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S.1 Continuous-time Markov chains

Let us consider a well-stirred chemical reaction system in
thermal equilibrium, where the volume of the spatial domain
is constant. The state vector of the system, which involves d
different species of particles S1, · · · , Sd,

X(t) =
(
X1(t) · · · Xd(t)

)T
(1)

of particle numbers changes according to r reaction channels
R1, · · · , Rr, which represent events such as, e.g., a reactive
collision between two particles from different species that
produces a particle of another type, the decomposition of a
particle into two particles, the conversion of a particle from
one species to another one, the inflow of new particles into
the systems from an exterior source, the “death" of particles
and so on. Each reaction channel is described by

Rj : κinj1S1 + · · ·+ κinjdSd
cj−→ κoutj1 S1 + · · ·+ κoutjd Sd (2)

with nonnegative integers κinjk, κ
out
jk and j ∈ {1, 2, · · · , r}. If

Rj fires at time t, then the particle numbers jump from the
old state X(t−) to the new state X(t) = X(t−) + νj where

νj =
(
νj1 · · · νjd

)T
=
(
κoutj1 − κinj1 · · · κoutjd − κinjd

)T
is called the stoichiometric vector of Rj . The time of the next
reaction event and the index of the reaction channel that fires
are both random, and depend only on the current state of
the system such that X(t) is a realization of continuous-time
Markov chain (CTMC)

X(t) = X(0) +

r∑
j=1

ξj

(∫ t

0

αj (X(s)) ds

)
νj (3)

with (density-dependent) Poisson processes ξj and initial state
X(0) ∈ X , where X ⊆ Nd, N = {0, 1, 2, · · · }, is the countable
set of states of CTMC (3) . The function αj is called the
propensity of reaction Rj and is typically defined as

αj(x) = cjΠ
d
q=1

(
xq
κinjq

)
(4)

with a reaction constant cj > 0 dependent on physical prop-
erties such as the temperature or the volume of the domain,

where (
m

q

)
=


1
q!Π

q−1
j=0(m− j), m > q − 1

0, m < q − 1

1, q = 0

(5)

denotes the generalized binomial coefficient.
As a typical interpretation of the model (3), one may

consider a chemical reaction system where the particles of
the species correspond to the molecules of the chemical sub-
stances. But the same setting can be used to model discrete
stochastic predator-prey systems, viral kinetics, gene regu-
latory networks and so on, see, e.g., [24, 15, 18] and the
references therein.

S.2 Chemical master equation

The probability distribution of the states of CTMC (3) can
be described by a system of differential equations. The prob-
ability distribution p(x, t) = P (X(t) = x) of state X(t) at
time t is the solution of chemical master equation (CME)

dp(x, t)

dt
=

r∑
j=1

[p(x− νj , t)αj(x− νj)− p(x, t)αj(x)] (6)

for x ∈ X , t ≥ 0 and initial condition p(x, 0) = P(X(0) = x)

(see [11]) with the convention that p(x, t) = 0 for all x /∈ X .
Typically, the CME is too high-dimensional to deal with

computationally. The stochastic simulation algorithm (SSA)
gets around this issue by computing single realisations of the
state vector rather than an entire probability distribution,
see [9, 10].

Denote the transition probabilities of X(t) by

pzx(h) = P(X(t+ h) = x | X(t) = z). (7)

Therefore,

pzx(0) = δ(x− z) =

{
1, x = z

0, x 6= z.
(8)

According to the CTMC (3), the transition probabilities (7)
obey, as h→ 0,

pzx(h) =


1−

∑r
j=1 αj(z)h+ o(h), x = z

αj(z)h+ o(h), x = z + νj , 1 ≤ j ≤ r
0, otherwise.

(9)
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To avoid triviality, assume that p(x, 0) is not concentrated on
any absorbing state.

Let Φ be the transition rate matrix of the CTMC (3)
whose entries are given by

Φzx =


−
∑r
j=1 αj(z), x = z

αj(z) x = z + νj , 1 ≤ j ≤ r
0, otherwise.

(10)

Write p(t) as a row vector with components {p(x, t)}x∈X .
Then the CME (6) can be written in a compact form

dp(t)

dt
= p(t)Φ, t ≥ 0 (11)

with initial condition p(0). Note that Φ is infinite dimensional
when the state space X is unbounded, or even when X is
bounded, Φ is usually a big and sparse matrix.

S.3 Wonham filter

For the CTMC (3) of a chemical reaction system, suppose
that the observation process {Y (t), t ≥ 0} is given by

dY (t) = g(X(t))dt+B(t)dW (t) (12)

for t ≥ 0 with Y (0) = 0, where y ∈ Rl (usually 1 ≤ l ≤ d),
g : Rd → Rl is a continuous function, B(t) ∈ Rl×l is a full-
rank matrix with bounded norms of B(t) and B−1(t) for all
t ≥ 0 and W (t) is the standard l-dimensional Brownian mo-
tion independent of process X(t). The posterior probabilities

π(x, t) = P(X(t) = x | y(s), s ∈ [0, t]), x ∈ X . (13)

Each π(x, t) is described with a stochastic differential equa-
tion (SDE). The Wonham filter gives the following evaluation
of π(x, t), which is obtained with few modification from [43]

dπ(x, t) =

r∑
j=1

[π(x− νj , t)αj(x− νj)− π(x, t)αj(x)] dt

+ π(x, t)[g(x)− g(t)]T [B(t)BT (t)]−1[dy(t)− g(t)dt] (14)

for x ∈ X with initial condition π(x, 0) = p(x, 0) = P{X(0) =

x}, where
g(t) =

∑
x∈X

g(x)π(x, t). (15)

This is a general form of the main result Eq.(21) in [43],
which is a special case of (14) with l = 1 and g(a) = a.
Due to the expectation (15), it is cumbersome to calculate
(14). One often resorts to the unnormalized version of π(x, t)

and performs normalization after numerical integration. The
unnormalized filter V (x, t) is the unnomalized version of the
Wonham filter (14), which is given as follows

dV (x, t) =

r∑
j=1

[V (x− νj , t)αj(x− νj)− V (x, t)αj(x)] dt

+ V (x, t)gT (x)[B(t)BT (t)]−1dy(t), x ∈ X (16)

with initial condition V (x, 0) = p(x, 0) = P{X(0) = x}.

S.4 CTMC with discrete-time observations

In the previous section, the observations (12) are described
by a continuous-time process, which means that information
about the system is available continuously. But this does
not fit well with many practical situations. The dynamics
of chemical reaction systems are naturally continuous, and,
however, observations are usually taken at discrete time in-
stants. In this section, we consider filtering and smoothing
problems of CTMC (3) with discrete-time observations.

S.4.1 Filter for CTMC with discrete-time
observations

Suppose that observations at discrete times y1 =

y(t1), · · · , yN = y(tN ) with 0 < t1 < · · · < tN = T admit the
conditional distribution of the form

p(yi|X(s), s ∈ [0, ti]) = p(yi|X(ti)) (17)

for 1 ≤ i ≤ N . The posterior probabilities are denoted by

π(x, t) = P (X(t) = x | y1, · · · , yn) (18)

with n = max(n ∈ N | tn ≤ t) for all x ∈ X and t ≥ 0.
Write π(t), t ≥ 0, as a row vector with components

{π(x, t)}x∈X . We now seek a system of differential equations
for π(t).

Theorem 1: The evaluation of π(t) is given by recursive CME

dπ(x, t)

dt
=

r∑
j=1

[π(x− νj , t)αj(x− νj)− π(x, t)αj(x)] (19)

for x ∈ X with π(x, 0) = P(X(0) = 0) and reset conditions

π(x, ti) = C−1
i π(x, t−i )p(yi|x) (20)

at the observation times ti ≤ tn, where Ci is a normalizing
constant

Ci =
∑
z∈X

π(z, t−i )p(yi|z). (21)

Proof: Note that Eq. (19) is exactly the same as the CME
(6) except the reset conditions (20) at the observation times.
Notice that derivation of the CME (6) can be found in many
references, e.g., [11]. Therefore, we just need to show the
reset conditions (20) at the observation times. According to
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Bayesian formula, the reset condition (19) at the observation
time ti is

π(x, ti) = P
(
X(ti) = x | y1, · · · , yi

)
=

P
(
{y1, · · · , yi} ∩X(ti) = x

)
P
(
{y1, · · · , yi}

)
=

P
(
yi
∣∣{y1, · · · , yi−1} ∩X(ti) = x

)
P
(
yi
∣∣{y1, · · · , yi−1}

)
·
P
(
{y1, · · · , yi−1} ∩X(tq+1) = x

)
P
(
{y1, · · · , yi−1}

)
=

p(yi|x)π(x, t−i )∑
z∈X p(yi|z)π(z, t−i )

= C−1
i π(x, t−i )p(yi|x) (22)

with Ci =
∑
z∈X π(z, t−i )p(yi|z), which is exactly the reset

condition (20). This completes the proof. �
Similarly, the system of ODEs (19) can be written in a

compact form
dπ(t)

dt
= π(t)Φ (23)

with π(0) = p(0) and reset conditions

π(ti) = C−1
i π(t−i )p(yi|x), (24)

where Φ is the transition rate matrix given by (10).

S.4.2 Smoother for CTMC with discrete-time
observations

Suppose that we have obtained the posterior probability
π(x, t) for t ∈ [0, T ] with T = tN . Let us now study the
smoothing (probability) density denoted by

π̃(x, t) = P
(
X(t) = x | y1, · · · , yN

)
(25)

for all x ∈ X and t ∈ [0, T ]. By (18) and (25), we have
π̃(x, T ) = π(x, T ) for all x ∈ X .

For all x ∈ X , define β(x, t) by

β(x, t) =
P (yk, · · · , yN | X(t) = x)

P (yk, · · · , yN | y1, · · · , yk−1)
(26)

for all t ∈ [0, T ], where k = min(k ∈ N | tk > t}. Obviously,

β(x, T ) = 1, ∀x ∈ X . (27)

We have the following result for smoothing of CTMC (3)
with observations {y1, · · · , yN}.

Theorem 2: The evaluation of smoothing density (25) is given
by

π̃(x, t) = β(x, t)π(x, t) (28)

for t ∈ [0, T ], where π(x, t) is given by (18) above. Moreover,
β(x, t) satisfies the backward equation

dβ(x, t)

dt
=

r∑
j=1

[
β(x, t)− β(x+ νj , t)

]
αj(x) (29)

with reset conditions

β(x, t−i ) = C−1
i β(x, ti)p(yi|x) (30)

at the observation times ti ≤ T and terminal conditions (27),
where normalizing constant Ci is given by (21).

Proof: For t ∈ [0, T ], by definitions (18), (25) and (26), we
have

π̃(x, t) =
P ({y1, · · · , yN} ∩X(t) = x)

P ({y1, · · · , yN})

=
P ({yk, · · · , yN} ∩ {y1, · · · , yk−1} ∩X(t) = x)

P ({yk, · · · , yN} ∩ {y1, · · · , yk−1})

=
P ({yk, · · · , yN} | {y1, · · · , yk−1} ∩X(t) = x)

P ({yk, · · · , yN} | {y1, · · · , yk−1})

· P ({y1, · · · , yk−1} ∩X(t) = x)

P ({y1, · · · , yk−1})

=
P ({yk, · · · , yN} | X(t) = x)

P ({yk, · · · , yN} | {y1, · · · , yk−1})
π(x, t)

= β(x, t)π(x, t). (31)

That is, (28) holds for all t ∈ [0, T ].
Let us proceed to show that β(x, t) satisfies the backward

equation (29) with reset conditions (30) and terminal condi-
tions (27). Since, by definition (26), terminal conditions (27)
hold, we consider reset conditions (30) at observation time ti
when, without loss of generality, β(x, ti), x ∈ X , are available.
For small h > 0, we have

β(x, ti − h) =
P ({yi, · · · , yN} | X(ti − h) = x)

P ({yi, · · · , yN} | {y1, · · · , yi−1})

=

∑
u∈X P ({yi, · · · , yN} | X(ti) = u ∩X(ti − h) = x) pxu(h)

P ({yi+1, · · · , yN} | {y1, · · · , yi})P (yi | {y1, · · · , yi−1})

=

∑
u∈X P ({yi, · · · , yN} | X(ti) = u) pxu(h)

P ({yi+1, · · · , yN} | {y1, · · · , yi}) P (yi | {y1, · · · , yi−1})
.

Note that, by (22), P (yi | {y1, · · · , yi−1}) = Ci. And

P ({yi, · · · , yN} | X(ti) = u)

= P ({yi+1, · · · , yN} | X(ti) = u) p(yi|u).

Therefore, by (26), we have

β(x, ti − h) = C−1
i

·
∑
u∈X

P ({yi+1, · · · , yN} | X(ti) = u)

P ({yi+1, · · · , yN} | {y1, · · · , yi})
pxu(h)p(yi|u)

= C−1
i

∑
u∈X

β(u, ti)pxu(h)p(yi|u) (32)

Letting h→ 0 in (32), by (8), yields

β(x, t−i ) = C−1
i β(x, ti)p(yi|x)

3



Supplementary for reconstructing dynamic molecular states

which is the reset conditions (30).
To show (29), assume that, without loss of generality,

t < ti and there is no observation time on the interval [t−h, t]
for some small h > 0. Then we have

β(x, t− h) =
P ({yi, · · · , yN} | X(t− h) = x)

P ({yi, · · · , yN} | {y1, · · · , yi−1})

=
P ({yi, · · · , yN} ∩X(t− h) = x)

P ({yi, · · · , yN} | {y1, · · · , yi−1}) P (X(t− h) = x)

=

∑
u∈X P ({yi, · · · , yN} ∩X(t) = u ∩X(t− h) = x)

P ({yi, · · · , yN} | {y1, · · · , yi−1}) P (X(t− h) = x)

=
∑
u∈X

P ({yi, · · · , yN} | X(t) = u ∩X(t− h) = x)

P ({yi, · · · , yN} | {y1, · · · , yi−1})

· P {X(t) = u ∩X(t− h) = x}
P {X(t− h) = x}

=
∑
u∈X

P ({yi, · · · , yN} | X(t) = u)

P ({yi, · · · , yN} | {y1, · · · , yi−1})
pxu(h)

=
∑
u∈X

β(u, t)pxu(h) (33)

and therefore

β(x, t)− β(x, t− h)

= β(x, t)[1− pxx(h)]−
∑

u∈X ,u6=x

β(u, t)pxu(h). (34)

This with (9) yields

dβ(x, t)

dt
=

r∑
j=1

[
β(x, t)− β(x+ νj , t)

]
αj(x), (35)

which is (29). The proof is complete. �

Write β(t), t ∈ [0, T ], as a row vector with components
{β(x, t)}x∈X . Similarly, the backward ODE (29) with reset
conditions (30) can be written in a compact form

dβ(t)

dt
= β(t)ΦT (36)

with reset conditions at observation time ti

β(t−i ) = C−1
i β(ti)p(yi|x), (37)

where Φ is the transition matrix given by (10).
Note that the conditional process is also a Markovian

process with time-dependent transition probability. Denote
by α̃j(x, t), j = 1, · · · , r, the posterior transition function
of the conditional process. By (19) and (29), differentiating

π̃(x, t) with respect to t yields the smoothing CME

d

dt
π̃(x, t) =

d

dt
[β(x, t)π(x, t)]

=

[
d

dt
β(x, t)

]
π(x, t) + β(x, t)

[
d

dt
π(x, t)

]
=

r∑
j=1

[
β(x, t)− β(x+ νj , t)

]
αj(x)π(x, t)

+

r∑
j=1

β(x, t)
[
π(x− νj , t)αj(x− νj)− π(x, t)αj(x)

]
=

r∑
j=1

[
π(x− νj , t)αj(x− νj)β(x, t)

− π(x, t)αj(x)β(x+ νj , t)
]

=

r∑
j=1

[
π̃(x− νj , t)αj(x− νj)

β(x, t)

β(x− νj , t)

− π̃(x, t)αj(x)
β(x+ νj , t)

β(x, t)

]
=

r∑
j=1

[
π̃(x− νj , t)α̃j(x− νj , t)− π̃(x, t)α̃j(x, t)

]
(38)

with initial value π̃(x, 0) = P(X(0) = x) for all x ∈ X , where

α̃j(x, t) = αj(x)
β(x+ νj , t)

β(x, t)
. (39)

S.5 Moments of CTMC with disceret-time
observations

S.5.1 Prior moment equations

Let |γ| = γ1 + · · ·+ γd for γ ∈ Nd. The multivariate moment
generating function for X(t) is defined as, see [8, 35],

MG(θ, t) ≡
∑
x∈X

p(x, t)eθ1x1+···+θdxd

=
∑
x∈X

p(x, t)eθ
T x =

∞∑
|γ|=0

M̂γ(t)θγ

γ!
(40)

for t ≥ 0, where γ! = γ1! · · · γd!, θγ = θγ1

1 · · · θ
γd
d and

M̂γ(t) = Ep
[
Xγ1

1 (t) · · ·Xγd
d (t)

]
= Ep

[
Xγ(t)

]
=
∑
x∈X

p(x, t)xγ . (41)

Clearly, M̂γ(t) ≡ 1 for all t ≥ 0 if |γ| = 0. For conve-
nience, denote the mean and the covariance by M̂(t) = M̂1(t)

and M̂2(t), that is, M̂(t) = M̂1(t) = Ep[X(t)] and M̂2(t) =
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Ep[X(t)XT (t)], respectively. The moments of X(t) are given
by (see, e.g., [35])

M̂γ(t) = dγMG(θ, t)
∣∣
θ=0d

=
∂|γ|MG(θ, t)

∂θγ1

1 · · · ∂θ
γd
d

∣∣∣
θ=0d

. (42)

The propensity function αj(x) of reaction Rj can be written
of the form, see, e.g., [8],

αj(x) =
∑
|γ|≥0

cj,γx
γ (43)

with cj,γ ≥ 0 for all j and γ. Let η ∈ Nd and ζ ∈ Nd, then
ζ ≥ η (resp. ζ < η) means that ζj ≤ ηj (resp. ζj < ηj) for all
1 ≤ j ≤ d. It is observed that, see, e.g., [8],

∂MG(θ, t)

∂t
=
∑
|η|>0

θη

η!

r∑
j=1

∑
|γ|≥0

cj,γ
∑

|ζ|>0,ζ≤η

νζj

(
η

ζ

)
Mη−ζ+γ
p (t)

where

νζj

(
η

ζ

)
= νζ1j1

(
η1

ζ1

)
× · · · × νζdjd

(
ηd
ζd

)
.

This with (41) gives

dM̂η(t)

dt
=

r∑
j=1

∑
|γ|≥0

cj,γ
∑

|ζ|>0,ζ≤η

νζj

(
η

ζ

)
M̂η−ζ+γ(t) (44)

with initial value M̂η(0) = Ep[Xη(0)]. Particularly, let η = ei
(i.e., M̂ei(t) = Ep

[
Xi(t)

]
), where ei ∈ Nd with the ith element

being 1 and the others 0. Then one has

dM̂ei(t)

dt
=

r∑
j=1

∑
|γ|≥0

cj,γ
∑

|ζ|>0,ζ≤ei

νζj

(
ei
ζ

)
M̂ei−ζ+γ(t)

=

r∑
j=1

∑
|γ|≥0

cj,γνjiM̂
γ(t) (45)

with initial value M̂ei(0) = Ep[Xi(0)] for all 1 ≤ k ≤ d. This
is the estimation of expectation in the references, e.g., [25],

d

dt
Ep[X(t)] =

r∑
j=1

νjEp[αj(X(t))], t ≥ 0 (46)

with initial value Ep[X(0)].
Particularly, for the first order chemical reaction networks,

see [16],

αj(x) =

1∑
|γ|=0

cj,γx
γ , j = 1, · · · , r (47)

given any L̄ ≥ 1, the moment dynamics (44) yields a system
of ODEs for the first order reaction network (47)

d ˆ̄M L̄(t)

dt
= ĈL̄

ˆ̄M L̄(t) + bL̄, t ≥ 0 (48)

with initial value ˆ̄M L̄(0), where ˆ̄M L̄(t) ∈ Rd̂ with compo-
nents {Mγ(t) : |γ| = 1, · · · , L̄} and d̂ being the cardinality
of set {γ : |γ| = 1, · · · , L̄}, ˆ̄ML(0) ∈ Rd̂ with components
{Ep[Xγ(0)] : |γ| = 1, · · · , L̄}, ĈL̄ ∈ Rd̂×d̂ and bL̄ ∈ Rd̂ with
entries given by (44). An example for (48) will be specified
below. As is known, the solution of linear system (48) is given
by

ˆ̄M L̄(t) = etĈL̄ ˆ̄M L̄(0) +

∫ t

0

e(t−τ)ĈL̄bL̄dτ, t ≥ 0. (49)

S.5.2 Posterior moment equations

The posterior moments are given as

Mη(t) = Eπ
[
Xη(t)

]
=
∑
x∈X

π(x, t)xη (50)

for all η ∈ Nd and t ≥ 0. For convenience, denote the mean
and the covariance by M(t) = M1(t) and M2(t), that is,
M(t) = M1(t) = Eπ[X(t)] and M̂2(t) = Eπ[X(t)XT (t)],
respectively.

According to Theorem 1, the evolution of posterior mo-
ments (50) are described by recursive moment equations

dMη(t)

dt
=

r∑
j=1

∑
|γ|≥0

cj,γ
∑

|ζ|>0,ζ≤η

νζj

(
η

ζ

)
Mη−ζ+γ(t) (51)

with initial condition Mη(0) = Mη
p (0) and reset conditions

Mη(ti) = C−1
i

∑
x∈X

π(x, t−i )xηp(yi|x) (52)

at observation time ti ≤ tn with Ci given by (21).
To calculate the value Mη(ti), one should know the con-

ditional probability distribution function p(yi|x). In a very
special case when p(yi|x) = δ(yi − x), it is easy to find
Mη(ti) = yηi . Generally, measurements are corrupted with
noise. In fact, the update formula (52) for the moments de-
rived from the filtering results (20) are usually intractable.
Assume that p(yi|x) can be expressed as

p(yi|x) =

Γ∑
|γ|=1

∑
q≥0

bγ,q(yi)x
γq. (53)

For instance, yi = X1(ti) + wi with wi ∼ N (0, σ2
i ) indepen-

dent of X(t). In this case, Γ = 1 and

p(yi|x) =
1√

2πσi
e
− (yi−x1)2

2σ2
i =

1√
2πσi

∑
j≥0

(−1)j(yi − x1)2j

2jσ2j
i j!

=
1√

2πσi

∑
j≥0

(−1)j

2jσ2j
i j!

2j∑
q=0

(
2j

q

)
y2j−q
i (−x1)q

=
1√

2πσi

∑
q≥0

xq1
∑

j≥[q/2]

(
2j

q

)
(−1)j+qy2j−q

i

2jσ2j
i j!

5
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where [a] = min{j : |a| ≤ j, j ∈ N} for a ∈ R, which is a
specific case of (53) with

γ = e1 and be1,q(yi) =
1√

2πσi

∑
j≥[q/2]

(
2j

q

)
(−1)j+qy2j−q

i

2jσ2j
i j!

.

Substitution of (53) into (52) and (21) yields∑
x∈X

π(x, t−i )xηp(yi|x) =
∑
|γ|>0

∑
q≥0

bγ,q(yi)M
η+γq(t−i ),

Ci =
∑
z∈X

π(z, t−i )p(yi|z) =
∑
|γ|>0

∑
q≥0

bγ,q(yi)M
γq(t−i )

and hence

Mη(ti) =

∑
|γ|>0

∑
q≥0 bγ,q(yi)M

η+γq(t−i )∑
|γ|>0

∑
l≥0 bγ,q(yi)M

γq(t−i )
.

S.6 A novel approximate approach to filtering

The update formula (52) of moments derived from filtering
theory is usually intractable. The challenging problem is to
find some appropriate approximation to the update formula
(52). In this section, we propose an approximate approach to
the update formula by exploiting the fundamental relationship

E [s(x(ti))u(yi) | {y1, · · · , yi−1}]
= E [E [s(x(ti)) | {y1, · · · , yi}]u(yi) | {y1, · · · , yi−1}] (54)

where s(·) and u(·) are integrable functions. This is a special
form of tower property for conditional expectation, see, e.g.,
[19, 41].

In this section, we first present our approximate to filter-
ing for univariate systems (d = 1) and then generalize it to
multivariate systems (d ≥ 2) in next section.

For simplicity, let us first consider a univariate system (1)
(d = 1, i.e., X(t) is a scalar) with measurements

yi = X(ti) + wi (55)

where {wi}, independent of {X(t)}, is an independent se-
quence with E[|wi|q] < ∞ for some q ≥ 4. Given η ≥ 1,
assume that

E[wηi | {y1, · · · , yi}] = E[wηi | yi] =

ηi∑
q=0

hη,qy
q
i (56)

for some ηi ≥ η, where hη,q are constants at time t−i .
Recall that {wi} is an independent sequence and inde-
pendent of {X(t)} and, therefore, moments Mq(t−i ) =

E[Xq(t−i )|{y1, · · · , yi−1}], q ≥ 1, contain no information of wi
and can be treated as constants at time t−i . Let s(wi) = wηi
and u(yi) = 1 in (54), then substitution of (56) into (54) gives

E[wηi ] =

ηi∑
q=0

ĥη,qE[wqi ], (57)

where ĥη,q are constants at time t−i . To avoid involving the
higher order moments in the expression of E[wηi ], let ηi = η

in (56) and (57). This with

E[Xη(ti) | {y1, · · · , yi}] = E[(yi − wi)η | {y1, · · · , yi}]

=

η∑
q=0

(
η

q

)
(−1)qyη−qi E[wqi |yi]

yields

Mη(ti) =

η∑
q=0

ϑη,qy
q
i (58)

with η ∈ N, where mη,q are constants at time t−i .
We choose functions

s(x(ti)) = xη(ti) and u(yi) = yji (59)

with j = 0, 1, · · · , η in (54) and then have

E[xη(ti)y
j
i | {y1, · · · , yi−1}]

= E[xη(ti)(x(ti) + wi)
j | {y1, · · · , yi−1}]

= E

[
j∑
b=0

(
j

b

)
xη+b(ti)w

j−b
i | {y1, · · · , yi−1}

]

=

j∑
b=0

(
j

b

)
Mη+b(t−i )E[wj−bi ], (60)

E[E[xη(ti) | {y1, · · · , yi}]yji | {y1, · · · , yi−1}]

= E

[
η∑
q=0

ϑη,qy
q
i y
j
i | {y1, · · · , yi−1}

]

= E

[
η∑
q=0

ϑη,q(x(ti) + wi)
q+j | {y1, · · · , yi−1}

]

=

η∑
q=0

ϑη,q

q+j∑
b=0

(
q + j

b

)
M b(t−i )E[wq+j−bi . (61)

Then (54) implies

η∑
q=0

ϑη,q

q+j∑
b=0

(
q + j

b

)
M b(t−i )E[wq+j−bi

=

j∑
b=0

(
j

b

)
Mη+b(t−i )E[wj−bi ] (62)

with j = 0, 1, · · · , η, which determines coefficients mη,q,
q = 0, 1, · · · , η. For example, solving (62) for η = 1 gives

M1(ti) = ϑ1,0 + ϑ1,1yi (63)

6
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where

ϑ1,0 =
σ2
iM

1(t−i )

M2(t−i )− [M1(t−i )]2 + σ2
i

,

ϑ1,1 =
M2(t−i )− [M1(t−i )]2

M2(t−i )− [M1(t−i )]2 + σ2
i

. (64)

As is well known, the larger measurement noise σ2
i is, the less

information observation yi gives (see, e.g., [43]). Note that
(63) implies

ϑ1,0 → 0, ϑ1,1 → 1, M1(ti)→ yi as σ2
i → 0

and

m1,0 →M1(t−i ), ϑ1,1 → 0, M1(ti)→M1(t−i )

as σ2
i →∞,

which match very well the cases with noise-free (σ2
i = 0) and

extremely-large-noise (σ2
i →∞) measurements, respectively.

This justifies the use of approximate formula (63) at the
measurement points.

It is observed that the update formula (62) for the ηth
moment at measurement point ti involves Mq(t−i ) with q up
to 2η. To cope with this problem, one can employ some mo-
ment closure techniques (see [38, 28, 8, 23, 37, 25, 13] and the
references therein). And one may choose a moment closure
based on the characteristics of the signals. As application ex-
amples, the normal [38], the lognormal [36] and the modified
normal [37] approximations will be studied as follows.

For simplicity, assume that measurement noise wi has a
symmetric probability density function such that

E[wi] = E[w3
i ] = 0, E[w2

i ] = σ2
i , E[w4

i ] = hσ4
i , (65)

e.g., h = 3 when wi ∼ N (0, σ2
i ), and h = 6 when wi ∼

L(0, σi), where L(0, σi) denotes the Laplace distribution with
zero mean and variance σ2

i > 0, which is also widely used in
science and engineering, see [22, 6, 32]. Let us consider the
update approximate for the second moment

M2(ti) = ϑ2,0 + ϑ2,1yi + ϑ2,2y
2
i . (66)

So, for η = 2, (62) gives a set of linear equations with respect
to m2,0, m2,1 and m2,2:

ϑ2,0 + ϑ2,1M
1(t−i ) + ϑ2,2[σ2

i +M2(t−i )] = M2(t−i ), (67)

ϑ2,0M
1(t−i ) + ϑ2,1[σ2

i +M2(t−i )]

+ ϑ2,2[3σ2
iM

1(t−i ) +M3(t−i )] = M3(t−i ), (68)
ϑ2,0[σ2

i +M2(t−i )] + ϑ2,1[3σ2
iM

1(t−i ) +M3(t−i )]

+ ϑ2,2[hσ4
i + 6σ2

iM
2(t−i ) +M4(t−i )]

= σ2
iM

2(t−i ) +M4(t−i ). (69)

Solving (67)-(69) will gives the update approximate (66). As
observed, (67)-(69) involve M3(t−i ) and M4(t−i ) and can be
solved with different moment closure techniques. As applica-
tion examples of our proposed method, we apply the normal,
the lognormal and the modified normal moment closures
below, respectively.

To approximate some higher order moment, e.g. η = 3,
one would obtain (62) involving M j(t−i ), 1 ≤ j ≤ 6. Ap-
plication of some moment closure techniques, e.g., setting
the cumulant neglect level η = 3, that is, κj(t−i ) = 0 for
4 ≤ j ≤ 6, see [28], would give moment closure functions for
M j(t−i ), 4 ≤ j ≤ 6, in terms of {Mq(t−i )}3q=1. Substition of
these expressions into (62) would determine the coefficients
mj,q for 1 ≤ j ≤ 3 and 0 ≤ q ≤ j.

S.6.1 Normal moment closure

Let the cumulant neglect level be set to 2, that is, κj(t−i ) = 0

for j ≥ 3, where κj(t−i ) is the jth cumulant of X(t−i ). This
yields

M3(t−i ) = 3M2(t−i )M1(t−i )− 2[M1(t−i )]3

M4(t−i ) = 4M3(t−i )M1(t−i ) + 3[M2(t−i )]2

− 12M2(t−i )[M1(t−i )]2 + 6[M1(t−i )]4,

(70)

and therefore{
M3(t−i ) = 3M2(t−i )M1(t−i )− 2[M1(t−i )]3

M4(t−i ) = 3[M2(t−i )]2 − 2[M1(t−i )]4.
(71)

Solving (67)-(69) with (71) yields

ϑ2,2 =
[Σ(t−i )]2

[Σ(t−i ) + σ2
i ]2 + 1

2 (h− 3)σ4
i

,

ϑ2,1 = 2

[
Σ(t−i )

Σ(t−i ) + σ2
i

− ϑ2,2

]
M1(t−i ), (72)

ϑ2,0 = M2(t−i )− ϑ2,1M
1(t−i )− ϑ2,2[M2(t−i ) + σ2

i ],

It is observed in (72) that

ϑ2,2 → 1, ϑ2,1 → 0, ϑ2,0 → 0, M2(ti)→ y2
i as σ2

i → 0

and

ϑ2,2 → 0, ϑ2,1 → 0, ϑ2,0 →M2(t−i ), M2(ti)→M2(t−i )

as σ2
i →∞,

which correspond to the cases with noise-free and extremely-
large-noise measurements, respectively. This shows that it is
reasonable to use the proposed update approximation (66) for
the second moment. It is also noticed that, , if wi ∼ L(0, σi),
i.e., h = 6,

ϑ2,2 =
[Σ(t−i )]2

[Σ(t−i ) + σ2
i ]2 + 1.5σ4

i

≈ [Σ(t−i )]2

[Σ(t−i ) + σ2
i ]2

,

ϑ2,1 ≈
2σ2

iΣ(t−i )

[Σ(t−i ) + σ2
i ]2

M1(t−i )

7
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when signal-to-noise ratio

SNR :=
Σ(t−i )

σ2
i

(73)

is large. This implies that scheme (66) with h = 3 can be also
used to approximate the second moment when wi ∼ L(0, σi)

with small variance σ2
i .

It should be pointed out that setting the cumulant
κj(t

−
i ) = 0 for j ≥ 3 implies that the approximation is based

on the Gaussian assumption of the states, see [38] and [28].
If wi ∼ N (0, σ2

i ), then the Gaussian assumption is imposed
on both the states and the measurements.

Remark 1: It is observed that formula (63) and (72) with
h = 3 are exactly the update formula of a Kalman filter, see,
e.g., [4], which is a special case of our proposed approach
when the normal moment closure is employed for measure-
ments with Gaussian noise. This helps justify our proposed
approach.

S.6.2 Lognormal moment closure

We can employ some nonzero cumulant moment closure tech-
niques instead of (71). The following formula are based on
the assumption of lognormal, instead of normal, moment
dynamics, see [20, 21, 26, 36],

M3(t−i ) =
[M2(t−i )]3

[M1(t−i )]3
, M4(t−i ) =

[M2(t−i )]6

[M1(t−i )]8
. (74)

Solving (67)-(69) with (74) yields

ϑ2,2 =
[
σ2
iA(t−i ) +B(t−i )

] {
(h− 1)σ6

i + (h+ 3)σ4
i (M2(t−i )

− [M1(t−i )]2) + σ2
iC(t−i ) +B(t−i )

}−1

,

ϑ2,1 =
{

(1−m2,2)

[
[M2(t−i )]3

[M1(t−i )]3
−M2(t−i )M1(t−i )

]
− 2ϑ2,2σ

2
iM

1(t−i )
}{

M2(t−i )− [M1(t−i )]2 + σ2
i

}−1

,

ϑ2,0 = M2(t−i )− ϑ2,1M
1(t−i )− ϑ2,2[M2(t−i ) + σ2

i ], (75)

where

A(t−i ) =
[M2(t−i )]6

[M1(t−i )]8
− 2

[M2(t−i )]3

[M1(t−i )]2
− [M2(t−i )]2

+ 2[M1(t−i )]2M2(t−i ),

B(t−i ) =
[M2(t−i )]7

[M1(t−i )]8
− 2

[M2(t−i )]6

[M1(t−i )]6
+ 2

[M2(t−i )]4

[M1(t−i )]2

− [M2(t−i )]3,

C(t−i ) =
[M2(t−i )]6

[M1(t−i )]8
− 4

[M2(t−i )]3

[M1(t−i )]2
+ 3[M2(t−i )]2.

As above, it is observed in (75) that

ϑ2,2 → 1, ϑ2,1 → 0, ϑ2,0 → 0, M2(ti)→ y2
i as σ2

i → 0

and

ϑ2,2 → 0, ϑ2,1 → 0, ϑ2,0 →M2(t−i ), M2(ti)→M2(t−i )

as σ2
i →∞,

which correspond to the cases with noise-free and extremely-
large-noise measurements, respectively.

S.6.3 Modified normal moment closure

A slight modification of the normal moment closure functions
(70) is presented in [37], which is given as follows, see Eq.(30)
in [37],


M3(t−i ) = 3M2(t−i )M1(t−i )− 2[M1(t−i )]3

M4(t−i ) = 4M3(t−i )M1(t−i ) + 3[M2(t−i )]2

− 12M2(t−i )[M1(t−i )]2 + 6[M1(t−i )]4

+Mdf [M2(t−i )− [M1(t−i )]2]

(76)

with modification indicator Mdf = 1. This leads to


M3(t−i ) = 3M2(t−i )M1(t−i )− 2[M1(t−i )]3

M4(t−i ) = 3[M2(t−i )]2 − 2[M1(t−i )]4

+Mdf [M2(t−i )− [M1(t−i )]2].

(77)

Solving (67)-(69) with (77) yields

ϑ2,2 =
[Σ(t−i )]2 +

Mdf

2 Σ(t−i )

[Σ(t−i ) + σ2
i ]2 + 1

2 (h− 3)σ4
i +

Mdf

2 Σ(t−i )
,

ϑ2,1 = 2

[
Σ(t−i )

Σ(t−i ) + σ2
i

− ϑ2,2

]
M1(t−i ), (78)

ϑ2,0 = M2(t−i )− ϑ2,1M
1(t−i )− ϑ2,2[M2(t−i ) + σ2

i ].

As above, one sees

ϑ2,2 → 1, ϑ2,1 → 0, ϑ2,0 → 0, M2(ti)→ y2
i as σ2

i → 0

and

ϑ2,2 → 0, ϑ2,1 → 0, ϑ2,0 →M2(t−i ), M2(ti)→M2(t−i )

as σ2
i →∞,

which correspond to the cases with noise-free and extremely-
large-noise measurements, respectively. Moreover, it is noted
that modified normal moment closures (76), (77) and (78)
become normal moment closures (70), (71) and (72), respec-
tively, if the modification indicator Mdf is set Mdf = 0.

8
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S.6.4 Approximations of central moments

In the previous section, we have studied the approximations
for the moments of X(t). Alternatively, we can approximate
the central moments of X(t) by exploiting some of their prop-
erties, e.g., the symmetry of a covariance matrix. Similarly
to (50) above, denote the central moments by

Cηπ(t) = Eπ
[
(X1(t)− Eπ[X1(t)])η1 · · · (Xd(t)− Eπ[Xd(t)])

ηd
]

=
∑
x∈X

π(x, t)
[
(x1 − Eπ[X1(t)])η1 · · · (xd − Eπ[Xd(t)])

ηd
]

for all η ∈ Nd with |η| > 0 and t ≥ t0. For convenience, also
denote by Σ(t) the variance for a univariate system and the
covariance matrix for a multivariate system.

In this section, we consider a univariate system (i.e., d = 1).
It is natural to assume that the update step, which incorpo-
rates the information of a measurement, leads to a variance
Σ(ti) smaller than Σ(t−i ). That is, at measurement point ti,

Σ(ti) = M2(ti)− [M1(ti)]
2 = mΣ(t−i ) (79)

and hence

M2(ti) = [M1(ti)]
2 +mΣ(t−i ), (80)

where m is a coefficient to be determined. Then (58) with
(63) and (80) gives

m2,0 = ϑ2
1,0 +mΣ(t−i ), ϑ2,1 = 2ϑ1,0ϑ1,1, ϑ2,2 = ϑ2

1,1.

Letting s(x(ti)) = x2(ti), u(yi) = 1 in (54) and using (66)
yield

m =
σ2
i

Σ(t−i ) + σ2
i

, (81)

where m1,0 and m1,1 are given by (64). Substitution of (64)
and (81) into (81) leads to (72) with h = 3.

Generally, by (58), one has

Σ(ti) = M2(ti)− [M1(ti)]
2 = v2,0 + v2,1yi + v2,2y

2
i , (82)

and hence

v2,0 = ϑ2,0 − ϑ2
1,0, v2,1 = ϑ2,1 − 2ϑ1,0ϑ1,1, v2,2 = ϑ2,2 − ϑ2

1,1,

where m1,0 and m1,1 are given by (64) while m2,0, m2,1 and
m2,2 are given by, e.g., (78). It is observed that v2,0 = mΣ(t−i )

and v2,1 = v2,2 = 0 when h = 3 and Mdf = 0 in (78).
Let us consider the birth-death reaction model

∅
c1


c2

S (83)

where X ∈ N denotes the quantity of species S, r = 2,
ν1 = −ν2 = 1, α1(x) = c1 and α2(x) = c2x. In this
case, X = {x ∈ N}. The approximates by normal, log-
normal, modified normal moment closures for birth-death
model (83) and measurements (55) (with reaction rates
c1 = 5 molec · sec−1, c2 = 0.1 sec−1, measurement noise stan-
dard deviation σ = 10 molec, time interval ti − ti−1 = 25 sec)
are given in Fig. 1, Fig. 2, Fig. 3 below, respectively.

S.7 Extension to multivariate systems

In this section, we extend the results in the previous section
to multivariate systems. As an example, we shall apply our
proposed results to the two-state gene expression model, see
(92)-(96) below, in this work. Since, in the two-state gene
expression model, the population of either activated DNA or
deactivated DNA is always zero, some techniques of lognormal
distribution are not applicable to this case, see [14, 13]. To
cope with this problem, one may employ the hybrid frame-
work (see, e.g., [7, 12, 30]), which is a future work. Therefore,
we focus on the extension of normal and modified normal
approximations in this work.

For a system (1) with d ≥ 2 (i.e., X(t) is a d-dimensional
vector), denote the first and and second posterior moments
by

M(t) = Eπ[X(t)] ∈ Rd, M2(t) = Eπ[X(t)XT (t)] ∈ Rd×d, (84)

and then posterior covariance

Σ(t) = M2(t)−M(t)MT (t) ∈ Rd×d

for all t ≥ t0, where Σ(j,q)(t) is the (j, q)th element of matrix
Σ(t). Since M2(t) is symmetric, the second posterior moment
can be alternatively represented by

M2v(t) = Eπ[X̃(t)] ∈ Rd(d+1)/2, (85)

where X̃(t) = vech(X(t)XT (t)) and vech(·) is the half-
vectorization operator, see, e.g., [27], that is,

vech(xxT ) =

[x1x1 x2x1 · · · xdx1 x2x2 · · · xdx2 x3x3 · · · xdxd]T

for x = [x1 · · · xd]T .
Before and between the measurement points, the prop-

agation of these moments is described by (51). Here, our
main task is to find an update approximate for (52) at the
measurement points. In this section, we extend our proposed
formula (63) and (66) to a multivariate system (1) (d ≥ 2)
with measurements

yi = FX(ti) + wi, (86)

where yi ∈ Rl, l ≤ d, F ∈ Rl×d, and {wi} with wi ∈ Rl,
independent of {X(t)}, is an independent sequence with
E[wi] = 0 ∈ Rl, E[wiw

T
i ] = Rw ∈ Rl×l and

E[|wηi |] = E[|wη1

i,1 · · ·w
ηq
i,l |] <∞

9
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with |η| ≤ q for some q ≥ 4, e.g., wi ∼ N (0, Rw) is a special
case.

Let
M(ti) = Θ1,0 + Θ1,1yi (87)

where L1,0 ∈ Rd and L1,1 ∈ Rd×q. With s(x(ti)) = x(ti) and
u(yi) = 1, (54) becomes

M(t−i ) = Θ1,0 + Θ1,1FM(t−i ). (88)

Setting s(x(ti)) = x(ti) and u(yi) = yTi in (54), we have

E
{
x(ti)y

T
i

∣∣Y n−1
1

}
= E

{
x(ti)[x

T (ti)F
T + wTi ]

∣∣Y n−1
1

}
= M2(t−i )FT ,

E
{
E
[
x(ti)

∣∣Y n1 ]yTi ∣∣Y n−1
1

}
= E

{
(Θ1,0 + Θ1,1yi)y

T
i

∣∣Y n−1
1

}
= E{Θ1,0[xT (ti)F

T + wTi ]
∣∣Y n−1

1 }
+ E{Θ1,1[Fx(ti) + wi][x

T (ti)F
T + wTi ]

∣∣Y n−1
1 }

= Θ1,0M
T (t−i )FT + Θ1,1[FM2(t−i )FT +Rw]

and therefore

M2(t−i )FT = Θ1,0M
T (t−i )FT

+ Θ1,1[FM2(t−i )FT +Rw]. (89)

Combining (85), (88) and (89), we obtain

Θ1,1 =
[
M2(t)−M(t)MT (t)

]
FT{

F
[
M2(t)−M(t)MT (t)

]
FT +Rw

}−1

= Σ(t−i )FT [FΣ(t−i )FT +Rw]−1. (90)

And then, by (88), we have

Θ1,0 = M(t−i )−Θ1,1FM(t−i ). (91)

Let us proceed to study the update formula, the coun-
terpart of (66), for the second moments of the multivariate
system with normal and modified normal approximations,
respectively. We will illustrate our proposed method with the
two-state gene expression model.

The two-state gene expression model consists of six reac-
tions that involve four different species G0 (for deactivated
DNA), G1 (for activated DNA), M (for mRNA) and P (for
protein)

G0

c1


c2

G1 (92)

G1
c3→ G1 +M (93)

M
c4→ M + P (94)

P
c5→ ∅ (95)

M
c6→ ∅ (96)

Since G0 + G1 = 1, the state of the system can be rep-
resented by X = (X1 X2 X3)T = (G1 M P )T ∈ N3. The
observation is

yi = X3(ti) + wi (97)

with wi given by (65).

S.7.1 Normal approximation

A multivariate version of normal approximation (66) with (72)
can be obtained by the approach (67)-(69) as illustrated with
an example below. Here, we extend the normal approximation
(81)-(81) for a multivariate system by the approach (79). As-
sume that, at measurement point ti, the use of measurement
yi leads to a smaller covariance

Σ(ti) = [Σ(t−i )]1/2Q[Σ(t−i )]1/2 (98)

where Q ∈ Rd×d is a symmetric matrix to be determined.
Letting s(x(ti)) = x(t)xT (t), u(yi) = 1 in (54) and using

(87), (98), we obtain

M2(t−i ) = E
{

Σ(ti) +M(ti)M
T (ti)

}
= [Σ(t−i )]1/2Q[Σ(t−i )]1/2 + Θ1,0ΘT

1,0

+ Θ1,0M
T (t−i )FTΘT

1,1 + Θ1,1FM(t−i )ΘT
1,0

+ Θ1,1

[
FM2(t−i )FT +Rw

]
ΘT

1,1 (99)

and hence

Q = [Σ(t−i )]−1/2{
M2(t−i )−Θ1,0ΘT

1,0 −Θ1,0M
T (t−i )FTΘT

1,1

−Θ1,1FM(t−i )ΘT
1,0 −Θ1,1

[
FM2(t−i )FT +Rw

]
ΘT

1,1

}
[Σ(t−i )]−1/2. (100)

It is observed that (91), (90) and (100) are the multivariate
versions of (64) and (81), respectively. Substition of (100)
into (98) leads to

Σ(ti) = M2(t−i )−Θ1,0ΘT
1,0 −Θ1,0M

T (t−i )FTΘT
1,1

−Θ1,1FM(t−i )ΘT
1,0 −Θ1,1

[
FM2(t−i )FT +Rw

]
ΘT

1,1(101)

and then the second moment

M2(ti) = Σ(ti) +M(ti)M
T (ti)

= M2(t−i )−Θ1,0M
T (t−i )FTΘT

1,1

−Θ1,1FM(t−i )ΘT
1,0 −Θ1,1

[
FM2(t−i )FT +Rw

]
ΘT

1,1

+ Θ1,0y
T
i ΘT

1,1 + Θ1,1yiΘ1,0 + Θ1,1yiy
T
i ΘT

1,1, (102)

where Θ1,0 and Θ1,1 are given by (91) and (90), respectively.

10
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S.7.2 Modified normal approximation

The approximate for the second moment is given by

M2v(ti) = Θ2,0 + Θ2,1yi + Θ2,2ỹi (103)

where L2,0 ∈ Rd(d+1)/2, L2,1 ∈ Rd(d+1)/2×q, L2,1 ∈
Rd(d+1)/2×q(q+1)/2 and ỹi = vech(yiy

T
i ) ∈ Rq(q+1)/2. Co-

efficients L2,0, L2,1 and L2,2, which are comprised of

d(d+ 1)

2
+
d(d+ 1)

2
l +

d(d+ 1)

2

l(l + 1)

2

=
d(d+ 1)

2

(l + 1)(l + 2)

2

unknown scalar entries, are to be determined by (104)-(106)
below. But (54) with s(x(ti)) = X̃(ti) and u(yi) = 1, yTi , ỹ

T
i

give

M2v(t−i ) = Θ2,0 + Θ2,1FM(t−i ) + Θ2,2E[ỹi
∣∣Y n−1

1 ], (104)

E[X̃(ti)X
T (ti)

∣∣Y n−1
1 ]FT = Θ2,0M

T (t−i )FT

+ Θ2,1[FM2(t−i )FT +Rw] + Θ2,2E[ỹiy
T
i

∣∣Y n−1
1 ],(105)

E[X̃(ti)ỹ
T
i

∣∣Y n−1
1 ] = Θ2,0E[ỹTi

∣∣Y n−1
1 ]

+ Θ2,1E[yiỹ
T
i

∣∣Y n−1
1 ] + Θ2,2E[ỹiỹ

T
i

∣∣Y n−1
1 ], (106)

respectively, which are a set of d(d+1)
2

(l+1)(l+2)
2 scalar equa-

tions as well.
Note that (104)-(106) involve higher oder moments

Mη(t−i ) with |η| = 3, 4. But, with some moment closure

Mη(t−i ) = ϕ(η)(M(t−i ),M2v(t−i )) (107)

for |η| = 3, 4, one can obtain the coefficients L2,0, L2,1 and
L2,2 by solving equations (104)-(106). For example, one can
obtain L2,0, L2,1 and L2,2 in (103) by solving the equations
with a multivariate version of modified normal moment closure
(76), which is given as

Eπ[X̄Ȳ Z̄] = Eπ[X̄Ȳ ]Eπ[Z̄] + Eπ[X̄Z̄]Eπ[Ȳ ] + Eπ[Ȳ Z̄]Eπ[X̄]

− 2Eπ[X̄]Eπ[Ȳ ]Eπ[Z̄]

Eπ[X̄Ȳ Z̄W̄ ] = Eπ[X̄Ȳ Z̄]Eπ[W̄ ] + Eπ[X̄Ȳ W̄ ]Eπ[Z̄]

+ Eπ[X̄Z̄W̄ ]Eπ[Ȳ ] + Eπ[Ȳ Z̄W̄ ]Eπ[X̄]

+ Eπ[X̄Ȳ ]Eπ[Z̄W̄ ] + Eπ[X̄Z̄]Eπ[Ȳ W̄ ] + Eπ[X̄W̄ ]Eπ[Ȳ Z̄]

− 2
{
Eπ[X̄Ȳ ]Eπ[Z̄]Eπ[W̄ ] + Eπ[X̄Z̄]Eπ[Ȳ ]Eπ[W̄ ]

+ Eπ[X̄W̄ ]Eπ[Ȳ ]Eπ[Z̄] + Eπ[Ȳ Z̄]Eπ[X̄]Eπ[W̄ ]

+ Eπ[Ȳ W̄ ]Eπ[X̄]Eπ[Z̄] + Eπ[Z̄W̄ ]Eπ[X̄]Eπ[Ȳ ]
}

+ 6Eπ[X̄]Eπ[Ȳ ]Eπ[Z̄]Eπ[W̄ ] +
Mdf

6

{
Σ[X̄Ȳ ]

+ Σ[X̄Z̄] + Σ[X̄W̄ ] + Σ[Ȳ Z̄]

+ Σ[Ȳ W̄ ] + Σ[Z̄W̄ ]
}
, (108)

where X̄, Ȳ , Z̄, W̄ ∈ {X1, X2, · · · , Xd}, Σ[X̄Ȳ ] = Eπ[X̄Ȳ ]−
Eπ[X̄]Eπ[Ȳ ] and modification indicatorMdf = 1. This will be

illustrated with the example of the two-state gene expression
model (92)-(97).

In this example, d = 3, l = 1, L2,0 ∈ R6, L2,1 ∈ R6,
L2,2 ∈ R6,

M2v(t) = Eπ[X̃(t)] =



M (2,0,0)(t)

M (1,1,0)(t)

M (1,0,1)(t)

M (0,2,0)(t)

M (0,1,1)(t)

M (0,0,2)(t)

 ∈ R6, (109)

and (104)-(106) with (65) become

M2v(t−i ) = Θ2,0 + Θ2,1M
(0,0,1)(t−i )

+ Θ2,2[M (0,0,2)(t−i ) + σ2
i ], (110)

Eπ[X̃(t−i )X3(t−i )] = Θ2,0M
(0,0,1)(t−i )

+ Θ2,1[M (0,0,2)(t−i ) + σ2
i ]

+ Θ2,2[M (0,0,3)(t−i ) + 3σ2
iM

(0,0,1)(t−i )], (111)

Eπ[X̃(ti)X
2
3 (t−i )] + σ2

iM
2v(t−i )

= Θ2,2[M (0,0,4)(t−i ) + 6σ2
iM

(0,0,2)(t−i ) + hσ4
i ]

+ Θ2,1[M (0,0,3)(t−i ) + 3σ2
iM

(0,0,1)(t−i )]

+ Θ2,0[M (0,0,2)(t−i ) + σ2
i ] (112)

with

Eπ[X̃(t−i )X3(t−i )] =



M (2,0,1)(t−i )

M (1,1,1)(t−i )

M (1,0,2)(t−i )

M (0,2,1)(t−i )

M (0,1,2)(t−i )

M (0,0,3)(t−i )

 ,

Eπ[X̃(t−i )X2
3 (t−i )] =



M (2,0,2)(t−i )

M (1,1,2)(t−i )

M (1,0,3)(t−i )

M (0,2,2)(t−i )

M (0,1,3)(t−i )

M (0,0,4)(t−i )

 , (113)

where Mη(t−i ), |η| = 3, 4, are given by the multivariate mo-
ment closure functions (108) as follows

M (2,0,1)(t) = M (2,0,0)(t)M (0,0,1)(t) + 2M (1,0,1)(t)M (1,0,0)(t)

− 2[M (1,0,0)(t)]2M (0,0,1)(t),

M (1,1,1)(t) = M (1,1,0)(t)M (0,0,1)(t) +M (1,0,1)(t)M (0,1,0)(t)

+M (0,1,1)(t)M (1,0,0)(t)− 2M (1,0,0)(t)M (0,1,0)(t)M (0,0,1)(t),

M (1,0,2)(t) = 2M (1,0,1)(t)M (0,0,1)(t) +M (0,0,2)(t)M (1,0,0)(t)

− 2M (1,0,0)(t)[M (0,0,1)(t)]2,

M (0,2,1)(t) = M (0,2,0)(t)M (0,0,1)(t) + 2M (0,1,1)(t)M (0,1,0)(t)

− 2[M (0,1,0)(t)]2M (0,0,1)(t),

M (0,1,2)(t) = 2M (0,1,1)(t)M (0,0,1)(t) +M (0,0,2)(t)M (0,1,0)(t)

− 2M (0,1,0)(t)[M (0,0,1)(t)]2,

11
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M (0,0,3)(t) = 3M (0,0,2)(t)M (0,0,1)(t)− 2[M (0,0,1)(t)]3,

M (2,0,2)(t) = 2M (2,0,1)(t)M (0,0,1)(t) + 2M (1,0,2)(t)M (1,0,0)(t)

+M (2,0,0)(t)M (0,0,2)(t) + 2[M (1,0,1)(t)]2

− 2
{
M (2,0,0)(t)[M (0,0,1)(t)]2 +M (0,0,2)(t)[M (1,0,0)(t)]2

+ 4M (1,0,1)(t)M (1,0,0)(t)M (0,0,1)(t)
}

+ 6[M (1,0,0)(t)M (0,0,1)(t)]2

+
Mdf

6

{
Σ(1,1)(t) + 4Σ(1,3)(t) + Σ(3,3)(t)

}
,

M (1,1,2)(t) = 2M (1,1,1)(t)M (0,0,1)(t) +M (1,0,2)(t)M (0,1,0)(t)

+M (0,1,2)(t)M (1,0,0)(t) +M (1,1,0)(t)M (0,0,2)(t)

+ 2M (1,0,1)(t)M (0,1,1)(t)− 2
{
M (1,1,0)(t)[M (0,0,1)(t)]2

+ 2M (1,0,1)(t)M (0,1,0)(t)M (0,0,1)(t)

+ 2M (0,1,1)(t)M (1,0,0)(t)M (0,0,1)(t)

+M (0,0,2)(t)M (1,0,0)(t)M (0,1,0)(t)
}

+ 6M (1,0,0)(t)M (0,1,0)(t)[M (0,0,1)(t)]2 +
Mdf

6

{
Σ(1,2)(t)

+ 2Σ(1,3)(t) + 2Σ(2,3)(t) + Σ(3,3)(t)
}
,

M (1,0,3)(t) = 3M (1,0,2)(t)M (0,0,1)(t) +M (0,0,3)(t)M (1,0,0)(t)

+ 3M (1,0,1)(t)M (0,0,2)(t)− 6
{
M (1,0,1)(t)[M (0,0,1)(t)]2

+M (0,0,2)(t)M (1,0,0)(t)M (0,0,1)(t)
}

+ 6M (1,0,0)(t)[M (0,0,1)(t)]3

+
Mdf

2

{
Σ(1,3)(t) + Σ(3,3)(t)

}
,

M (0,2,2)(t) = 2M (0,2,1)(t)M (0,0,1)(t) + 2M (0,1,2)(t)M (0,1,0)(t)

+M (0,2,0)(t)M (0,0,2)(t) + 2[M (0,1,1)(t)]2

− 2
{
M (0,2,0)(t)[M (0,0,1)(t)]2

+ 4M (0,1,1)(t)M (0,1,0)(t)M (0,0,1)(t)

+M (0,0,2)(t)[M (0,1,0)(t)]2
}

+ 6[M (0,1,0)(t)M (0,0,1)(t)]2

+
Mdf

6

{
Σ(2,2)(t) + 4Σ(2,3)(t) + Σ(3,3)(t)

}
,

M (0,1,3)(t) = 3M (0,1,2)(t)M (0,0,1)(t) +M (0,0,3)(t)M (0,1,0)(t)

+ 3M (0,1,1)(t)M (0,0,2)(t)− 6
{
M (0,1,1)(t)[M (0,0,1)(t)]2

+M (0,0,2)(t)M (0,1,0)(t)M (0,0,1)(t)
}

+ 6M (0,1,0)(t)[M (0,0,1)(t)]3

+
Mdf

2

{
Σ(2,3)(t) + Σ(3,3)(t)

}
,

M (0,0,4)(t) = 4M (0,0,3)(t)M (0,0,1)(t) + 3[M (0,0,2)(t)]2

− 12M (0,0,2)(t)[M (0,0,1)(t)]2

+ 6[M (0,0,1)(t)]4 +MdfΣ(3,3)(t).

Moreover, (110)-(112) yield

b̄1(t−i )Θ2,1 + b̄2(t−i )Θ2,2 = Āv(t
−
i ), (114)

b̄2(t−i )Θ2,1 + b̄3(t−i )Θ2,2 = B̄v(t
−
i ), (115)

where vectors

Āv(t
−
i ) = Eπ[X̃(t−i )X3(t−i )]−M (0,0,1)(t−i )M2v(t−i ),

B̄v(t
−
i ) = Eπ[X̃(t−i )X2

3 (t−i )]−M (0,0,2)(t−i )M2v(t−i ),

scalars

b̄1(t−i ) = M (0,0,2)(t−i )− [M (0,0,1)(t−i )]2 + σ2
i ,

b̄2(t−i ) = M (0,0,3)(t−i )

−M (0,0,1)(t−i )M (0,0,2)(t−i ) + 2σ2
iM

(0,0,1)(t−i ),

b̄3(t−i ) = M (0,0,4)(t−i )− [M (0,0,2)(t−i )]2

+ 4σ2
iM

(0,0,2)(t−i ) + (h− 1)σ4
i ,

and Eπ[X̃(t−i )X3(t−i )] and Eπ[X̃(t−i )X2
3 (t−i )] are given by

(113).
Solving (114)-(115) yields

L2,1 =
b̄3(t−i )Āv(t

−
i )− b̄2(t−i )B̄v(t

−
i )

b̄1(t−i )b̄3(t−i )− b̄22(t−i )
, (116)

L2,2 =
b̄1(t−i )B̄v(t

−
i )− b̄2(t−i )Āv(t

−
i )

b̄1(t−i )b̄3(t−i )− b̄22(t−i )
(117)

and (110) gives

Θ2,0 = M2v(t−i )−M (0,0,1)(t−i )Θ2,1

−[M (0,0,2)(t−i ) + σ2
i ]Θ2,2. (118)

Substituting (116)-(118) into (103), one obtains the update
approximate for the second moment.

Clearly, (108) and (116)-(118) are multivariate versions
of the modified normal moment closure (76) and (78), respec-
tively. It should be pointed out that (108) and (116)-(118) are
extesions of the normal moment closure (70) and (72), respec-
tively, when the modification indicator Mdf is set Mdf = 0.

The normal and modified normal approximations to
filtering of gene expression model (92)-(96) and measure-
ments (97) are given in Fig. 4 and Fig. 5, respectively,
where reaction rates c1 = 0.06 sec−1, c2 = 0.03 sec−1, c3 =

1 sec−1, c4 = 0.05 sec−1, c5 = 0.005 sec−1, c6 = 0.03 sec−1,
measurement noise standard deviation σ = 20 molec, time
interval ti − ti−1 = 50 sec.

S.7.3 An application for nonlinear systems

The gene expression model (92)-(96) is a linear system so
that one can easily computes the moment equations and then
update the moments by our proposed approximations at the
measurement time, recursively. In this case, we can focus
on the application of our proposed approximate approach to
update formula and do not need to deal with the nonlinearity
in the moment equations. Our proposed approach can be ap-
plied to nonlinear systems, where some higher order moments

12
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are involved in the computation of moment equations be-
tween the measurement times and, like many works (see, e.g.,
[8, 23, 37, 25, 13] and the references therein), one can apply
moment closure techniques to cope with the problem as well.
We will ilustrate the application of our proposed approach
to nonlinear systems with the gene auto regulation model
(119)-(124). This nonlinear system describes the transcription
and translation of a transcription factor which increases its
own synthesis via a positive regulatory feedback, a well known
motif occurring in many gene regulatory networks (see, e,g.,
[12]).

G0

c1


c2

G1 (119)

G1
c3→ G1 +M (120)

M
c4→ M + P (121)

P
c5→ ∅ (122)

M
c6→ ∅ (123)

P +G0
c7→ P +G1 (124)

As above, the state of the system can be represented by
X = (X1 X2 X3)T = (G1 M P )T ∈ N3 and the observa-
tion is given by (97). The moment equations of this nonlinear
system

dM (1,0,0)/dt = c1 − c1M (1,0,0) − c2M (0,1,0) + c7M
(0,0,1)

− c7M (1,0,1)

dM (0,1,0)/dt = c3M
(1,0,0) − c6M (0,1,0)

dM (0,0,1)/dt = c4M
(0,1,0) − c5M (0,0,1)

dM (2,0,0)/dt = c1 + c1M
(0,0,1) + c2M

(0,1,0) − 2c1M
(2,0,0)

− 2c2M
(2,0,0) + c7M

(0,0,1) + c7M
(1,0,1)

− 2c7M
(2,0,1)

dM (1,1,0)/dt = c1M
(0,1,0) − c1M (1,1,0) − c2M (1,1,0)

+ c3M
(2,0,0) − c6M (1,1,0) + c7M

(0,1,1)

− c7M (1,1,1)

dM (1,0,1)/dt = c1M
(0,0,1) − c1M (1,0,1) − c2M (1,0,1)

+ c4M
(1,1,0) − c5M (1,0,1) + c7M

(0,0,2)

− c7M (1,0,2)

dM (0,2,0)/dt = c3M
(1,0,0) + c6M

(0,1,0) + 2c3M
(1,1,0)

− 2c6M
(0,2,0)

dM (0,1,1)/dt = c3M
(1,0,1) − c6M (0,1,1) + c4M

(0,2,0)

− c5M (0,1,1)

dM (0,0,2)/dt = c4M
(0,1,0) + c5M

(0,0,1) + 2c4M
(0,1,1)

− 2c5M
(0,0,2)

involve the higher order moments M (2,0,1), M (1,1,1) and
M (1,0,2).

The bimodality of this nonlinear system is veri-
fied with stochstic simulation algorithm over T =

500 hours in Fig. 6 and Fig. 7, where reaction rates
c1 = 0.002 sec−1, c2 = 0.08 sec−1, c3 = 1.1 sec−1, c4 =

0.16 sec−1, c5 = 0.03 sec−1, c6 = 0.03 sec−1, c7 =

0.001 molec−1 · sec−1. Applying moment closures

M (2,0,1)(t) = M (2,0,0)(t)M (0,0,1)(t) + 2M (1,0,1)(t)M (1,0,0)(t)

− 2[M (1,0,0)(t)]2M (0,0,1)(t),

M (1,1,1)(t) = M (1,1,0)(t)M (0,0,1)(t) +M (1,0,1)(t)M (0,1,0)(t)

+M (0,1,1)(t)M (1,0,0)(t)− 2M (1,0,0)(t)M (0,1,0)(t)M (0,0,1)(t),

M (1,0,2)(t) = 2M (1,0,1)(t)M (0,0,1)(t) +M (0,0,2)(t)M (1,0,0)(t)

and update formula (87) and (101)-(102) gave the approx-
imates to filtering in Fig. 8 and Fig. 9, where measure-
ment noise standard deviation σ = 15 molec, time interval
ti − ti−1 = 50 sec.

S.8 An RTS approximation to smoothing for
the first order reaction networks

There are smoothing techniques such as RTS and M B-F
smoothers in the literature, e.g., [4]. Here we consider the
RTS smoother since the RTS smoother has some desired prop-
erties (e.g., stability) and some other smoothers are based
upon it, see [1, 4]. Similarly, for a system (1) with d ≥ 1,
denote the first and the second smoothing moments by

M̃(t) = M̃1(t) = Eπ̃[X(t)] ∈ Rd,
M̃2(t) = Eπ̃[X(t)XT (t)] ∈ Rd×d, (125)

and then posterior covariance

Σ̃(t) = Cov[X(t) | {y1, · · · , yN}]
= M̃2(t)− M̃(t)M̃T (t) ∈ Rd×d. (126)

Due to the symmetry, the second smoothingmoment can be
alternatively represented by

M̃2v(t) = Eπ̃[X̃(t)] ∈ Rd(d+1)/2. (127)

Clearly, by Theorem 2, M̃(T ) = M(T ), M̃2(T ) = M2(T ),
Σπ̃(T ) = Σ(T ) and M̃2v(T ) = M2v(T ). Moreover, by (38),
one can describe dynamics of smoothing mean with the ODE

d

dt
Eπ̃[X(t)] =

r∑
j=1

νjEπ̃[α̃j(X(t))] (128)

with Eπ̃[X(0)] = Ep[X(0)].
The approximates forM(t),M2(t) and Σπ(t), for t ∈ [0, T ]

(with T = tN ), can be obtained by the approach presented
above. In this section, we consider the smoother for the first
order reaction networks (47). Let Ψ(t, τ) be the state tran-
sition matrix corresponding to Ĉ1 given by (49) with L̄ = 1,
that is,

d

dτ
Ψ(t̄, τ) = −Ψ(t̄, τ)Ĉ1; Ψ(t̄, τ)

∣∣
τ=t̄

= I (129)
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which yields Ψ(t̄, τ) = e(t̄−τ)Ĉ1 for all t̄ ≥ τ .
Our computation exploits the RTS discrete smoother equa-

tions, see [33, 4],

M̃(ti) = M(ti)−Ksm(ti)
[
M(t−i+1)− M̃(ti+1)

]
(130)

Σ̃(ti) = Σ(ti)

−Ksm(ti)
[
Σπ(t−i+1)− Σ̃(ti+1)

]
KT
sm(ti) (131)

at observation time ti < T , where smoother gain Ksm(ti) =

Σ(ti)Ψ
T (ti+1, ti)[Σ(t−i+1)]−1.

As pointed out in [33, 1], the equations (130)-(131) hold
for t ∈ [0, T ), that is,

M̃(t) = M(t)−Ksm(t)
[
M(t−k )− M̃(tk)

]
(132)

Σ̃(t) = Σ(t)

−Ksm(t)
[
Σ(t−k )− Σ̃(tk)

]
KT
sm(t) (133)

with smoother gain

Ksm(t) = Σ(t)ΨT (tk, t)[Σ(t−k )]−1 (134)

and Ksm(t−k ) = I, where, as above, k = min(k ∈ N | tk > t},
and the fact that no measurements occur within the interval
between observations is used. A systematic application of
these equations will be used to derive differential equations
describing the approximate smoothing process. For T > t ≥ 0,
(132)-(134) gives the backward ODEs for the approximate
smoothing

d

dt
M̃(t) =

d

dt
M(t)

− d

dt
Ksm(t)

[
M(t−k )− M̃(tk)

]
(135)

d

dt
Σ̃(t) =

d

dt
Σ(t)−

[
d

dt
Ksm(t)

]
·
[
Σπ(t−k )− Σ̃(tk)

]
KT
sm(t)−Ksm(t)

·
[
Σπ(t−k )− Σ̃(tk)

] [ d

dt
KT
sm(t)

]
(136)

with terminal conditions M̃(T ) = M(T ) and Σ̃(T ) =

Σπ(T ) = M2(T ) −M(T )MT (T ) obtained in the previous
section, where

d

dt
Ksm(t) =

[
d

dt
Σπ(t)− Σπ(t)CT1

]
ΨT (tk, t)

[
Σ(t−k )

]−1
, (137)

Ksm(t−k ) = I. Note that d
dtM(t) and d

dtΣπ(t) = d
dt [M

2(t)−
M(t)MT (t)] can be immediately inferred by (51).

As an example for applications, we consider the three
stage gene expression model (92)-(96). Note that the state of

system is represented by X = (X1 X2 X3)T = (G1 M P )T .
Therefore, we have ĈL̄ and bL̄ in (48) with L̄ = 1

Ĉ1 =

−(c1 + c2) 0 0

c3 −c6 0

0 c4 −c5

 , b1 =

c10
0

 (138)

and the state transition matrix Ψ(·, ·) in (129)

Ψ(tk, t) = e(tk−t)Ĉ1 (139)

for all t ∈ [0, T ). The normal and modified nor-
mal RTS approximates to smoothing of gene expression
model (92)-(96) and measurements (97) (with reaction
rates c1 = 0.06 sec−1, c2 = 0.03 sec−1, c3 = 1 sec−1, c4 =

0.05 sec−1, c5 = 0.005 sec−1, c6 = 0.03 sec−1, measurement
noise standard deviation σ = 20 molec, time interval ti −
ti−1 = 50 sec) are given in Fig. 10 and Fig. 11, which are
based on the approximations to filtering in Fig. 4 and Fig. 5,
respectively.

Remark 2: The RTS smoothers are usually applied to linear
systems, see [1, 4]. For the nonlinear system, the gene auto
regulation model (119)-(124), it would be appropriate to ap-
ply the RTS approximation to smoothing when our proposed
approach is extended to a hybrid framework because the
subsystems in the hybrid setting are linear, see, e.g., [12, 30].

S.9 Application to Lognormal measurement
models

In the previous sections, approximate approaches have been
presented for CTMC with disceret-time observations, where
the observations are of the form with additive noise. These
approximate approaches can be applied to some other obser-
vation models. In this section, we extend the approaches to
the cases when the observations of CTMC are Lognormal
measurement models. As above, we first obtain a result for
univariate systems and generalize it to multivariate systems.
Moreover, as an application example, we only consider the
modified normal approximation in this section. Based on the
filtering approximates, we also consider the RTS approximates
to smoothing for the first order reaction networks.

S.9.1 Filtering approximates for univariate
systems

Consider a univariate sytem (1) with lognormal measurements
of the form

yi = ewiX(ti) (140)

where {wi} is an independent sequence with wi ∼ N (0, σ2
i ),

which is independent of {X(t)}. Recall that the update ap-
proximate formula are given by

Mη(ti) =

η∑
q=0

ϑη,qy
q
i (141)
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for η ∈ N and observation time ti , where mη,q are constants
at time t−i . As above, let s(x(ti)) = xη(ti) and u(yi) = yji
with j = 0, 1, · · · , η in (54). Then

E
[
xη(ti)y

j
i | {y1, · · · , yi−1}

]
= E

[
xη+j(ti)e

jwi | {y1, · · · , yi−1}
]

= E
[
ejwi

]
Mη+j(t−i ) = e

1
2 j

2σ2
iMη+j(t−i ), (142)

E
[
E [xη(ti) | {y1, · · · , yi}] yji | {y1, · · · , yi−1}

]
= E

[
η∑
q=0

ϑη,qy
q
i y
j
i | {y1, · · · , yi−1}

]

= E

[
η∑
q=0

ϑη,qe
(q+j)wixq+j(ti)

∣∣Y n−1
1

]

=

η∑
q=0

ϑη,qe
1
2 (q+j)2σ2

iMq+j(t−i ). (143)

And (54) leads to

η∑
q=0

ϑη,qe
1
2 (q+j)2σ2

iMq+j(t−i ) = e
1
2 j

2σ2
iMη+j(t−i ) (144)

with j = 0, 1, · · · , η, which determines coefficients mη,q,
q = 0, 1, · · · , η.

Solving (144) for η = 1 yields

M1(ti) = ϑ1,0 + ϑ1,1yi (145)

where

ϑ1,0 =
(eσ

2
i − 1)M2(t−i )M1(t−i )

(eσ
2
i − 1)M2(t−i ) + Σ(t−i )

,

ϑ1,1 =
e−σ

2
i /2 Σ(t−i )

(eσ
2
i − 1)M2(t−i ) + Σ(t−i )

. (146)

This gives

ϑ1,0 → 0, ϑ1,1 → 1, M1(ti)→ yi as eσ
2
i → 1

and

m1,0 →M1(t−i ), ϑ1,1 → 0, M1(ti)→M1(t−i )

as eσ
2
i →∞

for the cases with noise-free (σ2
i = 0) and extremely-large-

noise (σ2
i →∞) measurements, respectively.

The update of approximation to the second moment can be
obtained by the approach (79) and (80). At the measurement
time ti, let

Σ(ti) = mΣ(t−i ) (147)

and hence M2(ti) = [M1(ti)]
2 +mΣ(t−i ), where m is a coef-

ficient to be determined. Then (141) with (145) and (147)
gives

ϑ2,0 = ϑ2
1,0 +mΣ(t−i ),

ϑ2,1 = 2ϑ1,0ϑ1,1, ϑ2,2 = ϑ2
1,1. (148)

Letting s(x(ti)) = x2(ti), u(yi) = 1 with j = 0, 1, · · · , η
in (54) and using (141) with ϑ2,0 = ϑ2

1,0 +mΣ(t−i ), one has

m =
1

Σ(t−i )

[
M2(t−i )− ϑ2,2e

2σ2
iM2(t−i )

− ϑ2,1e
σ2
i /2M1(t−i )−m2

1,0

]
. (149)

Substitution of (146) and (148) into (149) yields

m =
(eσ

2
i − 1)M2(t−i )

(eσ
2
i − 1)M2(t−i ) + Σ(t−i )

. (150)

Then (146), (148) and (150) imply

ϑ2,2 → 1, ϑ2,1 → 0, ϑ2,0 → 0, m→ 0, Σ(ti)→ 0,

M2(ti)→ y2
i as eσ

2
i → 1

and

m2,2 → 0, ϑ2,1 → 0, ϑ2,0 →M2(t−i ), m→ 1,

Σ(ti)→ Σ(t−i ), M2(ti)→M2(t−i ) as eσ
2
i →∞

for the cases with noise-free and extremely-large-noise mea-
surements, respectively.

Let us consider the birth-death model (83) and log-
normal measurement (140) (with reaction rates c1 =

10 molec · sec−1, c2 = 0.1 sec−1, measurement noise standard
deviation σ = 0.2, time interval ti − ti−1 = 25 sec), for which
a typical realization of the above schemes are given in Fig.
12.

S.9.2 Filtering approximates for multivariate
systems

In this section, we extend our proposed formula (145) and
(141) to a multivariate system with lognornal measurments

yi = eWiFX(ti), (151)

where yi ∈ Rl, l ≤ d, F ∈ Rl×d with full rank l, {Wi} with
Wi = diag{wi,1, · · · , wi,l} ∈ Rl×l and {wi} is an indepen-
dent sequence of random variables. For simplicity, assume
Wi ∼ N (0, σ2

i Il) and Il is the identity matrix of order l. Our
proposed method can be extended to more complicated cases
such as Wi ∼ N (0, Rw). Given matrix A = (ajq)l×l ∈ Rl×l,
let ADiag be

ADiag =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...
0 0 · · · aqq

 . (152)
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Recall that

M(ti) = Θ1,0 + Θ1,1yi (153)

where L1,0 ∈ Rd and L1,1 ∈ Rd×q. Let s(x(ti)) = x(ti) and
u(yi) = 1, then (54) gives

M(t−i ) = Θ1,0 + e
1
2σ

2
i Θ1,1FM(t−i ). (154)

Setting s(x(ti)) = x(ti) and u(yi) = yTi in (54), we have

E
{
x(ti)y

T
i

∣∣Y n−1
1

}
= E

{
x(ti)x

T (ti)F
T eWi

∣∣Y n−1
1

}
= M2(t−i )FT e

1
2σ

2
i Iq , (155)

E
{
E
[
x(ti)

∣∣Y n1 ]yTi ∣∣Y n−1
1

}
= E

{
(Θ1,0 + Θ1,1yi)y

T
i

∣∣Y n−1
1

}
= E{Θ1,0[xT (ti)F

T eWi ]
∣∣Y n−1

1 }
+ E{Θ1,1[eWiFx(ti)][x

T (ti)F
T eWi ]

∣∣Y n−1
1 }

= e
1
2σ

2
i Θ1,0M

T (t−i )FT + eσ
2
i Θ1,1[FM2(t−i )FT

+ (eσ
2
i − 1)(FM2(t−i )FT )Diag] (156)

and therefore

M2(t−i )FT = Θ1,0M
T (t−i )FT + e

1
2σ

2
i Θ1,1

·
[
FM2(t−i )FT + (eσ

2
i − 1)(FM2(t−i )FT )Diag

]
. (157)

Combining (85), (154) and (157), we obtain

Θ1,1 = e−σ
2
i /2Σ(t−i )FT

{
FΣ(t−i )FT

+ (eσ
2
i − 1)(FM2(t−i )FT )Diag

}−1

. (158)

And then, by (154), we have

Θ1,0 = M(t−i )− eσ
2
i /2Θ1,1FM(t−i ). (159)

For the update approximates of the second moments, a
multivariate version of approximation (148) and (150) can be
obtained by the approach (147). At measurement time ti, let

Σ(ti) = [Σ(t−i )]1/2Q[Σ(t−i )]1/2, (160)

where Q ∈ Rd×d is a symmetric matrix to be determined.
Letting s(x(ti)) = x(ti)x

T (ti), u(yi) = 1 in (54) and using
(153) and (160), we have

M2(t−i ) = E
[
Σ(ti) +M(ti)M

T (ti)
∣∣Y n−1

1

]
= [Σ(t−i )]1/2Q[Σ(t−i )]1/2 + Θ1,0ΘT

1,0

+ e
1
2σ

2
i Θ1,0M

T (t−i )FTΘT
1,1 + e

1
2σ

2
i Θ1,1FM(t−i )ΘT

1,0

+ eσ
2
i Θ1,1

[
FM2(t−i )FT + (eσ

2
i − 1)(FM2(t−i )FT )Diag

]
ΘT

1,1

and hence

Q = [Σ(t−i )]−1/2
{
M2(t−i )−Θ1,0ΘT

1,0 − e
1
2σ

2
i Θ1,0

·MT (t−i )FTΘT
1,1 − eσ

2
i Θ1,1

[
FM2(t−i )FT + (eσ

2
i − 1)

· (FM2(t−i )FT )Diag

]
ΘT

1,1

}
[Σ(t−i )]−1/2. (161)

It is observed that that (153) and (161) are the multivari-
ate versions of (145) and (149), respectively. Substitution of
(161) into (160) gives

Σ(ti) = M2(t−i )−Θ1,0ΘT
1,0 − e

1
2σ

2
i Θ1,0M

T (t−i )FTΘT
1,1

− e 1
2σ

2
i Θ1,1FM(t−i )Θ1,0 − eσ

2
i Θ1,1

[
FM2(t−i )FT

+ (eσ
2
i − 1)(FM2(t−i )FT )Diag

]
ΘT

1,1 (162)

and hence

M2(ti) = Σ(ti) +M(ti)M
T (ti)

= M2(t−i )−Θ1,0ΘT
1,0 − e

1
2σ

2
i Θ1,0M

T (t−i )FTΘT
1,1

− e 1
2σ

2
i Θ1,1FM(t−i )Θ1,0 − eσ

2
i Θ1,1

[
FM2(t−i )FT

+ (eσ
2
i − 1)(FM2(t−i )FT )Diag

]
ΘT

1,1

+ Θ1,0y
T
i ΘT

1,1 + Θ1,1yiΘ1,0 + Θ1,1yiy
T
i ΘT

1,1, (163)

where L1,0 and L1,1 are given by (159) and (158), respectively.
When the approximation to filtering is obtained, one can

also computes the approximation to smoothing such as the
RTS approximation.

As an illustrative example, we consider the gene expression
model (92)-(96) with lognormal measurement

yi = ewiX3(ti) (164)

and wi ∼ N (0, σ2
i ). The approximations to filtering and

smoothing are given by Fig. 13 and Fig. 14, respectively,
where reaction rates c1 = 0.06 sec−1, c2 = 0.03 sec−1, c3 =

1 sec−1, c4 = 0.05 sec−1, c5 = 0.005 sec−1, c6 = 0.03 sec−1,
measurement noise standard deviation σ = 0.2, time interval
ti − ti−1 = 50 sec.

Clearly, our proposed method can be also applied to time-
varying systems such as gene expression model (92)-(96) with
time-varying parameters, e.g., c1 = c1(t). That we compare
the results between our proposed method and the exact com-
putation method with silico and wet lab experimental data
sets show that our proposed method works well in practice.
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Fig. 1: Normal approximate for the birth-death model.
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Fig. 2: Lognormal approximate for the birth-death model.
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Fig. 3: Modified Normal approximate for the birth-death model.
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Fig. 4: Normal approximate to filtering for the gene expression model.
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Fig. 5: Modified Normal approximate to filtering for the gene expression model.
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Fig. 6: Steady distribution of mRNA for the gene auto regulation model.
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Fig. 7: Steady distribution of protein for the gene auto regulation model.
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Supplementary for reconstructing dynamic molecular states

Time [sec]
0 1000 2000 3000 4000 5000 6000

m
R

N
A

 [
m

o
le

c]

-10

0

10

20

30

40

50
trajectory
approx. mean
± approx. std dev

Fig. 8: Approximations to filtering of mRNA for the gene auto regulation model.
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Fig. 9: Approximations to filtering of protein for the gene auto regulation model.
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Supplementary for reconstructing dynamic molecular states

Time [sec]
0 500 1000 1500 2000 2500 3000 3500 4000

A
b

u
n

d
a

n
ce

 [
m

o
le

c]

0

50

100

150

200

250

protein

mRNA

measurements
trajectory
smoothed means
± std dev

Fig. 10: Normal-based RTS approximate to smoothing for the gene expression model.
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Fig. 11: Modified Normal-based RTS approximate to smoothing for the gene expression model.
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Supplementary for reconstructing dynamic molecular states
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Fig. 12: Approximates to filtering for the birth-death model with lognormal measurements.
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Fig. 13: Approximates to filtering for the gene expression model with lognormal measurements.
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Fig. 14: RTS approximate to smoothing for the gene expression model with lognormal measurements.
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