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Abstract

The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe
the time-evolution of the system in a self-consistent manner. It is a prerequisite for a principled understanding of the inner working of a
system. Due to the complexity of intracellular processes experimental techniques that can retrieve such a sufficient summary are beyond
reach. For the case of stochastic biomolecular reaction networks we show how to complete the partial state information accessible by
experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately
related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximation
to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both,
in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic
promoter and mRNA states from noisy protein abundance measurements.
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1 Introduction

Today’s experimental techniques of molecular biology allow
to sneak a peak into biological cells but provide a far from
complete picture of the inner working of such cells or even
of any of their subcomponents. With the advances in quan-
titative single-cell technologies the generation of calibrated
models of particular cellular processes such as the expres-
sion of a gene becomes feasible [41, 43, 50, 18, 4, 16, 51].
A calibrated model can then be simulated forward to ex-
plore the a prior behaviors that one can expect to observe
experimentally. However, such forward simulations are not
useful if one asks which of those behaviors are compatible
with the actual measurement of a particular experiment. For
instance, a stochastic gene expression model can give rise to
various mRNA and protein trajectories and a model alone
cannot be used to determine those mRNA dynamics that are
compatible with a particular protein measurement trajecto-
ries. In general the problem is to reconstruct the dynamics
of experimentally inacessible states of a process that best
match the trajectories of the observable process’ states in a
particular experimental run. In other words, the observations

allow us to filter the a priori behaviours into compatible
posterior behaviours. Mathematically, we condition the inac-
cessible states onto those observations. Such conditioning or
filtering has a long tradition in mathematics and engineering
[42, 6]. The key is to obtain governing master equations,
such as the Kushner and the Zakai equations [30, 49], that
describe the time-evolution of the conditional probability
distribution. The best known of such governing equations
is the Kalman filter, that yields a finite parametrization of
the posterior distribution by considering the case that states
evolve according to a linear stochastic differential equation
and measurements are Gaussian distributed [27]. In most
other cases (e.g. nonlinear stochastic differential equation),
no finite parametrization of the posterior distribution can be
found and a plethora of approximations has been proposed
in the past decades [45, 26, 24]. In comparison with the
other approximation methods, such as the popular Extended
Kalman Filter, particle filters [15, 7] do not rely on any local
linearisation techniques while, as a Monte Carlo method, they
are computationally expensive and do not scale well to high
state dimensions.

In this work we complement the chemical master equation
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used to describe the a priori dynamics of a stochastic reaction
network with its posterior counterpart. It refactors the semi-
nal result of Wonham obtained for the case of continuous-time
Markov processes [48]. The posterior master equation and
its exact posterior moment equation exhibit the same scala-
bility problems as their traditional a priori counterparts and
we present scalable approximations of the posterior process.
More specifically, the main contribution of this work is a novel
approximation approach obtained by specific adaptations of
moment closure techniques to the posterior setting. In con-
trast to traditional optimal filtering, where observations of
the accessible states are assumed to be available in continu-
ous time [2], we mainly focus on the practical scenario where
observations are available only at discrete time points.

2 Conditional Markov Processes

We consider a well-mixed reaction system of d species and r
different reaction channels. The state X(t) comprising the
integer abundance of the species at time t shows a Marko-
vian dynamics where state transitions take place according
to the change vectors νj ∈ Zd of each reaction and where
the reaction’s propensity is given by the function αj(x) for
x ∈ X ⊂ Nd. With that, a reaction system with X(0) copies
of each species at time zero will have

X(t) = X(0) +

r∑
j=1

Nj(t)νj , Nj(t) = ξj

(∫ t

0

αj (X(s)) ds

)
copies at time t, where ξj(t) are independent Poisson pro-
cesses of unit rate [9]. Starting with some initial distribution
P(X(0) = x) the distribution P(X(t) = x) at time t evolves
according the chemical master equation [46]. Following our
nomenclature we refer to this equations as the unconditional
or prior master equation as it determines the probability
over species abundances if no further information or mea-
surements on the system is provided. The traditional way in
mathematics to formalize measurements [2] is to assume some
l-dimensional covariate process Y (t) of X(t), for instance of
the form

Y (t) =

∫ t

0

g(X(s))ds+BW (t), (1)

where B is a full-rank matrix and W (t) is the standard l-
dimensional Brownian motion independent of X(t). For ex-
ample, for l = 1 and g(x) = xi one can think of a reaction
system where the i-th species is fluorescently labeled and Y (t)

corresponds to the integrated fluorescence intensity measured
at the microscope. Observation model (1) could be appropri-
ate in the context of fluoresence correlation spectroscopy [36]
where a photon count trace at the photo-multipliers under
high arrival rates admits a diffusion approximation of the
form (1). Having such observations available one can ask
for the probability over species adundance in the presence

of that information. That is, the conditional probability
P(X(t) = x | y(s), s ∈ (0, τ ]), where τ denotes the time up to
which measurements are available. Accordingly, one distin-
guishes between filtering and smoothing for τ = t and τ > t,
respectively. As conditioning can only reduce variance, the
measurements from a single-cell results in less uncertainty in
the dynamic states of the reaction system when compared to
the traditional (prior) chemical master equation. Interestingly,
the process X(t) conditioned on such covariate information
is still Markovian [42]. Refactoring the seminal work of Won-
ham for optimal filtering of continous-time Markov chains
[48], the resulting conditional chemical master equation for
τ = t reads

dπ(x, t) =

r∑
j=1

[π(x− νj , t)αj(x− νj)− π(x, t)αj(x)] dt

+ π(x, t) [g(x)− g(t)]
T

[BBT ]−1[dy(t)− g(t)dt] (2)

with π(x, t) ≡ P(X(t) = x | y(s), s ∈ (0, t]), π(x, 0) =

P(X(0) = x) and g(t) ≡ E(g(X(t)), where expectation is
taken with respect to π(x, t). Due to its dependency on that
expectation, (2) is cumbersome to solve and one often resorts
to an equation for the unnormalized version of π(x, t) and
performs normalization after numerical integration (Support-
ing Information S.3). Equation (2) is a special case of the
general class of optimal filtering equations [2].

In most live-cell imaging applications observation at
continuous-time are unrealistic due to experimental con-
straints such as phototoxicity and bleaching. In practice one is
faced with observations at discrete times y1 = y(t1), . . . , yN =

y(tN ) with 0 = t0 < t1 < · · · < tN = T usually admitting a
conditional distribution of the form p(yn | X(s), s ∈ [0, tn]) =

p(yn | X(tn)). Given the states at observation times, the
observations are assumed independent. The conditional prob-
ability P(X(t) = x | y1, . . . , yn) with n = max(n ∈ N | tn ≤ t)
satifies the unconditional master equation

dπ(x, t)

dt
=

r∑
j=1

[π(x− νj , t)αj(x− νj)− π(x, t)αj(x)] (3)

with π(x, 0) = P(X(0) = x) together with the reset conditions

π(x, ti) = C−1i π(x, t−i )p(yi | x) (4)

at the observation times ti ≤ tn, with the normalizing con-
stant Ci =

∑
z∈X π(z, t−i )p(yi | z). For the smoothing case

the conditional probability P(X(t) = x | y1, . . . , yN ) for any
t ∈ [0, T ] denoted by π̃(x, t) admits the factorization through
the Markov property of the form

π̃(x, t) = β(x, t)π(x, t) (5)

where β(x, t) ≡ Z−1k p(yk, . . . , yN | X(t) = x) with k =

min(k ∈ N | tk > t) and normalizer Zk = p(yk, . . . yN |
y1, . . . , yk−1). The probability of future observations given
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the current system state β(x, t) satisfies the backward master
equation

dβ(x, t)

dt
=

r∑
j=1

[
β(x, t)− β(x+ νj , t)

]
αj(x) (6)

with reset conditions

β(x, t−i ) = C−1i β(x, ti)p(yi | x) (7)

and terminal conditions β(x, T ) = 1 for all x ∈ X . By solving
the backward and the forward conditional master equation
one can determine the smoothing probability π̃(x, t) through
(5). Examining this factorization and the fact that β(x, T ) = 1

we conclude that our knowledge of the underlying system
state X(t) is less uncertain when all measurements up to time
T are incorporated compared to the filtering case where mea-
surements up to time t are taken into account. Differentiating
(5) yields an evolution equation for π̃(x, t) directly

dπ̃(x, t)

dt
=

r∑
j=1

[
α̃j(x−νj , t)π̃(x−νj , t)−α̃j(x, t)π̃(x, t)

]
(8)

that we term the posterior or smoothing master equation
with π̃(x, 0) = P(X(0) = 0). It comprises novel time-varying
posterior or smoothing propensity functions of the form

α̃j(x, t) = αj(x)
β(x+ νj , t)

β(x, t)
. (9)

Hence, the prior propensities αj(x) get modulated by a time-
varying fraction that steers the process towards future mea-
surements. The expression for the posterior propensities
provide means to draw sample paths of the posterior smooth-
ing process through a stochastic simulation scheme adapted
to time-varying propensities [1, 33].

As an illustrative example, we consider the smoothing
problem for a birth-death process ∅ → X → ∅ with respec-
tive rates c1, c2 and with a single noise-free observation
y1 = X(t1) = 0 at t1 = T and the deterministic initial con-
dition X(0) = 0. This setup corresponds to the classical
bridging problem or to the problem of end-point conditioned
sampling of Markov chains [23] and can be solved explicitly
for this case. We aim to compute the smoothing distribution
π̃(x, t) = P(X(t) = x | X(0) = X(T ) = 0), ∀ t ∈ [0, T ].
The prior distribution P(X(t) | X(0) = 0) coincides with the
filtering distribution within t ∈ [0, T ) and admits a represen-
tation in terms of a Poisson distribution with time-varying
rate [11, 25]

π(x, t) =
γxλx(t)

x!
e−γλ(t)

with λ(t) = 1−e−c2t and γ = c1/c2. Accordingly, the solution
of the backward equation (6) can be expressed as

β(x, t) = λx(T − t)e−λ(T−t)+λ(T ).

With that, one compute the probability distribution π̃(x, t)

of the end-point conditioned process through (5). The same
result is obtained by integrating the smoothing master equa-
tion (8), where the posterior propensities for this example are

α̃1(x, t) = c1λ(T − t), α̃2(x, t) = c2x/λ(T − t). (10)

The function λ(T − t) is a monotone decreasing function in
t and reaches zeros at t = T . Hence, in order to reach the
state X(T ) = 0 with probability one, the posterior birth-rate
converges to zero while the death-rate becomes unbounded
as t → T . Some sample paths of the posterior birth-death
process with time-varying rates (10) are shown in Fig. 1.
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Fig. 1: Sample paths of the posterior birth-death process
(T = 50 sec, c1 = 5 molec · sec−1, c2 = 0.1 sec−1) with
time-varying propensities (10).

3 Posterior moment equations

The presented posterior master equations inherit the same
scability problems as the original chemical master equation
due to the combinatorial increase in the cardinality of X
with the number of species d. Traditional approaches that
can approximately capture the stochastic dynamics of the
prior process are the van Kampen expansion [46] and mo-
ment closure techniques [28, 8, 14]. Similar techniques can
be applied to the posterior master equations (3), (8) and
also to the backward equation (6). For the latter a linear
noise approximation was performed in [38]. We follow the
moment closure approach and subsequently derive novel ap-
proximate posterior moment dynamics. Throughout we will
consider propensity functions of the form αj(x) = cjgj(x)

with cj ∈ R>0 the stochastic rate constant of the reaction j
and gj(x) any polynomial function of bounded degree. Using
a multi-index η = (η1, . . . , ηd) with |η| ≡ η1 + · · · + ηd for
η ∈ Nd [14] we can compactly write αj(x) =

∑
|η|≥0 aj,ηx

η

with the shorthand xη ≡ xη11 · · ·x
ηd
d . Similar to the moment

expansion for the traditional master equation [14], one can
develop a moment expansion of the filtering master equation
(3). Denoting its moment of order η by Mη(t) the generally
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infinite set of moment equations read

dMη(t)

dt
=

r∑
j=1

∑
|γ|≥0

aj,γ
∑

0d<ζ≤η

νζj

(
η

ζ

)
Mη−ζ+γ(t) (11)

with the reset conditions at the observation time ti ≤ tn
following the Kallianpur-Striebel formula [2]

Mη(ti) = C−1i
∑
x∈X

π(x, t−i )xηp(yi | x). (12)

In terms of computational complexity solving the moment
equations together with (12) does not show any advantage
compared to directly solving (3) because (12) still involves
the filtering distribution π(x, t). The main contribution of
this work is to propose an approximate approach to the reset
condition (12) for the posterior moments.

4 Approximate posterior moments dynamics

In the following we derive novel approximate posterior mo-
ment dynamics exploiting a special form of the tower property
for conditional expectations

E [s(X(tn))u(yn) | y1, . . . , yn−1]

= E [E [s(X(tn)) | y1, . . . , yn−1, yn]u(yn) | y1, . . . , yn−1]

for integrable functions s and u. Additionally, we make use
of traditional moment closure techniques. We begin with a
univariate system (i.e., d = 1) and assume that observations
are subject to additive noise yi = X(ti) + wi, where wi are
i.i.d. random variables with bounded moments up to order
four. For η ≥ 1, we obtain the following approximation to
the reset conditions (12) for the posterior filtering moments
(Supporting Information S.6)

Mη(ti) =

η∑
q=0

ϑη,qy
q
i , (13)

where the coefficients ϑη,q are determined by the linear equa-
tions obtained from the tower property (13) (Supporting
Information S.6)

η∑
q=0

ϑη,q

q+j∑
b=0

(
q + j

b

)
M b(t−i )E[wq+j−bi ]

=

j∑
b=0

(
j

b

)
Mη+b(t−i )E[wj−bi ] (14)

with j = 0, 1, . . . , η, which, however, involve moment Mq(t−i )

with order q up to 2η. To cope with this problem, one can em-
ploy moment closure techniques and approximate the higher
order moments by functions of lower order moment up to
order η, see, e.g., [40, 20, 31]. With that, the linear set of

equations can be solved for ϑη,q and (13) can serve as an ap-
proximation to (12). We provide explicit expressions for (13)
in case of normal, lognormal and modified normal moment
closure techniques in the Supporting Information S.6.1-3. It
is worth noting that the update formula of the celebrated
Kalman filter turn out to be a special case of our approxi-
mation approach for the case of a normal closure combined
with an additive Gaussian measurement model (Supporting
Information S.6.1).

We also provide an alternative approximation to posterior
variance for that case. It is natural to assume that the reset
step, which incorporates the information of a measurement,
leads to a variance Σ(ti) smaller than Σ(t−i ). That is, at
measurement point ti,

Σ(ti) = M2(ti)− [M1(ti)]
2 = mΣ(t−i ) (15)

and hence M2(ti) = [M1(ti)]
2 +mΣ(t−i ), where coefficient m

can be obtained by using (13) (see Supporting Information
S.6.4). For a multi-variate system, we define first and the sec-
ond filtering moments M(t) = E[X(t) | y1, . . . , yn] ∈ Rd
and M2(t) = E[X(t)XT (t) | y1, . . . , yn] ∈ Rd×d, respec-
tively together with the filtering covariance Σ(t) = M2(t)−
M(t)MT (t). The corresponding moment dynamics for those
quantities are detailed in Supporting Information S.7. The
proposed approach can be applied to other observation mod-
els such as lognormal noise model, which will subsequently
be used in a gene expression model.

5 An RTS approximation to the smoothing
moments

Based on the proposed moment approximation to the filtering
distribution one can derive approximations to the moments of
the smoothing distribution leveraging existing results for the
Rauch-Tung-Striebel (RTS) or the Modified Bryson-Frazier
(MBF) smoother [5]. Here we consider the RTS smoother since
the RTS smoother has some desired properties such as stability
and several other smoothers are based upon it [5, 3]. Similarly,
for a reaction system with d ≥ 1, denote the first and the sec-
ond smoothing moments by M̃(t) = E [X(t) | y1, . . . , yN ] ∈
Rd, M̃2(t) = E

[
X(t)XT (t) | y1, . . . , yN

]
∈ Rd×d and the

smoothing covariance by Σ̃(t) = M̃2(t)− M̃(t)M̃T (t) ∈ Rd×d.
Let us consider the first order reaction networks. The

prior mean M̂(t) of such a system is given by (Eq.(48) with
L̄ = 1 in Supporting Information S.5.1)

dM̂(t)/dt = Ĉ1M̂(t) + b1. (16)

For the gene expression model introduced below one gets,

Ĉ1 =

−(c1 + c2) 0 0

c3 −c6 0

0 c4 −c5

 and b1 =

c10
0

 . (17)
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Let Ψ(t, τ) be the state transition matrix corresponding to Ĉ1,
that is, d

dτΨ(t, τ) = −Ψ(t, τ)Ĉ1 and Ψ(t, τ)
∣∣
τ=t

= I, which
yields Ψ(t, τ) = e(t−τ)Ĉ1 for all t ≥ τ . According to (5), the
posterior smoothing and filtering moments have to coincide
at the end point tN . Consequently, we initialize our approxi-
mation to M̃η(t) by the approximate filtering moments at tN
obtained through (13) and (14). The resulting RTS smoother
(see Support Information S.8) is then given by the backward
equation

M̃(t) = M(t)−Ksm(t)
[
M(t−n+1)− M̃(tn+1)

]
Σ̃(t) = Σ̃(t)−Ksm(t)

[
Σ(t−n+1)− Σ̃(tn+1)

]
KT
sm(t)

with smoother gain Ksm(t) = Σ(t)ΨT (tn+1, t)
[
Σ(t−n+1)

]−1
and Ksm(t−n+1) = I.

6 Application to gene expression models

Consider the standard two-state gene expression model con-
sisting of six reactions that involve four different species: G1

and G0 for the active and inactive promoter, respectively, M
for mRNA and P for the expressed protein

G0

c1


c2

G1, G1
c3→ G1 +M,

M
c4→ M + P, P

c5→ ∅, M
c6→ ∅.

Through the conservation of active and inactive promot-
ers, the state of the system can be represented by X =

(X1 X2 X3)T ∈ N3, where X1, X2 and X3 are the amounts
of G1, M and P , respectively. A key problem in gene ex-
pression is to reconstruct the inaccessible states such as the
mRNA abundance from noisy measurements of the protein
abundance dynamics (e.g. through fluorescent labelling).
Such state reconstruction is of particular interest for transient
induction of genes, where time-varying inducer can be mod-
elled by a time-varying promoter activation rate c1 = c1(t).
Throughout this section we assume log-normal measurement
noise on the protein dynamics. That is,

yi = ewiX3(ti) = ewiFX(ti)

with E[wi] = 0, E[w2
i ] = σ2

i and the corresponding observa-
tion matrix F =

(
0 0 1

)
. In the following we show that

for synthetic data and for real single-cell data from Saccha-
romyces cerevisiae the proposed method allows to reconstruct
robustly the mRNA abundance and true protein abundance
from such noisy measurement trajectories. Before the next
observation instant ti, the propagation of the moments is
given by the prior moment equations (see e.g. [32] and also

Eq.(48) with L̄ = 2 in Supporting Information S.5.1)

dM(t)/dt = Ĉ1(t)M(t) + b1(t)

dM2(t)/dt = Ĉ1(t)M2(t) +M2(t)ĈT1 (t) + b1(t)MT (t)

+M(t)bT1 (t) +

6∑
j=1

νjν
T
j αj(M(t)),

where Ĉ1 and b1 are now time-dependent due to the time-
varying promoter activation rate c1. At measurement times
ti the following reset conditions are applied

M(ti) =Θ1,0 + Θ1,1yi,

M2(ti) =M2(t−i )− e 1
2σ

2
i Θ1,0M

T (t−i )FTΘT
1,1

− e 1
2σ

2
i Θ1,1FM(t−i )ΘT

1,0 − e2σ
2
i Θ1,1

[
FM2(t−i )FT

]
ΘT

1,1

+ Θ1,0y
T
i ΘT

1,1 + Θ1,1yiΘ1,0 + Θ1,1yiy
T
i ΘT

1,1,

where Θ1,0 ∈ Rd and Θ1,1 ∈ Rd are given by

Θ1,0 = M(t−i )− e 1
2σ

2
i Θ1,1FM(t−i ),

Θ1,1 = e−
1
2σ

2
i
[
M2(t−i )−M(t−i )MT (t−i )

]
FT

×
{
F
[
eσ

2
iM2(t−i )−M(t−i )MT (t−i )

]
FT
}−1

.

6.1 In silico experiments

We first apply our proposed approximate approach to the gene
expression model using simulated non-stationary data and,
for simplicity, assume constant reaction rate c1. Based on
the obtained filtering moments, we compute the RTS approx-
imate for the smoothing moments. For reference, the filtering
and the smoothing moments are also computed exactly by
integration the corresponding conditional master equation.
The comparison between the approximate moments and the
exact ones are given in Fig. 2, where the prior moments
are also given for comparison. Notice that the measurement
noise standard deviation σ = 0.2 is larger than those in the
experimental data used in this study, which were identified
as σ = 0.15 in the Msn2 case and σ = 0.125 in the GEV case
below, respectively. The approximation to the filtering mo-
ments and to the smoothing moments are in good agreement
with the exact results. Moreover, one can observe that the
actual mRNA and proteins dynamics corresponding to the
actual measured data points can accurately be tracked by the
respective posterior means. From the above discussion it is
evident that the traditional prior dynamics cannot provide
this single-trajectory resolution. In Supporting Information
S.7.3, we apply the proposed moment approximation to an-
other in silico problem that exhibits bimodal distributions. It
indicates that the posterior distribution of multi-modal sys-
tems can often be unimodal due to the conditioning and can
hence be approximated well by low order moment equations.
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Fig. 2: Comparison between the proposed approximate mo-
ment dynamics versus the exact results for the gene ex-
pression model (c1 = 0.02 sec−1, c2 = 0.03 sec−1, c3 =

1 sec−1, c4 = 0.05 sec−1, c5 = 0.005 sec−1, c6 =

0.02 sec−1, ti− ti−1 = 50 sec, σ = 0.2) and comparison
between posterior moments and prior moments: (a)
filtering moments and (b) smoothing moments with
simulated data.

6.2 Gene expression systems in yeast

We apply our proposed state reconstruction approach to two
different inducible gene expression systems in Saccharomyces
cerevisiae. Both systems can be described by the above gene
expression model with a time-varying promoter activation
rate caused by the nuclear translocation of an inducer.

In the first system, a microfluidic device is used to control
the nuclear-cytoplasmic translocation dynamics of the tran-
scription factor Msn2 by modulating the levels of the small
molecule 1-NM-PP1 to control the expression of a fluorescent
reporter protein (see [16] for a detailed description, subse-
quently referred to as the Msn2 system). The second system
is an artificial gene expression system centred around the
chimeric transcription factor GAL4DBD.ER.VP16 (GEV).
The GEV translocation is again modulated using a microflu-
idic device controlling the supply of the hormone β-estradiol.
The nuclear transcription factor GEV activates the transcrip-
tion of genes under a GAL1 promoter, where we placed a
fluorescent reporter protein as a readout (see [51] for a detailed
description, subsequently referred to as the GEV system).
In both model systems, fluorescent time-lapse microscopy is
used to monitor the nuclear-cytoplasmic translocation of the
respective transcription factor fused to a fluorescent protein,
as well as the expression of a fluorescent protein induced by
the respective transcription factor in individual cells.

The two case studies are successively complicated. In the
Msn2 case we associate for every single cell trace a separate
parameter set. This is feasible due a sufficient number of
observations for each trace. The problem thus corresponds to
the in silico study from above and no extrinsic noise model is
assumed that couples parameter sets from different traces. In
most scenarios however, one needs to pool together heteroge-
neous traces in order to achieve sufficient estimation accuracy.
To illustrate this complication we show for the GEV case,
how an extrinsic noise model can be incorporated into the
proposed filtering or smoothing method. The extension is in
line with the observation that the GEV expression variability
shows a large extrinsic component [51].

6.3 Approximate state reconstruction for
Msn2 system

To demonstrate the effectiveness of the proposed method we
reconstruct the mRNA dynamics based on the noisy fluores-
cent readout of the protein level. For the first case, we used
single-cell traces from [16] to estimate the parameters of the
kinetic expression model and the measurement noise model
using the algorithm given in [51]. The temporal profile of
the promoter activation rate is estimated from the nuclear-
cytoplasmic ratio of the transcription factor (see also [51]
for details). We remark that this induction happens quite
rapidly (cf. Fig. 3). Generally, it is challenging to perform
state estimation for such fast varying systems.
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Fig. 3: Comparison between the proposed approximate filter-
ing moments and the exact moments based on two
exemplary trajectories from the experimental dataset
of [16]: (a)-(b) protein and mRNA dynamics corre-
sponding to trajectory A; (c)-(d) protein and mRNA
dynamics corresponding to trajectory B.

Fig. 3 shows the reconstruction results for two exemplary
single-cell traces of the data set in [16]. Applying finite-state-
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projection techniques [35, 47] we were also able to compute
the exact moments from solving posterior master equations
(3) and (8) as a reference. However, for larger systems, solving
the corresponding master equation quickly becomes compu-
tationally infeasible – motivating our approximate approach.
Fig. 3 indicates that the proposed approximation to the fil-
tering moments works well. As it only involves solving a set
of ordinary differential equations with reset conditions the
approach is scalable to large reaction systems.

Similarly, we applied the proposed smoothing algorithm
to the single-cell trajectories. In particular, we used the
presented RTS approximation to the smoothing moments.
However, it is observed that the traditional RTS approxima-
tion does not always work for the considered experimental
data. Fig. 4 shows that the approximation works well for
trajectory B while it fails for trajectory A where one can
observe a collapse of the smoothing covariance for the approx-
imate method even though the involved approximate filtering
moments are accurate (cf. Fig. 3). This indicates that novel
approximate methods for the smoothing moments are needed
to overcome to limitations of traditional RTS schemes.
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Fig. 4: Comparison between the RTS approximations and the
exact smoothing moments based on two exemplary
trajectories from the experimental dataset of [16]: (a)-
(b) protein and mRNA dynamics corresponding to
trajectory A; (c)-(d) protein and mRNA dynamics
corresponding to trajectory B.

6.4 State reconstruction in the presence of
extrinsic noise

Apart from the inherent randomness of biomolecular reac-
tions, gene expression was shown to exhibit a substantial
degree of extrinsic noise [44, 22, 4, 37], stemming from vari-
ous factors in a cell’s microenvironment. The considered GEV
system showed significant extrinsic noise [51] and we therefore

minimally extend the standard gene expression system by a
random protein translation rate c4 assumed to be Gamma
distributed characterized by shape- and rate parameters a
and b. In contrast to the Msn2 case study, where we assumed
the model parameters to be given, we aim to estimate states
and parameters – for the latter in particular the population
heterogeneity captured by (a, b). Treating a parameter as
just another state that also follows a certain prior distribu-
tion we aim to quantify the gain in certainty about states as
observations are acquired. More specifically, before receiving
any data we assume a prior heterogeneity characterized by
values ā and b̄. Hence, the prior moments of an average cell in
the population computes to M̂η(t) = E [E [Xη(t) | c4]] where
outer expectation is over c4 ∼ Γ(ā, b̄). In order to compute
those prior moments we employ the marginal moments of [50]
that treats the unknown reaction rate c4 as a dummy species
by rewriting the translation reaction asM+c4 → M+c4+P

with unit rate. The resulting prior moments for the model of
the GEV system are given in Fig. 5.
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Fig. 5: Comparison between the prior marginal moments,
RTS approximations to the posterior marginal mo-
ments and the exact posterior moments based on one
exemplary trajectories from the experimental data set
of [51]: (a)-(b) means of protein and mRNA; (c)-(d)
standard deviations of protein and mRNA.

After receiving the data, the prior heterogeneity can be
turned into a posterior by conditioning on all L recorded
time traces. To obtain such posterior over a and b we employ
Markov chain Monte Carlo techniques to sample

p(a, b | y11:N , . . . , yL1:N ) ∝
L∏

m=1

p(ym1:N | a, b)p(a, b),

with ym1:N = {ym1 , . . . , ymN } the measured trace corresponding
to cell m, measured at N time points. The mean value of
this distribution serves as a Bayesian point estimate (ã, b̃)
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that we can then use to determine the posterior moments.
When receiving a new single-cell trajectory yL+1

1:N one can now
ask for its most likely mRNA and protein dynamics given
this posterior heterogeneity. That is, we aim to compute
M̃η(t) = E

[
E
[
Xη(t) | c4, yL+1

1:N

]]
, where the outer expecta-

tion is over c4 ∼ Γ(ã, b̃). To approximate these posterior
moments, we combine our proposed smoothing approach with
[50] to obtain posterior marginal moment equation. Thereby
we follow again the RTS ansatz and use the exact moments
obtained from integrating the smoothing master equation
(8) as a reference. Conceptually, the resulting marginal mo-
ments are equivalent to averaging the traditional smoothing
moments for random c4 drawn from the gamma distribution.
The results for one exemplary single-cell trajectory are given
in Fig. 5. It is observed that the RTS approximation to the
smoothing moments is accurate for the considered data of the
GEV system. Also, evident from the comparison in Fig. 5,
is that the significant reduction of variance of the posterior
moments with respect to the prior moment dynamics.

7 Conclusions

Our capacity to decipher the inner working of a cellular
process strongly depends on the dimensionality of the avail-
able molecular readout. For time-resolved single-cell analysis
the number of simulatenous readouts remains limited and
biologists are trained to qualitatively infer the behavior of
unobservable states of the process. However, with the rise of
the computational models that can quantitatively capture the
behavior a processes one can now improve on this qualitative
inference. We remark again, that estimating the most likely
latent state of the process for a given observation is different
from just computing the solution to a calibrated model. The
theory of optimal filtering offers the general solution to the
problem on how to combine data with a dynamic model to
predict such states. However, it is known that solving the
exact filtering or smoothing problem is computationally costly
and we show that for biochemical network it is at least as
costly as integrating the chemical master equation.

To this end we develop an approximate but scalable ap-
proach to filtering by exploring the fundamental relationship
[13] and combining it with traditional moment closure tech-
niques. We verify the effectiveness of the proposed method
through single-cell experimental data and through in silico
experiments.

Based on the approximation to the filtering moments ob-
tained by the method, one can further compute the RTS
approximation to the smoothing moment. Although the RTS
approximation often works well, see Fig. 4 (c)-(d) and Fig.
5, it also show significant deviations (e.g. see Fig. 4), even
when the proposed approximation to the filtering moments
performs well (see Fig. 3). This lack of robustness indicates

that novel approximation to the smoothing moments need
to be developed for the case of stochastic reaction networks
with log-normal measurement noise.

The proposed method can be extended to a hybrid frame-
work (see, e.g., [10, 19, 34]) where a diffusion approximation
can be performed for some states and reactions. This is
especially interesting for multi-scale cellular processes, for
instance in gene expression where different abundance scales
of molecules are involved. The proposed state reconstruction
approach can profit from such a hybridization and would lead
to even more scalable algorithms. Since it is well-known that
the moment closure techniques can also fail [20, 39], theoret-
ical analysis, such as the computation of error bounds, for
the special case of posterior moments is an promising future
research topic.

8 Methods and Experimental Protocols

8.1 Mathematical methods and algorithms

Details on mathematical derivations of the posterior master
equations, the posterior moment equations and details on
the discussed case studies together with more corresponding
simulation results are given in the Supporting Information.
The Matlab codes used to generate all results in this paper
are available at http://www.bcs.tu-darmstadt.de/media/
bcs/Reconstructing_dynamic_molecular_states.zip.

8.2 Calibrating YFP fluorescence to absolute
numbers of molecules

The previous work [16] quantitated induction of Msn2-target
genes as the mean fluorescence intensity per pixel in arbitrary
units (AU) through a fast-maturing YFP reporter protein,
mCitrineV163A. However, in order to apply the state recon-
struction approach, it is necessary to calibrate these measure-
ments to obtain absolute numbers of YFP molecules per cell.
A calibration relationship was developed by measuring the
mCitrineV163A fluorescence of five yeast proteins of known
abundance [12] using the same exposure conditions as in the
original study [16]. The five yeast genes were: Y GP117C

(1280 molecules per cell), TMA108 (5110 molecules per cell),
HOG1 (6780 molecules per cell), TDA1 (10200 molecules per
cell) and CAR1 (42800 molecules per cell). Each gene was
C-terminally tagged with mCitrineV163A (in a pKT-vector;
available from AddGene as #64685) followed by a HIS-marker
by transforming a PCR-generated mCitrineV163A-HIS con-
struct into the original haploid S288C Saccharomyces Cere-
visiae strain used by Ghaemmaghami et al. (EY0986, MAT a,
ATCC201388, his31, leu20, met150, ura30, S288C) and select-
ing on SD-HIS plates. To minimize experimental variability,
we picked and measured 4 independent clones for each of the
five genes. We used the untagged wild-type strain EY0986
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to determine the autofluorescence background. To measure
fluorescence intensity from each clone, we closely followed
the protocol described by Ghaemmaghami et al. Briefly, we
picked a single colony to inoculate a flask containing YEPD
medium. Cells were grown overnight until an OD600 ∼ 0.7.
Cells were fixed by incubating 0.9 mL culture with 0.1 mL
10% buffered formalin solution (Sigma-Aldrich HT5011) for 5

minutes with occasional mixing. Cells were spun down and
washed with 0.1 M KH2PO4 pH 8.5 and then 1.2 M Sorbitol
in KH2PO4 pH 8.5. Cells were re-suspended in 20 µL 1.2 M
Sorbitol in KH2PO4 pH 8.5. Then 2 µL of this solution was
loaded on a microscope slide, coverslip added and sealed with
nail polish. Cells were then immediately imaged using the
exact same exposure conditions as described in [16]. Images
were then analyzed and fluorescence quantified as previously
described [16, 17]. After quantifying the fluorescence intensity
per cell for each of the five genes, we then fit a simple line
to the data and found that each YFP molecule contributed
about 100.8 AU fluorescence per cell under our excitation
settings [17]. We therefore divided the total fluorescence per
cell from the previous dataset [16] to obtain the total number
of YFP molecules per cell.

8.3 Fluorescence microscopy and image
analysis in pGAL1 Y-Venus expression

The experiments were performed on the same epifluorescence
microscope (Eclipse Ti, Nikon Instruments), 60× (NA 1.4) oil
objective and specific (CFP/YFP/ mCherry) excitation and
emission filters located in an incubation chamber set to main-
tain 30◦C. Imaging conditions and param- eters were kept
constant for all experiments. Single colonies of the respective
yeast strain were picked, inoculated in synthetic (SD) medium
and grown overnight at 30◦C. The saturated cultures were
then diluted and grown in log phase for at least two doubling
times (> 4h). Before they were loaded into the imaging cham-
bers, the cell suspensions were diluted again (OD600 = 0.01)
and briefly sonicated. Single-cell traces were recorded by
fluorescence microscopy with a 30-min induction pulse of 25,
50 and 100 nM β-estradiol. The pulses were done by switch-
ing between two hydrostatic-pressure (1 p.s.i.) driven flows
(SD-full and SD-full + β-estradiol) using a three-way solenoid
valve (The Lee Company) connected to the cell chamber (µ-
Slide VI, Ibidi). All microscopy images were analyzed with
the YeastQuant platform. The GEV relocation and Venus
expression time-lapse movies were segmented on the basis of
the nuclear CFP image from the HTA2-CFP marker. The
expression of the Y-Venus protein was quantified as the total
intensity in the cell. The expression levels of the YFP-tagged
proteins were measured with illumination conditions similar
to those used for the Y-Venus imaging. See [51] for a detailed
description.
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