2.6 according to two criteria: (1) their capacity at managing the semantic
heterogeneity, (2) their faculty at permitting the knowledge enrichment over time.

1. FH

With this approach, devices semantic annotations bring fragments of a meta model (the upper
ontology). The GCI grows as devices are discovered over time. The GCI enrichment is bounded to the

content of the meta model the fragments are extracted from, limiting de facto the GCI enrichment

perspectives. On the other side, there is no semantic heterogeneity issue.

2. MLO
With this approach, each device locally

defines and embeds its own meta model. In

the context of SWoT, although good at
supporting GCI enrichment, the lack of a

common vocabulary leads the necessity of
implementing ontologies alignment

mechanisms in order to smooth the semantic

heterogeneity. The lack of a common
vocabulary may lead to degrade the reasoning

process.

Global

Reasoning

Global

Reasoning

Knowledge base

Knowledge base

ABox

ABox

Knowledge base + Corr.

Knowledge base + Mapping

Correspondences

Mapping

Merging

&

Integration

Merging

&

Integration

Knowledge base + Corr. + ABox +

Local inferences

Knowledge base + Mapping + ABox

+ Local inferences

Automatic

Alignment

&

Matching

Alignment

&

Mapping

Merging

&

Integration

Merging

&

Integration

Knowledge base + ABox + Corr. + Local/Global

Inferences

Knowledge base + ABox + Mapping +

Local/Global Inferences

Matching threshold = 1.0

Threshold = 1.0

Local

Reasoning

Local

Reasoning

Figure 28 : ABox integration process over time

Figure 29 : ABox integration

Figure 30 : Knowledge model management approaches
expected performances

Semantic based web services for devices selection Knowledge Integration

44

3. MLO-LD

Each device locally defines and embeds its own domain ontology. But, unlike the MLO approach,
GCI can be HTTP URIs (dereferenced and interlinked with LOV). This approach is good at managing

the semantic heterogeneity and, while it cannot completely make the economy of an alignment engine

(LOV are not aligned), it allows reducing its inaccuracies.

4.8 Experimentations

4.8.1 Use-case#1 : A New Environment Exploration

We consider in this first use-case (Figure 31) the

possible moves of an elderly person in her macroscopic
environment. 99% of the time, this person is either

located at home (yellow circle) or run errands (blue

circle). While the person remains inside this cycle
(pink cycle), no new device are discovered in her

environment and the system knowledge remains
stable but potentially incomplete. Then,

exceptionally, this person has to visit a friend (green

circle). Once in her friend’s environment, new devices
are discovered contributing at enriching the system

knowledge and potentially incrementing the initial

incomplete knowledge. Back to the traditional move
cycle, the newly added knowledge may leads the

system to better assist the person.

4.8.2 Use-case#2 : Search For Energy-Efficient Devices

In this case study the system searches for energy-efficient appliances for playing a music track. The

environment initially comprises the following appliances: an Android tablet and a hi-fi system installed in the
living room. These appliances embed devices allowing them to be monitored and controlled by the system.

Devices provide semantic annotations describing: (1) the appliance power consumption (as a data property),
(2) some terminological concepts about their domains. The problem occurring in the context of searching for

energy-efficient devices instances from the available knowledge is that using the appliance power consumption

property and an arbitrary trigger may lead to inaccurately discriminate the devices…

Let’s consider now that the inhabitant install a new electric meter in the environment. This electric meter

brings new knowledge about the energy classification for home appliances that can be based, for instance, on

the European Union energy label1. This new knowledge is brought in the form of SWRL rules defined in the
device annotations and enriches the knowledge base upon device discovery. The reasoning engine then infers,

for each device instance in the knowledge base, a new property defining the European Union energy label

from the initial power consumption property. It permits to more efficiently search for device instances based
on a parameter making sense in the domain of the energy consumption.

4.8.3 Experimentations Setup

The previously described scenario has been tested using the CONTINUUM platform2 enhanced thanks to the
contribution presented in this paper. WComp middleware [25], for service composition by assembling light

components, is at the heart of this platform. It implements the SLCA model (Lightweight Service Component
Architecture) [26] where the application is formed with an assembly of software components based on the

LCA model (Lightweight Component Architecture) and services communicating using events. A functional

interface giving access to the functional services is exported. This platform is based on UPnP (Universal Plug
and Play). Like DPWS (Device Profile for Web Services), this protocol allows to dynamically manage devices

(discovery and disappearance) and registration to the proposed services. This platform is coupled with

1http://en.wikipedia.org/wiki/European_Union_energy_label

2Project for service continuity in ubiquitous and mobile computing - French national research agency - ANR-08-VERS-0005.

Figure 31 : Elederly people displacement scheme

Figure 32 : Elederly people displacement scheme

Semantic based web services for devices selection Knowledge Integration

45

Conquer knowledge base [27] built on top of Jena API. This knowledge base has been encapsulated in a web

service for device (Universal Plug and Play, UPnP) and enhanced with Pellet reasoning engine [28] able to
infer on SWRL rules (Table 5), the Alignment API [29] and some real time ontology metrics monitoring

capabilities. Using the aforementioned platform, composite web services have been created for each device,

exposing an interface allowing the knowledge base to retrieve the semantic metadata upon device discovery.
The metadata are written following the RDF/XML format.

4.8.4 Results

a) Use-case#1 : A New Environment Exploration

To the best of our knowledge, there is currently no dataset available on the web applicable to validate

the proposed approach. Instead, most of the works are relying on a comprehensive ontology at a basis to
describe all the knowledge for a given domain. Since

ontology engineering is a time consuming task

necessitating expertise to ensure knowledge
modeling coherency, we have used DogOnt ontology

[30] rev 3.2.11 describing 926 concepts and
containing 9383 axioms. This ontology is general

enough to be used in a wide range of domains. The

dataset is then created by fragmenting the ontology
into sub-ontologies defining and structuring all the

knowledge necessary to fully describe some devices.
Then, from each sub-ontology, are generated a set

of degraded sub-ontologies (Figure 33) containing a

subset of the device complete knowledge. Using this
approach has permitted to elaborate a

comprehensive electrical appliances dataset used to
get reproducible measures while keeping the control

on the fragmentation and degradation rates. From

multiple local ontologies approaches standpoint, this
experimental dataset assumes that linked data and

alignment engine perfectly smooth the semantic
heterogeneity appearing when dealing with

ontologies independently developed.

Results are exhibited in the Figure 34. After

having discovered all devices in the usual environment of the elderly person (1), the system knowledge (blue
curve) remains flat as long as the person does not come out of this environment (2). The person visits her

friend and new devices are discovered in this new environment (3). The newly added knowledge is made

persistent in the system when the person is back to home (4). New knowledge has been added on the clock,
the cooker and the dishwasher appliances (Figure 33). This leads the system to potentially improve the

relevancy of devices to be used in concert and then better assist the elderly person in her everyday life.

b) Use-case#2 : Search for Energy-efficient Devices

For this use-case, we have developed simple heterogeneous ontologies describing a Hi-fi system and an

Android tablet along with a power consumption property (Figure 36 and Figure 35). The electric meter
ontology defines SWRL rules allowing to classify the devices based on their power consumption. For instance,

the following rule infers that devices with a power consumption property value in between 1W and 10W are

classified in category “A”:

Device(?d), integer[>=1, <=10] (?c),

has_power_consumption(?d, ?c) -> has_consumption_category(?d, “A”)

Figure 33 : Use-case#1 local ontologies (potentially incomplete)

Semantic based web services for devices selection Knowledge Integration

46

Following the use-case described in Paragraph 4.8.2, two devices are first added in the environment: (1)

an Android tablet with 8W power consumption, (2) a Hi-fi sound player with 28W power consumption. Those

devices are then discovered and their semantic annotations are used to enrich the knowledge base. The

alignment engine links “Appliance*” and “Device*” concepts together (owl:equivalentClass). We consider

that only the Android tablet is relevant to play a music track with the lower power consumption. At this

point, a query is executed to retrieve “Speaker” type devices with a power consumption lower than 30 watts
(arbitrary chosen value):

SELECT ?d ?c

WHERE

{

?d rdf:type core:Device .

?d core:is_a core:Speaker .

?d core:has_power_consumption ?consumption .

?d rdfs:comment ?c .

FILTER (?consumption < 30)

}

With the previous query, both devices are returned:

?device = Tablet

?comment = "Android tablet"

?device = Hi-fi

?comment = "Hifi sound player"

An electric counter device is added bringing new knowledge about the energy classification for home

appliances that can be based, for instance, on the European Union energy label. This new knowledge is added

in the form of SWRL rules. A new query can be executed to show up the inference engine execution results

(inferring the property “has_consumption_category”):

Figure 34 : Use case#1 execution results

❶

❶

❷

❷

❸

❸

❹

❹

Semantic based web services for devices selection Knowledge Integration

47

SELECT ?c ?p ?j

WHERE

{

?i core:has_power_consumption ?p .

?i rdfs:comment ?c .

?i core:has_consumption_category ?j

}

The newly created property allows to classify the devices power consumption under term and values making

sense in the power consumption domain:

?c = "Hifi sound player"

?p = "28"^^xsd:int

?j = "C"

?c = "Android tablet"

?p = "8"^^xsd:int

?j = "A"

We are now able to slightly modify the previous query into a more relevant one exploiting the newly added
property:

SELECT ?d ?c ?category

WHERE

{

?d rdf:type core:Device .

?d core:is_a core:Speaker .

?d core:has_consumption_category ?category .

?d rdfs:comment ?c .

FILTER (?category = “A”^^xsd:string)
}

Thanks to the added knowledge, the most relevant device is now the only one selected:

?d = Tablet

?c = "Android tablet"

?category = "A"

Figure 35 : Android tablet simple ontology Figure 36 : Hifi simple ontology

Semantic based web services for devices selection Knowledge Integration

48

4.9 Conclusion

In this chapter, we have briefly introduced the knowledge base concepts and its foundations (Paragraph.

4.2) along with reasoning engines used to infer implicit facts (Paragraph. 4.3). Then, we have depicted three

knowledge dynamicity levels (property level, instance level and terminological level) inherent to the physical
nature of the environment and the devices along with their impacts on the integration process (Paragraph.

4.4). We have presented some ontology interoperability techniques helping to cope with heterogeneous metal
models integration (Paragraph. 4.5). These technics are currently not perfect, but it is still a hot topic having

good momentum in the community. On the other side, we demonstrated how heterogeneous meta models are

good at increasing the knowledge accuracy over time (Paragraph 4.6), the same terms might be differently
described in the several heterogeneous ontologies hereby acquiring a more accurate meaning throughout an

evolutionary process, their meaning being shaped through the assertions done by their publishers . We finally
proposed a knowledge integration model (Paragraph. 4.7) that makes GCI persistent in the knowledge base.

It has been validated on two use-cases (Paragraph 4.8).

4.10 References

[1] Baader, F. (2003). The description logic handbook: theory, implementation, and applications. Cambridge

university press.

[2] Horrocks, I. (2005). Owl: A description logic based ontology language. In Logic Programming (pp. 1-4). Springer

Berlin Heidelberg.

[3] Krötzsch, M., Simancik, F., & Horrocks, I. (2012). A description logic primer. arXiv preprint arXiv:1201.4089.

[4] Horrocks, I., Patel-Schneider, P. F., & Van Harmelen, F. (2003). From SHIQ and RDF to OWL: The making

of a web ontology language. Web semantics: science, services and agents on the World Wide Web, 1(1), 7-26.

[5] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, “SWRL: A Semantic Web Rule

Language Combining OWL and RuleML,” 2005. [Online]. Available: http://www.w3.org/Submission/SWRL/.

[6] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical owl -dl reasoner. Web

Semantics: science, services and agents on the World Wide Web, 5(2), 51-53.

[7] Haarslev, V., Hidde, K., Möller, R., & Wessel, M. (2012). The RacerPro knowledge representation and reasoning

system. Semantic Web, 3(3), 267-277.

[8] Tsarkov, D., & Horrocks, I. (2006). FaCT++ description logic reasoner: System description. In Automated

reasoning (pp. 292-297). Springer Berlin Heidelberg.

[9] Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: an OWL 2 reasoner. Journal of

Automated Reasoning, 53(3), 245-269.

[10] Dentler, K., Cornet, R., ten Teije, A. C. M., & de Keizer, N. F. (2011). Comparison of reasoners for large

ontologies in the OWL 2 EL profile.

[11] Hourdin, V., Tigli, J. Y., Lavirotte, S., Rey, G., & Riveill, M. (2008). SLCA, Composite Services for Ubiquitous

Computing. In 5th International Conference on Mobile Technology, Applications and Systems (Mobility '08) (p.

8).

[12] Mayer, S., & Guinard, D. (2011, June). An extensible discovery service for smart things. In Proceedings of the

Second International Workshop on Web of Things (p. 7). ACM.

[13] Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D. (2010). Interacting with the soa-based internet

of things: Discovery, query, selection, and on-demand provisioning of web services. Services Computing, IEEE

Transactions on, 3(3), 223-235.

[14] Richard, G. G. (2000). Service advertisement and discovery: enabling universal device cooperation. Internet

Computing, IEEE, 4(5), 18-26.

[15] Choi, N., Song, I. Y., & Han, H. (2006). A survey on ontology mapping. ACM Sigmod Record, 35(3), 34-41.

[16] Tulasi, R. L., & Rao, M. S. (2014). Survey on Techniques for Ontology Interoperability in Semantic Web. Global

Journal of Computer Science and Technology, 14(2).

[17] Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & Hübner, S. (2001,

August). Ontology-based integration of information-a survey of existing approaches. In IJCAI-01 workshop:

ontologies and information sharing (Vol. 2001, pp. 108-117).

[18] Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future challenges. Knowledge and

Data Engineering, IEEE Transactions on, 25(1), 158-176.

[19] Ehrig, M., & Staab, S. (2004). QOM–quick ontology mapping. In The Semantic Web–ISWC 2004 (pp. 683-697).

Springer Berlin Heidelberg.

[20] Euzenat, J., & Shvaiko, P. (2013). Classifications of ontology matching techniques. In Ontology matching (pp.

73-84). Springer Berlin Heidelberg.

Semantic based web services for devices selection Knowledge Integration

49

[21] Dragisic, Z., Eckert, K., Euzenat, J., Faria, D., Ferrara, A., Granada, R., ... & Grau, B. C. (2014, October).

Results of the ontology alignment evaluation initiative 2014. In Proceedings of the 9th International Workshop

on Ontology Matching Collocated with the 13th International Semantic Web Conference (ISWC 2014).

[22] Goumopoulos, Christos, et al. "Atraco: Adaptive and trusted ambient ecologies." Self -Adaptive and Self-

Organizing Systems Workshops, 2008. SASOW 2008. Second IEEE International Conference on. IEEE, 2008.

[23] Sabou, M., Kantorovitch, J., Nikolov, A., Tokmakoff, A., Zhou, X., & Motta, E. (2009). Position paper on

realizing smart products: Challenges for semantic web technologies. In CEUR Workshop Proceedings (Vol. 522,

pp. 135-147).

[24] Hartmann, M., Uren, V., & Vildjiounaite, E. Gathering knowledge for supporting interaction with smart

products.

[25] Tigli, J. Y., Lavirotte, S., Rey, G., Hourdin, V., Cheung-Foo-Wo, D., Callegari, E., & Riveill, M. (2009). WComp

middleware for ubiquitous computing: Aspects and composite event-based Web services. annals of

telecommunications-annales des télécommunications, 64(3-4), 197-214.

[26] Hourdin, V., Tigli, J. Y., Lavirotte, S., Rey, G., & Riveill, M. (2008). SLCA, Composite Services for Ubiquitous

Computing. In 5th International Conference on Mobile Technology, Applications and Systems (Mobility'08)

[27] Benyelloul, A., Jouanot, F., & Rousset, M. C. (2010). Conquer, an RDFS-based model for context querying. In

6emes Journées Francophones Mobilité et Ubiquité.
[28] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical owl -dl reasoner. Web

Semantics: science, services and agents on the World Wide Web, 5(2), 51-53.

[29] David, J., Euzenat, J., Scharffe, F., & Dos Santos, C. T. (2011). The alignment api 4.0. Semantic web journal,

2(1), 3-10.

[30] Bonino, D., & Corno, F. (2008). Dogont-ontology modeling for intelligent domotic environments (pp. 790-803).

Springer Berlin Heidelberg.

[31] Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet

of things: A survey. Communications Surveys & Tutorials, IEEE, 16(1), 414-454.

[32] Aggarwal, C. C., Ashish, N., & Sheth, A. P. (2013). The Internet of Things: A Survey from the Data -Centric

Perspective.

5. Knowledge management

5.1 Introduction .. 50
5.2 GCI Size Containment ... 50
5.3 GCI Quality Over Time ... 51

5.3.1 Incoherencies and Inconsistencies Management ... 51
5.3.2 Validity ... 52

5.4 Conclusion .. 52
5.5 References ... 53

5.1 Introduction

The main idea developed in Chapter. 4 is about permitting the knowledge base GCI to be enriched
throughout the life of the system hereby permitting described terms to acquire a more accurate meaning over

time. The persistence of this knowledge (Paragraph. 4.7) brings two potential issues from a knowledge base

management standpoint: (1) it is unlikely that the knowledge base GCI content can indefinitely grow.
Considering the ambient systems potential low available computational resources, limitations may occur in

space (system memory limitation) and time (e.g. reasoning processing time). A trade-off has to be found in
between permitting the knowledge base GCI enrichment, the intrinsic system capabilities (CPU, memory)

and the user experience (system responsiveness); (2) In the context of knowledge base GCI content enrichment

over time along with devices and services whose functionalities can be upgraded remotely by the
manufacturers, it is important for the knowledge base to keep its GCI content at the highest quality level

over time (up to date, consistent and coherent). Therefore, the challenge for the ambient system is about
managing the GCI lifecycle without degrading the knowledge enrichment capacity at improving the relevancy

of the selected devices and services.

The aforementioned knowledge management issues are not addressed in this document but we give a

short overview of possible ways to overcome them. In the first part of this chapter (Paragraph. 5.2) we

review some algorithms that can be put in place whose role is to permit the ambient system to remove

GCI data from the knowledge base without losing the meaning of the terms learnt throughout the life of

the system. In the second part, we review some ways permitting the ambient system to deal with

corrupted or obsolete GCI data over time and accommodate change (Paragraph. 5.3).

5.2 GCI Size Containment

GCI size containment is about, for the system, when a critical size is reached, to remove GCI from the

knowledge base. The main challenge is that these removal must not deteriorate the relevancy (See Paragraph.
6.3) of the further selected devices and services (e.g. increasing false positive or false negative). We present

here after some metrics and algorithms that can be used for that purpose.

Authors in [5][7] denotes several metrics for knowledge base structural analysis. For the purpose of identifying

GCI to keep (or remove), the following metrics might be valuable:
1. Class usage giving the classes are the most frequently instantiated (rdf:type);

2. Triples per subject class. Understand how triples are distributed over subject classes;
3. Property usage. Get the most frequently used properties;

4. Property Usage per Subject Class. Get the most frequent combinations of subject class and

property;

5. Etc…

On the other side, some metrics for the knowledge base usage analysis might be measured. Typically, a
concept description model might have been integrated once and never instantiated any more. Basically, we

refer here to some memory management mechanisms (Least Recently Used (LRU), garbage collection, etc…)

all based to the fact that some memory slots may have been allocated but are not used or reachable anymore
and can be removed to free up some memory space. In the context of knowledge base (and more generally in

the context of graph based modeling), several concepts might never be instantiated but are part of a more

global knowledge (by subsumption).

Semantic based web services for devices selection Knowledge Management

51

An approach would be to clustered the knowledge base content (one cluster per concept) and give each

cluster a “popularity rate” value (a cluster can be seen as a sub-ontology describing a concept).

Given an ontology O, its set of concepts 𝐶𝑂 = {𝑐1, 𝑐2, … , 𝑐𝑥 }, x ∈ ℕ, its set

of properties 𝑃𝑂 = {𝑝1, 𝑝2, … , 𝑝𝑦} , y ∈ ℕ, and its set of instances

𝐼𝑜={𝑖1, 𝑖2, … , 𝑖𝑧}, z ∈ ℕ. Given the set of its instantiated class

𝐼𝑐={𝐼1 , 𝐼2, … , 𝐼𝑛}, n ∈ ℕ, and their associated sub-ontology 𝐶𝐼𝑐 =

{𝐶𝐼1, 𝐶𝐼2, … , 𝐶𝐼𝑚}, p ∈ ℕ.

A concept 𝜇 in 𝐶𝐼𝑗 can be removed if:

1) for 𝑘 = {1, … , 𝑚} ≠ 𝑗, 𝐶𝐼𝑗 ∩ 𝐶𝐼𝑘 ≠ 𝜇,

2) for 𝑘 = {1, … , 𝑥}, 𝑐𝑘 ≠ 𝜇, 𝑑𝑜𝑚𝑎𝑖𝑛(𝑝(𝑐𝑘)) ≠ 𝜇 and r𝑎𝑛𝑔𝑒(𝑝(𝑐𝑘)) ≠ 𝜇

3) for 𝑘 = {1, … , 𝑧}, 𝑖𝑘 ≠ 𝜇, 𝑑𝑜𝑚𝑎𝑖𝑛(𝑝𝑖𝑘
) ≠ 𝜇 and 𝑟𝑎𝑛𝑔𝑒(𝑝𝑖𝑘

) ≠ 𝜇

Example: let’s consider the ontology depicted in Figure 37. The concept E has been instantiated only once

throughout the life of the system and it is decided to remove it from the knowledge base.

𝐶𝐼1 = {I, F, C} (D) 𝐶𝐼2 ∩ 𝐶𝐼1= {I, C}

𝐶𝐼2 = {I, G, C, B, A} (E)

𝐶𝐼3 = {F} (H) 𝐶𝐼2 ∩ 𝐶𝐼3= {∅}

Concepts I and C cannot be removed. But, concepts G,B and A can be removed along with the concept

E (considering that none of the concepts nor instances have properties using E as range or domain).

5.3 GCI Quality Over Time

5.3.1 Incoherencies and Inconsistencies Management

Knowledge base content inconsistency and incoherency terms are defined in Paragraph 4.3.2. An illustration

is depicted in Figure 38 [1].

Inconsistent/Coherent Consistent/Incoherent

C D
disjoint

a

b

C D
disjoint

a A

C D
disjoint

A

a

C D
disjoint

A

Inconsistent/Incoherent

Figure 38 : Ontology incoherency and inconsistency examples

❹ ❿

b c

A

B C

D E

F G

H

I

d

❶

Figure 37 : Ontology exemple : E concept
removal

Semantic based web services for devices selection Knowledge Management

52

Such anomalies can be automatically detected and are either:

1. Intrinsic to an ontology due to design errors (misinterpretation of the terms meaning, etc…).

Automatic repair is complex and has to be performed manually by domain experts [2]. Some
intermediate solutions can be implemented. For instance, the system might be configured to not

integrate GCI leading to knowledge base inconsistencies and/or incoherencies,
2. Produced by alignments, mapping and/or integration process [3] (Paragraph. 4.5). Automatic repair

in that case is, for example, about removing mappings that lead to unsatisfiable classes in order to

ensure that the final alignment is coherent [4].

Note that GCI might be erroneous but not necessarily leading to incoherencies and inconsistencies. The
challenge for the system is to detect such erroneous data. An approach would be to measure the incoming

GCI similarity with the already integrated knowledge base content defining the same GCI (See Paragraph.

6.3.2). Based on a similarity threshold value the system may decide to integrate or not the incoming GCI.
However, in the context of the proposed MLO approach and its underlying capability at enriching the

knowledge base over time and give terms a more accurate meaning, a given term might be used in distinct
contexts and similarity measure might be low. Thus the system may decide, based on this low similarity

measure, to not integrate the incoming GCI even though it would have been worth to do so in order to enrich

the term meaning.

5.3.2 Validity

Since the knowledge base GCI content is enriched over time and because devices and services

functionalities can be upgraded remotely by the manufacturers, some GCI in the knowledge base might
become obsolete over time and have to be updated. The main issue the system has to cope with is to decide

either if:
1) An incoming GCI is a new revision of a previously integrated one and has to replace it; For the

system to be able to manage such a situation, it would require a time stamp or a revision number

to be added:

a) In the device metadata. The system then get the metadata GCI content and keep track of

the time stamp or revision number value along with the URI prefix (the publisher) and

GCI description identifier. Any new device bringing the same GCI description identifier
and URI prefix with an higher revision number would trig the knowledge base update,

b) In case of dereferenceable URIs, the associated RDF graph might integrate a revision
number as well.

2) An integrated GCI is still up to date . Here we denote three possible scenarios:

a) The device publishing the GCI remains permanently in the system environment (Figure.
19). As this device metadata can be remotely upgraded by the manufacturer, the system

has to perform a device refresh request (ask the device to emit its metadata) in a daily or
weekly basis,

b) The device model GCI description is gathered from dereferenceable URI. Here again the

system, on a daily or a weekly basis, can dereference the URI to obtain the graph and
check for its revision,

c) The device publishing the GCI is no more available in the system environment. The
potential needed update might not be available until the device is rediscovered in the

environment.

For all cases, validity information has to be given by the publishers (manufacturers) not the consumers (the

ambient systems).

5.4 Conclusion

We have presented in this chapter a short overview of the possible solutions that can be put in place to
contain the system knowledge base size and manage its content quality over time. In order to relieve the

system and increase its responsiveness, knowledge base maintenance like validity checking (Paragraph. 5.3.2)
might be executed on a daily or a weekly basis. Knowledge base incoherency and inconsistency management

(Paragraph. 5.3.1) has to be done before new incoming GCI integration.

Semantic based web services for devices selection Knowledge Management

53

5.5 References

[1] Flouris, G., Huang, Z., Pan, J. Z., Plexousakis, D., & Wache, H. (2006, July). Inconsistencies, negations and

changes in ontologies. In Proceedings of the National Conference on Artificial Intelligence (Vol. 21, No. 2, p.

1295).

[2] Gkaniatsou, A., Bundy, A., & Mcneill, F. (2012, November). Towards the automatic detection and correction

of errors in automatically constructed ontologies. In Signal Image Technology and Internet Based Systems

(SITIS), 2012 Eighth International Conference on (pp. 860-867). IEEE.

[3] Zhang, S., Grau, B. C., & Jimenez-Ruiz, E. (2014). Inconsistency Repair in Ontology Matching (Doctoral

dissertation, MSc thesis., University of Oxford).

[4] Pesquita, C., Faria, D., Santos, E., & Couto, F. M. (2013, October). To repair or not to repair: reconciling

correctness and coherence in ontology reference alignments. In OM (pp. 13-24).

[5] Holst, T. (2013). Structural analysis of unknown RDF datasets via SPARQL endpoints (Doctoral dissertation,

Master thesis defense 11)

[6] Scott, J. (2012). Social network analysis. Sage.

[7] Peroni, S., Motta, E., & d’Aquin, M. (2008). Identifying key concepts in an ontology, through the

integration of cognitive principles with statistical and topological measures. In The Semantic Web (pp.

242-256). Springer Berlin Heidelberg.

6. Knowledge retrieval

6.1 Introduction .. 54
6.2 SPARQL .. 54
6.3 Selection Rule Model Proposal ... 56

6.3.1 Selection Rule Semantic Heterogeneity Management .. 57
6.3.2 From Subgraphs Matching to Ontology Similarity Measurement............................. 57
6.3.3 Selection Rule Answers Ranking .. 58
6.3.4 Selection Rule Expressivity vs Knowledge Base Content Evolution 59

6.4 Use-case.. 60
6.4.1 Selection Rule Definition at Design Time .. 60
6.4.2 Selection Rule Alignment With Knowledge Base at Run Time 60
6.4.3 Selection Rule Enrichment with New GCI at Run Time .. 60

6.4.4 Selection Rule ⇔ Knowledge Base Similarity Measurement 61
6.4.5 Selection Rule Answers Extraction and Ranking .. 61

6.5 Conclusion .. 63
6.6 References ... 64

6.1 Introduction

So far we do have a knowledge base: (1) whose GCI is enriched throughout the life of the system hereby
permitting described terms to acquire a more accurate meaning over time, (2) whose size is under control and

its content valid, (3) which is coherent with its context, at each instant, it only contains the instances of the

available devices in the environment. It is now time for the ambient system, based on this knowledge, to
retrieve the most relevant devices and services instances to make them work in concert to assist users. The

devices and services selection mechanism is based on selection rules developed at design time. Usually, the
knowledge base data retrieval (e.g. from selection rules) is achieved using SPARQL (SPARQL Protocol and

RDF Query Language)[1], queries being expressed using GCI defined in the knowledge base.

However, based on the proposed approach, the knowledge base content, at design time, is unknown
(possibly empty) both at the instances and the GCI levels. The problem is then twofold : (1) find a way to

express rules at design time independently of the knowledge base GCI content; (2) the knowledge base content
being unknown, rules cannot be tuned at design time to increase the recall and, the system having to work

autonomously (without user interactions), rules cannot be updated or tuned at run time neither. Even so, the

retrieved devices and services instances have to be the most relevant ones according to the defined rules and
taking into account the knowledge base GCI content enrichment over time.

In this chapter, after having reviewed the SPARQL query language in Paragraph. 6.2 and its limitations with
regards to the proposed approach, we propose, in the Paragraph. 6.3, a selection rule model independent of

the knowledge base content and define in Paragraph 6.3.2, a criteria based on ontology similarity measure,
aimed at giving the system an insight, at run time, on the relevancy of the selected devices and instances

versus the associated selection rule. Finally, the model is validated on a use-case and results presented in

Paragraph. 6.4.

6.2 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) [1][2] is a query language developed primarily

to query RDF graphs. A SPARQL endpoint provides the users and applications a mechanism to retrieve

information from a knowledge base using SPARQL queries. SPARQL queries are composed by a set of RDF
triple patterns (Basic Graph Patterns (BGP)), in which variables might appear. Complex SPARQL queries

can be elaborated by using union (UNION operator), constraints (FILTER operator), etc… The output of a

SPARQL query can be of different types: yes/no answer (ASK), selections of values of the variables which
match the patterns (SELECT), construction of new triples from these values (CONSTRUCT), and, from

SPARQL 1.1, the possibility to add/remove and modify RDF queried data (UPDATE).
The structure of a SPARQL query is depicted here after:

Semantic based web services for devices selection Knowledge Retrieval

55

prefix declarations for abbreviating URIs

PREFIX foo: <http://example.com/resources/>

...

dataset definition

FROM ...

result clause (SELECT, ASK or CONSTRUCT)

SELECT ...
query pattern

WHERE {

 ... (BGP)

}

query post modifiers

ORDER BY ...

For instance, hereafter are depicted two queries examples. The first query below retrieves all devices instances

and print out the results in an array (output format can be either XML, JSON, CSV, etc…) where the first

column is the extracted concepts stored in the variable ?concept, and the second column is the associated
instances stored in the variable ?instance.

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX core:<http://www.example.org/ontology1#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

SELECT ?instance

WHERE {

?instance rdf:type core:Device .

}

?instance

TV

IPad

The second query retrieves all elements for which the property core:has_consumption_category holds and print

out the results in an array where the first column is the element retrieved stored in the variable ?element and

the second column is the value associated and stored in the variable ?label.

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX core:<http://www.example.org/elecm#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

SELECT ?element ?label

WHERE {

?element core:has_consumption_category ?label .

}

?element ?label

WashingMachine “A”

TV “D”

The main mechanism for computing query results in SPARQL is subgraph matching [3]: RDF triples in
the queried RDF data and the query pattern (BGP set) are interpreted as directed graphs, and matched

together (simple entailment) using query variables as wild cards (the underlying algorithm tries to find all
subgraphs in the data graph matching with the query RDF graph. Variables are replaced with values f ound

in the matching sub-graph and returned as result). For instance, the first query example is interpreted as the

RDF graph depicted in the Figure 39.

1http://www.w3.org/TR/2009/WD-sparql11-entailment-20091022/

Figure 39 : SPARQL query RDF subgraph matching

?instance

core:Device

rdf:type
Subgraph matching…

Fig. 39.a : Query Fig. 39.b : Knowledge base

Semantic based web services for devices selection Knowledge Retrieval

56

SPARQL 1.1 [2] introduces, among other features, entailment regimes1 (RDFS, OWL family) to allow for

finding additional answers to a query that are not directly specified in the queried graph, but can be inferred
using a set of inference rules (entailment regimes supported are SPARQL engine implementation dependent).

Entailment regimes are good at working with knowledge base GCI enriched over time.

However, Expressive queries (e.g. the second query previously described) requires to know explicitly the
namespaces (URI prefixes) used in the knowledge base (e.g. PREFIX core:

<http://www.example.org/elecm#>) and the GCI (e.g. core:has_consumption_category). Note that an
approach based on regular expressions might be used as well to filter the results but would be purely syntactic.

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl:<http://www.w3.org/2002/07/owl#>

SELECT ?instance

WHERE {

?instance rdf:type ?type .

FILTER(regex(str(?type), “Device”))

}

So, SPARQL query based rules are powerful when the queried knowledge base GCI content is known, but

are inapplicable (See also the paragraph 6.3.2) if the knowledge base GCI content is unknown (assuming
expressive BGP and not generic ones (e.g. ?i rdf:type ?c)). With the MLO approach proposed (Paragraph

2.6.2), since the devices and services description models are based on heterogeneous and unknown meta models

at design time, selection rules cannot be based on SPARQL queries (which are modeled based on top of the
meta model defined in the knowledge base GCI).

6.3 Selection Rule Model Proposal

As seen in the previous paragraph: (1) thanks to BGP, SPARQL queries describe the explicit semantics

of the searched elements (meaning that the query description model relies on a meta model defined by the
knowledge base GCI) and therefore, one is sure that answers returned are semantically matching to the query;

(2) thanks to entailment regimes, additional answers to a query that are not directly specified in the queried
graph can be inferred using a set of inference rules.

Like SPARQL where an RDF graph describing a model of a query (Figure 41) relying on the meta model
defined by the knowledge base GCI, we propose an approach based on a model to describe a rule but based

on its own meta model (Figure 42). The advantage of the proposed approach is that the rule expressivity

(up to OWL 2 DL1 (SROIQ)) is much higher than SPARQL based queries (RDF) and is independent of the

knowledge base meta model. Continuing the parallel of the proposed approach with SPARQL, we can also
apply a subgraph matching where queried knowledge base content is matched with the rule ontology content

[10].
1Note that rules description models can either be written down from scratch or using tools to, for instance, convert natural language (NL) sentences

to RDF graphs or OWL [5][6].

Figure 40 : Proposed rule model Figure 41 : SPARQL query based rule
model

↺
Local inferences

Global inferences

SPARQL BGP

(Model)

Knowledge

base GCI

(Meta model)

relies on

Selection rule (RDF graph)

Entailment regimes

Selection rule (OWL DL ontology)

Meta model

Knowledge

base GCI

relies on

Model

Local inferences

Global inferences ↺

Local inferences ↺

Semantic based web services for devices selection Knowledge Retrieval

57

However: (1) in order for the subgraph matching algorithm to be efficient (the rules meta models (rules

GCI) being heterogeneous from the knowledge base GCI content standpoint), some challenges have to be
overcame; (2) we need a SPARQL entailment regimes equivalent mechanism for rules defined at design time

to lead more relevant results at run time according to the knowledge base GCI content evolution over time.

6.3.1 Selection Rule Semantic Heterogeneity Management

Selection rules GCI have first to be aligned with knowledge base GCI. Ontology alignment mechanism is

presented in the Paragraph. 4.5.2. In a nutshell, ontology alignment process takes two input ontologies and

produces a set of correspondences between concepts that match semantically with each other (Ontology

matching is the process of discovering similarities (∈ ℝ) between two ontologies). These matches are also
called mappings [7].

Once the alignment process has been executed, the correspondences set has to be integrated in the selection
rule model. Here again, we do recommend usage of Linked Open Vocabularies (LOV) to define the selection

rule meta models.

6.3.2 From Subgraphs Matching to Ontology Similarity Measurement

Let’s consider a graph 𝐺 = (𝑉, 𝐸, 𝑇) where 𝑇: 𝑉 → ∑∗ is a labeling function that assigns a label to each

vertex in V, and the subgraph query 𝑞 = (𝑉𝑞 ,𝐸𝑞 , 𝑇𝑞) in G where 𝑇𝑞 :𝑉 → ∑∗ represents the label constraint for

each vertex in 𝑉𝑞. The subgraph matching problem definition is the following [9]:

For a graph G and a subgraph query q, the goal of subgraph matching is to find every subgraph 𝑔 = (𝑉𝑔, 𝐸𝑔)

in G such that there exists a bijection 𝑓: 𝑉𝑞 → 𝑉𝑔 that satisfies ∀𝑣 ∈ 𝑉𝑞 ,𝑇𝑞(𝑣) = 𝑇𝐺(𝑓(𝑣)) and ∀𝑒 = (𝑢, 𝑣) ∈

𝐸𝑞, (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝐺 where 𝑇𝐺(𝑓(𝑣)) represents the label of the vertex 𝑓(𝑣) in G.

This implies V, E, 𝑉𝑞 and 𝐸𝑞 to use identical labels (URIs). V and E being unknown (MLO approach) there

is no chance that 𝑉𝑞 and 𝐸𝑞 use the same label leading unpractical the subgraph matching approach.

To cope with this issue, we propose to compare semantically G and q. Such a comparison can be achieved

by measuring the similarity ([0, … ,1] ∈ ℝ) between G and q [12][13].

It could be ontology distances measures based on [13] (so called similarity in the ontology space):
1. Lexical measures based on Vector Space Model (VSM)1

a. Hamming distance,

b. Jaccard index2,
c. Cosine index3,

2. Distance between ontology entities
a. Label based distance (Lexical aggregation-based similarity measure),

b. Structural distance (OLA similarity [15], Triple-based iterative [13]))

c. Collection distance (linkage criteria5, Hausdorff distance4, Minimum weight maximum
graph matching distance [13]).

1https://en.wikipedia.org/wiki/Vector_space_model
2https://en.wikipedia.org/wiki/Jaccard_index
3https://en.wikipedia.org/wiki/Cosine_similarity
4https://en.wikipedia.org/wiki/Hausdorff_distance
5https://en.wikipedia.org/wiki/Hierarchical_clustering

Knowledge base

GCI

Selection Rule

GCI

Correspondences

Alignment

(Matching threshold = 1.0)

)

Threshold = 1.0 Figure 42 : Selection Rule GCI alignment with knowledge base GCI

Semantic based web services for devices selection Knowledge Retrieval

58

The overall similarity measure being partly based on lexical and structural measures, its value depends on

the alignment threshold discussed in Paragraph. 4.5.2. The lower is the threshold, the higher might be the

similarity measure…

One of the problem we have to cope with is that the queried knowledge base is (over time) much bigger
than the selection rule ontology and then, there is few chance that similarity measures will give good results.

The idea is to extract, from the knowledge base O, the sub ontology O ’ containing terms defined in the

selection rule. Thus the similarity measures is done on O ’ and q (𝑠𝑖𝑚𝑂𝑞). For that purpose, the algorithm

described in Paragraph. 3.2.2 is extended (Algorithm 2) to incorporate concepts instances in the extracted

sub-ontology. This algorithm is repeated for each term defined in the selection rule. Thus, considering 𝑞 =

{𝑡1, 𝑡2, … , 𝑡𝑚} the set of terms defined in the query, 𝑂′ = {𝑂𝑡1
′ ∪ 𝑂𝑡2

′ ∪ … ∪ 𝑂𝑡𝑛
′ }, n ≤ m. Like for alignment,

a similarity threshold has to be chosen (See Paragraph. 6.3.3)

This approach is quite strict and may lead to low similarity measures. An alternative would be to measure

the similarity between the sub-ontologies summaries rather than between the complete sub-ontologies

[16][17][18]. Ontology summarization is a useful technique to facilitate ontology understanding and can be

expressed as an RDF graph. In the timeframe of this document we did not have room for evaluating such

approach.

6.3.3 Selection Rule Answers Ranking

So far, we do have a similarity measure between the selection rule q and the ontology O’, extracted from

O and containing terms defined in q along with their instances. We need a method to rank the search results

(the instances). In other words, we need to compute the relevance of the returned instances. To do that, for

each term 𝑡𝑖 ∈ 𝑂′, its associated sub-ontology {𝑂𝑡1
′ , 𝑂𝑡2

′ , … , 𝑂𝑡𝑛
′ } is used to compute the ratio (∈ ℝ) between

the amount of terms defined in 𝑂𝑡𝑖

′ (𝑆𝑡𝑖
) common with terms defined in q over the amount of terms in q (𝑁𝑞).

Each instance of 𝑡𝑖 is assigned the value of the ratio, called relevancy measure. This measure is weighted by

𝑠𝑖𝑚𝑂𝑞 to take into account the semantic distance between the selection rule and the knowledge base content.

Algorithm 2: Module extraction with instances.
begin

 Visited := {};

R := getResource(S);

sList := O.listStatements() where statement’s subject is equal or equivalent to R;

for all stmt ∈ sList do

O’ := O’ + stmt;
extract(stmt);

end for

iList := R.getInstances();

for all inst ∈ iList do

 O’ := O’ + createInstance(inst);
 extract(inst);
end for

end;

: extract(stmt)

if(isResource(stmt.subject) and Visited[stmt.subject] = false) {

Visited[stmt.subject] := true;

 r := getResource(stmt.subject);

 pList := getProperties(r);

 for all p ∈ pList {

O’ += p;
extract(p);

 end for

end if
}

Semantic based web services for devices selection Knowledge Retrieval

59

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑖
) = 𝑠𝑖𝑚𝑂𝑞 ∗

𝑆𝑡𝑖
∩ 𝑁𝑞

𝑁𝑞

6.3.4 Selection Rule Expressivity vs Knowledge Base Content Evolution

The selection rule ontology is defined at design time and, since the system is supposed to work
autonomously, the rule is not modifiable nor tunable at run time. On the other side, the knowledge base GCI

content is enriched over time and therefore the dissimilarity with the selection rule ontology may increase

over time (a dissimilarity is a real positive function d of two ontologies which is as large as ontologies differ
[13]). We propose, as we do for the knowledge base, to merge GCI brought by newly discovered devices with

the selection rule ontology. Like with the knowledge base GCI content, the selection rule GCI content is
enriched over time, leading to a higher expressivity. And the higher is the expressivity the higher is the

selected instances relevancy.

Equation 1

Global

Reasoning

Global

Reasoning

Rule

Knowledge base

GCI

ABox

Rule + Correspondences.

Knowledge base + Mapping

Correspondences

Mapping

Merging

&

Integration

Merging

&

Integration

Rule + Corr. + GCI + Local

inferences

Knowledge base + Mapping + ABox

+ Local inferences

Automatic

Alignment

&

Matching

Alignment

&

Mapping

Merging

&

Integration

Merging

&

Integration

Knowledge base + GCI + Corr. + Local/Global

Inferences

Knowledge base + ABox + Mapping +

Local/Global Inferences

Matching threshold = 1.0

Threshold = 1.0

Local

Reasoning

Local

Reasoning

Figure 43 : Selection rule enrichment over time

Semantic based web services for devices selection Knowledge Retrieval

60

6.4 Use-case

6.4.1 Selection Rule Definition at Design Time

Let’s consider the following rule: “Television located in the living room”. This rule leads to get the graph

depicted in the Figure 44.a. LOV and WordNet equivalent classes might be added (Figure 44.b).

6.4.2 Selection Rule Alignment with Knowledge Base at Run Time

Throughout the life of the system, the knowledge base content is enriched (Figure 45) and the selection
rule content is kept aligned with it (Figure 46).

6.4.3 Selection Rule Enrichment with New GCI at Run Time

A new device (a basic TV ontology) is discovered in the environment (Figure 47). This newly discovered

device brings an ontology that is merged with the selection rule (Figure 48). Doing so the expressivity of the

selection rule increases over time.

Figure 44 : Selection rule defined at design time

Fig. 44.a Fig. 44.b

Figure 45 : Knowledge base at t+n

Figure 46 : Selection rule aligned with
knowledge base content

Semantic based web services for devices selection Knowledge Retrieval

61

6.4.4 Selection Rule ⇔ Knowledge Base Similarity Measurement

At this point, a sub-ontology containing terms defined in the selection rule is extracted from the knowledge
base (Paragraph. 6.3.2). The sub-ontology extracted is depicted in the Figure 49.

The OntoSim API1 has been used for measuring the similarity between the selection rule ontology and the

extracted sub-ontology. The API is dedicated to the computation of similarities between ontologies and
implements algorithms described in Paragraph 6.3.2.

Using Hausdorff distance based algorithm, the similarity measure gives 73.87%. (We have not been able so

far (lack of API documentation) to perform measurements with other algorithms such as structural distance,
supposed to give better results [13]). Anyway, for the purpose of the experiment it is not critical.

6.4.5 Selection Rule Answers Extraction and Ranking

The idea here is to get instances associated to each concept defined in the sub-ontology and rank them
based on Equation. 1 (Paragraph. 6.3.3). We extract, from the knowledge base, the sub-ontology defining the

concept TV along with its instances (Algorithm. 2, Paragraph. 6.3.2). The extracted sub-ontology contains

one instance named TV_Sony (Figure 50)). Let’s compute the relevancy of this instance with regards to the

selection rule. To do so we compute the ratio (∈ ℝ) between the amount of terms defined in the sub-ontology
(Figure 49) common with the terms defined in the selection rule over the amount of terms in the selection

rule (Figure 48). The sub-ontology has 6 concepts over 7 defined in the selection rule (Video, Music,

Service, Device, LivingRoom and TV). Thus the relevance of TV_Sony with regards to the selection rule is
given by (Equation. 1):

𝑠𝑖𝑚𝑂𝑞 ∗
𝑆𝑡𝑖

∩𝑁𝑞

𝑁𝑞
= 0.7387 ∗

6

7
 = 63.31%

1http://www.w3.org/2001/sw/wiki/OntoSim

Figure 47 : Basic TV ontology brought by a newly
discovered device

Figure 48 : Basic TV ontology is merged with
the selection rule

Semantic based web services for devices selection Knowledge Retrieval

62

The same approach is repeated for the concept Device (One can extend the approach to the concepts

Service, Location, etc… but for the purpose of the experiment it is not necessary). The overall results are

given in the Table 6.

Instance 𝑠𝑖𝑚𝑂𝑞
𝑆𝑡𝑖

∩ 𝑁𝑞

𝑁𝑞

Instance

relevancy

TV_Sony 73.87% 85.71% 63.31%

IPad 73.87% 57.14% 42.21%

Radio 73.87% 57.14% 42.21%

TV_Philips 73.87% 14.28% 10.55%

Table 6 : Instances ranking with regards to the selection rule

Figure 49 : Knowledge base extracted sub-ontology from
selection rule

Figure 50 : Sub-ontology defining the concept TV and its
instance(s)

Semantic based web services for devices selection Knowledge Retrieval

63

6.5 Conclusion

The MLO/MLO-LD approaches brings new issues with regards to knowledge retrieval. Indeed, the

knowledge base content is unknown at design and at run time while the system, based on selection rules

defined at design time has to return the most relevant instances of the devices and the services. SPARQL
query language is typically used to retrieve data from a knowledge base. However, as seen in Paragraph. 6.2,

the subgraph matching algorithm SPARQL is based on is not suitable to expressively query unknown content
as the meta model the query is built upon is the one defined in the knowledge base GCI (which is unknown).

To cope with this issue we have proposed a selection rule model using its own meta model to define the model

of the rule (Paragraph. 6.3). Actually, rules are independent OWL ontologies. Thus we have to cope with the
semantic heterogeneity between the selection rules ontology content and the knowledge base content but

solutions to this problem have been given in the chapter 4 (ontology merge, alignment,…).

Based on this model, instances retrieving is then achieved in two steps: (1) a sub-ontology containing the
concepts defined in the selection rule, is extracted from the knowledge base and a similarity measure is

computed between the selection rule and the extracted sub-ontology (Paragraph. 6.3.2). This measure
indicates if some knowledge in the knowledge base is semantically close to the rule description. (2) Then, for

each concept defined in the extracted sub-ontology, we extract the associated instances and rank it based on

the ratio (∈ ℝ) between the amount of terms used to define the instance that are common with terms defined
in the selection rule over the total amount of terms in the selection rule (Paragraph. 6.3.3). Weighted by the

similarity measure, it gives a relevancy measurement (∈ ℝ) for each returned instances (actually it gives a
confidence level about the distance between the returned instances and the selection rule intrinsic semantics).

Since the selection rules are defined at design time and therefore cannot be modified nor tuned at run
time, their content is enriched at over time (and their expressivity increased) by merging new knowledge

(brought by newly discovered devices). This enrichment helps keeping the similarity measure as high as

possible over time (note that this approach suffers from the content size and validity issues exposed in chapter
4 and for which some solutions are given in chapter 5).

Preliminary experiment results have been described in Paragraph. 6.4 but still need to be enriched with

additional datasets and ontology similarity algorithms not tested so far (more particularly the structural

distance algorithm).

Semantic based web services for devices selection Knowledge Retrieval

64

6.6 References

[1] Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for RDF. W3C Recommendation,

January 2008.

[2] Harris, S., Seaborne, A., & Prud’hommeaux, E. (2013). SPARQL 1.1 query language. W3C

Recommendation, 21.

[3] Glimm, B., & Krötzsch, M. (2010). SPARQL beyond subgraph matching. In The Semantic Web–ISWC

2010 (pp. 241-256). Springer Berlin Heidelberg.

[4] Pérez, J., Arenas, M., & Gutierrez, C. (2006, November). Semantics and Complexity of SPARQL. In

International semantic web conference (Vol. 4273, pp. 30-43).

[5] Delpeuch, A., & Preller, A. (2014, April). From natural language to RDF graphs with pregroups. In

EACL'2014: 14th Conference of the European Chapter of the Association for Computational Linguistics (pp.

55-62). EACL.

[6] Draicchio, F., Gangemi, A., Presutti, V., & Nuzzolese, A. G. (2013). Fred: From natural language text to

RDF and owl in one click. In The Semantic Web: ESWC 2013 Satellite Events (pp. 263 -267). Springer Berlin

Heidelberg.

[7] Tulasi, R. L., & Rao, M. S. (2014). Survey on Techniques for Ontology Interoperability in Semantic Web.

Global Journal of Computer Science and Technology, 14(2).

[8] Ruotsalo, T., & Hyvönen, E. (2007, January). A method for determining ontology-based semantic relevance.

In Database and Expert Systems Applications (pp. 680-688). Springer Berlin Heidelberg.

[9] Sun, Z., Wang, H., Wang, H., Shao, B., & Li, J. (2012). Efficient subgraph matching on billion node graphs.

Proceedings of the VLDB Endowment, 5(9), 788-799.

[10] Zou, L., Mo, J., Chen, L., Özsu, M. T., & Zhao, D. (2011). gStore: answering SPARQL queries via subgraph

matching. Proceedings of the VLDB Endowment, 4(8), 482-493.

[11] Saruladha, K., Aghila, G., & Raj, S. (2010, February). A survey of semantic similarity methods for ontology

based information retrieval. In Machine Learning and Computing (ICMLC), 2010 Second International

Conference on (pp. 297-301). IEEE.

[12] Mädche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins,

V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)

[13] David, J., Euzenat, J.: Comparison between ontology distances (preliminary results). In: Sheth,

A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC

2008. LNCS, vol. 5318, pp. 245–260. Springer, Heidelberg (2008)

[14] David, J., Euzenat, J., & Šváb-Zamazal, O. (2010). Ontology similarity in the alignment space. In The

Semantic Web–ISWC 2010 (pp. 129-144). Springer Berlin Heidelberg.

[15] Euzenat, J., Loup, D., Touzani, M., & Valtchev, P. (2004). Ontology alignment with OLA. In Proc. 3rd

ISWC2004 workshop on Evaluation of Ontology-based tools (EON) (pp. 59-68). No commercial editor.

[16] Campinas, S., Perry, T. E., Ceccarelli, D., Delbru, R., & Tummarello, G. (2012, September). Introducing

RDF graph summary with application to assisted SPARQL formulation. In Database and Expert Systems

Applications (DEXA), 2012 23rd International Workshop on (pp. 261-266). IEEE.

[17] Zhang, X., Cheng, G., & Qu, Y. (2007, May). Ontology summarization based on RDF sentence graph. In

Proceedings of the 16th international conference on World Wide Web (pp. 707-716). ACM.

[18] Khatchadourian, S., & Consens, M. (2010). Explod: Summary-based exploration of interlinking and rdf usage

in the linked open data cloud. The Semantic Web: Research and Applications, 272 -287.

7. Conclusion and Future Work

7.1 Summary

Semantic web technologies are gaining interest in the WoT (Web of Things) community for their ability

at managing the increasing semantic heterogeneity between devices. Thus, by qualifying the devices with

semantic annotations describing the devices and the services and relying on a formal knowledge model (SWoT,
Semantic Web of Things), ambient systems have now the ability to understand and reason about it hereby

leading to select, among all the available devices and services, the most relevant ones.

In the chapter 2 (Knowledge Modeling), we have reviewed the main technologies used in the domain of

the semantic web to formally describe the knowledge (Paragraph. 2.2). We have described the underlying
theoretical foundations of these technologies and addressed it from two points of views: (1) The knowledge

expressivity they provide, (2) their computational complexity. These two aspects are key to ensure devices
and services selection relevancy and keep the overall system responsiveness at an acceptable level. Then we

have given an overview (Paragraph. 2.3) of the knowledge types to be described in the context of ambient

environments (namely the contextual, the structural and the functional knowledge types). Such a variety of
knowledge domains to cover enforces the need for a high knowledge model expressivity. While expressivity is

key at reducing the knowledge abstraction level and then helps ambient systems to better segregate devices
and services, it implies computational complexity that may be problematic for ambient systems with low

computational resources. We concluded (Paragraph 2.4) that OWL (2) DL are the knowledge description

languages better fitting with the expressivity/computational complexity constraints. While most of the
approaches rely on specific and static knowledge models to qualify the devices, we have proposed a knowledge

modeling approach based on heterogeneous devices and services description models (Multiple Local
Ontologies, MLO) whose foundation rely on the fact that with regards to the numerous IoT manufacturers,

it is unlikely that a commonly agreed and comprehensive world knowledge description model will be developed

and used (Paragraph. 2.6).

Providing the manufacturers with tools helping them to rapidly extract and encapsulate the knowledge into

metadata is key to reduce the products design to market cycle time. In the chapter 3 (Knowledge Extraction),
we have first investigated how to turn already existing formal knowledge into metadata either from upper ontology,

from which only the statements needed to qualify a given concept are extracted, or from web pages whose

data content is published as interlinked RDF graphs (Linked Data) whose meta models rely on Linked Open
Vocabularies (LOV). Then we have reviewed the several technologies used to convey the knowledge from the

devices to the ambient systems (web service description languages) and challenge them with regards to their
ability at conveying all the necessary knowledge types to be described (Paragraph. 3.3). Two approaches can

be used depending on the situation: (1) use a top down approach where an upper ontology is used to describe

the web services functionalities, (2) use a bottom up approach extending existing web services description
languages (mainly WSDL) with semantics capabilities. These description languages are mainly dedicated at

defining the semantics of the services functionalities (input, output, execution flow, etc…) but not the non-

functional knowledge (structural or contextual) other than the Quality of Service (QoS). We have proposed
to mix-up the MLO/MLO-LD approach with the bottom-up approach (assuming that manufacturers will not

rely on an upper ontology to describe the functionalities of the services).

In the chapter 4 (Knowledge Integration), we have first described the knowledge base foundations

(Paragraph. 4.2) and the usefulness of reasoners to infer implicit facts (Paragraph. 4.3). Knowledge bases are
at the heart of the ambient systems while the knowledge they contain (assertions (ABox) and terminology
(TBox or General Concept Inclusion(GCI))) is brought by the devices plunged in physical environments,
theater of physical phenomena implying a dynamic knowledge integration management at the ABox and the

GCI levels (Paragraph. 4.4. While, heterogeneous knowledge models imply some integration challenges to be

overcame (Paragraph 4.5, concepts and terms alignments whose results depend on a hardcoded threshold
value), it gives outstanding perspectives in term of services selection relevancy improvement. Indeed, as the

same terms might be differently described in heterogeneous ontologies, they may acquire a more accurate
meaning throughout an evolutionary process, their meaning (GCI) being shaped through the assertions done

by their publishers (The IoT manufacturers). Then, an overall integration model is presented (Paragraph.

4.7) that makes GCI persistent in the knowledge base. It has been validated on two motivating scenarios

Semantic based web services for devices selection Conclusion and future work

66

(Paragraph. 4.8). The comparison of the overall approach with previous approaches is summarized in the Figure

51:

Since the terminological knowledge is continuously enriched over time, we have reviewed, in the chapter

5 (Knowledge Management) some knowledge base management solutions to address: (1) the knowledge base

terminological content containment (Paragraph. 5.2), and (2) its quality by ensuring content consistency,
coherency and validity (freshness) (Paragraph. 5.3).

Finally in the chapter 6 (Knowledge Retrieval), we have given an overview of SPARQL (Paragraph. 6.2),
the mainly used knowledge base query language, along with its foundations. We have demonstrated that the

underlying knowledge retrieval model (subgraph matching) is not suitable when used to define expressive
selection rules on unknown content (indeed, from the ambient system standpoint, the knowledge being

enriched over time, it is unknown at design time when selection rules are defined). So, we have proposed an

approach where the selection rules are expressed semantically from heterogeneous knowledge models
(Paragraph. 6.3). A subgraph, similar to the selection rule description model, is then tentatively extracted

from the knowledge base (with a similarity confidence level). Based on this approach, we have proposed a
model to rank the instances associated to the extracted subgraph (the selection rule results) which goal is to

give an insight about the semantic distance in between the selection rule intrinsic meaning and the returned

results (selection relevancy measure). To keep rules expressivity as high as possible over time and then keep
similarity measure and ranking as accurate as possible, incoming knowledge brought by the devices over time

is merged with the rules. The approach has been validated on a use-case (Paragraph. 6.4)

7.2 Future work

The work done in this document covers a large spectrum of domains (knowledge modeling, knowledge

extraction, knowledge integration, knowledge management and knowledge retrieval) the ambient system

service selection mechanism depends on to ensure the relevancy of the selected devices and services. Despite

the fact that the problem statements and the potential solutions have been given for each domain, only the

knowledge modeling (chapter 2), the knowledge integration (chapter 4) and the knowledge retrieval (chapter

6) domains have been investigated and validated.

Further investigations and developments would be needed:
1) The knowledge extraction domain (chapter 3) is currently addressed through a long term

collaboration with ESPRIT (Tunisia). The goal is to develop tools to automatically generate

reusable knowledge models from web pages, manufacturer’s documentations, etc…, relying on
linked data (LD) and linked open vocabularies (LOV).

2) Detecting and fixing knowledge base incoherencies and inconsistencies (chapter 5) is key to ensure

selected devices and services relevancy over time. Moreover, fixing such issues (or put in place

Figure 51 : From IoT to SWOT+

Semantic based web services for devices selection Conclusion and future work

67

solutions to avoid it) without jeopardizing the meaning of the terms described in the knowledge

base is also important and may lead to the development of novel algorithms.
3) Regarding the knowledge retrieval domain (chapter 6), the proposed approach is promising to give

the system a metrics on the relevancy of the selected instances with regards to the selection rule.
But additional investigations would be needed, in particular, on the usage of: (1) structural

measures (rather than purely lexical measures) and (2) summary graphs that would potentially

improve similarity measurements.
4) An important parameter for ambient systems is their responsiveness. We have discussed several

algorithms in the chapter 4 about reasoning, integration, alignments and in the chapter 6 about

sub-ontology extraction, similarity measurements, etc… So far, we do not have any clear picture

about their impacts on the overall ambient system responsiveness.

While structural and contextual knowledge are key in the process of selecting the most relevant devices and

services available in the environment, the functional knowledge is key at ensuring the selected services functional

interoperability. As we have seen in the chapter 3, several standards exists to semantically describe services

functionality through web service description languages and are classified in two approaches : (1) the top-down

approach where web service descriptions are based on upper ontologies, (2) the bottom-up incremental
approach enriching existing web services description standards (WSDL) with additional extensions to connect

the syntactic definitions to their semantic annotations. Since: (1) it is unlikely that manufacturers will rely
on an upper ontology to describe their products (including their functionalities), and (2) we want a fine

grained services description model expressivity, the bottom-up approach seems to be the one to adopt. It

would be interesting to investigate, how this approach, beyond its capabilities at ensuring interoperability
between services, can, a step further, be used for the system to deduce the semantic of an overall composition

(Figure 52)

Structural/contextual

semantics

Functional semantics

In > Web service > Out

Known semantics

Structural/contextual

semantics

Functional semantics

In > Web service > Out

Known semantics

Unknown semantics

Figure 52 : From functional composition to semantic composition

8. Bibliography

[1] Haller, S. (2010). The things in the internet of things. Poster at the (IoT 2010). Tokyo, Japan.

[2] Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D., & Schreier, G. (2010, April). The internet of things for

ambient assisted living. In Information Technology: New Generations (ITNG), 2010 Seventh International

Conference on (pp. 804-809). Ieee.

[3] Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787 -

2805.

[4] Zeng, D., Guo, S., & Cheng, Z. (2011). The web of things: A survey. Journal of Communications, 6(6), 424-438.

[5] Cheung, D., Tigli, J. Y., Lavirotte, S., & Riveill, M. (2006, June). Wcomp: a multi-design approach for

prototyping applications using heterogeneous resources. In Rapid System Prototyping, 2006. Seventeenth

IEEE International Workshop on (pp. 119-125), IEEE.

[6] Hourdin, V., Tigli, J. Y., Lavirotte, S., Rey, G., & Riveill, M. (2008, September). SLCA, composite services

for ubiquitous computing. In Proceedings of the International Conference on Mobile Technology,

Applications, and Systems (p. 11). ACM.

9. Annexes

9.1 Sub-Ontology Extraction Tool

9.1.1 Introduction... 69
9.1.2 Gathering Ontology From The Web .. 69
9.1.3 Extracting Sub-Ontology ... 69

a) Aligning Concepts With LOV and WordNet .. 71
b) Reasoning on the Sub-Ontology ... 72
c) Degrading Sub-Ontology .. 73
d) Generating Sub-Ontology ... 73

9.1.4 Measuring the Similarity Between Ontologies .. 73
9.1.5 SPARQL Endpoint .. 74
9.1.6 Conclusion ... 74
9.1.7 References .. 74

9.1.1 Introduction

For the purpose of validating the approaches presented in this document and helping to generate some

dataset, we have developed a small tool (still under development), whose main functionalities are

explained in the next paragraphs. The tool has been developed with Java and relies on Jena API [1]

(knowledge base and SPARQL endpoint), Alignment API [2] (ontology alignment and matching),

OntoSim [2] (ontology similarity measurement) and WebVOWL [3] for ontology graphical visualization.

WordNet [4] and LOV1 are made available to enrich ontology with equivalent classes.

9.1.2 Gathering Ontology from the Web

Figure 53 : Gathering ontology from the web

The tool can find from the web (thanks to Swoogle web service [5] for the time being, Watson Semantic

web search [5] is in the pipe), ontologies containing a specify keyword. In the example in the

Figure 53, ontologies containing the keyword

‘Animals’ are retrieved. The tool check out for their

accessibility. In the rest of this chapter, examples are
taken from

http://nlp.shef.ac.uk/abraxas/ontologies/animals.owl.

The selected ontology content can be visualized with
WebVOWL [3] (Figure 53).

Semantic based web services for devices selection Annexe : Sub-Ontology Extraction Tool

70

9.1.3 Extracting Sub-Ontology

Once the ontology to work with has been selected, all defined classes are displayed. The user select one

or more classes to work with. “Snake” concept is chosen (Figure 54).
1http://lov.okfn.org/dataset/lov/

The Sub-ontology generation manager opened (Figure 56), the selected concept associated sub-ontology
can be visualized (Figure 57).

Figure 54 : Selection of the concept to be extracted in a
sub-ontology (1)

Figure 56 : Selection of
the concept to be
extracted in a sub-
ontology (2)

Figure 55 : Ontology vizualization with WebVOWL

Semantic based web services for devices selection Annexe : Sub-Ontology Extraction Tool

71

a) Aligning Concepts with LOV and WordNet

Once the sub-ontology is generated the tool allows it to be enriched with LOV equivalent classes. The

process is manual: (1) the user select the vocabulary to be used for the alignment (Figure 58), (2) the
alignment algorithm to be used [2] and (3) the threshold value and finally (4) select the terms to be aligned

based a equivalence strength value (Figure 59).

The alignment is then applied (Apply Matching) and the resulting enriched sub-ontology can be visualized

(Figure 60).

Figure 57 : Snake sub-ontology

Figure 58 : LOV vocabulary selection

Figure 59 : Alignment algorithm and threshold value selection

Semantic based web services for devices selection Annexe : Sub-Ontology Extraction Tool

72

Figure 60 : Snake sub-ontology aligned with LOV vocabulary

The same approach is used to align the sub-ontology with WordNet synonyms (Figure 61)

Figure 61 : Alignment with WordNet synonyms

Semantic based web services for devices selection Annexe : Sub-Ontology Extraction Tool

73

Figure 62 : Snake ontology aligned with WordNet synonyms

b) Reasoning on the Sub-Ontology

The tools allows to add inferences
on the sub-ontology. (Figure 63)

Inferences are based on the Jena API
available reasoners1

1https://jena.apache.org/documentation/inference/#owl

c) Degrading Sub-Ontology

For the purpose of the experiment described in Paragraph. 4.8.1, a dataset has been needed to demonstrate

the knowledge base GCI enrichment over time. DogOnt ontology [6] rev 3.2.11 describing 926 concepts and
containing 9383 axioms has been used for that purpose. The dataset has been created by fragmenting the

ontology into sub-ontologies defining and structuring all the knowledge necessary to fully describe some

concepts (Oven, Fridge, Computer, Cooker, Boiler, etc…). Then, from each sub-ontology, has been generated

a set of degraded sub-ontologies containing a subset of the concepts complete knowledge (Figure 33).

To do so, the tool gives an overview of the estimated knowledge coverage by depth (Figure 64) or by
probability to have the concepts added in the resulting sub-ontology (Figure 65). The tool also gives a status

about the resulting sub-ontology consistency (Figure 66).

Figure 63 : Transistive inferences added
to the sub-ontology

Semantic based web services for devices selection Annexe : Sub-Ontology Extraction Tool

74

Figure 66 : Sub-ontology consistency checking

d) Generating Sub-Ontology

Once the user has defined LOV and/or WordNet equivalences, he can execute the sub-ontology generation

to a file (Figure 67). User can select the reasoner to be applied on the sub-ontology and defined the degradation
rate (either depth or probability). If multiple concepts are simultaneously selected, the user can either generate

a sub-ontology containing all selected concepts (Collapse) or select a sub-ontology for each of them.

Figure 67 : Sub-ontology generation

9.1.4 Measuring the Similarity Between Ontologies

Beside aforementioned features, the tool gives the capability to measure the similarity between two

ontologies. This measure is based on OntoSim API [2] and is based, for the time being only on lexical

measurements. Ontology structural-based similarity measurements are on the pipe…

9.1.5 SPARQL Endpoint

A SPARQL end-point has been developed to query the knowledge base content. Several ontology

structural metrics based on SPARQL queries are implemented by default [7].

Figure 64 : Sub-ontology knowledge coverage by depth Figure 65 : Sub-ontology knowledge coverage by probability

Semantic based web services for devices selection Annexe : Sub-Ontology Extraction Tool

75

9.1.6 Conclusion

This very first revision of the tool is quite useful and complete for the purpose of generating sub-ontology

from upper ontology. It is far from being perfect and several enhancements have to be done: (1) use sub-

ontology extraction algorithms as defined in Paragraph. 3.2.1, (2) add structural-based ontology similarity

measurement algorithms, (3) add Watson Semantic web search engine, (4) etc…

9.1.7 References

[1] JENA, A. (2011). Jena–A Semantic Web Framework for Java. Talis Systems.

[2] David, J., Euzenat, J., Scharffe, F., & Dos Santos, C. T. (2011). The alignment api 4.0. Semantic web journal,

2(1), 3-10.

[3] Lohmann, S., Link, V., Marbach, E., & Negru, S. (2014). WebVOWL: Web-based visualization of ontologies. In

Knowledge Engineering and Knowledge Management (pp. 154-158). Springer International Publishing.

[4] Miller, G. A., Fellbaum, C., Tengi, R., Wakefield, P., LANGONE, H., & HASKELL, B. (2013). Wordnet: A

lexical database for the English Language. 2002. Available from:< cogsci. princeton. edu/wn.

[5] Singh, G., & Jain, V. (2014). Information Retrieval (IR) through Semantic Web (SW): An Overview. arXiv

preprint arXiv:1403.7162.

[6] Bonino, D., & Corno, F. (2008). Dogont-ontology modeling for intelligent domotic environments (pp. 790-803).

Springer Berlin Heidelberg.

[7] Holst, T. (2013). Structural analysis of unknown RDF datasets via SPARQL endpoints (Doctoral dissertation,

Master thesis defense 11).

Figure 68 : SPARQL endpoint

	Rapport_I3S_Entetes_UNS_CNRS
	SEMANTIC-BASED
	WEB SERVICES FOR DEVICES
	SELECTION

	Rapport Corps
	Introduction
	1.1 Motivations
	1.2 Context
	1.3 Structure of the thesis

	2. Knowledge Modeling
	2.1 Introduction
	2.2 Semantic Web Knowledge Modeling Technologies in a Nutshell
	2.2.1 Triples and URIs
	2.2.2 RDF
	2.2.3 RDFS
	2.2.4 OWL Family
	2.2.5 Knowledge modeling language compatibility
	2.2.6 Summary: The Modeling Layers

	2.3 What knowledge in the context of ambient environments?
	2.4 Which Meta Meta Model to Use?
	2.5 The Open World Assumption
	2.6 Ontology Modeling Approaches
	2.6.1 Global Ontology (GO) Approach
	2.6.2 Multiple Local Ontology Approach (MLO)
	2.6.3 Hybrid Approach
	2.6.4 Fragmented Hybrid (FH) Approach

	2.7 Conclusion
	2.8 References

	3. Knowledge Extraction
	3.1 Introduction
	3.2 From Knowledge to Annotations
	3.2.1 Extraction From Upper Ontologies
	3.2.2 Extraction From Web Pages

	3.3 Web Services Standards Used to Convey the Knowledge
	3.3.1 Web Services Description Languages

	3.4 Conclusion
	3.5 References

	4. Knowledge integration
	4.1 Introduction
	4.2 Knowledge Base
	4.3 Reasoning
	4.3.1 Knowledge Base Interpretation
	4.3.2 Reasoning Tasks
	a) TBox Reasoning
	b) ABox Reasoning

	4.3.3 ∑ Saturation & Inference Rules
	4.3.4 Reasoning Over Linked Vocabulary

	4.4 Ambient Systems Dynamicity and Impacts on the Knowledge Integration
	4.4.1 Role Assertion Level Dynamicity
	4.4.2 Concept Assertion Level Dynamicity
	4.4.3 GCI Level Dynamicity

	4.5 Heterogeneous GCI Integration Issues
	4.5.1 Ontology Merging & Integration
	4.5.2 Ontology Alignment and Mapping
	4.5.3 All Together

	4.6 The Semantic Heterogeneity is Good!
	4.7 Knowledge integration model
	4.8 Experimentations
	4.8.1 Use-case#1 : A New Environment Exploration
	4.8.2 Use-case#2 : Search For Energy-Efficient Devices
	4.8.3 Experimentations Setup
	4.8.4 Results
	a) Use-case#1 : A New Environment Exploration
	b) Use-case#2 : Search for Energy-efficient Devices

	4.9 Conclusion
	4.10 References

	5. Knowledge management
	5.1 Introduction
	5.2 GCI Size Containment
	5.3 GCI Quality Over Time
	5.3.1 Incoherencies and Inconsistencies Management
	5.3.2 Validity

	5.4 Conclusion
	5.5 References

	6. Knowledge retrieval
	6.1 Introduction
	6.2 SPARQL
	6.3 Selection Rule Model Proposal
	6.3.1 Selection Rule Semantic Heterogeneity Management
	6.3.2 From Subgraphs Matching to Ontology Similarity Measurement
	6.3.3 Selection Rule Answers Ranking
	6.3.4 Selection Rule Expressivity vs Knowledge Base Content Evolution

	6.4 Use-case
	6.4.1 Selection Rule Definition at Design Time
	6.4.2 Selection Rule Alignment with Knowledge Base at Run Time
	6.4.3 Selection Rule Enrichment with New GCI at Run Time
	6.4.4 Selection Rule ⇔ Knowledge Base Similarity Measurement
	6.4.5 Selection Rule Answers Extraction and Ranking

	6.5 Conclusion
	6.6 References

	7. Conclusion and Future Work
	7.1 Summary
	7.2 Future work

	8. Bibliography
	9. Annexes
	9.1 Sub-Ontology Extraction Tool
	9.1.1 Introduction
	9.1.2 Gathering Ontology from the Web
	9.1.3 Extracting Sub-Ontology
	a) Aligning Concepts with LOV and WordNet
	b) Reasoning on the Sub-Ontology
	c) Degrading Sub-Ontology
	d) Generating Sub-Ontology

	9.1.4 Measuring the Similarity Between Ontologies
	9.1.5 SPARQL Endpoint
	9.1.6 Conclusion
	9.1.7 References

