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Abstract— In robotic navigation, biologically inspired local-
ization models have often exhibited interesting features and
proven to be competitive with other solutions in terms of
adaptability and performance. In general, place recognition
systems rely on global or local visual descriptors; or both. In
this paper, we propose a model of context-based place cells
combining these two information. Global visual features are
extracted to represent visual contexts. Based on the idea of
global precedence, contexts drive a more refined recognition
level which has local visual descriptors as an input. We
evaluate this model on a robotic navigation dataset that we
recorded in the outdoors. Thus, our contribution is twofold: 1)
a bio-inspired model of context-based place recognition using
neural networks; and 2) an evaluation assessing its suitability
for applications on real robot by comparing it to 4 other
architectures – 2 variants of the model and 2 stacking-based
solutions – in terms of performance and computational cost.
The context-based model gets the highest score based on the
three metrics we consider – or is second to one of its variants.
Moreover, a key feature makes the computational cost constant
over time while it increases with the other methods. These
promising results suggest that this model should be a good
candidate for a robust place recognition in wide environments.

I. INTRODUCTION

Place recognition is one of the abilities that mobile robots
need in order to navigate properly. In this context, taking
inpiration from biological systems has often been a good
way to build robust and adaptive systems that can also be
competitive with non-biologically inspired models in terms
of performance [1][2][3]. Indeed, mammals have the capacity
to recognize visited places and to localize themselves in
nearly any sort of environments. Place cells, grid cells and
head direction cells represent the neural substrate involved
in this capacity and have been extensively studied in the
last decades (see [4] for a recent review of navigation com-
putational models). Generally, vision is the most important
modality – although other sensory inputs (e.g. olfactory,
tactile, proprioceptive, etc.) are also very helpful.

In the literature, we can classify scene recognition methods
according to the type of visual information they rely on,
i.e. global or local. Some of them try to capture the global
aspect of the scene by considering the image as a whole
[5][2][6][3][7]. On the other hand, other models extract and
encode particular subparts of the image, called regions of
interest [8][1][9][10]. While global vision-based methods are

faster, they have generally shown less effective than local
vision-based ones [11][3].

The issue of combining local and global visual infor-
mation has been addressed in related work [12][3][13][6].
In this paper, we propose a biologically inspired model
for context-based place recognition. It is based on two
parallel pathways learning to discriminate the robot locations
from global low-resolution and local high-resolution visual
inputs respectively. The first neural network serves for the
contextualization of the information being processing in the
second one. This hierarchical model explores the idea of
visual contexts [14][15] in the case of global precedence
[16][5].

The hierarchical combination of local and global infor-
mation represented by our model is compared to a stacking
approach (concatenation of inputs). We also use a model
of place recognition that is purely local vision-based as a
baseline for this comparison. Those architectures are tested
on a dataset recorded in visually different outdoor environ-
ments. Also, it fits the protocol used in experiments on real
robots [17]. Moreover, we introduce a set of measures that
not only evaluate the vision system from the information
retrieval standpoint but also in the specific case of robotic
navigation. Thereby, we show that our context-based ap-
proach outperforms the other methods and is viable in terms
of computational cost. Our results suggest a good potential
for scaling up to wide environments.

In the next section, we elaborate on the differences be-
tween local and global vision in order to introduce the notion
of visual contexts in the case of a localization task. Then,
we introduce the model of context-based place recognition
using neural networks. Next, we describe our dataset and give
some implementation details regarding the visual descriptors.
Finally, two experiments are presented. The first one com-
pares the descriptors capacity to discriminate places in terms
of granularity. The second one compares our model to 4
other architectures – 2 variants of the model and 2 stacking-
based solutions – in order to evaluate their performance and
computational cost.

II. LOCAL VS GLOBAL VISION

Scene recognition models can be classified based on
whether they use local or global visual descriptors. Global
(holistic) vision methods consider the image as a whole and



TABLE I
COMPARISON BETWEEN LOCAL RHOTHETA, SIFT AND SURF

rhotheta SIFT SURF
Multiscale No Yes Yes
Saliency map DoG DoG DoB(Box)

PoI extraction Local Local Hessian
extrema extrema matrix

Descriptor type Log polar Orientation Orientation
mapping histogram histogram

encode it as a single vector. Because they are typically very
compact, they allow for fast computation.

A significant number of models using this kind of de-
scriptors can be found in the literature [5][2][6][3][7]. For
instance, Milford proposes to subsample the whole image
and use it as a global signature [6]. In former work [2], the
subsampled image is also projected over the horizontal axis
to obtain a vector representing the intensity profile. Global
descriptors can be encoded in histograms as well [11][7].
In addition, some solutions construct signatures based on
statistical moments (mean, variance or possibly higher order
moments) [11][3]. Three types of information are commonly
used to compute visual descriptors. First and foremost ev-
ident is the luminance channel [2][6]. Also, chrominance
channels can provide richer information [11][7]. Lastly,
orientations are very useful to describe textures both indoors
(e.g. doors and computers screens) and outdoors (e.g. trees,
roads and distant buildings) [5]. In [3], the authors use these
three types of information simultaneously.

In contrast, local descriptors only carry information rela-
tive to certain regions of interest in the image. State-of-the-art
methods, like SIFT [9] and SURF [10] typically implement
this kind of solution. In previous work, we proposed a
biologically plausible model for place cells driven by visual
input obtained from an attentional system [8][18]. Also,
studies using real robots showed its robustness in indoor
and outdoor environments [1][17]. In this model, points of
interest are extracted from the image based on a saliency
map. Local views around these salient points are transformed
using log-polar mapping and used as descriptors. The Table I
summarizes the differences between this technique (labelled
rhotheta) and SIFT [9] and SURF [10] techniques. In our
place cells model, the rhotheta codes (i.e. local views en-
coded using log-polar transform) are categorized and used
to build a representation of a visited place by merging
“what” and “where” information in a 2D map using a max-
pi operation (max of tensor product). We will refer to this
whole method as LPMP (Log-Polar Max-Pi). More details
will be given in Sect. IV.

Generally, holistic methods have shown less effective
than local features-based ones [11][3]. Indeed, the latter
use richer information: a certain number of signatures per
image (“what” information) and their corresponding posi-
tions (“where” information). However, they can be useful in
situations where stability of points of interest detection is dif-
ficult to ensure (complex textures like tree leaves, condition

variation, etc.). Prior to the experiments we present in this
paper, we conducted a pilot study that allowed us to evaluate
the descriptors separately and set the values of the parameters
we list later on. We cannot show the results here due to
space limitation. However, the overall conclusion is that,
although the local descriptors generally get higher scores,
holistic descriptors perform well and sometimes outperform
the local ones.

Some models combine local and global descriptors to
benefit from both kinds of visual features [12][3][13][6].
For example, the two levels of visual descriptors can be
concatenated and fed simultaneously to the scene classifier
[12][13]. In other cases, the global features are used for a
first level of recognition (i.e. bigger regions of the navigation
environment), which is then refined by the local information
(i.e. more precise location). We refer to the first category as
stacking methods and the second one as hierarchical methods
[12]. The model we present in the paper belongs to the
second class and explores the idea of visual contexts.

III. VISUAL CONTEXTS

Humans are able to coarsely recognize a scene at a glance.
The gist1 of the scene is extracted from its global aspect
based on low-resolution visual information [16][15][14][5].
Such visual context identification resolves ambiguities and
facilitates objects recognition – which is, in contrast, based
on the processing of higher resolution information [14].
Indeed, contextual cueing has been shown to drive spatial
attention and increase performances in search tasks [15].

The notion of context is very related to spatial repre-
sentation as it often refers to background cues [19]. So
context identification is essential for navigation. But, while
place recognition per se is mainly based on geometric visual
information (distances and directions of the landmarks in the
environment), it is also influenced by additional sensory (e.g.
colors, sounds, odors, etc.) and behavioral cues [20]. Thus,
the term “context” can carry more or less abstract meanings
in the literature [19].

In a pure localization tasks, context detection can refer to
the recognition of a broad area in which several locations
(places) can be discriminated. We previously proposed a
model in which a coarse place recognition modulates the
responses of a more refined recognition level [21]. This initial
work provides proof of the interest of the contextualization of
place recognition in a simulated navigation task. Yet, the two
levels were based on the same geometric cues. On the other
hand, according to the global precedence concept, the global
aspect of the image can be used to drive the recognition of
local details [16]. The pilot study we mentioned earlier gave
preliminary evidence on real data that holistic descriptors can
successfully discriminate large regions of the environment.
For instance, Fig. 1 shows that two of the global descriptors
we use in this paper are able to discriminate the three
datasets. The first experiment we present in this paper further

1The term “gist” is used in its general meaning – that is to say, the
summary or the essential aspect of the scene. We do not refer to the
particular implementation used in [3].
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Fig. 1. Maximum activities among places that were respectively learned
in A, B and C are represented (see Sect. V-A). Due to space limitation,
we show the output of two experiments using proflum and profcol global
descriptors on the same figure. The implementation of these two holistic
descriptors is detailed in Sect. V-B.2. Despite differences in the dynamics,
these descriptors correctly discriminate the different dataset.

shows the difference in the granularity of place recognition
based on local or global visual information (see Sect. VI).

IV. CONTEXT-BASED PLACE RECOGNITION MODEL

In this model, two identical neural networks are respec-
tively dedicated to global low-resolution and local high-
resolution visual processing (see Fig. 2). The former pathway
modulates the activity of the latter. As a result, a coarse
localization (Context) and a refined one (Place) are obtained.
The processing chain is based on a biologically plausible
model of place cells in the hippocampal system [18] but
also integrates modifications that allow for better results in
the case of robotic implementations [1].

The place recognition level drives the learning process in
a one-shot way. That is to say, whenever none of the learned
places activities is greater than a vigilance level v, new cate-
gories (signatures, contexts and places) and associations are
learned. This way, the system learns independently without
human supervision.

On both levels, a position in the environment is encoded
as a constellation of neural activities merging “what” and
“where” information – that is to say couples of visual signa-
tures and the absolute orientations where they were observed
(azimuths). The “where” information can be obtained by
integrating vision and proprioception [22] or simply using
a magnetic compass. Gist and Landmarks signatures encode
global low-resolution and local high-resolution descriptors
respectively.

The activity of each neuron gi representing a gist signature
at time t is given by the following equations:

gi(t) = 1− 1

NGD

NGD∑
j=1

|wGDij (t)− dgj (t)| (1)

where dgj is the jth element of the global descriptor vector
of size NGD and wGDij is the weight of the synaptic link
between gi and dgj . The learning rule of these neurons is the
following:

dwGDij
dt

= dgj (t)− w
GD
ij (t) (2)

Gist
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(categorization)

Global
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Fig. 2. Context-based model for place recognition. Two parallel neural
networks extract visual features, merge them with azimuth information
and categorize What-Where patterns to obtain two levels of localization
respectively based on global and local descriptors. The combination link
serves for the contextualization of information in the local vision pathway
based on the global vision one. Learning links are only shown for the gist
signatures and contexts for the sake of readability; but all the plastic links
are modified based on the vigilance signal.

With this type of neurons, the idea is to save the input
pattern in the links weights. Thus, the closer the input is
to the learned pattern, the stronger the neurons activations.
Although not biologically plausible, this method shows good
generalization properties for robotic place recognition [1].

Moreover, the recognition of a landmark signature li
not only depends on the input descriptor but also on the
recognition of associated gist signatures. Thus, the activity of
each neuron li at time t is given by the following equations:

li(t) =
1

Ncxt

Ncxt∑
q=1

(
max

k=1..NG

q(wGik(t).gk(t))× (3)1− 1

NLD

NLD∑
j=1

|wLDij (t)− dlj(t)|

)
where dlj is the jth element of the local descriptor vector of
size NLD; NG the size of the gist signatures vector; wGDij
and wGik are the weight of the synaptic links between li and
dgj ; and gk respectively and max

i∈I
q is an operator that gives

the qth maximum in I . When implemented, only the Ncxt
most recognized gist signatures are read. The activities of
landmark neurons that are not associated to them are not
computed in order to reduce the computational cost.

The learning rule for wLDij is the same as wGDij in (2)
(replacing g subscripts and superscripts by l). In contrast, the
links between gist and landmarks signatures use a hebbian-
like learning rule. The purpose is to capture co-activations
between contextual information (global aspect of the image)
and local visual input (regions of interest):

dwGik
dt

= li(t).gk(t) (4)

If the learning process were slow rather than one-shot, the
equation could benefit from a decay factor. In our initial work



based on very long simulations, learning converged to very
few contextual associations [21].

In addition, the model relies on the “where” information;
that is to say the orientation in which the visual feature is
observed. The input is a vector in which each neuron has
a preferred direction around the yaw axis. The activities of
the azimuth neurons αi are obtained after a lateral diffusion
around the neuron coding for the direction of the current
visual input. In our case, it corresponds to a gaussian
bell with standard deviation σazim. It integrates information
about the orientation of the body (robot), head (camera) and
fovea (center of the visual feature).

The “what” and “where” maps (W-W maps) are second-
order tensors MG and ML in which each neuron codes
for a signature-azimuth couple. A short term memory stores
previous activities while the visual scene exploration is still
in progress (i.e. before the end a panorama). In order to
reduce the computational cost, the 360o surrounding field is
discretized in NA orientations before the computation of the
tensorial product. Then, the activities of the NMG and NML

W-W tensors are:

MG(t) =max[(g ⊗ a),MG(t− dt).(1−R(t))] (5)
ML(t) =max[(l ⊗ a),ML(t− dt).(1−R(t))]

where NMG = NG ×NA and NML = NL ×NA; NG and
NL are the size of the signatures vector; g, l and a are the
signatures and azimuths vectorial representations; R a binary
reset signal triggered at the end of a panorama; and ⊗ is the
tensorial product operator.

Patterns of activities in the W-W maps code for the current
location. Such patterns are categorized in context and place
vectors, in which ci and pi neurons respectively have the
following activities at time t:

ci(t) = 1− 1

ρMG.NMG

ρMG.NMG∑
j=1

max
i=1..NMG

q |wMG
ij (t)−mg

j (t)|

(6)

pi(t) =
1

Ncxt

Ncxt∑
q=1

(
H

(
max

k=1..NC

q(wCik(t).ck(t))

)
× (7)

(
1− 1

ρML.NML

ρML.NML∑
h=1

h
max

i=1..NML
|wML
ij (t)−ml

j(t)|

))

where mg
j is the jth element of the tensor MG; ml

j is the jth

element of the tensor ML; wMG
ij is the weight of the synaptic

link between ci and mg
j ; wML

ij is the weight between pi and
ml
j ; ρM is the proportion of W-W couple required for context

and place recognition; H(x) is the heaviside function; and
max
i∈I

q is an operator that gives the qth maximum in I . Like
at the signatures layer, the activities of place neurons that are
not associated with the Ncxt best recognized contexts are not
computed.

Please note that the binarization of the contextual term
through the heaviside function is not mandatory. The purpose
is to ensure that the dynamics of place neurons activities

only depends on the input pathway (instead of being reduced
by the contextual factor which is < 1). This way, we do
not alter the recruitment mechanism and the same vigilance
threshold can be used across all the methods considered in
our experiments.

Moreover, as compared to the equation (1), the factor
ρM has been introduced for the purpose of robustness to
occlusions. This parameter also compensates the absence of
activation thresholds in the previous layers of the neural
network. It represents an estimation of the ratio of the W-
W pattern used to code for a place that is necessary and
sufficient in order to recognize it (for more details, the
reader can refer to a previous study [1]). The learning rules
are the same as (2) for W-W inputs and (4) for contextual
information. All parameters values are given in Table II and
discussed in Sect. VIII.

V. MATERIAL AND METHODS

A. Experimental Setup

The study we present in this paper is performed on a
dataset comprising three parts A, B and C. It was recorded
in the area around the university of Cergy-Pontoise in France
using the Robosoft c©RobuROC. The images were captured
by a fisheye camera. A magnetic compass was used to
acquire the orientation data. Using a magnetic compass is
the easiest way to obtain this information but we could
also extract it from vision, odometry and other modalities
[22][23].

The dataset fits the experimental protocol used in experi-
ments involving online learning on real robots [17]. In order
to learn a new place, the robot camera captures 15 images
over a 360 degrees panorama. During this process, the robot
stays still in order to avoid distortions in the representation
of the place. On the other hand, in the exploration phase (the
rest of the time), the robot captures 7 images per panorama
in order to recognize learned places as fast as possible while
it navigating.

The data consist in trajectories recorded in visually differ-
ent environments (see Fig. 3). C (23.1 meters long) simulates
on-road navigation in a quite structured but highly dynamic
environment (moving cars and pedestrians). A and B (20
meters long each) simulate off-road navigation. These envi-
ronments are less structured and buildings are more distant.
For the sake of evaluation simplicity, all trajectories are linear
on x and y axis, although perturbations were induced by the
rugged nature of the field. However, the camera is stabilized
using a Kalman filter to limit the pitch and roll as much as
possible. The robot speed is constant during exploration. The
three A, B and C were concatenated for these experiments.
The whole dataset includes 74 = 23 + 25 + 26 learning
panoramas (i.e. sets of 15 images captured while stopped)
and 92 = 29 + 29 + 34 exploration panoramas (i.e. sets
of 7 images captured while moving). The closest distance
between two possible places is dlearn = 0.93± 0.03 meters
in average. An exploration panorama is completed after
travelling dexplo = 0.71 ± 0.01 meters. We calculate the



Fig. 3. Samples from the 3 dataset (A: top-left, B: top-right, and C: mid-
left) and a map representing locations where they were recorded. In order to
reduce distortions introduced by the fisheye lens and to remove the irrelevant
bottom part, we only consider the highlighted 440× 240 subimage.

ground truth by estimating the robot position at every step
based on that.

All experiments are run on a 6-core 12-thread 3.33GHz
CPU with 16 GB of RAM. We use the Promethe neural
network simulator [24]. Each operation of the information
processing flow (Fig. 2) can be computed as soon as the
information from previous modules is updated. Independent
modules are executed in parallel (i.e. in separate threads).

B. Implementation details

1) Local descriptors: We use the rhotheta descriptor as
an input for the local vision pathway (see LPMP model
description in Sect. III). First, we apply a Deriche [25] filter
on the grey scale image. It consists in a derivative and a
smoothing filter h and f :

h(x) = c.x.eα|x| (8)

f(x) = b.(α | x | +1).e−α|x|

with c = (1−e−α)2
e−α . Then, the output is convolved with a

DoG filter consisting in two gaussians of standard deviations
σDoG1 and σDoG2 . The result is a saliency map from which
we extract the points of interest.

Local views are extracted around the NPoI most salient
points between two disks of radius rsmall and rbig . To avoid
redundacies, two PoI cannot be closer that rbig/2. Then, local
views are encoded using a log-polar transformation. Thereby,
we obtain descriptor of size Nρθ. The log-polar transforma-
tion is a biologically plausible operation, has relatively little
computational cost, is invariant to small rotations and scale
variations, and gives good place recognition results [1].

2) Global descriptors: As for the global vision pathway,
we use subsampling-based encoding on three visual channels
(luminance, chrominance and texture). Subsampling is a
simple and biologically plausible process. Also, this method

showed good results in the pilot study. Thus, proflum repre-
sents a scanline intensity profile like Milford’s visual SLAM
[2]. The grey scale image is subsampled at a factor of κ.
Then, a 1-D vector represents the normalized sum of the
pixels intensity in each column.

Likewise, profcol uses the same technique to associate a
scanline profile to each of the chromatic dimensions of an
image represented in the Lab color space. In this represen-
tation, a and b are color-opponent dimensions, respectively
coding for the Red-Green and the Yellow-Blue axis. The Lab
color space was designed to approximate human vision. In
our case, unlike the RGB space, it allows for easily removing
the lightness component of the image and only encodes the
chrominance. Also, as compared to the HSV space, the two
remaining color dimensions are homogeneous.

Lastly, profgab create a profile for each of the outputs
of a Gabor filter bank. Gabor filters are defined by a
sinusoidal wave multiplied by a Gaussian function and allow
for orientation detection. The complex representation for a
2-D filter is the following:

g(x, y) = e
− x
′2+γ2y′2

2σ2g .ei(2π
x′
λ +ψ) (9)

with x′ = x cos θ + y sin θ and y′ = y cos θ − x sin θ where
γ is the spatial aspect ratio, σg the standard deviation of the
gaussian function, λ the sinusoidal factor wavelength, ψ the
phase offset and θ the preferred orientation of the filter. In
our case, the filter bank is used to detect 4 orientations (0,
π/4, π/2 and 3π/4).

We refer to the combination of those three global descrip-
tors as allprof. The complete holistic descriptor size is thus
(7.viewW /κ) where viewW is the views width. It gives a
low-resolution representation of the image.

VI. EXPERIMENT 1

A. Description and protocol

In the first experiment, we consider only one pathway at a
time in order to test rhotheta, proflum, profcol, profgab and

TABLE II
PARAMETERS VALUES

Value Description
viewW 440 Width of the subimages (views)
σazim 30 Std. dev. of azimuths diffusion (in degrees)
Na 5 Nb. of orientations in the W-W Map
ρM 0.33 Ratio of required W-W couples (places)
Ncxt 7 Nb. of best recognized contexts
α 0.4 Gradient resolution (edge detection)
σDoG1 8 Std. dev. of 1st DoG gaussian (in pixels)
σDoG2

2 Std. dev. of 2nd DoG gaussian (in pixels)
NPoI 5 Nb. of PoI extracted per image
rsmall 10 Small disk radius in local views (in pixels)
rbig 64 Big disk radius in local views (in pixels)
Nρθ 54 Size of the rhotheta descriptor
κ 4 Subsampling factor (all global desc.)
γ 0.7 Spatial aspect ratio of the gabor
ψ 0 Phase offset of the gabor filter
σg 16 Std. dev. of the gabor gaussian (in pixels)
λ 32 Wavelength of gabor filters (in pixels)
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Fig. 4. Number of discriminated places by local and global descriptors
for several values of the vigilance threshold. In general, global descriptors
recruit less place cells than rhotheta

allprof separately. Our objective is to compare the descrip-
tors capacity to discriminate places in terms of granularity.
As explained in Sect. IV, a new place is learned whenever
none of recognition level of the known places is higher than a
vigilance threshold v. Consequently, the number of recruited
place cells is a good metric for our test: The more places are
learned, the finer the recognition.

We run several tests for v ∈ {0.6, 0.7, 0.8, 0.9, 0.98}.
There are 74 learning panoramas that we feed to the visual
processing chain one by one. We note that after a place is
learned, an intermediate panorama has to be used to test the
recognition. Thus, the system can learn 34 place at the most
on our dataset.

B. Results

As shown if Fig. 4, global descriptors recruit less place
cells than the local descriptor rhotheta. Since allprof is
simply a concatenation proflum, profcol and profgab without
normalization, its results not only depend of the variation
observed on each individual descriptor but also on their sizes.
However, for v = 0.8, it exhibits an averaged response.

The difference in terms of discrimination granularity can
be seen for almost all of the vigilance values we considered.
Here we are mainly interested in studying the learning
process. Yet, it is worth pointing out that limit v values do
not allow for a satisfying recognition during exploration.

VII. EXPERIMENT 2

A. Description and protocol

The purpose of this experiment is to evaluate the perfor-
mance and computational cost of our model of context-based
place recognition described in Sect. IV. In this model, the
global vision pathway modulates the activities in the local
vision pathway at two levels: gist signatures serve as contexts
for landmarks and coarse localization as contexts for places.
In order to assess the role of the contextualization in each of
these layers, we also test two architectures where it is only
done at the landmarks level or at the places level. Those
three versions will be labelled Cxt LP, Cxt L and Cxt P
respectively. Cxt stands for context, L for landmarks and P
for Places.

In addition, we compare the context-based models to the
stacking method. Indeed, related work use non-hierarchical
combinations of local and global visual features for scene

recognition [12][13]. So, we test the case where all de-
scriptors are concatenated as an input for the landmarks
categorization (labelled Stack L). Also, we consider the case
where the gist signatures are processed separately (without
modulation of the landmarks activities) but the two W-
W maps are put together for place recognition (labelled
Stack P). In other words, the combination links in Fig. 2
are replaced by a simple concatenation operation and the
contextualization terms in equations (1) and (6) are omitted.
Lastly, the LPMP model (using the local vision pathway
only) is used as a baseline.

Given the results obtained in the previous test, we set the
vigilance threshold to v = 0.8.

B. Measures

In the evaluation of a visual scene recognition system,
two criteria are essential: generalization and recall-precision
trade-off. When measuring recall and precision, we want
to make sure that the system’s capacity to return relevant
answers does not decrease dramatically when tuned to return
as much elements as possible. It is an evaluation from the
information retrieval perspective. The generalization criterion
consists in the system’s ability to return relevant elements
in new situations by recognizing common characteristics
shared with learned patterns. In navigation, such property
is crucial so that the robot can correctly perform in the
real world. In particular, topologically close locations should
have close recognition levels. It also allows for using control
mechanisms that generate smooth trajectories by averaging
their responses when several situations are recognized well
enough. In this experiment, we consider three measures of
performance:

3WD (3 winners distances): It measures the average
distance (in meters) between the 3 best recognized places and
the position where they were originally learned. It character-
izes the systems ability to generalize and not only recognize
places at the precise location where the corresponding visual
features were learned. For the sake of uniformity amongst
models versions, the sum is normalized by the average
distance between two learned places in each case. Thus, the
results are greater or equal to 1; 1 being the best results.

MAP (mean average precision): It is a traditional compact
representation of the recall-precision curves. It is the mean
of the average precision at every position. Indeed, our neural
network generates new place cells activities every time the
W-W maps are updated by a new visual panorama. This is
analogous to a new query. So we can calculate the system
precision (i.e. well ranked place cells responses) depending
how many place cells activity would be considered in the
output. MAP scores are in [0, 1] and 1 corresponds to a
perfect precision.

WNR (winners-to-noise ratio): Similarly to a classic
signal-to-noise ratio, it compares the level of the desired
responses to the level of background noises. In this case,
we consider that the most relevant information consists in the
average of the 3 winners levels while the noise is the average
of the remaining place recognition levels. This measure
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Fig. 5. Performance scores of all tested models. Our context-based model Cxt LP gets the best results in almost all the tests or is second to one of its
variants Cxt P. 3WD: The closer to 1 the better; MAP and WNR: The great the better.

assesses whether a place cell activity decreases when the
robot is far from the initial learning location. Also, higher
WNR scores indicate there’s less sensitivity to noise and
more robustness to small variations. In other words, little
risk that the fifth closest place cell would be more active
wins the competition mistakenly. The WNR ratio is greater
or equal to 1 and the greater the better.

Moreover, another important criterion for our evaluation is
the computational cost. Indeed, more visual input to process
(global+local) could make the architecture too slow to run on
a real robot with real time constraints. Therefore, we measure
the framerate: the number of images processed per second.

C. Results

The performance scores of the six tested models are
presented in Fig. 5. First, all models combining local and
global visual information outperform the LPMP model in
the 3WD test. The best results are obtained by Cxt LP then
Cxt P. Besides, context-based model get higher MAP score
than stacking versions. We note that for this test, LPMP
performs as well as context-based models. As for the WNR,
we observe a real impact of the contextualization – Cxt LP
obtaining the highest score.

On the other hand, adding the global vision pathway
induces an additional computational cost. Except for LPMP,
the highest framerate is obtained with Stack P. However,
beside the absolute value, we note that the framerate stays
almost constant in the case of Cxt LP and Cxt L while it
decreases over time for all the other models.

VIII. GENERAL DISCUSSION

Most of the parameters listed in II are based on previous
work and a history of experiments using the LPMP model
(with the rhotheta descriptor) in indoor and outdoor envi-
ronments [17][1]. In addition, those used to implement the
global descriptor allprof showed good results in the pilot
study.

The results obtained in Experiment 1 confirm that a global
features-based system is less sensitive to visual variations
than a local features-based one. Indeed, more place cells
are learned using rhotheta than all the other descriptors.
Holistic descriptors tend to capture more global information;
hence the coarse granularity. Also, in the pilot study, global
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descriptors were able to discriminate between the A, B and
C parts of the dataset (see Fig. 1). This suggests that they
can be used for a coarse localization in which a set of small
places can be distinguished. The context-based model we
propose – consisting in Cxt LP from which we derive the
Cxt L and Cxt P for the sake of evaluation – exploits this
idea.

Stack L and Stack P were implemented in order to com-
pare the context-based model to non-hierarchical methods
like in related work [12][13]. Interestingly, as opposed to our
results, Lisin and colleagues obtained better performances
with the stacking method than with the hierarchical one [12].
However, their experiments were based on images of multi-
cellular organisms (planktons) on a uniform background. In
contrast, we use images recorded in the outdoors in dynamic
environments. This highlights the fact that robotic navigation
is a specific application domain that need specific solutions.

The fact that all models using local and global visual input
outperform the LPMP model in the 3WD test confirms the
interests of using global descriptors for place recognition in a
robotic system. Indeed, in this application domain, we want
topologically close locations to have close recognition levels.
However, the stacking models get lower MAP scores than
the others which means that the place cells following the



3 winners often correspond to a wrong recognition. Thus,
from the information retrieval point of view, these methods
are less efficient than the hierarchical ones. Additionally, as
expected, the context-based method proposed in this paper
considerably increases the WNR by penalizing landmarks
that are recognized independently from the global scene to
which they are associated as well as place cells that are active
outside of their contexts.

Also expected was the computational cost induced by the
additional processing pathway dedicated to the global vision.
Although the global descriptors are relatively compact and
their computation not costly, their processing across the cat-
egorization layers of the neural network reduces the system
framerate. Nevertheless, the results demonstrate this is not
a critical drawback. A framerate of 2.5 images/sec means
it takes 3 sec to capture a 7-image exploration panorama
and update the robot localization. Since we generally set the
linear speed lower than 1 m/sec in field experiments, we
consider it is an acceptable framerate for a moving camera
dedicated to place recognition. Additional faster sensors can
be used for more critical functions like obstacle avoidance.
But more importantly, beside the absolute value, we note that
the framerates decrease over time for most of the models.
Indeed, given that there are NPoI × 15 landmarks recruited
per place cell, the larger the environment (or dataset) the
more information has to be processed at the end of the
experiment. However, the framerate stays almost constant in
the case of Cxt LP and Cxt L. This is due to an interesting
feature of our model: in the local vision pathway, only
the activities of neurons associated to a limited set of well
recognized ones (Ncxt) from the global vision pathway are
computed. This is not observed with Cxt P because there are
not enough places learned in this experiment so that the sole
contextualization of places exhibits this effect. Hence, we
except that on longer trajectories, the benefit of the context-
based model persists while the framerate of other techniques
keeps dropping up. This should be tested in future work, as
well as the impact of different values of the Ncxt parameter.

IX. CONCLUSION

Our results show that global visual features can be used
for a coarse localization. In addition, in terms of place
recognition, the context-based model we propose in this
paper gets the best results – or is second to one of its variants.
The computational cost induced by the integration of more
visual information does not prevent it from being executed
on real robots. More importantly, a key feature of our model
makes the computational cost constant over time while it
increases when other methods are used. Future work should
confirm the interest of this solution on larger datasets and
real robots experiments.

REFERENCES

[1] C. Giovannangeli, P. Gaussier, and J. Banquet, “Robustness of visual
place cells in dynamic indoor and outdoor environment,” International
Journal of Advanced Robotic Systems, vol. 3, no. 2, pp. 115–124, 2006.

[2] M. J. Milford and G. F. Wyeth, “Mapping a suburb with a single
camera using a biologically inspired slam system,” Robotics, IEEE
Transactions on, vol. 24, no. 5, pp. 1038–1053, 2008.

[3] C. Siagian and L. Itti, “Biologically inspired mobile robot vision
localization,” Robotics, IEEE Transactions on, vol. 25, no. 4, pp. 861–
873, 2009.

[4] T. Madl, K. Chen, D. Montaldi, and R. Trappl, “Computational
cognitive models of spatial memory in navigation space: A review,”
Neural Networks, vol. 65, pp. 18–43, 2015.

[5] A. Oliva and A. Torralba, “Building the gist of a scene: The role of
global image features in recognition,” Progress in brain research, vol.
155, pp. 23–36, 2006.

[6] M. Milford, W. Scheirer, E. Vig, A. Glover, O. Baumann, J. Mattingley,
and D. Cox, “Condition-invariant, top-down visual place recognition,”
in ICRA 2014. IEEE, 2014, pp. 5571–5577.

[7] K. Rebai, O. Azouaoui, and N. Achour, “Hs combined histogram for
visual memory building and scene recognition in outdoor environ-
ments,” 2014.

[8] P. Gaussier and S. Zrehen, “PerAc: A neural architecture to control
artificial animals,” Robotics and Autonomous Systems, vol. 16, no. 2-4,
pp. 291–320, 1995.

[9] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91–110, 2004.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[11] K. E. Van de Sande, T. Gevers, and C. G. Snoek, “A comparison
of color features for visual concept classification,” in Proceedings of
the 2008 international conference on Content-based image and video
retrieval. ACM, 2008, pp. 141–150.

[12] D. Lisin, M. Mattar, M. B. Blaschko, E. G. Learned-Miller, M. C. Ben-
field et al., “Combining local and global image features for object class
recognition,” in Computer Vision and Pattern Recognition-Workshops,
2005. CVPR Workshops. IEEE Computer Society Conference on.
IEEE, 2005, pp. 47–47.

[13] V. Rostami, A. R. Ramli, and O. Sojodishijani, “Integration of global
and local salient features for scene modeling in mobile robot applica-
tions,” Journal of Intelligent & Robotic Systems, vol. 75, no. 3-4, pp.
443–456, 2014.

[14] M. Bar, “Visual objects in context,” Nature Reviews Neuroscience,
vol. 5, no. 8, pp. 617–629, 2004.

[15] M. M. Chun, “Contextual cueing of visual attention,” Trends in
cognitive sciences, vol. 4, no. 5, pp. 170–178, 2000.

[16] D. Navon, “Forest before trees: The precedence of global features in
visual perception,” Cognitive psychology, vol. 9, no. 3, pp. 353–383,
1977.

[17] A. Jauffret, N. Cuperlier, P. Tarroux, and P. Gaussier, “From self-
assessment to frustration, a small step toward autonomy in robotic
navigation.” Frontiers in neurorobotics, vol. 7, no. 16, 2013.

[18] P. Gaussier, A. Revel, J. P. Banquet, and V. Babeau, “From view cells
and place cells to cognitive map learning: processing stages of the
hippocampal system.” Biological cybernetics, vol. 86, no. 1, pp. 15–
28, 2002.

[19] D. M. Smith, “The hippocampus, context processing and episodic
memory,” Handbook of behavioral neuroscience, vol. 18, pp. 465–
630, 2008.

[20] M. I. Anderson and K. J. Jeffery, “Heterogeneous modulation of place
cell firing by changes in context,” The Journal of neuroscience, vol. 23,
no. 26, pp. 8827–8835, 2003.

[21] N. Cuperlier, P. Gaussier, and M. Quoy, “Interest of spatial context
for a place cell based navigation model,” in From Animals to Animats
10. Springer, 2008, pp. 169–178.

[22] C. Giovannangeli and P. Gaussier, “Orientation system in robots:
Merging allothetic and idiothetic estimations,” in 13th International
Conference on Advanced Robotics, 2007, pp. 349–354.

[23] P. Delarboulas, P. Gaussier, M. Quoy, and R. Caussy, “Robustness
study of a multimodal compass inspired form hd-cells and dynamic
neural fields,” in From Animals to Animats 13. Springer, 2014.

[24] M. Lagarde, P. Andry, and P. Gaussier, “Distributed real time neural
networks in interactive complex systems,” in CSTST, 2008, pp. 95–
100.

[25] R. Deriche, “Using canny’s criteria to derive a recursively implemented
optimal edge detector,” International Journal of Computer Vision,
vol. 1, no. 2, pp. 167–187–187, Jun. 1987.


