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Convergence rates of moment-sum-of-squares hierarchies

for optimal control problems

Introduction

The moment-sum-of-squares hierarchy (also know as Lasserre hierarchy) of semidefinite programs was originally introduced in [START_REF] Lasserre | Optimisation globale et théorie des moments[END_REF] in the context of polynomial optimization. It allows one to solve globally non-convex optimization problems at the price of solving a sequence, or hierarchy, of convex semidefinite programming problems, with convergence guarantees; see e.g. [START_REF] Laurent | Sums of squares, moment matrices and polynomial optimization[END_REF] for an introductory survey, [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] for a comprehensive overview and [START_REF] Chesi | LMI techniques for optimization over polynomials in control: a survey[END_REF] for control applications.

This hierarchy was extended in [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF] to polynomial optimal control, and later on in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] to global approximations of semi-algebraic sets, originally motivated by volume and integral estimation problems. The approximation hierarchy for semi-algebraic sets derived in [START_REF] Henrion | Approximate volume and integration for basic semialgebraic sets[END_REF] was then transposed and adapted to an approximation hierarchy for transcendental sets relevant for systems control [START_REF] Chesi | Domain of attraction; analysis and control via SOS programming[END_REF], such as regions of attraction [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] and maximal invariant sets for controlled polynomial differential and difference equations [START_REF] Korda | Convex computation of the maximum controlled invariant set for polynomial control systems[END_REF], still with rigourous analytic convergence guarantees.

Central to the moment-sum-of-squares hierarchies of [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF][START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Convex computation of the maximum controlled invariant set for polynomial control systems[END_REF] are polynomial subsolutions of the Hamilton-Jacobi-Bellman equation, providing certified lower bounds, or underapproximations, of the value function of the optimal control problem. It was first shown in [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF] that the hierarchy of polynomial subsolutions of increasing degree converges locally (i.e. pointwise) to the value function on its domain. Later on, as an outcome of the results of [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF], global convergence (i.e. in L 1 norm on compact domains, or equivalently, almost uniformly) was established in [START_REF] Henrion | Linear conic optimization for nonlinear optimal control[END_REF].

The current paper is motivated by the analysis of the rate of convergence of the momentsum-of-squares hierarchy for static polynomial optimization achieved in [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF]. We show that a similar analysis can be carried out in the dynamic case, i.e. for assessing the rate of convergence of the moment-sum-of-squares hierarchy for polynomial optimal control. For ease of exposition, we focus on the discounted infinite-horizon continuous-time optimal control problem and briefly describe (in Section 5) how the same convergence rate can be obtained for the finite-time continuous version of the problem and for the discrete counterparts of both problems.

Our main Theorem 4 gives estimates on the rate of convergence of the polynomial underapproximations to the value function in the L 1 norm. As a direct outcome of this result, we derive in Corollary 2 that the rate of convergence is in O(1/ log log d), where d is the degree of the polynomial approximation. As far as we know, this is the first estimate of this kind in the context of moment-sum-of-squares hierarchies for polynomial optimal control.

Notation

The set of all continuous functions on a set X ⊂ R n is denoted by C(X); the set of all ktimes continuously differentiable functions is denoted by C k (X). For h ∈ C(X), we denote

h C 0 (X) := max x∈X |h(x)| and for h ∈ C 1 (X) we denote h C 1 (X) := max x∈X |h(x)| + max x∈X ∇h(x) 2
where ∇h is the gradient of h. The L 1 norm with respect to a measure µ 0 of a measurable function h : R n → R is denoted by h L 1 (µ 0 ) := R n h(x)µ 0 (dx). The set of all multivariate polynomials in a variable x of total degree no more than d is denoted by R[x] d . The symbol R[x] n d denotes the n-fold cartesian product of this set, i.e., the set of all vectors with n entries, where each entry is a polynomial from R[x] d . The interior of a set X ⊂ R n is denoted by Int(X).

Problem setup

Consider the discounted infinite-horizon optimal control problem

V ⋆ (x 0 ) := inf u(•), x(•) ∞ 0 e -βt l(x(t), u(t)) dt s.t. x(t) = x 0 + t 0 f (x(s), u(s)) ds ∀t ∈ [0, ∞) x(t) ∈ X, u(t) ∈ U ∀t ∈ [0, ∞) (1) 
where

β > 0 is a given discount factor, f ∈ R[x, u] n d f and l ∈ R[x, u] d l are
given multivariate polynomials and the state and input constraint sets X and U are of the form 1) is called the value function of the optimal control problem (1).

X = {x ∈ R n | g X i (x) ≥ 0, i = 1, . . . , n X }, U = {u ∈ R m | g U i (u) ≥ 0, i = 1, . . . , n U }, where g X i ∈ R[x] d X i and g U i ∈ R[u] d U i are multivariate polynomials. The function V * in (
Let us recall the Hamilton-Jacobi-Bellman inequality

l(x, u) -βV (x, u) + ∇V (x, u) • f (x, u) ≥ 0 ∀ (x, u) ∈ X × U (2) 
which plays a crucial role in the derivation of the convergence rates. In particular, for any function V ∈ C 1 (X) that satisfies (2) it holds

V (x) ≤ V ⋆ (x) ∀ x ∈ X. (3) 
The following polynomial sum-of-squares optimization problem provides a sequence of lower bounds to the value function indexed by the degree d:

max V ∈R[x] d X V (x) dµ 0 (x) s.t. l -βV + ∇V • f ∈ Q d+d f (X × U), (4) 
where µ 0 is a given probability measure supported on X (e.g., the uniform distribution), and

Q d+d f (X × U) := s 0 + n X i=1 g X i s i X + n U i=1 g U i s i U : s 0 ∈ Σ ⌊(d+d f )/2⌋ , s i X ∈ Σ ⌊(d+d f -d i X )/2⌋ , s i U ∈ Σ ⌊(d+d f -d i U )/2⌋ ,
is the truncated quadratic module associated with the sets X and U (see [START_REF] Laurent | Sums of squares, moment matrices and polynomial optimization[END_REF] or [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]), where Σ d is the cone of sums of squares of polynomials of degree up to d. Note that whenever V is feasible in (4), then V satisfies Bellman's inequality (2), because polynomials in Q d+d f (X ×U) are non-negative on X × U by construction. Therefore any polynomial V feasible in (4) satisfies also (3) and hence is an under-approximation of V ⋆ on X.

The truncated quadratic module is essential to the proof of convergence of the momentsum-of-squares hieararchy in the static polynomial optimization case [START_REF] Lasserre | Optimisation globale et théorie des moments[END_REF] which is based on Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]. We recall that some polynomials of degree d + d f nonnegative on X × U may not belong to Q d+d f (X × U) [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]. On the other hand, optimizing over the polynomials belonging to Q d+d f (X × U) is "simple" (it translates to semidefinite programming) while optimizing over the cone of non-negative polynomials is very difficult in general. In particular, the optimization problem (4) translates to a finite-dimensional semidefinite programming problem (SDP). The fact that the truncated quadratic module has an explicit SDP representation and hence can be tractably optimized over is one of the main reasons for the popularity of the moment-sum-of-squares hierarchies across many fields of science.

Throughout the paper we impose the following standing assumptions.

Assumption 1

The following conditions hold:

(a) X ⊂ [-1, 1] n and U ⊂ [-1, 1] m . (b) The sets of polynomials (g X i ) n X i=1 and (g U i ) n U i=1 both satisfy the Archimedian condition 1 . (c) 0 ∈ Int(X) and 0 ∈ Int(U). (d) The function ∇V ⋆ is Lipschitz continuous on X. (e) The set f (x, U) is convex for all x ∈ X and the function v → inf u∈U {l(x, u) | v = f (x, u)} is convex for all x ∈ X.
The Assumption (a) and (b) are made without loss of generality since the sets X and U are assumed to be compact and hence can be scaled such that they are included in the unit ball; adding redundant ball constraints 1x 2 and 1u 2 in the description of X and U then implies the Archimedianity condition. Assumption (c) essentially requires that the sets X and U have nonempty interiors (a mild assumption) since then a change of coordinates can always be carried out such that the origin is in the interior of these sets. Assumption (d) is an important regularity assumption necessary for the subsequent developments. Assumption (e) is a standard assumption ensuring that the value function of the so-called relaxed formulation of the problem (4) coincides with V ⋆ (see, e.g., [START_REF] Vinter | Convex duality and nonlinear optimal control[END_REF]) and is satisfied, e.g., for input-affine 2 systems with input-affine cost function provided that U is convex. This class of problems is by far the largest and practically most relevant for which this assumption holds although other problems exist that satisfy this assumption as well 3 .

Under Assumption 1, the hierarchy of lower bounds generated by problem (4) converges from below in the L 1 norm to the value function V ⋆ ; see e.g. [

8]:

Theorem 1 There exists a d 0 ≥ 0 such that the problem ( 4) is feasible for all d ≥ d 0 . In addition V ≤ V ⋆ for any V feasible in [START_REF] De Klerk | Improved convergence rates for Lasserretype hierarchies of upper bounds for box-constrained polynomial optimization[END_REF] and [START_REF] De Klerk | Improved convergence rates for Lasserretype hierarchies of upper bounds for box-constrained polynomial optimization[END_REF].

lim d→∞ V ⋆ -V ⋆ d L 1 (µ 0 ) = 0, where V ⋆ d is an optimal solution to
The goal of this paper is to derive bounds on the convergence rate of V ⋆ d to V ⋆ .

1 A sufficient condition for a set of polynomials (g i ) n i=1 to satisfy the Archimedian condition is

g i = N -x 2 2
for some i and some N ≥ 0, which is a non-restrictive condition provovided that the set defined by g i 's is compact and an estimate of its dimeter is known. For a precise definition of this condition see Section 3.6.2 of [START_REF] Laurent | Sums of squares, moment matrices and polynomial optimization[END_REF]. 2 A system is input-affine if f (x, u) = f x (x) + f u (x)u for some functions f x and f u . 3 For example, consider l(x, u)

= x 2 , f (x, u) = x + u 2 , U = [-1, 1].

Convergence rate

The convergence rate is a consequence of the following fundamental results from approximation theory and polynomial optimization.

Theorem 2 (Bagby et al. [START_REF] Bagby | Multivariate simultaneous approximation[END_REF]) 

If h : X → R is a function such that ∇h ∈ C 1 (X),
p(x) = α∈N n |α|≤d β α x α with |α| = n i=1 α i and x α = n i=1 x α i , we define p R[x] = max α |β α | |α| α , (5) 
where the multinomial coefficient |α| α is defined by 

|α| α := |α|! α 1 ! • . . . • α n ! .
Then p ∈ Q d (X × U) provided that d ≥ c 2 exp d 2 p (n + m) dp p R[x,u] p min c 2 , ( 6 
)
where the constant c 2 depends only on the sets X and U.

In the following developments it will be crucial to bound the norm • R[x] of a polynomial by its supremum norm • C(X) . We remark that such a bound is possible only for a "generic" set X such that any polynomial vanishing on X necessarily vanishes everywhere. A sufficient condition for this is Int(X) = ∅. This is the reason for Assumption 1 (c).

Lemma 1 If p ∈ R[x] d , x ∈ R n , then p R[x] ≤ 3 d+1 p C([-1,1] n ) ( 7 
)
for all d ≥ 0.

Proof: The idea is to use a multivariate Markov inequality to bound the derivatives of the polynomial at zero (and hence its coefficients) in terms of its supremum norm on [-1, 1] n .

Let p = α β α x α ∈ R[x] d . From [17, Theorem 6], we have 

∂ |α| p ∂x α (0) ≤ |T (|α|) d (0) + iS
d (0) = d -1 T (k+1) d (0) and hence |T (|α|) d (0) + iS (|α|) d (0)| ≤ |T (|α|) d (0)| + 1 d |T (|α|+1) d (0)| = |α|! • |t d,|α| | + (|α| + 1)! d • |t d,|α|+1 | ≤ |α|! + (|α| + 1)! d td ,
where t d,k denotes the k-th coefficient of T d when expressed in the monomial basis (i.e.,

T d (y) = d k=0 t d,k y k ) and td = max k∈{0,...,d} |t d,k |. Since β α = (α 1 ! • . . . • α n !) -1 ∂ |α| p ∂x α (0), we get |β α | |α| α = (α 1 ! • . . . • α n !)|β α | |α|! = 1 |α|! ∂ |α| p ∂x α (0) ≤ 1 + |α| + 1 d td p C([-1,1] n ) .
In view of ( 5) and since |α| ≤ d we get

p R[x] ≤ 2 + 1 d td p C([-1,1] n ) .
It remains to bound td . From the generating recurrence of T d+1 (y) = 2yT d (y) -T d-1 (y) starting from T 0 = 1 and T 1 = y, it follows that td ≤ td , where td solves the linear difference equation td+1 = 2 td + td with the initial condition t0 = 1 and t1 = 1. The solution to this equation is

td = (1 + √ 2) d √ 2 2 + 1 2 + (1 - √ 2) d 1 2 - √ 2 2 ≤ 3 d , d ≥ 1.
Therefore td ≤ 3 d for d ≥ 1 and hence

p R[x] ≤ 2 + 1 d 3 d p C([-1,1] n ) ≤ 3 d+1 p C([-1,1] n ) , d ≥ 1. Since p R[x] = p C([-1,1] n ) for d = 0, the result follows.
In order to state an immediate corollary of this result, crucial for subsequent developments, we define

r := 1 sup{s > 0 | [-s, s] n+m ⊂ X × U} , (8) 
which is the reciprocal value of the length of the side of the largest box centered around the origin included in X × U. By Assumption 1 (a) and (c), we have r ∈ [1, ∞).

Corollary 1 If p ∈ R[x, u] d , then p R[x,u] ≤ k(d) p C(X×U ) , (9) 
where k(d) = 3 d+1 r d with r defined in [START_REF] Henrion | Linear conic optimization for nonlinear optimal control[END_REF].

Proof: Set p((x, u)) := p(r -1 (x, u)). Then we have

p C([-1,1] n+m ) = p C([-1/r,1/r] n+m ) ≤ p C(X×U ) (10) since [-1/r, 1/r] n+m ⊂ X × U by definition of r (8). In addition p R[x,u] = max α r -|α| |β α | |α| α = r -d max α r d-|α| |β α | |α| α ≥ r -d p R[x,u] . (11) 
Combining ( 10), [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] and Lemma 1 we get

p R[x,u] ≤ r d p R[x,u] ≤ 3 d+1 r d p C([-1,1] n+m ) ≤ 3 d+1 r d p C(X×U ) = k(d) p C(X×U ) .
as desired.

Now we turn to analyzing the Bellman inequality (2). The following immediate property of this inequality will be of importance:

Lemma 2 Let V satisfy (2) and let a ∈ R. Then Ṽ := V -a satisfies l -β Ṽ + ∇ Ṽ • f ≥ βa ∀ (x, u) ∈ X × U. Proof: We have l -β Ṽ + ∇ Ṽ • f = l -βV + ∇V • f + βa ≥ βa, since V satisfies (2).
We will also need a result which estimates the distance between the best polynomial approximation of a given degree to the value function and polynomials of the same degree satisfying Bellman's inequality. A similar result in discrete time and with discrete state and control spaces can be found in [START_REF] De Farias | The Linear Programming Approach to Approximate Dynamic Programming[END_REF].

Lemma 3 Let Vd ∈ arg min V ∈R[x] d V -V ⋆ C 1 (X) .
Then there exists a polynomial Ṽd ∈ R[x] d satisfying [START_REF] Chesi | Domain of attraction; analysis and control via SOS programming[END_REF] and such that

Ṽd -V ⋆ C 1 (X) ≤ Vd -V ⋆ C 1 (X) 2 + f C 0 (X) β . (12) 
Proof: Let Ṽd := Vda. We will find an a ≥ 0 such that Ṽd satisfies the Bellman inequality. We have

l -β Ṽd + ∇ Ṽd f = l -β Vd + ∇ Vd f + βa = l -βV ⋆ + ∇V ⋆ f + β(V ⋆ -Vd ) + (∇ Vd -∇V ⋆ )f + βa ≥ β(V ⋆ -Vd ) + (∇ Vd -∇V ⋆ )f + βa ≥ -β Vd -V ⋆ C 1 (X) -Vd -V ⋆ C 1 (X) f C 0 (X) + βa,
and hence if

a := 1 + f C 0 (X) β Vd -V ⋆ C 1 (X) ,
then Ṽd satisfies Bellman's inequality (2) and estimate [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF] holds.

Now we are in position to prove our main result which bounds the gap, in L 1 norm, between the value function V ⋆ of the optimal control problem (1) and any optimal solution V ⋆ d of the sum-of-squares program (4):

Theorem 4 It holds that V ⋆ -V ⋆ d L 1 (µ 0 ) < ǫ for all integer d ≥ c 2 • exp 6d p (ǫ) 2 (3r(n + m)) dp(ǫ) M + βǫ + δ 1 f C 0 βǫ c 2 (13) = O exp 1 ǫ 3c 2 (3(n + m)r) c 3 ǫ , ( 14 
)
where

d p = 2c 1 ǫ 2 + f C 0 β + d f , M = l -βV ⋆ + ∇V ⋆ • f C 0 (X×U ) < ∞, r is defined in (8), c 3 = 2c 1 c 2 (2β + f C 0 )/β,
the constant c 1 depends only on V ⋆ and X and U, whereas the constant c 2 depends only on sets X and U.

Proof: According to Theorem 2 and Lemma 3 we can find a polynomial Ṽ d of degree no more than

d = 2c 1 ǫ 2 + f C 0 β such that V ⋆ -Ṽ d C 1 ≤ ǫ 2
and such that Ṽ d satisfies the Bellman inequality [START_REF] Chesi | Domain of attraction; analysis and control via SOS programming[END_REF]. Let V be an arbitrary polynomial feasible in (4) for some d ≥ 0. Then

V ⋆ -V ⋆ d L 1 ≤ V ⋆ -V L 1 ≤ V ⋆ -V C 0 ≤ V ⋆ -Ṽ d C 0 + V -Ṽ d C 0 ≤ ǫ 2 + V -Ṽ d C 0 . (15)
Hence, the goal is to find a degree d ≥ 0 and a polynomial V feasible in (4) for that d satisfying V -Ṽ d C 0 ≤ ǫ/2. Setting V := Ṽ dǫ/2, we clearly have V -Ṽ d C 0 ≤ ǫ/2; in addition, using Lemma 2 we know that

l -βV + ∇V • f ≥ 1 2 βǫ > 0 ( 16 
)
and hence V strictly satisfies the Bellman inequality and as a consequence of the Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF] there exists a degree d ≥ 0 such that V is feasible in (4). To bound the degree d we apply the bound of Theorem 3 on p := l -βV + ∇V • f . From ( 16) we know that p min ≥ 1 2 βǫ. Next, we need to bound p R[x,u] by bounding p C 0 (X×U ) and using Corollary 1. We have

p C 0 = l -βV + ∇V • f C 0 = l -β Ṽ d + ∇ Ṽ d • f + 1 2 βǫ C 0 ≤ l -βV ⋆ + ∇V ⋆ • f + C 0 + β V ⋆ -Ṽ d C 0 + V ⋆ -Ṽ d C 1 f C 0 + 1 2 βǫ ≤ M + 1 2 βǫ + 1 2 ǫ f C 0 + 1 2 βǫ = M + βǫ + 1 2 ǫ f C 0 .
Finally, we need to estimate the degree of p. We have (assuming without loss of generality that d

+ d f -1 ≥ deg(l)) deg(p) = deg l -βV + ∇V • f ≤ d + d f -1 ≤ 2c 1 ǫ 2 + f C 0 β + d f Setting d p := 2c 1 ǫ 2 + f C 0 β
+ d f and using Theorem 3 and Corollary 1, we conclude that for

d ≥ c 2 • exp 2d 2 p (n + m) dp k(d p )(M + βǫ + δ 1 f C 0 ) βǫ c 2 , the polynomial V is feasible in (4). Since Ṽ d -V C 0 ≤ ǫ 2 , we conclude from (15) that V ⋆ -V ⋆ d L 1 ≤ ǫ.
Inserting the expression for k(d) = 3 d+1 r d from Corollary 1 yields (13) and carrying out asymptotic analysis for ǫ → 0 yields

d ≥ O exp 1 ǫ 3c 2 (3(n + m)r) c 3 ǫ , which is (14). Corollary 2 It holds V ⋆ -V ⋆ d L 1 (µ 0 ) = O(1/ log log d).
Proof: Follows by inverting the asymptotic expression ( 14) using the fact that

(3(n + m)r) 2c 3 ǫ ≥ 1 ǫ 3c 2 (3(n + m)r) c 3 ǫ
for small ǫ.

Discussion

The bound on the convergence rate O(1/ log log d) should be compared with the bound O(1/ c 2 log d) derived in [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF] for static polynomial optimization problems (here c 2 ≥ 1 is the, in general, unknown constant from Theorem 3). The additional logarithm appearing in our bound seems to be unavoidable due to fundamental results of approximation theory (known as Bernstein inequalities) implying that Lipschitz continuous functions cannot be approximated by polynomials with rate faster than 1/d (in the sense that there exists a Lipschitz continuous function whose best degree-d approximation converges to f with the rate exactly C/d, C > 0, in the supremum norm on [-1, 1] n ); this implies the 1/ǫ dependence of d p from Theorem 4 which then propagates to doubly exponential dependence on 1/ǫ through Theorem 3.

Therefore the primary point of improvement of the bound from Theorem 4 and Corollary 2 is the fundamental bound of Theorem 3 derived in [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF]. As the authors of [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF] remark, this bound is far from tight, at least in two special cases: the univariate case (i.e., n+m = 1 in our setting) or the case of a single constraint defining X ×U. In these cases the exponential in (6) can be dropped, which results in O(1/ log d) asymptotic rate of convergence in Corollary 2. In the general case, however, it is unknown whether the exponential in (6) can be dropped or whether the bound (6) can be improved otherwise [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF].

Extensions

The approach for deriving this bound can be extended to other settings. In particular, similar bounds, with identical O(1/ log log d) asymptotics, hold for the finite-horizon version of the problem, both in continuous and discrete time, as well as for the discounted discrete-time infinite-horizon variant (the former was treated using the moment-sum-of-squares approach, in continuous time, in [START_REF] Lasserre | Nonlinear optimal control via occupation measures and LMI relaxations[END_REF] and the latter was treated in [START_REF] Savorgnan | Discrete-time stochastic optimal control via occupation measures and moment relaxations[END_REF]). The derivation in discrete-time is completely analogous and the results hold under milder assumptions (Assumption 1 (d) can be replaced by V ⋆ Lipschitz and Assumption 1 (e) can be dropped completely). For the finite-horizon continuous-time problem, the only difference is in Lemma 3, where the constant shift Ṽ (x) = V (x)a, is replaced by the affine shift Ṽ (t, x) = V (t, x)ab(Tt) for suitable a > 0, b > 0 ensuring that Ṽ satisfies the corresponding finite-time Bellman inequality and its boundary condition (hence the two degrees of freedom).

  then there exists a sequence of polynomials (p d ) ∞ d=1 satisfying deg(p d ) ≤ d such that h-p d C 1 (X) ≤ c 1 /d for some constant c 1 ≥ 0 depending on h and X only. Now we turn to the second fundamental result. Given a polynomial p ∈ R[x] d expressed in a multivariate monomial basis as

Theorem 3 (

 3 Nie & Schweighofer [14]) Let p ∈ R[x, u] dp and let p min := min (x,u)∈X×U p(x, u) with p min > 0.

  | • p C([-1,1] n ) for all multiindices α satisfying |α| ≤ d, where i = √ -1, T d (y) = cos(d arccos(y)), y ∈ [-1, 1], denotes the d-th univariate Chebyshev polynomial of the first kind, S d (y) = sin(d arccos(y)) = d -1 √ 1x 2 T ′ d (y), y ∈ [-1, 1], and h (k) signifies the k-th derivative of a function h : R → R. It is easy to see that S